1
|
Díaz MA, Vega-Hissi EG, Blázquez MA, Alberto MR, Arena ME. Restraining Staphylococcus aureus Virulence Factors and Quorum Sensing through Lactic Acid Bacteria Supernatant Extracts. Antibiotics (Basel) 2024; 13:297. [PMID: 38666973 PMCID: PMC11047364 DOI: 10.3390/antibiotics13040297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/29/2024] Open
Abstract
The escalating prevalence of antibiotic-resistant bacteria poses a grave threat to human health, necessitating the exploration of novel alternatives to conventional antibiotics. This study investigated the impact of extracts derived from the supernatant of four lactic acid bacteria strains on factors contributing to the pathogenicity of three Staphylococcus aureus strains. The study evaluated the influence of lactic acid bacteria supernatant extracts on the growth, biofilm biomass formation, biofilm metabolic activity, and biofilm integrity of the S. aureus strains. Additionally, the impact on virulence factors (hemolysin and coagulase) was examined. Gas chromatography coupled with mass spectrometry was used to identify the bioactive compounds in the extracts, while molecular docking analyses explored potential interactions. Predominantly, the extracts contain eight 2,5-diketopiperazines, which are cyclic forms of peptides. The extracts demonstrated inhibitory effects on biofilm formation, the ability to disrupt mature biofilms, and reduce the biofilm cell metabolic activity of the S. aureus strains. Furthermore, they exhibited the ability to inhibit α-hemolysin production and reduce coagulase activity. An in silico docking analysis reveals promising interactions between 2,5-diketopiperazines and key proteins (SarA and AgrA) in S. aureus, confirming their antivirulence and antibiofilm activities. These findings suggest that 2,5-diketopiperazines could serve as a promising lead compound in the fight against antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Myriam Anabel Díaz
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Chacabuco 461, San Miguel de Tucumán CP 4000, Argentina;
| | - Esteban Gabriel Vega-Hissi
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, San Luis CP 5700, Argentina;
| | - María Amparo Blázquez
- Departament de Farmacologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de València, Avd. Vicent Andrés Estellés s/n, Burjasot, 46100 Valencia, Spain
| | - María Rosa Alberto
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, San Miguel de Tucumán CP 4000, Argentina
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL, CONICET-UNT), Avenida Kirchner 1900, San Miguel de Tucumán CP 4000, Argentina
| | - Mario Eduardo Arena
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Ayacucho 471, San Miguel de Tucumán CP 4000, Argentina
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL, CONICET-UNT), Avenida Kirchner 1900, San Miguel de Tucumán CP 4000, Argentina
| |
Collapse
|
2
|
Peng X, Pan W, Jiang F, Chen W, Qi Z, Peng W, Chen J. Selective PARP1 Inhibitors, PARP1-based Dual-Target Inhibitors, PROTAC PARP1 Degraders, and Prodrugs of PARP1 Inhibitors for Cancer Therapy. Pharmacol Res 2022; 186:106529. [DOI: 10.1016/j.phrs.2022.106529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
|
3
|
Kirsanov K, Fetisov T, Antoshina E, Trukhanova L, Gor'kova T, Vlasova O, Khitrovo I, Lesovaya E, Kulbachevskaya N, Shcherbakova T, Belitsky G, Yakubovskaya M, Švedas V, Nilov D. Toxicological Properties of 7-Methylguanine, and Preliminary Data on its Anticancer Activity. Front Pharmacol 2022; 13:842316. [PMID: 35873588 PMCID: PMC9299380 DOI: 10.3389/fphar.2022.842316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
7-Methylguanine (7-MG) competitively inhibits the DNA repair enzyme poly(ADP-ribose) polymerase (PARP) and RNA-modifying enzyme tRNA-guanine transglycosylase (TGT) and represents a potential anticancer drug candidate. Furthermore, as a natural compound, it could escape the serious side effects characteristic for approved synthetic PARP inhibitors. Here we present a comprehensive study of toxicological and carcinogenic properties of 7-MG. It was demonstrated that 7-MG does not induce mutations or structural chromosomal abnormalities, and has no blastomogenic activity. A treatment regimen with 7-MG has been established in mice (50 mg/kg per os, 3 times per week), exerting no adverse effects or changes in morphology. Preliminary data on the 7-MG anticancer activity obtained on transplantable tumor models support our conclusions that 7-MG can become a promising new component of chemotherapy.
Collapse
Affiliation(s)
- Kirill Kirsanov
- Blokhin Cancer Research Center, Moscow, Russia.,Peoples' Friendship University of Russia, Moscow, Russia
| | | | | | | | | | | | | | - Ekaterina Lesovaya
- Blokhin Cancer Research Center, Moscow, Russia.,Pavlov Ryazan State Medical University, Ryazan, Russia
| | | | - Tatiana Shcherbakova
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Vytas Švedas
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry Nilov
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Mendes LL, Varejão JOS, de Souza JA, Carneiro JWDM, Valdo AKSM, Martins FT, Ferreira BW, Barreto RW, da Silva TI, Kohlhoff M, Pilau EJ, V Varejão EV. 2,5-Diketopiperazines via Intramolecular N-Alkylation of Ugi Adducts: A Contribution to the Synthesis, Density Functional Theory Study, X-ray Characterization, and Potential Herbicide Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1799-1809. [PMID: 35130436 DOI: 10.1021/acs.jafc.1c07790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To investigate the herbicidal potential of 2,5-diketopiperazines (2,5-DKPs), we applied a known protocol to produce a series of 2,5-DKPs through intramolecular N-alkylation of Ugi adducts. However, the method was not successful for the cyclization of adducts presenting aromatic rings with some substituents at the ortho position. Results from DFT calculations showed that the presence of voluminous groups at the ortho position of a benzene ring results in destabilization of the transition structure. Lower activation enthalpies for the SN2-type cyclization of Ugi adducts were obtained when bromine, instead of a chlorine anion, is the leaving group, indicating that the activation enthalpy for the cyclization step controls the formation of the 2,5-DKP. Some Ugi adducts and 2,5-DKPs formed crystals with suitable qualities for single-crystal X-ray diffraction data collection. Phytotoxic damage of some 2,5-DKPs on leaves of the weed Euphorbia heterophylla did not differ from those caused by the commercial herbicide diquat.
Collapse
Affiliation(s)
- Lorena L Mendes
- Department of Chemistry, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais 36.570-900, Brazil
| | - Jodieh O S Varejão
- Department of Chemistry, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais 36.570-900, Brazil
| | - José Antônio de Souza
- Programa de Pós-graduação em Química, Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Bairro Ininga, Teresina, Piauí 64049-550, Brazil
| | - José Walkimar de M Carneiro
- Institute of Chemistry, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Ana K S M Valdo
- Institute of Chemistry, Universidade Federal de Goiás, Av Esperança, sn, Samambaia, Goiânia 74690-900, Brazil
| | - Felipe T Martins
- Institute of Chemistry, Universidade Federal de Goiás, Av Esperança, sn, Samambaia, Goiânia 74690-900, Brazil
| | - Bruno W Ferreira
- Department of Phytopathology, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais 36570-900, Brazil
| | - Robert W Barreto
- Department of Phytopathology, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais 36570-900, Brazil
| | - Toshik I da Silva
- Department of Agronomy, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais 36570-900, Brazil
| | - Markus Kohlhoff
- Laboratório de Química de Produtos Naturais Bioativos, Fundação Oswaldo Cruz, Instituto René Rachou, Av. Augusto de Lima, 1715, Belo Horizonte, Minas Gerais 30190-009, Brazil
| | - Eduardo J Pilau
- Department of Chemistry, Universidade Federal de Maringá, Avenida Colombo, 5790, Campus Universitário, Maringá, Paraná 87020-900, Brazil
| | - Eduardo V V Varejão
- Department of Chemistry, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais 36.570-900, Brazil
| |
Collapse
|
5
|
Adrover-Castellano ML, Schmidt JJ, Sherman DH. Biosynthetic Cyclization Catalysts for the Assembly of Peptide and Polyketide Natural Products. ChemCatChem 2021; 13:2095-2116. [PMID: 34335987 PMCID: PMC8320681 DOI: 10.1002/cctc.202001886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/13/2022]
Abstract
Many biologically active natural products are synthesized by nonribosomal peptide synthetases (NRPSs), polyketide synthases (PKSs) and their hybrids. These megasynthetases contain modules possessing distinct catalytic domains that allow for substrate initiation, chain extension, processing and termination. At the end of a module, a terminal domain, usually a thioesterase (TE), is responsible for catalyzing the release of the NRPS or PKS as a linear or cyclized product. In this review, we address the general cyclization mechanism of the TE domain, including oligomerization and the fungal C-C bond forming Claisen-like cyclases (CLCs). Additionally, we include examples of cyclization catalysts acting within or at the end of a module. Furthermore, condensation-like (CT) domains, terminal reductase (R) domains, reductase-like domains that catalyze Dieckmann condensation (RD), thioesterase-like Dieckmann cyclases, trans-acting TEs from the penicillin binding protein (PBP) enzyme family, product template (PT) domains and others will also be reviewed. The studies summarized here highlight the remarkable diversity of NRPS and PKS cyclization catalysts for the production of biologically relevant, complex cyclic natural products and related compounds.
Collapse
Affiliation(s)
| | - Jennifer J Schmidt
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216 (USA)
| | - David H Sherman
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216 (USA)
| |
Collapse
|
6
|
Bioinformatic Analysis of the Nicotinamide Binding Site in Poly(ADP-Ribose) Polymerase Family Proteins. Cancers (Basel) 2021; 13:cancers13061201. [PMID: 33801950 PMCID: PMC8002165 DOI: 10.3390/cancers13061201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The PARP family consists of 17 proteins, and some of them are responsible for cancer cells’ viability. Much attention is therefore given to the search for chemical compounds with the ability to suppress distinct PARP family members (for example, PARP-5a and 5b). Here, we present the results of a family-wide bioinformatic analysis of an important functional region in the PARP structure and describe factors that can guide the design of highly selective compounds. Abstract The PARP family consists of 17 members with diverse functions, including those related to cancer cells’ viability. Several PARP inhibitors are of great interest as innovative anticancer drugs, but they have low selectivity towards distinct PARP family members and exert serious adverse effects. We describe a family-wide study of the nicotinamide (NA) binding site, an important functional region in the PARP structure, using comparative bioinformatic analysis and molecular modeling. Mutations in the NA site and D-loop mobility around the NA site were identified as factors that can guide the design of selective PARP inhibitors. Our findings are of particular importance for the development of novel tankyrase (PARPs 5a and 5b) inhibitors for cancer therapy.
Collapse
|
7
|
Eldin A Osman E, Hanafy NS, George RF, El-Moghazy SM. Design and synthesis of some barbituric and 1,3-dimethylbarbituric acid derivatives: A non-classical scaffold for potential PARP1 inhibitors. Bioorg Chem 2020; 104:104198. [PMID: 32920355 DOI: 10.1016/j.bioorg.2020.104198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/26/2020] [Accepted: 08/17/2020] [Indexed: 01/02/2023]
Abstract
Six series based on barbituric acid 5a-e, 10a-d; thiobarbituric acid 6a-e, 11a-d and 1,3-dimethylbarbituric acid 7a-e, 12a-d were prepared and screened for their in vitro PARP1 inhibition. They revealed promising inhibition at nanomolar level especially compounds 5c, 7b, 7d and 7e (IC50 = 30.51, 41.60, 41.53 and 36.33 nM) with higher potency than olaparib (IC50 = 43.59 nM). Moreover, compounds 5b, 5d, 7a, 12a and 12c exhibited good comparable activity (IC50 = 65.93, 58.90, 66.57, 45.40 and 50.62 nM, respectively). Furthermore, the most active compounds 5c, 7b, 7d, 7e, 12a and 12c against PARP1 in vitro were evaluated in the BRCA1 mutated triple negative breast cancer cell line MDA-MB-436 where 5c and 12c showed higher potency compared to olaparib and result in cell cycle arrest at G2/M phase. 5c and 12c showed apoptotic effects in MDA-MB-436 and potentiated the cytotoxicity of temozolomide in A549 human lung epithelial cancer cell line. Compounds 5c and 12c represent interesting starting points towards PARP1 inhibitors.
Collapse
Affiliation(s)
- Essam Eldin A Osman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Noura S Hanafy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo 11777, Egypt
| | - Riham F George
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Samir M El-Moghazy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
8
|
Gushchina IV, Polenova AM, Suplatov DA, Švedas VK, Nilov DK. vsFilt: A Tool to Improve Virtual Screening by Structural Filtration of Docking Poses. J Chem Inf Model 2020; 60:3692-3696. [DOI: 10.1021/acs.jcim.0c00303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Irina V. Gushchina
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Lenin hills 1, bldg. 40, 119991 Moscow, Russia
| | - Aleksandra M. Polenova
- Lomonosov Moscow State University, Faculty of Medicine, Lomonosov Ave. 27, bldg. 1, 119991 Moscow, Russia
| | - Dmitry A. Suplatov
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Lenin hills 1, bldg. 40, 119991 Moscow, Russia
| | - Vytas K. Švedas
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Lenin hills 1, bldg. 40, 119991 Moscow, Russia
| | - Dmitry K. Nilov
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Lenin hills 1, bldg. 40, 119991 Moscow, Russia
| |
Collapse
|
9
|
Nilov DK, Pushkarev SV, Gushchina IV, Manasaryan GA, Kirsanov KI, Švedas VK. Modeling of the Enzyme-Substrate Complexes of Human Poly(ADP-Ribose) Polymerase 1. BIOCHEMISTRY (MOSCOW) 2020; 85:99-107. [PMID: 32079521 DOI: 10.1134/s0006297920010095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is a key DNA repair enzyme and an important target in cancer treatment. Conventional methods of studying the reaction mechanism of PARP-1 have limitations because of the complex structure of PARP-1 substrates; however, the necessary data can be obtained by molecular modeling. In this work, a molecular dynamics model for the PARP-1 enzyme-substrate complex containing NAD+ molecule and the end of the poly(ADP-ribose) chain in the form of ADP molecule was obtained for the first time. Interactions with the active site residues have been characterized where Gly863, Lys903, Glu988 play a crucial role, and the SN1-like mechanism for the enzymatic ADP-ribosylation reaction has been proposed. Models of PARP-1 complexes with more sophisticated two-unit fragments of the growing polymer chain as well as competitive inhibitors 3-aminobenzamide and 7-methylguanine have been obtained by molecular docking.
Collapse
Affiliation(s)
- D K Nilov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - S V Pushkarev
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - I V Gushchina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - G A Manasaryan
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, Moscow, 119991, Russia
| | - K I Kirsanov
- Blokhin National Medical Research Center of Oncology, Institute of Carcinogenesis, Moscow, 115478, Russia
| | - V K Švedas
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| |
Collapse
|
10
|
Nilov D, Maluchenko N, Kurgina T, Pushkarev S, Lys A, Kutuzov M, Gerasimova N, Feofanov A, Švedas V, Lavrik O, Studitsky VM. Molecular Mechanisms of PARP-1 Inhibitor 7-Methylguanine. Int J Mol Sci 2020; 21:ijms21062159. [PMID: 32245127 PMCID: PMC7139824 DOI: 10.3390/ijms21062159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
7-Methylguanine (7-MG), a natural compound that inhibits DNA repair enzyme poly(ADP-ribose) polymerase 1 (PARP-1), can be considered as a potential anticancer drug candidate. Here we describe a study of 7-MG inhibition mechanism using molecular dynamics, fluorescence anisotropy and single-particle Förster resonance energy transfer (spFRET) microscopy approaches to elucidate intermolecular interactions between 7-MG, PARP-1 and nucleosomal DNA. It is shown that 7-MG competes with substrate NAD+ and its binding in the PARP-1 active site is mediated by hydrogen bonds and nonpolar interactions with the Gly863, Ala898, Ser904, and Tyr907 residues. 7-MG promotes formation of the PARP-1–nucleosome complexes and suppresses DNA-dependent PARP-1 automodification. This results in nonproductive trapping of PARP-1 on nucleosomes and likely prevents the removal of genotoxic DNA lesions.
Collapse
Affiliation(s)
- Dmitry Nilov
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Lenin Hills 1, bldg. 40, 119991 Moscow, Russia;
- Correspondence: (D.N.); (V.M.S.)
| | - Natalya Maluchenko
- Lomonosov Moscow State University, Biology Faculty, Lenin Hills 1, bldg. 12, 119992 Moscow, Russia; (N.M.); (A.L.); (N.G.); (A.F.)
| | - Tatyana Kurgina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev avenue 8, 630090 Novosibirsk, Russia; (T.K.); (M.K.); (O.L.)
- Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk, Russia
| | - Sergey Pushkarev
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Lenin Hills 1, bldg. 73, 119991 Moscow, Russia;
| | - Alexandra Lys
- Lomonosov Moscow State University, Biology Faculty, Lenin Hills 1, bldg. 12, 119992 Moscow, Russia; (N.M.); (A.L.); (N.G.); (A.F.)
| | - Mikhail Kutuzov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev avenue 8, 630090 Novosibirsk, Russia; (T.K.); (M.K.); (O.L.)
| | - Nadezhda Gerasimova
- Lomonosov Moscow State University, Biology Faculty, Lenin Hills 1, bldg. 12, 119992 Moscow, Russia; (N.M.); (A.L.); (N.G.); (A.F.)
| | - Alexey Feofanov
- Lomonosov Moscow State University, Biology Faculty, Lenin Hills 1, bldg. 12, 119992 Moscow, Russia; (N.M.); (A.L.); (N.G.); (A.F.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997 Moscow, Russia
| | - Vytas Švedas
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Lenin Hills 1, bldg. 40, 119991 Moscow, Russia;
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Lenin Hills 1, bldg. 73, 119991 Moscow, Russia;
| | - Olga Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev avenue 8, 630090 Novosibirsk, Russia; (T.K.); (M.K.); (O.L.)
- Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk, Russia
| | - Vasily M. Studitsky
- Lomonosov Moscow State University, Biology Faculty, Lenin Hills 1, bldg. 12, 119992 Moscow, Russia; (N.M.); (A.L.); (N.G.); (A.F.)
- Fox Chase Cancer Center, Cottman Avenue 333, Philadelphia, PA 19111-2497, USA
- Correspondence: (D.N.); (V.M.S.)
| |
Collapse
|
11
|
Baccile JA, Le HH, Pfannenstiel BT, Bok JW, Gomez C, Brandenburger E, Hoffmeister D, Keller NP, Schroeder FC. Diketopiperazine Formation in Fungi Requires Dedicated Cyclization and Thiolation Domains. Angew Chem Int Ed Engl 2019; 58:14589-14593. [PMID: 31342608 PMCID: PMC6764874 DOI: 10.1002/anie.201909052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Indexed: 01/08/2023]
Abstract
Cyclization of linear dipeptidyl precursors derived from nonribosomal peptide synthetases (NRPSs) into 2,5-diketopiperazines (DKPs) is a crucial step in the biosynthesis of a large number of bioactive natural products. However, the mechanism of DKP formation in fungi has remained unclear, despite extensive studies of their biosyntheses. Here we show that DKP formation en route to the fungal virulence factor gliotoxin requires a seemingly extraneous couplet of condensation (C) and thiolation (T) domains in the NRPS GliP. In vivo truncation of GliP to remove the CT couplet or just the T domain abrogated production of gliotoxin and all other gli pathway metabolites. Point mutation of conserved active sites in the C and T domains diminished cyclization activity of GliP in vitro and abolished gliotoxin biosynthesis in vivo. Verified NRPSs of other fungal DKPs terminate with similar CT domain couplets, suggesting a conserved strategy for DKP biosynthesis by fungal NRPSs.
Collapse
Affiliation(s)
- Joshua A Baccile
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Present Address: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Henry H Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Brandon T Pfannenstiel
- Departments of Bacteriology, Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jin Woo Bok
- Departments of Bacteriology, Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christian Gomez
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Eileen Brandenburger
- Department of Pharmaceutical Microbiology, Hans-Knöll-Institute, Friedrich Schiller University, Jena, Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology, Hans-Knöll-Institute, Friedrich Schiller University, Jena, Germany
| | - Nancy P Keller
- Departments of Bacteriology, Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
12
|
Uprety R, Váradi A, Allaoa A, Redel-Traub GN, Palmer TC, Feinberg EN, Ferris AC, Pande VS, Pasternak GW, Majumdar S. Synthesis of spiro-2,6-dioxopiperazine and spiro-2,6-dioxopyrazine scaffolds using amino acids in a three-component reaction to generate potential Sigma-1 (σ 1) receptor selective ligands. Eur J Med Chem 2019; 164:241-251. [PMID: 30597325 PMCID: PMC6361672 DOI: 10.1016/j.ejmech.2018.12.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 01/04/2023]
Abstract
A library-friendly approach to generate new scaffolds is decisive for the development of molecular probes, drug like molecules and preclinical entities. Here, we present the design and synthesis of novel heterocycles with spiro-2,6-dioxopiperazine and spiro-2,6-pyrazine scaffolds through a three-component reaction using various amino acids, ketones, and isocyanides. Screening of select compounds over fifty CNS receptors including G-protein coupled receptors (GPCRs), ion channels, transporters, and enzymes through the NIMH psychoactive drug screening program indicated that a novel spiro-2,6-dioxopyrazine scaffold, UVM147, displays high binding affinity at sigma-1 (σ1) receptor in the nanomolar range. In addition, molecular docking of UVM147 at the human σ1 receptor have shown that it resides in the same binding site that was occupied by the ligand 4-IBP used to obtain a crystal structure of the human sigma-1 (σ1) receptor.
Collapse
Affiliation(s)
- Rajendra Uprety
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, NY, USA
| | - András Váradi
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Abdullah Allaoa
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Gabriel N Redel-Traub
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Travis C Palmer
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Evan N Feinberg
- Biophysics Program and Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Alex C Ferris
- Bioengineering Department, Stanford University, Stanford, CA, USA
| | - Vijay S Pande
- Biophysics Program and Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Gavril W Pasternak
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Susruta Majumdar
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, NY, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|