1
|
Zaidalkilani AT, Al‐Kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, AL‐Farga A, Alghamdi OA, Bahaa MM, Alrouji M, Alshammari MS, Batiha GE. The beneficial and detrimental effects of prolactin hormone on metabolic syndrome: A double-edge sword. J Cell Mol Med 2024; 28:e70067. [PMID: 39663784 PMCID: PMC11635126 DOI: 10.1111/jcmm.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 12/13/2024] Open
Abstract
The metabolic syndrome (MetS) is a clustering of abdominal obesity, hypertension, hyperglycaemia, hypertriglyceridemia and low high-density lipoprotein (HDL) level. MetS development is affected by endocrine hormones such as prolactin (PRL) hormone which induce insulin resistance and central obesity because PRL is implicated in the pathogenesis of MetS. Pituitary PRL controls mammary gland, however extra-pituitary PRL is highly intricate in the regulation of adipose tissue function. In addition, cAMP activators enhance expression and release of PRL which involved in the control of lipogenesis and energy homeostasis. Consequently, hyperprolactinaemia may be associated with the development of MetS. However, normal physiological level of PRL is essential for insulin sensitivity and regulation of adipose tissue function and energy metabolism. Therefore, PRL has dual effects on the components of MetS. Hence, the present review aims to discuss the modulatory mechanistic role of PRL on MetS regarding its beneficial and detrimental effects.
Collapse
Affiliation(s)
- Ayah Talal Zaidalkilani
- Department of Nutrition, Faculty of Pharmacy and Medical SciencesUniversity of PetraAmman11196Jordan
| | - Hayder M. Al‐Kuraishy
- Department of Clinical pharmacology and MedicineCollege of Medicine, Mustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical pharmacology and MedicineCollege of Medicine, Mustansiriyah UniversityBaghdadIraq
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
- University Centre for Research & DevelopmentChandigarh UniversityMohaliPunjabIndia
- Department of Research & DevelopmentFunogenAthensGreece
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, Heusnerstrasse 40, University of Witten‐HerdeckeWuppertalGermany
| | - Ammar AL‐Farga
- Department of BiochemistryCollege of Science University of JeddahJeddahSaudi Arabia
| | - Othman A. Alghamdi
- Department of Biological SciencesCollege of Science, University of JeddahJeddahSaudi Arabia
| | - Mostafa M. Bahaa
- Pharmacy Practice Department, Faculty of PharmacyHorus UniversityNew DamiettaEgypt
| | - Mohammed Alrouji
- Department of Clinical Laboratory SciencesCollege of Applied Medical Sciences, Shaqra UniversityShaqraSaudi Arabia
| | - Mohammed S. Alshammari
- Department of Clinical Laboratory SciencesCollege of Applied Medical Sciences, Shaqra UniversityShaqraSaudi Arabia
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
2
|
Borba V, Carrera-Bastos P, Zandman-Goddard G, Lucia A, Shoenfeld Y. Prolactin's paradox: Friend, foe, or both in immune regulation? Autoimmun Rev 2024; 23:103643. [PMID: 39306220 DOI: 10.1016/j.autrev.2024.103643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Over 100 diseases have been recognized as autoimmune in nature, collectively affecting ∼20 % of the population in industrialized countries. These conditions are more prevalent among women of childbearing age, reflecting the potential association between alterations in the immune-neuroendocrine network, on the one hand, and autoimmune conditions, on the other. Prolactin (PRL), a polypeptide hormone that is primarily (but not only) secreted by the lactotrophic cells of the pituitary gland, is a critical element of the immune-neuroendocrine network. Although this hormone has several nonimmune functions, its role in regulating immune responses and affecting autoimmune inflammation is particularly enigmatic and controversial. Indeed, PRL interacts with various immune cells to bolster the body defenses, but also potentially to exacerbate autoimmune conditions. Understanding how and when PRL acts as a 'friend or foe' is crucial for unraveling its role as a potential therapeutic target in the management of autoimmune diseases (AIDs). This review therefore provides a critical overview of PRL's role in the immune system, and of the influence of this pleiotropic hormone in the development of autoimmunity.
Collapse
Affiliation(s)
- Vânia Borba
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Internal Medicine, Rehaklinik Dussnang, Thurgau, Switzerland.
| | - Pedro Carrera-Bastos
- Center for Primary Health Care Research, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden; Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Gisele Zandman-Goddard
- Department of Medicine C, Wolfson Medical Center, Holon, Israel; Department of Rheumatology, Wolfson Medical Center, Holon, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain; Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Reichman University, Herzliya, Israel
| |
Collapse
|
3
|
Cerbantez-Bueno V, Viñuela-Berni V, Muñoz-Mayorga DE, Morales T, Corona R. Prolactin promotes the recruitment of main olfactory bulb cells and enhances the behavioral exploration toward a socio-sexual stimulus in female mice. Horm Behav 2024; 162:105527. [PMID: 38492348 DOI: 10.1016/j.yhbeh.2024.105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/30/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Olfactory communication is triggered by pheromones that profoundly influence neuroendocrine responses to drive social interactions. Two principal olfactory systems process pheromones: the main and the vomeronasal or accessory system. Prolactin receptors are expressed in both systems suggesting a participation in the processing of olfactory information. We previously reported that prolactin participates in the sexual and olfactory bulb maturation of females. Therefore, we explored the expression of prolactin receptors within the olfactory bulb during sexual maturation and the direct responses of prolactin upon pheromonal exposure. Additionally, we assessed the behavioral response of adult females exposed to male sawdust after prolactin administration and the consequent activation of main and accessory olfactory bulb and their first central relays, the piriform cortex and the medial amygdala. Last, we investigated the intracellular pathway activated by prolactin within the olfactory bulb. Here, prolactin receptor expression remained constant during all maturation stages within the main olfactory bulb but decreased in adulthood in the accessory olfactory bulb. Behaviorally, females that received prolactin actively explored the male stimulus. An increased cFos activation in the amygdala and in the glomerular cells of the whole olfactory bulb was observed, but an augmented response in the mitral cells was only found within the main olfactory bulb after prolactin administration and the exposure to male stimulus. Interestingly, the ERK pathway was upregulated in the main olfactory bulb after exposure to a male stimulus. Overall, our results suggest that, in female mice, prolactin participates in the processing of chemosignals and behavioral responses by activating the main olfactory system and diminishing the classical vomeronasal response to pheromones.
Collapse
Affiliation(s)
- Viridiana Cerbantez-Bueno
- Laboratorio de Neuroanatomía Funcional y Neuroendocrinología, Instituto de Neurobiología (INB), Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, Mexico
| | - Verónica Viñuela-Berni
- Laboratorio de Neuroanatomía Funcional y Neuroendocrinología, Instituto de Neurobiología (INB), Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, Mexico
| | - Daniel Eduardo Muñoz-Mayorga
- Laboratorio de Neuroanatomía Funcional y Neuroendocrinología, Instituto de Neurobiología (INB), Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, Mexico
| | - Teresa Morales
- Laboratorio de Neuroanatomía Funcional y Neuroendocrinología, Instituto de Neurobiología (INB), Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, Mexico
| | - Rebeca Corona
- Laboratorio de Neuroanatomía Funcional y Neuroendocrinología, Instituto de Neurobiología (INB), Universidad Nacional Autónoma de México (UNAM), Juriquilla, Querétaro, Mexico.
| |
Collapse
|
4
|
Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Albuhadily AK. The conceivable role of prolactin hormone in Parkinson disease: The same goal but with different ways. Ageing Res Rev 2023; 91:102075. [PMID: 37714384 DOI: 10.1016/j.arr.2023.102075] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Parkinson disease (PD) is a progressive neurodegenerative disease (NDD) of the brain. It has been reported that prolactin (PRL) hormone plays a differential effect in PD, may be increasing, reduced or unaffected. PRL level is dysregulated in different neurodegenerative disorders including PD. Preclinical and clinical studies pointed out that PRL may has a neuroprotective against PD neuropathology . Though, the mechanistic role of PRL in PD is not fully elucidated. Therefore, the objective of the present review was to clarify the potential role and mechanistic pathway of PRL in PD neuropathology. The present review highlighted that PRL appears to have a neuroprotective effect against PD neuropathology by inhibiting the expression of pro-inflammatory signaling pathways, antioxidant effects and by inhibiting neuroinflammation. Thus, preclinical and clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Haydar M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied Science, University of Technology, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
5
|
Rasmi Y, Jalali L, Khalid S, Shokati A, Tyagi P, Ozturk A, Nasimfar A. The effects of prolactin on the immune system, its relationship with the severity of COVID-19, and its potential immunomodulatory therapeutic effect. Cytokine 2023; 169:156253. [PMID: 37320963 PMCID: PMC10247151 DOI: 10.1016/j.cyto.2023.156253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/01/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Prolactin (PRL) is an endocrine hormone secreted by the anterior pituitary gland that has a variety of physiological effects, including milk production, immune system regulation, and anti-inflammatory effects. Elevated levels of PRL have been found in several viral infections, including 2019 coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), a viral pathogen that has recently spread worldwide. PRL production is increased in SARS-CoV2 infection. While PRL can trigger the production of proinflammatory cytokines, it also has several anti-inflammatory effects that can reduce hyperinflammation. The exact mechanism of PRL's contribution to the severity of COVID-19 is unknown. The purpose of this review is to discuss the interaction between PRL and SARS-CoV2 infection and its possible association with the severity of COVID-19.
Collapse
Affiliation(s)
- Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Ladan Jalali
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Saliha Khalid
- Department of Bioinformatics and Genetics, School of Engineering and Natural Sciences, Kadir Has University 34083, Cibali Campus Fatih, Istanbul, Turkey
| | - Ameneh Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Poonam Tyagi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj, Riyadh, Saudi Arabia
| | - Alpaslan Ozturk
- Department of Medical Biochemistry, Health Sciences University, Ankara Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey.
| | - Amir Nasimfar
- Department of Pediatric, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
6
|
Shao B, Zhou D, Wang J, Yang D, Gao J. A novel LncRNA SPIRE1/miR-181a-5p/PRLR axis in mandibular bone marrow-derived mesenchymal stem cells regulates the Th17/Treg immune balance through the JAK/STAT3 pathway in periodontitis. Aging (Albany NY) 2023; 15:7124-7145. [PMID: 37490712 PMCID: PMC10415575 DOI: 10.18632/aging.204895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Periodontitis is a microbial-related chronic inflammatory disease associated with imbalanced differentiation of Th17 cells and Treg cells. Bone marrow-derived mesenchymal stem cells (BM-MSCs) possess wide immunoregulatory properties. Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) contribute to the immunomodulation in the pathological mechanisms of inflammatory diseases. However, critical lncRNAs/miRNAs involved in immunomodulation of mandibular BM-MSCs largely remain to be identified. Here, we explored the molecular mechanisms behind the defective immunomodulatory ability of mandibular BM-MSCs under the periodontitis settings. We found that mandibular BM-MSCs from P. gingivalis-induced periodontitis mice had significantly reduced expression of LncRNA SPIRE1 than that from normal control mice. LncRNA SPIRE1 knockdown in normal BM-MSCs caused Th17/Treg cell differentiation imbalance during the coculturing of BM-MSCs and CD4 T cells. In addition, LncRNA SPIRE1 was identified as a competitive endogenous RNA that sponges miR-181a-5p in BM-MSCs. Moreover, miR-181a-5p inhibition attenuated the impact of LncRNA SPIRE1 knockdown on the ability of BM-MSCs in modulating Th17/Treg balance. Prolactin receptor (PRLR) was validated as a downstream target of miR-181a-5p. Notably, targeted knockdown of LncRNA SPIRE1 or PRLR or transfection of miR-181a-5p mimics activated the JAK/STAT3 signaling in normal BM-MSCs, while treatment with STAT3 inhibitor C188-9 restored the immunomodulatory properties of periodontitis-associated BM-MSCs. Furthermore, BM-MSCs with miR-181a-5p inhibition or PRLR-overexpression showed enhanced in vivo immunosuppressive properties in the periodontitis mouse model. Our results indicate that the JAK/STAT3 pathway is involved in the immunoregulation of BM-MSCs, and provide critical insights into the development of novel targeted therapies against periodontitis.
Collapse
Affiliation(s)
- Bingyi Shao
- Northern Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Duo Zhou
- Northern Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Jie Wang
- Northern Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Deqin Yang
- Northern Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Jing Gao
- Northern Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| |
Collapse
|
7
|
Lee GJ, Porreca F, Navratilova E. Prolactin and pain of endometriosis. Pharmacol Ther 2023; 247:108435. [PMID: 37169264 DOI: 10.1016/j.pharmthera.2023.108435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Women experience chronic pain more often than men with some pain conditions being specific to women while others are more prevalent in women. Prolactin, a neuropeptide hormone with higher serum levels in women, has recently been demonstrated in preclinical studies to sensitize nociceptive sensory neurons in a sexually dimorphic manner. Dysregulation of prolactin and prolactin receptors may be responsible for increased pain especially in female predominant conditions such as migraine, fibromyalgia, and pelvic pain. In this review, we focus on the role of prolactin in endometriosis, a condition characterized by pelvic pain and infertility that affects a large proportion of women during their reproductive age. We discuss the symptoms and pathology of endometriosis and discuss how different sources of prolactin secretion may contribute to this disease. We highlight our current understanding of prolactin-mediated mechanisms of nociceptor sensitization in females and how this mechanism may apply to endometriosis. Lastly, we report the results of a systematic review of clinical studies conducted by searching the PubMed and EMBASE databases to identify association between endometriosis and blood levels of prolactin. The results of this search strongly indicate that serum prolactin levels are increased in patients with endometriosis and support the possibility that high levels of prolactin may promote pelvic pain in these patients and increase vulnerability to other comorbid pain conditions likely by dysregulating prolactin receptor expression. Targeting of prolactin and prolactin receptors may improve management of pain associated with endometriosis.
Collapse
Affiliation(s)
- Grace J Lee
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
8
|
Szewczyk AK, Ulutas S, Aktürk T, Al-Hassany L, Börner C, Cernigliaro F, Kodounis M, Lo Cascio S, Mikolajek D, Onan D, Ragaglini C, Ratti S, Rivera-Mancilla E, Tsanoula S, Villino R, Messlinger K, Maassen Van Den Brink A, de Vries T. Prolactin and oxytocin: potential targets for migraine treatment. J Headache Pain 2023; 24:31. [PMID: 36967387 PMCID: PMC10041814 DOI: 10.1186/s10194-023-01557-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/28/2023] [Indexed: 03/28/2023] Open
Abstract
Migraine is a severe neurovascular disorder of which the pathophysiology is not yet fully understood. Besides the role of inflammatory mediators that interact with the trigeminovascular system, cyclic fluctuations in sex steroid hormones are involved in the sex dimorphism of migraine attacks. In addition, the pituitary-derived hormone prolactin and the hypothalamic neuropeptide oxytocin have been reported to play a modulating role in migraine and contribute to its sex-dependent differences. The current narrative review explores the relationship between these two hormones and the pathophysiology of migraine. We describe the physiological role of prolactin and oxytocin, its relationship to migraine and pain, and potential therapies targeting these hormones or their receptors.In summary, oxytocin and prolactin are involved in nociception in opposite ways. Both operate at peripheral and central levels, however, prolactin has a pronociceptive effect, while oxytocin appears to have an antinociceptive effect. Therefore, migraine treatment targeting prolactin should aim to block its effects using prolactin receptor antagonists or monoclonal antibodies specifically acting at migraine-pain related structures. This action should be local in order to avoid a decrease in prolactin levels throughout the body and associated adverse effects. In contrast, treatment targeting oxytocin should enhance its signalling and antinociceptive effects, for example using intranasal administration of oxytocin, or possibly other oxytocin receptor agonists. Interestingly, the prolactin receptor and oxytocin receptor are co-localized with estrogen receptors as well as calcitonin gene-related peptide and its receptor, providing a positive perspective on the possibilities for an adequate pharmacological treatment of these nociceptive pathways. Nevertheless, many questions remain to be answered. More particularly, there is insufficient data on the role of sex hormones in men and the correct dosing according to sex differences, hormonal changes and comorbidities. The above remains a major challenge for future development.
Collapse
Affiliation(s)
- Anna K Szewczyk
- Doctoral School, Medical University of Lublin, Lublin, Poland
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Samiye Ulutas
- Department of Neurology, Kartal Dr. Lutfi Kirdar Research and Training Hospital, Istanbul, Turkey
| | - Tülin Aktürk
- Department of Neurology, Kartal Dr. Lutfi Kirdar Research and Training Hospital, Istanbul, Turkey
| | - Linda Al-Hassany
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Corinna Börner
- Department of Pediatrics - Dr. von Hauner Children's Hospital, LMU Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians Universität München, Lindwurmstr. 4, 80337, Munich, Germany
- LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians-Universität München, Lindwurmstr. 4, 80337, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Federica Cernigliaro
- Child Neuropsychiatry Unit Department, Pro.M.I.S.E. "G D'Alessandro, University of Palermo, 90133, Palermo, Italy
| | - Michalis Kodounis
- First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Salvatore Lo Cascio
- Child Neuropsychiatry Unit Department, Pro.M.I.S.E. "G D'Alessandro, University of Palermo, 90133, Palermo, Italy
| | - David Mikolajek
- Department of Neurology, City Hospital Ostrava, Ostrava, Czech Republic
| | - Dilara Onan
- Spine Health Unit, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Chiara Ragaglini
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - Susanna Ratti
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - Eduardo Rivera-Mancilla
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sofia Tsanoula
- Department of Neurology, 401 Military Hospital of Athens, Athens, Greece
| | - Rafael Villino
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Antoinette Maassen Van Den Brink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tessa de Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Taghi Khani A, Kumar A, Sanchez Ortiz A, Radecki KC, Aramburo S, Lee SJ, Hu Z, Damirchi B, Lorenson MY, Wu X, Gu Z, Stohl W, Sanz I, Meffre E, Müschen M, Forman SJ, Koff JL, Walker AM, Swaminathan S. Isoform-specific knockdown of long and intermediate prolactin receptors interferes with evolution of B-cell neoplasms. Commun Biol 2023; 6:295. [PMID: 36941341 PMCID: PMC10027679 DOI: 10.1038/s42003-023-04667-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Prolactin (PRL) is elevated in B-cell-mediated lymphoproliferative diseases and promotes B-cell survival. Whether PRL or PRL receptors drive the evolution of B-cell malignancies is unknown. We measure changes in B cells after knocking down the pro-proliferative, anti-apoptotic long isoform of the PRL receptor (LFPRLR) in vivo in systemic lupus erythematosus (SLE)- and B-cell lymphoma-prone mouse models, and the long plus intermediate isoforms (LF/IFPRLR) in human B-cell malignancies. To knockdown LF/IFPRLRs without suppressing expression of the counteractive short PRLR isoforms (SFPRLRs), we employ splice-modulating DNA oligomers. In SLE-prone mice, LFPRLR knockdown reduces numbers and proliferation of pathogenic B-cell subsets and lowers the risk of B-cell transformation by downregulating expression of activation-induced cytidine deaminase. LFPRLR knockdown in lymphoma-prone mice reduces B-cell numbers and their expression of BCL2 and TCL1. In overt human B-cell malignancies, LF/IFPRLR knockdown reduces B-cell viability and their MYC and BCL2 expression. Unlike normal B cells, human B-cell malignancies secrete autocrine PRL and often express no SFPRLRs. Neutralization of secreted PRL reduces the viability of B-cell malignancies. Knockdown of LF/IFPRLR reduces the growth of human B-cell malignancies in vitro and in vivo. Thus, LF/IFPRLR knockdown is a highly specific approach to block the evolution of B-cell neoplasms.
Collapse
Affiliation(s)
- Adeleh Taghi Khani
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Ashly Sanchez Ortiz
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Kelly C Radecki
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Soraya Aramburo
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Sung June Lee
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Zunsong Hu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Behzad Damirchi
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Mary Y Lorenson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Zhaohui Gu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - William Stohl
- Division of Rheumatology, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Eric Meffre
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale School of Medicine, 300 George Street, 06520, New Haven, CT, USA
| | - Stephen J Forman
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Department of Pediatrics, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Jean L Koff
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ameae M Walker
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA.
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA.
- Department of Pediatrics, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
10
|
Ramos-Martínez E, Ramos-Martínez I, Valencia J, Ramos-Martínez JC, Hernández-Zimbrón L, Rico-Luna A, Pérez-Campos E, Pérez-Campos Mayoral L, Cerbón M. Modulatory role of prolactin in type 1 diabetes. Horm Mol Biol Clin Investig 2022; 44:79-88. [PMID: 35852366 DOI: 10.1515/hmbci-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Objectives
Patients with type 1 diabetes mellitus have been reported to have elevated prolactin levels and a possible relationship between prolactin levels and the development of the disease has been proposed. However, some studies show that prolactin mediates beneficial functions in beta cells. Therefore, we review information on the roles of prolactin in type 1 diabetes mellitus.
Content
Here we summarize the functions of prolactin in the immune system and in pancreatic beta cells, in addition, we describe studies related to PRL levels, its regulation and alterations of secretion in patients with type 1 diabetes mellitus.
Summary
Studies in murine models have shown that prolactin protects beta cells from apoptosis, stimulates their proliferation and promotes pancreatic islet revascularization. In addition, some studies in patients with type 1 diabetes mellitus have shown that elevated prolactin levels correlate with better disease control.
Outlook
Prolactin treatment appears to be a promising strategy to improve beta-cell vascularization and proliferation in transplantation and immunotherapies.
Collapse
Affiliation(s)
- Edgar Ramos-Martínez
- Facultad de Química , Universidad Nacional Autónoma de México , Ciudad de México , México
| | - Ivan Ramos-Martínez
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia , Universidad Nacional Autónoma de México , Ciudad de México , México
| | - Jorge Valencia
- Endocrine Research Unit , UMAE Hospital de Especialidades, Instituto Mexicano del Seguro Social , Ciudad de México , México
| | - Juan Carlos Ramos-Martínez
- Cardiology Department , Hospital General Regional Lic Ignacio Garcia Tellez IMSS , Mérida , Yucatán , México
| | - Luis Hernández-Zimbrón
- Escuela Nacional de Estudios Superiores, Licenciatura en Optometría, Unidad León , Universidad Nacional Autónoma de México , Ciudad de México , México
| | - Anaiza Rico-Luna
- Facultad de Química , Universidad Nacional Autónoma de México , Ciudad de México , México
| | | | - Laura Pérez-Campos Mayoral
- Research Centre Medicine UNAM-UABJO. Facultad de Medicina , Universidad Autónoma “Benito Juárez” de Oaxaca , Oaxaca , México
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana. Instituto Nacional de Perinatología-Facultad de Química , Universidad Nacional Autónoma de México , Ciudad de México , México
| |
Collapse
|
11
|
Godoy‑Pacheco A, García‑Chagollán M, Ramírez‑De‑Arellano A, Hernández‑Silva C, Villegas‑Pineda J, Ramírez‑López I, Zepeda‑Nuño J, Aguilar‑Lemarroy A, Pereira‑Suárez A. Differential modulation of natural killer cell cytotoxicity by 17β‑estradiol and prolactin through the NKG2D/NKG2DL axis in cervical cancer cells. Oncol Lett 2022; 24:288. [DOI: 10.3892/ol.2022.13408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/19/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Alejandro Godoy‑Pacheco
- Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Mariel García‑Chagollán
- Institute for Research in Biomedical Sciences, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Adrián Ramírez‑De‑Arellano
- Institute for Research in Biomedical Sciences, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Christian Hernández‑Silva
- Institute for Research in Biomedical Sciences, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Julio Villegas‑Pineda
- Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Inocencia Ramírez‑López
- Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - José Zepeda‑Nuño
- Center for Research and Diagnosis of Pathology, Department of Microbiology and Pathology, University Center of Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Adriana Aguilar‑Lemarroy
- Department of Immunology, Western Biomedical Research Center, Guadalajara, Jalisco 44340, Mexico
| | - Ana Pereira‑Suárez
- Institute for Research in Biomedical Sciences, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| |
Collapse
|
12
|
Al-Kuraishy HM, Al-Gareeb AI, Butnariu M, Batiha GES. The crucial role of prolactin-lactogenic hormone in Covid-19. Mol Cell Biochem 2022; 477:1381-1392. [PMID: 35147901 PMCID: PMC8831165 DOI: 10.1007/s11010-022-04381-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Prolactin (PRL) is a peptide hormone secreted from anterior pituitary involved in milk production in the females and regulation of sex drive in both sexes. PRL has pro-inflammatory and anti-inflammatory functions. High PRL serum level or hyperprolactinemia is associated with different viral infections. In coronavirus disease 2019 (Covid-19), which caused by positive-sense single-strand RNA virus known as severe acute respiratory distress syndrome coronavirus type 2 (SARS-CoV-2), PRL serum level is increased. PRL in Covid-19 may exacerbate the underlying inflammatory status by induction release of pro-inflammatory cytokines. However, PRL through its anti-inflammatory effects may reduce the hyperinflammatory status in Covid-19. The underlying mechanism of increasing PRL in Covid-19 is poorly understood. Therefore, in this review we try to find the potential anti-inflammatory or pro-inflammatory role of PRL in Covid-19. As well, this review was aimed to discuss the underlying causes and mechanisms for Covid-19-induced hyperprolactinemia.
Collapse
Affiliation(s)
| | - Ali I Al-Gareeb
- College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" From Timisoara, Calea Aradului 119, 300645, Timis, Romania.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
13
|
Martínez-Alarcón O, García-López G, Guerra-Mora JR, Molina-Hernández A, Diaz-Martínez NE, Portillo W, Díaz NF. Prolactin from Pluripotency to Central Nervous System Development. Neuroendocrinology 2022; 112:201-214. [PMID: 33934093 DOI: 10.1159/000516939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/30/2021] [Indexed: 11/19/2022]
Abstract
Prolactin (PRL) is a versatile hormone that exerts more than 300 functions in vertebrates, mainly associated with physiological effects in adult animals. Although the process that regulates early development is poorly understood, evidence suggests a role of PRL in the early embryonic development regarding pluripotency and nervous system development. Thus, PRL could be a crucial regulator in oocyte preimplantation and maturation as well as during diapause, a reversible state of blastocyst development arrest that shares metabolic, transcriptomic, and proteomic similarities with pluripotent stem cells in the naïve state. Thus, we analyzed the role of the hormone during those processes, which involve the regulation of its receptor and several signaling cascades (Jak/Mapk, Jak/Stat, and PI3k/Akt), resulting in either a plethora of physiological actions or their dysregulation, a factor in developmental disorders. Finally, we propose models to improve the knowledge on PRL function during early development.
Collapse
Affiliation(s)
- Omar Martínez-Alarcón
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - José Raúl Guerra-Mora
- Departamento de Neurociencias, Instituto Nacional de Cancerología, Ciudad de México, Mexico
- Departamento de Cirugia Experimental, Instituto Nacional de Nutrición, Ciudad de México, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Néstor Emmanuel Diaz-Martínez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica CONACYT, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Wendy Portillo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, UNAM, Quéretaro, Mexico
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| |
Collapse
|
14
|
Duc Nguyen H, Pal Yu B, Hoang NHM, Jo WH, Young Chung H, Kim MS. Prolactin and Its Altered Action in Alzheimer's Disease and Parkinson's Disease. Neuroendocrinology 2022; 112:427-445. [PMID: 34126620 DOI: 10.1159/000517798] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Prolactin (PRL) is one of the most diverse pituitary hormones and is known to modulate normal neuronal function and neurodegenerative conditions. Many studies have described the influence that PRL has on the central nervous system and addressed its contribution to neurodegeneration, but little is known about the mechanisms responsible for the effects of PRL on neurodegenerative disorders, especially on Alzheimer's disease (AD) and Parkinson's disease (PD). SUMMARY We review and summarize the existing literature and current understanding of the roles of PRL on various PRL aspects of AD and PD. KEY MESSAGES In general, PRL is viewed as a promising molecule for the treatment of AD and PD. Modulation of PRL functions and targeting of immune mechanisms are needed to devise preventive or therapeutic strategies.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ngoc Hong Minh Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Won Hee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
15
|
Paré P, Reales G, Paixão-Côrtes VR, Vargas-Pinilla P, Viscardi LH, Fam B, Pissinatti A, Santos FR, Bortolini MC. Molecular evolutionary insights from PRLR in mammals. Gen Comp Endocrinol 2021; 309:113791. [PMID: 33872604 DOI: 10.1016/j.ygcen.2021.113791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Prolactin (PRL) is a pleiotropic neurohormone secreted by the mammalian pituitary gland into the blood, thus reaching many tissues and organs beyond the brain. PRL binds to its receptor, PRLR, eliciting a molecular signaling cascade. This system modulates essential mammalian behaviors and promotes notable modifications in the reproductive female tissues and organs. Here, we explore how the intracellular domain of PRLR (PRLR-ICD) modulates the expression of the PRLR gene. Despite differences in the reproductive strategies between eutherian and metatherian mammals, there is no clear distinction between PRLR-ICD functional motifs. However, we found selection signatures that showed differences between groups, with many conserved functional elements strongly maintained through purifying selection across the class Mammalia. We observed a few residues under relaxed selection, the levels of which were more pronounced in Eutheria and particularly striking in primates (Simiiformes), which could represent a pre-adaptive genetic element protected from purifying selection. Alternative, new motifs, such as YLDP (318-321) and others with residues Y283 and Y290, may already be functional. These motifs would have been co-opted in primates as part of a complex genetic repertoire related to some derived adaptive phenotypes, but these changes would have no impact on the primordial functions that characterize the mammals as a whole and that are related to the PRL-PRLR system.
Collapse
Affiliation(s)
- Pamela Paré
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Guillermo Reales
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Vanessa R Paixão-Côrtes
- Laboratório de Biologia Evolutiva e Genômica (LABEG), Programa de Pós-Graduação em Biodiversidade e Evolução, Instituto de Biologia, Universidade Federal da Bahia (UFBA), Salvador, BA, Brazil
| | - Pedro Vargas-Pinilla
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Faculdade de Medicina de Ribeirão Preto, Departamento de Bioquímica e Imunologia, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas Henriques Viscardi
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bibiana Fam
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Fabrício R Santos
- Laboratório de Biodiversidade e Evolução Molecular, Departamento de Genética, Ecologia e Evolução da Universidade Federal de Minas Gerais (UFMG), Belo-Horizonte, MG, Brazil.
| | - Maria Cátira Bortolini
- Laboratório de Evolução Humana e Molecular, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
16
|
Yang R, Duan C, Guo Y, Ma Y, Niu N, Zhang Y, Liu Y. Sequence analysis and mRNA expression of prolactin receptor gene isoforms in different tissues of sheep during lactation and the post-weaning period. PeerJ 2021; 9:e11868. [PMID: 34395094 PMCID: PMC8325911 DOI: 10.7717/peerj.11868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023] Open
Abstract
Few studies on mRNA expression of the prolactin receptor (PRLR) isoforms in different tissues of sheep were reported. The objective of this study was to analyze the gene sequence and mRNA expression of PRLR isoforms in the uterus, mammary gland, ovary, spleen and lymph tissue of ewes during the lactation and post-weaning periods. Ten lactating crossbred ewes (Dorper×Hu sheep) with twin lambs were used in this study. Five ewes were chosen randomly and slaughtered at mid-lactation (35 days after lambing). The remaining five ewes were slaughtered on the 5th day after weaning. Samples of uterus, mammary gland, ovary, spleen and lymph tissue were collected from each ewe to determine the mRNA expression of long PRLR (L-PRLR) and short PRLR (S-PRLR) by RT-qPCR. The physical and chemical properties, the similarity of the nucleotides L-PRLR and S-PRLR genes and the secondary and tertiary structure of the L-PRLR and S-PRLR proteins of sheep were analyzed. The results indicated that the predicted protein molecular weights of L-PRLR and S-PRLR are 65235.36 KD and 33847.48 KD, respectively, with isoelectric points of 5.12 and 8.34, respectively. The secondary protein structures of L-PRLR and S-PRLR are different. For L-PRLR these include alpha helix, extended strand and random coils and β-turns for which the content was 16.01%, 21%, 59.55% and 3.44%, respectively, whereas the secondary protein structures of S-PRLR contain only alpha helices, extended strand and random coils, comprising 18.24%, 30.07% and 48.99%, respectively. The L-PRLR and S-PRLR genes of the sheep (Ovis aries) had nucleotide sequences showing much similarity among ruminants. In these sheep, mRNA expression of L-PRLR and S-PRLR was highest in the uterus and differed between the uterus, ovary, mammary gland, spleen and lymph tissue. The mRNA expression of L-PRLR in lymph tissue was higher during lactation than in the post-weaning period (P < 0.01), whereas mRNA expression of S-PRLR in the uterus and the mammary gland was lower during lactation than during the post-weaning period (P < 0.01). In the uterus, mRNA expression of L-PRLR was higher than that of S-PRLR during lactation (P < 0.01) but there were no significant differences (P < 0.05) for the other five tissues. This study that the L-PRLR and S-PRLR proteins in ewes are mainly composed of extended fragments and random coils. The data also indicate that mRNA expression of L-PRLR and S-PRLR genes varies among different tissues in sheep and is higher in the uterus than in the ovary, spleen, mammary gland and lymph tissue throughout lactation and the post-weaning period.
Collapse
Affiliation(s)
- Ruochen Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Chunhui Duan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Yunxia Guo
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Yujing Ma
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Nazi Niu
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Yingjie Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| | - Yueqin Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
17
|
Olmos-Ortiz A, Flores-Espinosa P, Díaz L, Velázquez P, Ramírez-Isarraraz C, Zaga-Clavellina V. Immunoendocrine Dysregulation during Gestational Diabetes Mellitus: The Central Role of the Placenta. Int J Mol Sci 2021; 22:8087. [PMID: 34360849 PMCID: PMC8348825 DOI: 10.3390/ijms22158087] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Gestational Diabetes Mellitus (GDM) is a transitory metabolic condition caused by dysregulation triggered by intolerance to carbohydrates, dysfunction of beta-pancreatic and endothelial cells, and insulin resistance during pregnancy. However, this disease includes not only changes related to metabolic distress but also placental immunoendocrine adaptations, resulting in harmful effects to the mother and fetus. In this review, we focus on the placenta as an immuno-endocrine organ that can recognize and respond to the hyperglycemic environment. It synthesizes diverse chemicals that play a role in inflammation, innate defense, endocrine response, oxidative stress, and angiogenesis, all associated with different perinatal outcomes.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico; (A.O.-O.); (P.F.-E.)
| | - Pilar Flores-Espinosa
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico; (A.O.-O.); (P.F.-E.)
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico;
| | - Pilar Velázquez
- Departamento de Ginecología y Obstetricia, Hospital Ángeles México, Ciudad de México 11800, Mexico;
| | - Carlos Ramírez-Isarraraz
- Clínica de Urología Ginecológica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico;
| | - Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico
| |
Collapse
|
18
|
Prolactin Increases the Frequency of Follicular T Helper Cells with Enhanced IL21 Secretion and OX40 Expression in Lupus-Prone MRL/lpr Mice. J Immunol Res 2021; 2021:6630715. [PMID: 33763492 PMCID: PMC7963914 DOI: 10.1155/2021/6630715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 12/29/2022] Open
Abstract
Systemic lupus erythematosus is characterized by high levels of IgG class autoantibodies that contribute to the pathophysiology of the disease. The formation of these autoantibodies occurs in the germinal centers, where there is cooperation between follicular T helper cells (TFH) and autoreactive B cells. Prolactin has been reported to exacerbate the clinical manifestations of lupus by increasing autoantibody concentrations. The objective of this study was to characterize the participation of prolactin in the differentiation and activation of TFH cells, by performing in vivo and in vitro tests with lupus-prone mice, using flow cytometry and real-time PCR. We found that TFH cells express the long isoform of the prolactin receptor and promoted STAT3 phosphorylation. Receptor expression was higher in MRL/lpr mice and correlative with the manifestations of the disease. Although prolactin does not intervene in the differentiation of TFH cells, it does favor their activation by increasing the percentage of TFH OX40+ and TFH IL21+ cells, as well as leading to high serum concentrations of IL21. These results support a mechanism in which prolactin participates in the emergence of lupus by inducing overactive TFH cells and perhaps promoting dysfunctional germinal centers.
Collapse
|
19
|
Flores-Fernández R, Aponte-López A, Suárez-Arriaga MC, Gorocica-Rosete P, Pizaña-Venegas A, Chávez-Sanchéz L, Blanco-Favela F, Fuentes-Pananá EM, Chávez-Rueda AK. Prolactin Rescues Immature B Cells from Apoptosis-Induced BCR-Aggregation through STAT3, Bcl2a1a, Bcl2l2, and Birc5 in Lupus-Prone MRL/lpr Mice. Cells 2021; 10:cells10020316. [PMID: 33557010 PMCID: PMC7913714 DOI: 10.3390/cells10020316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 12/30/2022] Open
Abstract
Self-reactive immature B cells are eliminated through apoptosis by tolerance mechanisms, failing to eliminate these cells results in autoimmune diseases. Prolactin is known to rescue immature B cells from B cell receptor engagement-induced apoptosis in lupus-prone mice. The objective of this study was to characterize in vitro prolactin signaling in immature B cells, using sorting, PCR array, RT-PCR, flow cytometry, and chromatin immunoprecipitation. We found that all B cell maturation stages in bone marrow express the prolactin receptor long isoform, in both wild-type and MRL/lpr mice, but its expression increased only in the immature B cells of the latter, particularly at the onset of lupus. In these cells, activation of the prolactin receptor promoted STAT3 phosphorylation and upregulation of the antiapoptotic Bcl2a1a, Bcl2l2, and Birc5 genes. STAT3 binding to the promoter region of these genes was confirmed through chromatin immunoprecipitation. Furthermore, inhibitors of prolactin signaling and STAT3 activation abolished the prolactin rescue of self-engaged MRL/lpr immature B cells. These results support a mechanism in which prolactin participates in the emergence of lupus through the rescue of self-reactive immature B cell clones from central tolerance clonal deletion through the activation of STAT3 and transcriptional regulation of a complex network of genes related to apoptosis resistance.
Collapse
Affiliation(s)
- Rocio Flores-Fernández
- UIM en Inmunologia, Hospital de Pediatría, CMN SIGLO XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.F.-F.); (L.C.-S.); (F.B.-F.)
| | - Angélica Aponte-López
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de Mexico Federico Gómez, Mexico City 06720, Mexico; (A.A.-L.); (M.C.S.-A.)
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| | - Mayra C. Suárez-Arriaga
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de Mexico Federico Gómez, Mexico City 06720, Mexico; (A.A.-L.); (M.C.S.-A.)
- Laboratorio de Biotecnología y Bioinformática Genómica, ENCB, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Patricia Gorocica-Rosete
- Departamento de Investigación en Bioquímica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosió Villegas”, Mexico City 14080, Mexico;
| | - Alberto Pizaña-Venegas
- Unidad de Investigación y Bioterio, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosió Villegas”, Mexico City 14080, Mexico;
| | - Luis Chávez-Sanchéz
- UIM en Inmunologia, Hospital de Pediatría, CMN SIGLO XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.F.-F.); (L.C.-S.); (F.B.-F.)
| | - Francico Blanco-Favela
- UIM en Inmunologia, Hospital de Pediatría, CMN SIGLO XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.F.-F.); (L.C.-S.); (F.B.-F.)
| | - Ezequiel M. Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de Mexico Federico Gómez, Mexico City 06720, Mexico; (A.A.-L.); (M.C.S.-A.)
- Correspondence: or (E.M.F.-P.); or (A.K.C.-R.); Tel.: +52-5544349663 (E.M.F.-P.); +52-555627694 (A.K.C.-R.)
| | - Adriana K. Chávez-Rueda
- UIM en Inmunologia, Hospital de Pediatría, CMN SIGLO XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.F.-F.); (L.C.-S.); (F.B.-F.)
- Correspondence: or (E.M.F.-P.); or (A.K.C.-R.); Tel.: +52-5544349663 (E.M.F.-P.); +52-555627694 (A.K.C.-R.)
| |
Collapse
|
20
|
Sa-Nguanraksa D, Mitpakdi K, Samarnthai N, Thumrongtaradol T, O-Charoenrat P. Expression of long-form prolactin receptor is associated with lower disease-free and overall survival in node-negative breast cancer patients. Gland Surg 2021; 10:130-142. [PMID: 33633970 DOI: 10.21037/gs-20-569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Breast cancer is the most frequent female malignancy in Thailand. Prolactin (PRL) and prolactin receptor (PRLR) play an important role in normal breast development and carcinogenesis of breast cancer. There are two major isoforms of PRLR, consisting of long-form (LF-PRLR) and short-form (SF-PRLR) that stimulate different signaling pathways. This study aims to explore the associations between all PRLR isoforms (all-PRLR) and LF-PRLR with clinicopathological parameters in breast cancer patients. Methods A total of 340 patients were recruited from January 2009 to December 2015. Expressions of PRLR in breast cancer tissue were determined by immunohistochemistry using specific antibodies that recognize different domains of PRLR (B6.2 for all-PRLR and H-300 for LF-PRLR). The associations between all-PRLR and LF-PRLR expressions with clinicopathological parameters were evaluated. Results Expression of all-PRLR was observed in 86.2% of all patients while LF-PRLR expression was observed in 54.4%. All-PRLR was co-expressed with estrogen receptor (ER) and progesterone receptor (PR). LF-PRLR expression was associated with high grade tumor and human epidermal growth factor receptor-2 (HER2) overexpression (P=0.010 and <0.001, respectively). Subgroup analysis revealed that LF-PRLR expression was the independent predictor for lower disease-free survival (DFS) in node-negative breast cancer patients with high expression of all-PRLR [hazard ratio (HR): 5.224, 95% confidence interval (CI): 1.089-25.064, P=0.039]. Conclusions The presence of LF-PRLR in the patients with high expression of all-PRLR was associated with adverse outcome. Evaluation of all-PRLR and LF-PRLR might be used as novel prognosticators in node-negative breast cancers.
Collapse
Affiliation(s)
- Doonyapat Sa-Nguanraksa
- Division of Head Neck and Breast Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kwanlada Mitpakdi
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Norasate Samarnthai
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanawat Thumrongtaradol
- Division of Head Neck and Breast Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
21
|
Gharbaran R, Onwumere O, Codrington N, Somenarain L, Redenti S. Immunohistochemical localization of prolactin receptor (PRLR) to Hodgkin's and Reed-Sternberg cells of Hodgkin's lymphoma. Acta Histochem 2021; 123:151657. [PMID: 33259941 DOI: 10.1016/j.acthis.2020.151657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 02/04/2023]
Abstract
Prolactin receptor (PRLR), a type-1 cytokine receptor, is overexpressed in a number of cancer types. It has attracted much attention for putative pro-oncogenic roles, which however, remains controversial in some malignancies. In this study, we reported the localization of PRLR to the Hodgkin's and Reed-Sternberg (HRS) cells of Hodgkin's lymphoma (HL), a neoplasm of predominantly B cell origin. Immunohistochemistry performed on 5-μm thick FFPE sections revealed expression of PRLR in HRS cells. Cellular immunofluorescence experiments showed that the HL-derived cell lines, Hs445, KMH2 and L428 overexpressed PRLR. The PRLR immunofluorescent signal was depleted after treating the cell lines with 10 μM of siRNA for 48 h. We also tested whether PRLR is involved in the growth of HL, in vitro. One-way analysis of variance (ANOVA) on cell growth data obtain from WST-1 cell proliferation assay and trypan blue exclusion assay and hemocytometry showed that siRNA-depletion of PRLR expression resulted in decreased growth in all three cell lines. These results offered only a short insight into the involvement of PRLR in HL. As a result, further investigation is required to decipher the precise role(s) of PRLR in the pathogenesis of HL.
Collapse
|
22
|
Ramos-Martinez E, Ramos-Martínez I, Molina-Salinas G, Zepeda-Ruiz WA, Cerbon M. The role of prolactin in central nervous system inflammation. Rev Neurosci 2021; 32:323-340. [PMID: 33661585 DOI: 10.1515/revneuro-2020-0082] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
Prolactin has been shown to favor both the activation and suppression of the microglia and astrocytes, as well as the release of inflammatory and anti-inflammatory cytokines. Prolactin has also been associated with neuronal damage in diseases such as multiple sclerosis, epilepsy, and in experimental models of these diseases. However, studies show that prolactin has neuroprotective effects in conditions of neuronal damage and inflammation and may be used as neuroprotector factor. In this review, we first discuss general information about prolactin, then we summarize recent findings of prolactin function in inflammatory and anti-inflammatory processes and factors involved in the possible dual role of prolactin are described. Finally, we review the function of prolactin specifically in the central nervous system and how it promotes a neuroprotective effect, or that of neuronal damage, particularly in experimental autoimmune encephalomyelitis and during excitotoxicity. The overall studies indicated that prolactin may be a promising molecule for the treatment of some neurological diseases.
Collapse
Affiliation(s)
- Edgar Ramos-Martinez
- Escuela de Ciencias, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca68120, Mexico
- Instituto de Cómputo Aplicado en Ciencias, Oaxaca68000, Mexico
| | - Ivan Ramos-Martínez
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris Est Créteil (UPEC), 94010Créteil, France
| | - Gladys Molina-Salinas
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510Coyoacan, Mexico
| | - Wendy A Zepeda-Ruiz
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510Coyoacan, Mexico
| | - Marco Cerbon
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510Coyoacan, Mexico
| |
Collapse
|
23
|
Dolińska B, Siemiradzka W, Ryszka F. Penetration of model hormones through the pericardium in simulated conditions in vivo. Biomed Pharmacother 2020; 127:110113. [PMID: 32240919 DOI: 10.1016/j.biopha.2020.110113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 02/01/2023] Open
Abstract
The process of penetration of selected protein-peptide substances including insulin (INS), corticotropin (ACTH), prolactin (PRL) and albumin (reference protein) through the model membrane - pig pericardium was traced. These substances show a wide spectrum of therapeutic effects and diverse physicochemical properties (molecular weight, pI). The model substances penetrated the pericardium in simulated in vivo conditions from 1.0 mg / ml solutions. Based on the results obtained, pharmacokinetic parameters of the permeation process were determined - permeation rate (k), half-life (t50%) and their pharmaceutical availability (AUC [0-24 h]). All tested model substances penetrate the pericardium to different degrees. Within 24 h, they penetrate from 16.8% of albumin to 98.9% of insulin. Corticotropin penetrates 43.8% and PRL 34.2%. The highest availability is achieved with insulin, followed by ACTH, PRL and the lowest content of albumin. The results obtained suggest that the higher molecular weight of model protein-peptide substances, the lower the pericardial penetration (R2 = - 0.700) and availability (R2 = - 0.600), and the longer the half-life (R2 = 0.948).
Collapse
Affiliation(s)
- Barbara Dolińska
- Department of Pharmaceutical Technology, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Poland; "Biochefa" Pharmaceutical Research and Production Plant, Poland
| | - Wioletta Siemiradzka
- Department of Pharmaceutical Technology, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Poland.
| | - Florian Ryszka
- "Biochefa" Pharmaceutical Research and Production Plant, Poland
| |
Collapse
|
24
|
Pharmacological Benefits and Risk of Using Hormones in Organ Perfusion and Preservation Solutions in the Aspect of Minimizing Hepatic Ischemia-Reperfusion Injury during Storage. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6467134. [PMID: 31828112 PMCID: PMC6881579 DOI: 10.1155/2019/6467134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/31/2019] [Accepted: 10/23/2019] [Indexed: 01/11/2023]
Abstract
For several years, research has been carried out on the effectiveness of solutions for perfusion and preservation of organs, including the liver. There is a search for an optimal pharmacological composition of these solutions, allowing to preserve or improve vital functions of the organ for as long as possible until it is transplanted into a recipient. Hormones due to their properties, often resulting from their pleiotropic effects, may be a valuable component for optimizing the composition of liver perfusion and preservation solutions. The paper presents the current state of knowledge on liver perfusion and preservation solutions modified with hormones. It also shows the characteristics of the hormones evaluated, taking into account their physiological functions in the body.
Collapse
|