1
|
El Saftawy EA, Aboulhoda BE, AbdElkhalek MA, Alghamdi MA, AlHariry NS. Non-coding RNAs in urinary bladder cancer microenvironment: Diagnostic, therapeutic, and prognostic perspective. Pathol Res Pract 2025; 266:155815. [PMID: 39824086 DOI: 10.1016/j.prp.2025.155815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Urinary bladder cancer (UBC) is the ninth most common cancer worldwide. Despite the reliance of UBC therapy on definite pathological grading and classifications, the clinical response among patients varies widely. The molecular basis of this type of cancer appeals to considerable research; hence, new diagnostic and therapeutic options are introduced. Convenient keywords were searched in Google Scholar, PubMed, the Egyptian Knowledge Bank (EKB), and Web of Science. The recent era of UBC research is concerned with non-coding RNAs (ncRNAs), predominantly, microRNAs (miRNAs) and long non-coding RNA (lncRNAs). In addition, snoRNAs, PIWI-interacting RNAs, mitochondrial RNAs, circular, and Schistosoma haematobium-related ncRNAs appeared to contribute to the pathogenesis of the UBC. This review underscored the recently studied ncRNAs and their importance in the pathogenesis of UBC. Besides, we introduced the prospectives regarding their diagnostic, therapeutic, and prognostic significance in UBC clinical settings. Conclusion. Oncogenic and oncosuppressor ncRNAs' definite balances and interaction within the TME of UBC are key players in the fate of the tumor. Thus, profiling ncRNA in-depth inspects the TME of the UBC for better clinical insights.
Collapse
Affiliation(s)
- Enas A El Saftawy
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Marwa Ali AbdElkhalek
- Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Department of Medical Biochemistry & Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt
| | - Mansour A Alghamdi
- Central Labs, King Khalid University, P.O. Box 960, AlQura'a, Abha, Saudi Arabia; Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha 62529, Saudi Arabia
| | | |
Collapse
|
2
|
Doghish AS, Abulsoud AI, Nassar YA, Nasr SM, Mohammed OA, Abdel-Reheim MA, Rizk NI, Lutfy RH, Abdel Mageed SS, Ismail MA, Abd-Elhalim HM, Awad FA, Fayez SZ, Elimam H, Mansour RM. Harnessing miRNAs: A Novel Approach to Diagnosis and Treatment of Tuberculosis. J Biochem Mol Toxicol 2025; 39:e70119. [PMID: 39799557 DOI: 10.1002/jbt.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 01/15/2025]
Abstract
Mycobacterium tuberculosis (Mtb) complex, responsible for tuberculosis (TB) infection, continues to be a predominant global cause of mortality due to intricate host-pathogen interactions that affect disease progression. MicroRNAs (miRNAs), essential posttranscriptional regulators, have become pivotal modulators of these relationships. Recent findings indicate that miRNAs actively regulate immunological responses to Mtb complex by modulating autophagy, apoptosis, and immune cell activities. This has resulted in increased interest in miRNAs as prospective diagnostic indicators for TB, especially in differentiating active infection from latent or inactive stages. Variations in miRNA expression during Mtb infection indicate disease progression and offer insights into the immune response. Furthermore, miRNAs present potential as therapeutic targets in host-directed therapy (HDT) techniques for TB infection. This work examines the function of miRNAs in TB pathogenesis, with the objective of identifying particular miRNAs that regulate the immune response to the Mtb complex, evaluating their diagnostic value and exploring their therapeutic implications in host-directed therapy for TB infection. The objective is to enhance comprehension of how miRNAs can facilitate improved diagnosis and treatment of TB.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Yara A Nassar
- Department of Botany, Biotechnology and Its Application Program, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Sami Mohamed Nasr
- Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | | | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Radwa H Lutfy
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Menattallah A Ismail
- Applied Biotechnology Program, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Haytham M Abd-Elhalim
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
- Agricultural Research Center, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Farah A Awad
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Salma Zaki Fayez
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, Egypt
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| |
Collapse
|
3
|
Milović E, Matić IZ, Petrović N, Pašić I, Stanojković T, Petrović MR, Bogdanović GA, Ari F, Janković N. Chlorine containing tetrahydropyrimidines: Synthesis, characterization, anticancer activity and mechanism of action. Bioorg Chem 2024; 153:107907. [PMID: 39490136 DOI: 10.1016/j.bioorg.2024.107907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
The aim of the presented research was to explore anticancer potential of eleven newly synthesized tetrahydropyrimidine derivatives. The compounds were synthesized via Biginelli multicomponent one-pot reaction using different derivatives of vanillin, ethyl 4-chloroacetoacetate and (N-methyl)urea. The cytotoxic effects of the compounds were examined on three human malignant cell lines (HeLa, K562, and MCF7), and normal lung fibroblasts MRC-5. The mechanisms of anticancer activity were examined for two compounds 4a and 4b which showed the strongest and selective cytotoxicity against chronic myelogenous leukaemia K562 cells (IC50 = 1.76 ± 0.09, and 1.66 ± 0.05, respectively). The changes of matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), and vascular endothelial growth factor A (VEGFA) were investigated in the K562 cell line, as well as oncomiRNA miR-10b, miR-23a described to have both features, depending on a specific type of malignancy, and miR-34a with mostly described as a tumour suppressor.
Collapse
Affiliation(s)
- Emilija Milović
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac 34000, Serbia
| | - Ivana Z Matić
- Institute for Oncology and Radiology of Serbia, Belgrade 11 000, Serbia
| | - Nina Petrović
- Institute for Oncology and Radiology of Serbia, Belgrade 11 000, Serbia; "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Ivana Pašić
- Institute for Oncology and Radiology of Serbia, Belgrade 11 000, Serbia
| | | | - Miloš R Petrović
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade 11 000, Serbia
| | - Goran A Bogdanović
- "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Ferda Ari
- Department of Biology, Faculty of Science and Art, Bursa Uludag University, Bursa 16059, Turkey
| | - Nenad Janković
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac 34000, Serbia.
| |
Collapse
|
4
|
Ferreira T, da Costa RMG, Dias F, Gama A, Gaspar VM, Mano JF, Oliveira PA, Medeiros R. Exploring the role of microRNAs as diagnostic and prognostic biomarkers in canine mammary tumors. GeroScience 2024; 46:6641-6657. [PMID: 38954129 PMCID: PMC11494623 DOI: 10.1007/s11357-024-01260-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Canine mammary tumors (CMTs) represent a significant health concern in dogs, with a high incidence among intact female dogs. CMTs are a promising comparative model for human breast cancer, due to sharing several pathophysiological features. Additionally, CMTs have a strong genetic correlation with their human counterpart, including the expression of microRNAs (miRNAs). MiRNAs are a class of non-coding RNAs that play important roles in post-translational regulation of gene expression, being implicated in carcinogenesis, tumor progression, and metastasis. Moreover, miRNAs hold promise as diagnostic, prognostic, and metastatic biomarkers. Understanding the molecular mechanisms underlying CMTs is crucial for improving diagnosis, prognosis, and monitoring of treatments. Herein, we provide a comprehensive overview of the current knowledge on miRNAs in CMTs, highlighting their roles in carcinogenesis and their potential as biomarkers. Additionally, we highlight the current limitations and critically discuss the overarching challenges in this field, emphasizing the need for future research to translate miRNA findings into veterinary clinical practice.
Collapse
Affiliation(s)
- Tiago Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal.
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801, Vila Real, Portugal.
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal.
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Rui M Gil da Costa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801, Vila Real, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Porto, Portugal
- Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís, Brazil
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal
| | - Adelina Gama
- Animal and Veterinary Research Centre (CECAV), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000-801, Vila Real, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal.
- Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
- Research Department of the Portuguese League against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal.
- Virology Service, Portuguese Institute of Oncology (IPO), 4200-072, Porto, Portugal.
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University, 4249-004, Porto, Portugal.
| |
Collapse
|
5
|
Doghish AS, Elsakka EGE, Moustafa HAM, Ashraf A, Mageed SSA, Mohammed OA, Abdel-Reheim MA, Zaki MB, Elimam H, Rizk NI, Omran SA, Farag SA, Youssef DG, Abulsoud AI. Harnessing the power of miRNAs for precision diagnosis and treatment of male infertility. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03594-7. [PMID: 39535597 DOI: 10.1007/s00210-024-03594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Infertility is a multifactorial reproductive system disorder, and most infertility cases occur in men. Semen testing is now thought to be the most important diagnostic test for infertile men; nonetheless, because of its limitations, the cause of infertility remains unknown for 40% of infertile men. Semen assessment's shortcomings indicate the need for improved and innovative diagnostic techniques and biomarkers worldwide. Non-coding RNAs with a length of roughly 18-22 nucleotides are called microRNAs (miRNAs). Most of our protein-coding genes are post-transcriptionally regulated by them. These molecules are unusual in bodily fluids, and aberrant variations in their expression can point to specific conditions like infertility. As a result, fresh potential biomarkers for the diagnosis and prognosis of various forms of male infertility may be represented by miRNAs. This review examined the most recent research revealing the association between different miRNAs' functions in male infertility and their expression patterns. Also, it aims to figure out the most recent strategies that could be applied for using such miRNAs as possible therapeutic targets for infertility treatment.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City , 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Nasr City, 11786, Egypt, Cairo
| | - Sarah A Omran
- Pharmacognosy Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Shimaa A Farag
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Donia G Youssef
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, El-Salam City, Cairo, 11785, Egypt
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
6
|
Aly SH, Abulsoud AI, Moustafa YM, Abdel Mageed SS, Abdelmaksoud NM, El-Dakroury WA, Mohammed OA, Abdel-Reheim MA, Zaki MB, Rizk NI, Elshafei A, Elimam H, Ashraf A, Doghish AS. Harnessing natural compounds to modulate miRNAs in breast cancer therapy. Funct Integr Genomics 2024; 24:211. [PMID: 39528871 DOI: 10.1007/s10142-024-01489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Breast cancer's complexity and heterogeneity continue to present significant challenges in its treatment and management. Emerging research has underscored the pivotal role of microRNAs (miRNAs) in breast cancer pathogenesis, acting as crucial regulators of gene expression. This review delivers an in-depth analysis of miRNAs, highlighting their dual functions as both oncogenes and tumor suppressors, and detailing their impact on key biological processes, including cell proliferation, apoptosis, and metastasis. The mechanisms underlying miRNA action, particularly their interactions with target mRNAs and the factors influencing these dynamics, are thoroughly explored. Additionally, the review discusses the therapeutic prospects of miRNAs, with a focus on innovative delivery systems like nanoparticles that improve the stability and effectiveness of miRNA-based therapies. It also addresses the anticancer effects of natural compounds, such as genistein, hesperidin, quercetin, curcumin, resveratrol, epigallocatechin-3-gallate (EGCG), and glyceollins, which modulate miRNA expression and contribute to tumor growth inhibition. These advances seek to address the limitations of conventional therapies, paving the way for targeted interventions in breast cancer. By integrating current insights on miRNA biology, therapeutic strategies, and the potential of natural products to regulate miRNA expression, this review aims to shed light on miRNA- and natural product-based approaches as promising avenues for enhancing breast cancer treatment outcomes.
Collapse
Affiliation(s)
- Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nourhan M Abdelmaksoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat, Menoufia, 32897, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat, Menoufia, 32897, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| |
Collapse
|
7
|
Arya PN, Saranya I, Selvamurugan N. RUNX2 regulation in osteoblast differentiation: A possible therapeutic function of the lncRNA and miRNA-mediated network. Differentiation 2024; 140:100803. [PMID: 39089986 DOI: 10.1016/j.diff.2024.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Osteogenic differentiation is a crucial process in the formation of the skeleton and the remodeling of bones. It relies on a complex system of signaling pathways and transcription factors, including Runt-related transcription factor 2 (RUNX2). Non-coding RNAs (ncRNAs) control the bone-specific transcription factor RUNX2 through post-transcriptional mechanisms to regulate osteogenic differentiation. The most research has focused on microRNAs (miRNAs) and long ncRNAs (lncRNAs) in studying how they regulate RUNX2 for osteogenesis in both normal and pathological situations. This article provides a concise overview of the recent advancements in understanding the critical roles of lncRNA/miRNA/axes in controlling the expression of RUNX2 during bone formation. The possible application of miRNAs and lncRNAs as therapeutic agents for the treatment of disorders involving the bones and bones itself is also covered.
Collapse
Affiliation(s)
- Pakkath Narayanan Arya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
8
|
Tylden ES, Delgado AB, Lukic M, Moi L, Busund LTR, Pedersen MI, Lombardi AP, Olsen KS. Roles of miR-20a-5p in breast cancer based on the clinical and multi-omic (CAMO) cohort and in vitro studies. Sci Rep 2024; 14:25022. [PMID: 39443510 PMCID: PMC11499649 DOI: 10.1038/s41598-024-75557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
MicroRNAs are involved in breast cancer development and progression, holding potential as biomarkers and therapeutic targets or tools. The roles of miR-20a-5p, a member of the oncogenic miR-17-92 cluster, remain poorly understood in the context of breast cancer. In this study, we elucidate the role of miR-20a-5p in breast cancer by examining its associations with breast cancer risk factors and clinicopathological features, and its functional roles in vitro. Tissue microarrays from 313 CAMO cohort breast cancer surgical specimens were constructed, in situ hybridization was performed and miR-20a-5p expression was semiquantitatively scored in tumor stromal fibroblasts, and in the cytoplasm and nuclei of cancer cells. In vitro analysis of the effect of miR-20a-5p transfection on proliferation, migration and invasion was performed in three breast cancer cell lines. High stromal miR-20a-5p was associated with higher Ki67 expression, and higher odds of relapse, compared to low expression. Compared to postmenopausal women, women who were premenopausal at diagnosis had higher odds of high stromal and cytoplasmic miR-20a-5p expression. Cytoplasmic miR-20a-5p was significantly associated with tumor grade. In tumors with high cytoplasmic miR-20a-5p expression compared to low expression, there was a tendency towards having a basal-like subtype and high Ki67. In contrast, high nuclear miR-20a-5p in cancer cells was associated with smaller tumor size and lower odds of lymph node metastasis, compared to low nuclear expression. Transfection with miR-20a-5p in breast cancer cell lines led to increased migration and invasion in vitro. While the majority of our results point towards an oncogenic role, some of our findings indicate that the associations of miR-20a-5p with breast cancer related risk factors and outcomes may vary based on tissue- and subcellular location. Larger studies are needed to validate our findings and further investigate the clinical utility of miR-20a-5p.
Collapse
Affiliation(s)
- Eline Sol Tylden
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
| | - André Berli Delgado
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
| | - Marko Lukic
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
| | - Line Moi
- Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| | - Lill-Tove Rasmussen Busund
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
- Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| | - Mona Irene Pedersen
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
| | - Ana Paola Lombardi
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
| | - Karina Standahl Olsen
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway.
| |
Collapse
|
9
|
Doghish AS, El-Sayyad GS, Abdel Mageed SS, Abd-Elmawla MA, Sallam AAM, El Tabaa MM, Rizk NI, Ashraf A, Mohammed OA, Mangoura SA, Al-Noshokaty TM, Zaki MB, El-Dakroury WA, Elrebehy MA, Abdel-Reheim MA, Elballal MS, Abulsoud AI. The emerging role of miRNAs in pituitary adenomas: From molecular signatures to diagnostic potential. Exp Cell Res 2024; 442:114279. [PMID: 39389336 DOI: 10.1016/j.yexcr.2024.114279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Pituitary adenomas (PAs) are an array of tumors originating from the pituitary gland. PAs are sorted as functional or nonfunctional according to their hormonal activity and classified according to size into microadenomas and macroadenomas. Still, the cellular events that trigger the transformations in pituitary neoplasms are not fully understood, and the current classification methods do not precisely predict clinical behavior. A rising number of researches have emphasized the role of miRNAs, that drawn more attention as oncogenic molecules or tumor suppressors. The etiopathological mechanisms of PAs include multiple molecular cascades that are influenced by different miRNAs. miRNAs control the cell cycle control, pro- or antiapoptotic processes, and tumor invasion and metastasis. miRNAs offer a novel perspective on tumor features and behaviors and might be valuable in prognostication and therapeutic plans. In pituitary adenomas, miRNAs showed a specific expression pattern depending on their size, cell origin, remission, and treatments. Screening miRNA expression patterns is promising to monitor and evaluate recurrence, as well as to investigate the efficacy of radiation and chemotherapy for PAs exhibiting aggressive behavior. Thus, the current review investigated the interplay of the miRNAs' pivotal role in offering new opportunities to translate these innovative epigenetic tools into healthcare applications.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Cairo, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, Galala City, Suez, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Safwat Abdelhady Mangoura
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Galala University, New Galala City, 43713, Suez, Egypt
| | | | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| |
Collapse
|
10
|
Hemdan M, Abdel Mageed SS, Abulsoud AI, Faraag AHI, Zaki MB, Mansour RM, Raouf AA, Ali MA, Mohammed OA, Salman A, Salah AN, Abdel-Reheim MA, Doghish AS. Approaches based on miRNAs in Behçet's Disease: Unveiling pathogenic mechanisms, diagnostic strategies, and therapeutic applications. Life Sci 2024; 354:122950. [PMID: 39128821 DOI: 10.1016/j.lfs.2024.122950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Behçet's Disease (BD) is an intricate medical puzzle, captivating researchers with its enigmatic pathogenesis. This complex ailment, distinguished by recurrent mouth and genital lesions, eye irritation, and skin injuries, presents a substantial obstacle to therapeutic research. This review explores the complex interaction of microRNAs (miRNAs) with BD, highlighting their crucial involvement in the disease's pathophysiology. miRNAs, recognized for regulatory influence in diverse biological processes, hold a pivotal position in the molecular mechanisms of autoimmune diseases, such as BD. The exploration begins with examining miRNA biogenic pathways and functions, establishing a foundational understanding of their regulatory mechanisms. Shifting to the molecular landscape governing BD, the review highlights miRNA-mediated impacts on critical signaling pathways like Notch, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and protein kinase B (AKT)/mammalian target of rapamycin (mTOR), offering insights into intricate pathophysiological mechanisms. Dissecting the immunological landscape reveals the profound influence of miRNAs on BD, shedding light on the intricate modulation of immune responses and offering novel perspectives on disease etiology and progression. Beyond molecular intricacies, the review explores the clinical relevance of miRNAs in BD, emphasizing their potential as diagnostic and prognostic indicators. The discussion extends to the promising realm of miRNA-based therapeutic interventions, highlighting their potential in alleviating symptoms and altering disease progression. This comprehensive review, serving as a valuable resource for researchers, clinicians, and stakeholders, aims to decipher the intricate molecular tapestry of BD and explore the therapeutic potential of miRNAs.
Collapse
Affiliation(s)
- Mohamed Hemdan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Ahmed H I Faraag
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Akram N Salah
- Microbiology and Immunology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| |
Collapse
|
11
|
Salama RM, Eissa N, Doghish AS, Abulsoud AI, Abdelmaksoud NM, Mohammed OA, Abdel Mageed SS, Darwish SF. Decoding the secrets of longevity: unraveling nutraceutical and miRNA-Mediated aging pathways and therapeutic strategies. FRONTIERS IN AGING 2024; 5:1373741. [PMID: 38605867 PMCID: PMC11007187 DOI: 10.3389/fragi.2024.1373741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024]
Abstract
MicroRNAs (miRNAs) are short RNA molecules that are not involved in coding for proteins. They have a significant function in regulating gene expression after the process of transcription. Their participation in several biological processes has rendered them appealing subjects for investigating age-related disorders. Increasing data indicates that miRNAs can be influenced by dietary variables, such as macronutrients, micronutrients, trace minerals, and nutraceuticals. This review examines the influence of dietary factors and nutraceuticals on the regulation of miRNA in relation to the process of aging. We examine the present comprehension of miRNA disruption in age-related illnesses and emphasize the possibility of dietary manipulation as a means of prevention or treatment. Consolidating animal and human research is essential to validate the significance of dietary miRNA control in living organisms, despite the abundance of information already provided by several studies. This review elucidates the complex interaction among miRNAs, nutrition, and aging, offering valuable insights into promising areas for further research and potential therapies for age-related disorders.
Collapse
Affiliation(s)
- Rania M. Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Egypt
| | - Ahmed I. Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Egypt
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | | | - Osama A. Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Sherif S. Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Samar F. Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| |
Collapse
|
12
|
Lin YH, Su CH, Chen HM, Wu MS, Pan HA, Chang CN, Cheng YS, Chang WT, Chiu CC, Teng YN. MicroRNA-320a enhances LRWD1 expression through the AGO2/FXR1-dependent pathway to affect cell behaviors and the oxidative stress response in human testicular embryonic carcinoma cells. Aging (Albany NY) 2024; 16:3973-3988. [PMID: 38385979 PMCID: PMC10929808 DOI: 10.18632/aging.205571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/26/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND Testicular cancer is fairly rare but can affect fertility in adult males. Leucine-rich repeats- and WD repeat domain-containing protein 1 (LRWD1) is a sperm-specific marker that mainly affects sperm motility in reproduction. Our previous study demonstrated the impact of LRWD1 on testicular cancer development; however, the underlying mechanisms remain unclear. METHODS In this study, various plasmids associated with LRWD1 and miR-320a manipulation were used to explore the roles and regulatory effects of these molecules in NT2D1 cellular processes. A Dual-Glo luciferin-luciferase system was used to investigate LRWD1 transcriptional activity, and qRT-PCR and western blotting were used to determine gene and protein expression. RESULTS The results suggested that miR-320a positively regulated LRWD1 and positively correlated with NT2D1 cell proliferation but negatively correlated with cell migration and invasion ability. In addition, the miRNA-ribonucleoprotein complex AGO2/FXR1 was shown to be essential in the mechanism by which miR-320a regulates LRWD1 mRNA expression. As miR-320a was required to regulate LRWD1 expression through the AGO2 and FXR1 complex, eEF2 and eLF4E were also found to be involved in miR-320a increasing LRWD1 expression. Furthermore, miR-320a and LRWD1 were responsive to oxidative stress, and NRF2 was affected by the presence of miR-320a in response to ROS stimulation. CONCLUSIONS This is the first study showing the role of miR-320a in upregulating the testicular cancer-specific regulator LRWD1 and the importance of the AGO2/FXR1 complex in miR-320a-mediated upregulation of LRWD1 during testicular cancer progression.
Collapse
Affiliation(s)
- Yi-Hsiung Lin
- Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Hui Su
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700, Taiwan
| | - Hsin-Mei Chen
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700, Taiwan
| | - Ming-Syuan Wu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700, Taiwan
| | - Hsien-An Pan
- An-An Women and Children Clinic, Tainan 704, Taiwan
| | - Chia-Ning Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700, Taiwan
| | - Yu-Sheng Cheng
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Tsan Chang
- Department of Surgery, Division of General and Digestive Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700, Taiwan
| |
Collapse
|
13
|
Wang Y, Gong Y, Li X, Long W, Zhang J, Wu J, Dong Y. Targeting the ZNF-148/miR-335/SOD2 signaling cascade triggers oxidative stress-mediated pyroptosis and suppresses breast cancer progression. Cancer Med 2023; 12:21308-21320. [PMID: 37909239 PMCID: PMC10726847 DOI: 10.1002/cam4.6673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/24/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND The implication of zinc finger protein 148 (ZNF-148) in pathophysiology of most human cancers has been reported; however, the biological functions of ZNF-148 in breast cancer remain unclear. This study sought to elucidate the potential molecular mechanism of ZNF-148 on breast cancer pathology. METHODS ZNF148 expression was tested in breast cancer tissues and cells. Then, cells were transfected with ZNF-148 overexpression or downregulation vector, and the cell proliferation, pyroptosis, apoptosis, and reactive oxygen species (ROS) production were analyzed by MTT, western blot, flow cytometry, and immunofluorescence staining, respectively. Tumor-bearing nude mouse was used to evaluate tumorigenesis of ZNF-148. Mechanisms underpinning ZNF-148 were examined using bioinformatics and luciferase assays. RESULTS We found that ZNF-148 was upregulated in breast cancer tissues and cell lines. Knockdown of ZNF-148 suppressed malignant phenotypes, including cell proliferation, epithelial-mesenchymal transition, and tumorigenesis in vitro and in vivo, while ZNF-148 overexpression had the opposite effects. Further experiments showed that ZNF-148 deficiency promoted ROS production and triggered both apoptotic and pyroptotic cell death, which were restored by cotreating cells with ROS scavengers. A luciferase reporter assay revealed that miR-335 was the downstream target of ZNF-148 and that overexpressed ZNF-148 increased superoxide dismutase 2 (SOD2) expression by sponging miR-335. In parallel, both miR-335 downregulation and SOD2 overexpression abrogated the antitumor effects of ZNF-148 deficiency on proliferation and pyroptosis in breast cancer cells. CONCLUSIONS Our findings indicated that ZNF-148 promotes breast cancer progression by triggering miR-335/SOD2/ROS-mediated pyroptotic cell death and aid the identification of potential therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Yanmei Wang
- Department of Breast SurgeryFirst affiliated hospital of Kunming Medical UniversityKunmingPeople's Republic of China
| | - Yansi Gong
- Department of Breast SurgeryFirst affiliated hospital of Kunming Medical UniversityKunmingPeople's Republic of China
| | - Xuesha Li
- Department of Breast SurgeryFirst affiliated hospital of Kunming Medical UniversityKunmingPeople's Republic of China
| | - Weizhao Long
- Department of Breast SurgeryFirst affiliated hospital of Kunming Medical UniversityKunmingPeople's Republic of China
| | - Jiayu Zhang
- Department of Breast SurgeryFirst affiliated hospital of Kunming Medical UniversityKunmingPeople's Republic of China
| | - Jiefang Wu
- School of MedicineYunnan UniversityKunmingPeople's Republic of China
| | - Yilong Dong
- School of MedicineYunnan UniversityKunmingPeople's Republic of China
| |
Collapse
|
14
|
Ahmadi SM, Amirkhanloo S, Yazdian-Robati R, Ebrahimi H, Pirhayati FH, Almalki WH, Ebrahimnejad P, Kesharwani P. Recent advances in novel miRNA mediated approaches for targeting breast cancer. J Drug Target 2023; 31:777-793. [PMID: 37480323 DOI: 10.1080/1061186x.2023.2240979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 07/24/2023]
Abstract
Breast cancer (BC) is considered one of the most frequent cancers among woman worldwide. While conventional therapy has been successful in treating many cases of breast cancer, drug resistance, heterogenicity, tumour features and recurrence, invasion, metastasis and the presence of breast cancer stem cells can hinder the effect of treatments, and can reduce the quality of life of patients. MicroRNAs (miRNAs) are short non-coding RNA molecules that play a crucial role in the development and progression of breast cancer. Several studies have reported that aberrant expression of specific miRNAs is associated with the pathogenesis of breast cancer. However, miRNAs are emerging as potential biomarkers and therapeutic targets for breast cancer. Understanding their role in breast cancer biology could help develop more effective treatments for this disease. The present study discusses the biogenesis and function of miRNAs, as well as miRNA therapy approaches for targeting and treating breast cancer cells.
Collapse
Affiliation(s)
- Seyedeh Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rezvan Yazdian-Robati
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Ebrahimi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
15
|
Zhang J, Mou Y, Li H, Shen H, Song J, Li Q. LINC00638 promotes the progression of non-small cell lung cancer by regulating the miR-541-3p/IRS1/PI3K/Akt axis. Heliyon 2023; 9:e16999. [PMID: 37408901 PMCID: PMC10319234 DOI: 10.1016/j.heliyon.2023.e16999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 07/07/2023] Open
Abstract
Background Preceding works reveal the function of long non-coding RNAs (abbreviated to lncRNAs) during non-small cell lung cancer (NSCLC) evolvement. We explored the profile and biological functions of the lncRNA LINC00638 in NSCLC. Methods Reverse transcription-quantitative PCR examined LINC00638 level in NSCLC and corresponding non-tumor tissues, human normal lung epithelial cells BEAS-2B, and NSCLC cells (NCI-H460, HCC-827, A549, H1299, H1975, H460). The gain- and loss-of-function assay of LINC00638 ascertained its function in modulating the proliferation, apoptosis, and invasion of NSCLC cells (HCC-827 and H460). Bioinformatics analysis investigated the underlying mechanisms. Dual luciferase reporter gene and RNA immunoprecipitation (RIP) checked the interactions between LINC00638 and microRNA (miR)-541-3p, miR-541-3p and insulin receptor substrate 1 (IRS1). Results LINC00638 was upregulated in NSCLC tissues by contrast to the profiles found in the corresponding non-tumor normal tissues, as well as in NSCLC cells vis-à-vis BEAS-2B cells. LINC00638 upregulation pertained to the poorer survival rates of NSCLC patients. Overexpressing LINC00638 augmented NSCLC cells' proliferation, growth, migration, and invasion but inhibited their apoptosis, while down-regulating LINC00638 led to the opposite. miR-541-3p might be an underlying target of LINC00638, which targeted IRS1, inhibited NSCLC progression, and reversed the carcinogenic effects of LINC00638. Mechanistically, LINC00638/miR-541-3p regulated the IRS1/phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. Repressing IRS1/2 using its inhibitor NT157 repressed LINC00638-mediated oncogenic effects. Conclusion LINC00638 may function as an oncogene in NSCLC by modulating the miR-541-3p/IRS1/PI3K/Akt axis.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, Hubei, China
- Institute of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Hubei University of Arts and Science, Xiangyang 441021, Hubei, China
| | - Yanhua Mou
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, Hubei, China
- Institute of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Hubei University of Arts and Science, Xiangyang 441021, Hubei, China
| | - Hui Li
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, Hubei, China
- Institute of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Hubei University of Arts and Science, Xiangyang 441021, Hubei, China
| | - Hui Shen
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, Hubei, China
- Institute of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Hubei University of Arts and Science, Xiangyang 441021, Hubei, China
| | - Jun Song
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, Hubei, China
- Institute of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Hubei University of Arts and Science, Xiangyang 441021, Hubei, China
| | - Qingfeng Li
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, Hubei, China
- Institute of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science Hubei University of Arts and Science, Xiangyang 441021, Hubei, China
| |
Collapse
|
16
|
Shmakova AA, Semina EV, Neyfeld EA, Tsygankov BD, Karagyaur MN. [An analysis of the relationship between genetic factors and the risk of schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:26-36. [PMID: 36843456 DOI: 10.17116/jnevro202312302126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
The etiology and pathogenesis of schizophrenia remain poorly understood, but it has been established that the contribution of heredity to the development of the disease is about 80-85%. Over the past decade, significant progress has been made in the search for specific genetic variants associated with the development of schizophrenia. The review discusses the results of modern large-scale studies aimed at searching for genetic associations with schizophrenia: genome-wide association studies (GWAS) and the search for rare variants (mutations or copy number variations, CNV), including the use of whole exome sequencing. We synthesize data on currently known genes that are significantly associated with schizophrenia and discuss their biological functions in order to identify the main molecular pathways involved in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- A A Shmakova
- Koltzov Institute of Developmental Biology, Moscow, Russia
| | - E V Semina
- Lomonosov Moscow State University, Moscow, Russia.,Institute for Regenerative Medicine - Lomonosov Moscow State University, Moscow, Russia
| | - E A Neyfeld
- Lomonosov Moscow State University, Moscow, Russia
| | | | - M N Karagyaur
- Lomonosov Moscow State University, Moscow, Russia.,Institute for Regenerative Medicine - Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
17
|
Yakovlev AA. Neuroprotective Effects of Astrocyte Extracellular Vesicles in Stroke. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Sukocheva OA, Liu J, Neganova ME, Beeraka NM, Aleksandrova YR, Manogaran P, Grigorevskikh EM, Chubarev VN, Fan R. Perspectives of using microRNA-loaded nanocarriers for epigenetic reprogramming of drug resistant colorectal cancers. Semin Cancer Biol 2022; 86:358-375. [PMID: 35623562 DOI: 10.1016/j.semcancer.2022.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023]
Abstract
Epigenetic regulation by microRNAs (miRs) demonstrated a promising therapeutic potential of these molecules to regulate genetic activity in different cancers, including colorectal cancers (CRCs). The RNA-based therapy does not change genetic codes in tumor cells but can silence oncogenes and/or reactivate inhibited tumor suppressor genes. In many cancers, specific miRs were shown to promote or stop tumor progression. Among confirmed and powerful epigenetic regulators of colon carcinogenesis and development of resistance are onco-miRs, which include let-7, miR-21, miR-22, miR-23a, miR-27a, miR-34, miR-92, miR-96, miR-125b, miR-135b, miR-182, miR-200c, miR-203, miR-221, miR-421, miR-451, and others. Moreover, various tumor-suppressor miRs (miR-15b-5b, miR-18a, miR-20b, miR-22, miR-96, miR-139-5p, miR-145, miR-149, miR-197, miR-199b, miR-203, miR-214, miR-218, miR-320, miR-375-3p, miR-409-3p, miR-450b-5p, miR-494, miR-577, miR-874, and others) were found silenced in drug-resistant CRCs. Re-expression of tumor suppressor miR is complicated by the chemical nature of miRs that are not long-lasting compounds and require protection from the enzymatic degradation. Several recent studies explored application of miRs using nanocarrier complexes. This study critically describes the most successfully tested nanoparticle complexes used for intracellular delivery of nuclear acids and miRs, including micelles, liposomes, inorganic and polymeric NPs, dendrimers, and aptamers. Nanocarriers shield incorporated miRs and improve the agent stability in circulation. Attachment of antibodies and/or specific peptide or ligands facilitates cell-targeted miR delivery. Addressing in vivo challenges, a broad spectrum of non-toxic materials has been tested and indicated reliable advantages of lipid-based (lipoplexes) and polymer-based liposomes. Recent cutting-edge developments indicated that lipid-based complexes with multiple cargo, including several miRs, are the most effective approach to eradicate drug-resistant tumors. Focusing on CRC-specific miRs, this review provides a guidance and insights towards the most promising direction to achieve dramatic reduction in tumor growth and metastasis using miR-nanocarrier complexes.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Cancer Center and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China; The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Queensland, Australia; Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Junqi Liu
- Cancer Center and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Narasimha M Beeraka
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia; Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), JSS Medical College, Mysuru, Karnataka, India
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Prasath Manogaran
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Ekaterina M Grigorevskikh
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Vladimir N Chubarev
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Ruitai Fan
- Cancer Center and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China.
| |
Collapse
|
19
|
Rincón-Riveros A, Rodríguez JA, Villegas VE, López-Kleine L. Identification of Two Exosomal miRNAs in Circulating Blood of Cancer Patients by Using Integrative Transcriptome and Network Analysis. Noncoding RNA 2022; 8:33. [PMID: 35645340 PMCID: PMC9149928 DOI: 10.3390/ncrna8030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Exosomes carry molecules of great biological and clinical interest, such as miRNAs. The contents of exosomes vary between healthy controls and cancer patients. Therefore, miRNAs and other molecules transported in exosomes are considered a potential source of diagnostic and prognostic biomarkers in cancer. Many miRNAs have been detected in recent years. Consequently, a substantial amount of miRNA-related data comparing patients and healthy individuals is available, which contributes to a better understanding of the initiation, development, malignancy, and metastasis of cancer using non-invasive sampling procedures. However, a re-analysis of available ncRNA data is rare. This study used available data about miRNAs in exosomes comparing healthy individuals and cancer patients to identify possible global changes related to the presence of cancer. A robust transcriptomic analysis identified two common miRNAs (miR-495-3p and miR-543) deregulated in five cancer datasets. They had already been implicated in different cancers but not reported in exosomes circulating in blood. The study also examined their target genes and the implications of these genes for functional processes.
Collapse
Affiliation(s)
- Andrés Rincón-Riveros
- Bioinformatics and Systems Biology Group, Universidad Nacional de Colombia, Bogotá 111221, Colombia
| | | | - Victoria E Villegas
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia
| | - Liliana López-Kleine
- Department of Statistics, Faculty of Science, Universidad Nacional de Colombia, Bogotá 111221, Colombia
| |
Collapse
|
20
|
Klimovich P, Rubina K, Sysoeva V, Semina E. New Frontiers in Peripheral Nerve Regeneration: Concerns and Remedies. Int J Mol Sci 2021; 22:13380. [PMID: 34948176 PMCID: PMC8703705 DOI: 10.3390/ijms222413380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023] Open
Abstract
Topical advances in studying molecular and cellular mechanisms responsible for regeneration in the peripheral nervous system have highlighted the ability of the nervous system to repair itself. Still, serious injuries represent a challenge for the morphological and functional regeneration of peripheral nerves, calling for new treatment strategies that maximize nerve regeneration and recovery. This review presents the canonical view of the basic mechanisms of nerve regeneration and novel data on the role of exosomes and their transferred microRNAs in intracellular communication, regulation of axonal growth, Schwann cell migration and proliferation, and stromal cell functioning. An integrated comprehensive understanding of the current mechanistic underpinnings will open the venue for developing new clinical strategies to ensure full regeneration in the peripheral nervous system.
Collapse
Affiliation(s)
- Polina Klimovich
- National Cardiology Research Center Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (P.K.); (E.S.)
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Kseniya Rubina
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Veronika Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Ekaterina Semina
- National Cardiology Research Center Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (P.K.); (E.S.)
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
21
|
Yang Q, Dong YJ. LncRNA SNHG20 promotes migration and invasion of ovarian cancer via modulating the microRNA-148a/ROCK1 axis. J Ovarian Res 2021; 14:168. [PMID: 34836544 PMCID: PMC8626962 DOI: 10.1186/s13048-021-00889-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is characterized by early metastasis and poor prognosis, which threatens the health of women worldwide. Small nucleolar RNA host gene 20 (SNHG20), a long noncoding RNA (lncRNA), has been verified to be significantly up-regulated in several tumors, including OC. MicroRNA-148a (miR-148a)/rho-kinase1 (ROCK1) axis plays an important role in the modulation of tumor development. However, whether SNHG20 can regulate OC progression through miR-148a/ROCK1 axis remains unclear. Normal human ovarian epithelial cell line and four OC cell lines were adopted for in vitro experiments. Real-time PCR was performed to assess the levels of SNHG20 and miR-148a. OC cell proliferation, apoptosis, invasion and migration were detected using clone formation, flow cytometry, transwell, and wound healing assays, respectively. Tumor xenograft assay was applied to evaluate the effect of SNHG20 on tumor growth in vivo. RESULTS Significant higher expression of SNHG20 was observed in OC cell lines. SNHG20 markedly promoted the invasion, migration, proliferation and inhibited the apoptosis of OC cells. SNHG20 enhanced ROCK1 expression by sponging miR-148a, and the direct binding between SNHG20/ROCK1 and miR-148a was identified. CONCLUSION SNHG20 promoted invasion and migration of OC via targeting miR-148a/ROCK1 axis. The present research may provide a novel insight for the therapeutic strategies of OC.
Collapse
Affiliation(s)
- Qi Yang
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130000, Jilin Province, P. R. China.
| | - Yu-Jie Dong
- Department of Emergency, China-Japan Union Hospital of Jilin University, Changchun, 130000, P. R. China
| |
Collapse
|
22
|
Shmakova AA, Rysenkova KD, Ivashkina OI, Gruzdeva AM, Klimovich PS, Popov VS, Rubina KA, Anokhin KV, Tkachuk VA, Semina EV. Early Induction of Neurotrophin Receptor and miRNA Genes in Mouse Brain after Pentilenetetrazole-Induced Neuronal Activity. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1326-1341. [PMID: 34903157 DOI: 10.1134/s0006297921100138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 06/14/2023]
Abstract
Neurotrophin receptors regulate neuronal survival and network formation, as well as synaptic plasticity in the brain via interaction with their ligands. Here, we examined early changes in the expression of neurotrophin receptor genes Ntk1 (TrkA), Ntrk2 (TrkB), Ntrk3 (TrkC), Ngfr (p75NTR) and miRNAs that target theses gens in the mouse brain after induction of seizure activity by pentylenetetrazol. We found that expression of Ntrk3 and Ngfr was upregulated in the cortex and the hippocampus 1-3 hours after the seizures, while Ntrk2 expression increased after 3-6 hours in the anterior cortex and after 1 and 6 hours in the hippocampus. At the same time, the ratio of Bcl-2/Bax signaling proteins increased in the anterior and posterior cortex, but not in the hippocampus, suggesting the activation of anti-apoptotic signaling. Expression of miRNA-9 and miRNA-29a, which were predicted to target Ntrk3, was upregulated in the hippocampus 3 hours after pentylenetetrazol injection. Therefore, early cellular response to seizures in the brain includes induction of the Ntrk2, Ntrk3, Ngfr, miRNA-9, and miRNA-29a expression, as well as activation of Bcl-2 and Bax signaling pathways, which may characterize them as important mediators of neuronal adaptation and survival upon induction of the generalized brain activity.
Collapse
Affiliation(s)
- Anna A Shmakova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Karina D Rysenkova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Olga I Ivashkina
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, 119192, Russian Federation
- Anokhin Research Institute of Normal Physiology, Moscow, 125315, Russia
- Kurchatov Institute National Research Center, Moscow, 123182, Russia
| | - Anna M Gruzdeva
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, 119192, Russian Federation
| | - Polina S Klimovich
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Vladimir S Popov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - Kseniya A Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - Konstantin V Anokhin
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, 119192, Russian Federation.
- Anokhin Research Institute of Normal Physiology, Moscow, 125315, Russia
| | - Vsevolod A Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Ekaterina V Semina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia.
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| |
Collapse
|
23
|
WISP-3 Stimulates VEGF-C-Dependent Lymphangiogenesis in Human Chondrosarcoma Cells by Inhibiting miR-196a-3p Synthesis. Biomedicines 2021; 9:biomedicines9101330. [PMID: 34680447 PMCID: PMC8533311 DOI: 10.3390/biomedicines9101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/18/2021] [Indexed: 11/24/2022] Open
Abstract
Chondrosarcoma is a malignant bone tumor with high metastatic potential. Lymphangiogenesis is a critical biological step in cancer metastasis. WNT1-inducible signaling pathway protein 3 (WISP-3) regulates angiogenesis and facilitates chondrosarcoma metastasis, but the role of WISP-3 in chondrosarcoma lymphangiogenesis is unclear. In this study, incubation of chondrosarcoma cells with WISP-3 increased the production of VEGF-C, an important lymphangiogenic factor. Conditioned medium from WISP-3-treated chondrosarcoma cells significantly enhanced lymphatic endothelial cell tube formation. WISP-3-induced stimulation of VEGF-C-dependent lymphangiogenesis inhibited miR-196a-3p synthesis in the ERK, JNK, and p38 signaling pathways. This evidence suggests that the WISP-3/VEGF-C axis is worth targeting in the treatment of lymphangiogenesis in human chondrosarcoma.
Collapse
|