1
|
Duersch BG, Soini SA, Luo Y, Liu X, Chen S, Merk VM. Nanoscale elemental and morphological imaging of nitrogen-fixing cyanobacteria. Metallomics 2024; 16:mfae040. [PMID: 39271453 PMCID: PMC11450467 DOI: 10.1093/mtomcs/mfae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
Nitrogen-fixing cyanobacteria bind atmospheric nitrogen and carbon dioxide using sunlight. This experimental study focused on a laboratory-based model system, Anabaena sp., in nitrogen-depleted culture. When combined nitrogen is scarce, the filamentous prokaryotes reconcile photosynthesis and nitrogen fixation by cellular differentiation into heterocysts. To better understand the influence of micronutrients on cellular function, 2D and 3D synchrotron X-ray fluorescence mappings were acquired from whole biological cells in their frozen-hydrated state at the Bionanoprobe, Advanced Photon Source. To study elemental homeostasis within these chain-like organisms, biologically relevant elements were mapped using X-ray fluorescence spectroscopy and energy-dispersive X-ray microanalysis. Higher levels of cytosolic K+, Ca2+, and Fe2+ were measured in the heterocyst than in adjacent vegetative cells, supporting the notion of elevated micronutrient demand. P-rich clusters, identified as polyphosphate bodies involved in nutrient storage, metal detoxification, and osmotic regulation, were consistently co-localized with K+ and occasionally sequestered Mg2+, Ca2+, Fe2+, and Mn2+ ions. Machine-learning-based k-mean clustering revealed that P/K clusters were associated with either Fe or Ca, with Fe and Ca clusters also occurring individually. In accordance with XRF nanotomography, distinct P/K-containing clusters close to the cellular envelope were surrounded by larger Ca-rich clusters. The transition metal Fe, which is a part of nitrogenase enzyme, was detected as irregularly shaped clusters. The elemental composition and cellular morphology of diazotrophic Anabaena sp. was visualized by multimodal imaging using atomic force microscopy, scanning electron microscopy, and fluorescence microscopy. This paper discusses the first experimental results obtained with a combined in-line optical and X-ray fluorescence microscope at the Bionanoprobe.
Collapse
Affiliation(s)
- Bobby G Duersch
- Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, USA
| | - Steven A Soini
- Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, USA
| | - Yanqi Luo
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Xiaoyang Liu
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Vivian M Merk
- Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
2
|
Wang Z, Zeng Y, Ahmed Z, Qin H, Bhatti IA, Cao H. Calcium‐dependent antimicrobials: Nature‐inspired materials and designs. EXPLORATION (BEIJING, CHINA) 2024; 4:20230099. [PMID: 39439493 PMCID: PMC11491315 DOI: 10.1002/exp.20230099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Bacterial infection remains a major complication answering for the failures of various implantable medical devices. Tremendous extraordinary advances have been published in the design and synthesis of antimicrobial materials addressing this issue; however, the clinical translation has largely been blocked due to the challenge of balancing the efficacy and safety of these materials. Here, calcium's biochemical features, natural roles in pathogens and the immune systems, and advanced uses in infection medications are illuminated, showing calcium is a promising target for developing implantable devices with less infection tendency. The paper gives a historical overview of biomedical uses of calcium and summarizes calcium's merits in coordination, hydration, ionization, and stereochemistry for acting as a structural former or trigger in biological systems. It focuses on the involvement of calcium in pathogens' integrity, motility, and metabolism maintenance, outlining the potential antimicrobial targets for calcium. It addresses calcium's uses in the immune systems that the authors can learn from for antimicrobial synthesis. Additionally, the advances in calcium's uses in infection medications are highlighted to sketch the future directions for developing implantable antimicrobial materials. In conclusion, calcium is at the nexus of antimicrobial defense, and future works on taking advantage of calcium in antimicrobial developments are promising in clinical translation.
Collapse
Affiliation(s)
- Zhong Wang
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Yongjie Zeng
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Zubair Ahmed
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Hui Qin
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalShanghaiChina
| | | | - Huiliang Cao
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
- Engineering Research Center for Biomedical Materials of Ministry of EducationEast China University of Science and TechnologyShanghaiChina
- Key Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science & TechnologyShanghaiChina
| |
Collapse
|
3
|
Schätzle H, Arévalo S, Flores E, Schleiff E. A TonB-Like Protein, SjdR, Is Involved in the Structural Definition of the Intercellular Septa in the Heterocyst-Forming Cyanobacterium Anabaena. mBio 2021; 12:e0048321. [PMID: 34101487 PMCID: PMC8262864 DOI: 10.1128/mbio.00483-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cyanobacteria are photosynthetic organisms with a Gram-negative envelope structure. Certain filamentous species such as Anabaena sp. strain PCC 7120 can fix dinitrogen upon depletion of combined nitrogen. Because the nitrogen-fixing enzyme, nitrogenase, is oxygen sensitive, photosynthesis and nitrogen fixation are spatially separated in Anabaena. Nitrogen fixation takes place in specialized cells called heterocysts, which differentiate from vegetative cells. During heterocyst differentiation, a microoxic environment is created by dismantling photosystem II and restructuring the cell wall. Moreover, solute exchange between the different cell types is regulated to limit oxygen influx into the heterocyst. The septal zone containing nanopores for solute exchange is constricted between heterocysts and vegetative cells, and cyanophycin plugs are located at the heterocyst poles. We identified a protein previously annotated as TonB1 that is largely conserved among cyanobacteria. A mutant of the encoding gene formed heterocysts but was impaired in diazotrophic growth. Mutant heterocysts appeared elongated and exhibited abnormal morphological features, including a reduced cyanophycin plug, an enhanced septum size, and a restricted nanopore zone in the septum. In spite of this, the intercellular transfer velocity of the fluorescent marker calcein was increased in the mutant compared to the wild type. Thus, the protein is required for proper formation of septal structures, expanding our emerging understanding of Anabaena peptidoglycan plasticity and intercellular solute exchange, and is therefore renamed SjdR (septal junction disk regulator). Notably, calcium supplementation compensated for the impaired diazotrophic growth and alterations in septal peptidoglycan in the sjdR mutant, emphasizing the importance of calcium for cell wall structure. IMPORTANCE Multicellularity in bacteria confers an improved adaptive capacity to environmental conditions and stresses. This includes an enhanced capability of resource utilization through a distribution of biochemical processes between constituent cells. This specialization results in a mutual dependency of different cell types, as is the case for nitrogen-fixing heterocysts and photosynthetically active vegetative cells in Anabaena. In this cyanobacterium, intercellular solute exchange is facilitated through nanopores in the peptidoglycan between adjacent cells. To ensure functionality of the specialized cells, septal size as well as the position, size, and frequency of nanopores in the septum need to be tightly established. The novel septal junction disk regulator SjdR characterized here is conserved in the cyanobacterial phylum. It influences septal size and septal nanopore distribution. Consequently, its absence severely affects the intercellular communication and the strains' growth capacity under nitrogen depletion. Thus, SjdR is involved in septal structure remodeling in cyanobacteria.
Collapse
Affiliation(s)
- Hannah Schätzle
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- FIERCE, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sergio Arévalo
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- FIERCE, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Walter J, Leganés F, Aro EM, Gollan PJ. The small Ca 2+-binding protein CSE links Ca 2+ signalling with nitrogen metabolism and filament integrity in Anabaena sp. PCC 7120. BMC Microbiol 2020; 20:57. [PMID: 32160863 PMCID: PMC7065334 DOI: 10.1186/s12866-020-01735-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/24/2020] [Indexed: 02/02/2023] Open
Abstract
Background Filamentous cyanobacteria represent model organisms for investigating multicellularity. For many species, nitrogen-fixing heterocysts are formed from photosynthetic vegetative cells under nitrogen limitation. Intracellular Ca2+ has been implicated in the highly regulated process of heterocyst differentiation but its role remains unclear. Ca2+ is known to operate more broadly in metabolic signalling in cyanobacteria, although the signalling mechanisms are virtually unknown. A Ca2+-binding protein called the Ca2+ Sensor EF-hand (CSE) is found almost exclusively in filamentous cyanobacteria. Expression of asr1131 encoding the CSE protein in Anabaena sp. PCC 7120 was strongly induced by low CO2 conditions, and rapidly downregulated during nitrogen step-down. A previous study suggests a role for CSE and Ca2+ in regulation of photosynthetic activity in response to changes in carbon and nitrogen availability. Results In the current study, a mutant Anabaena sp. PCC 7120 strain lacking asr1131 (Δcse) was highly prone to filament fragmentation, leading to a striking phenotype of very short filaments and poor growth under nitrogen-depleted conditions. Transcriptomics analysis under nitrogen-replete conditions revealed that genes involved in heterocyst differentiation and function were downregulated in Δcse, while heterocyst inhibitors were upregulated, compared to the wild-type. Conclusions These results indicate that CSE is required for filament integrity and for proper differentiation and function of heterocysts upon changes in the cellular carbon/nitrogen balance. A role for CSE in transmitting Ca2+ signals during the first response to changes in metabolic homeostasis is discussed.
Collapse
Affiliation(s)
- Julia Walter
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Tykistökatu 6A, 6. krs, 20520, Turku, Finland.,Present address: Department of Plant Sciences, Environmental Plant Physiology, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Francisco Leganés
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Darwin 2, 28049, Madrid, Spain
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Tykistökatu 6A, 6. krs, 20520, Turku, Finland
| | - Peter J Gollan
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Tykistökatu 6A, 6. krs, 20520, Turku, Finland.
| |
Collapse
|
5
|
De Wever A, Benzerara K, Coutaud M, Caumes G, Poinsot M, Skouri-Panet F, Laurent T, Duprat E, Gugger M. Evidence of high Ca uptake by cyanobacteria forming intracellular CaCO 3 and impact on their growth. GEOBIOLOGY 2019; 17:676-690. [PMID: 31347755 DOI: 10.1111/gbi.12358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/15/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Several species of cyanobacteria biomineralizing intracellular amorphous calcium carbonates (ACC) were recently discovered. However, the mechanisms involved in this biomineralization process and the determinants discriminating species forming intracellular ACC from those not forming intracellular ACC remain unknown. Recently, it was hypothesized that the intensity of Ca uptake (i.e., how much Ca was scavenged from the extracellular solution) might be a major parameter controlling the capability of a cyanobacterium to form intracellular ACC. Here, we tested this hypothesis by systematically measuring the Ca uptake by a set of 52 cyanobacterial strains cultured in the same growth medium. The results evidenced a dichotomy among cyanobacteria regarding Ca sequestration capabilities, with all strains forming intracellular ACC incorporating significantly more calcium than strains not forming ACC. Moreover, Ca provided at a concentration of 50 μM in BG-11 was shown to be limiting for the growth of some of the strains forming intracellular ACC, suggesting an overlooked quantitative role of Ca for these strains. All cyanobacteria forming intracellular ACC contained at least one gene coding for a mechanosensitive channel, which might be involved in Ca influx, as well as at least one gene coding for a Ca2+ /H+ exchanger and membrane proteins of the UPF0016 family, which might be involved in active Ca transport either from the cytosol to the extracellular solution or the cytosol toward an intracellular compartment. Overall, massive Ca sequestration may have an indirect role by allowing the formation of intracellular ACC. The latter may be beneficial to the growth of the cells as a storage of inorganic C and/or a buffer of intracellular pH. Moreover, high Ca scavenging by cyanobacteria biomineralizing intracellular ACC, a trait shared with endolithic cyanobacteria, suggests that these cyanobacteria should be considered as potentially significant geochemical reservoirs of Ca.
Collapse
Affiliation(s)
- Alexis De Wever
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Margot Coutaud
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Géraldine Caumes
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Mélanie Poinsot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Fériel Skouri-Panet
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Thierry Laurent
- Collection des Cyanobactéries, Institut Pasteur, Paris Cedex 15, France
| | - Elodie Duprat
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Muriel Gugger
- Collection des Cyanobactéries, Institut Pasteur, Paris Cedex 15, France
| |
Collapse
|
6
|
Chakraborty S, Mishra A, Verma E, Tiwari B, Mishra AK, Singh SS. Physiological mechanisms of aluminum (Al) toxicity tolerance in nitrogen-fixing aquatic macrophyte Azolla microphylla Kaulf: phytoremediation, metabolic rearrangements, and antioxidative enzyme responses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9041-9054. [PMID: 30719666 DOI: 10.1007/s11356-019-04408-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
To investigate the extent of aluminum toxicity tolerance of eco-friendly, fast-growing, fresh water, pteridophytic Azolla-Anabaena symbiotic association in terms of altered physiological signals; Azolla microphylla Kaulf was exposed to 0 (control), 100, 250, 500, and 750 μM AlCl3, at pH 4.5 for 6 days. The adversity of Al was increased in a dose-dependent manner and the highest was recorded at 750 μM AlCl3. Despite the significant loss in membrane integrity (80% electrolyte leakage) due to an enhanced generation of H2O2, A. microphylla reflected only 50% growth inhibition (fresh and dry weight) at 500 μM AlCl3 (LD50). However, the average root length of Azolla was drastically reduced at high concentration due to their direct contact with aluminum-containing growth medium. Contrary to this, the whole association maintained moderate chlorophyll, carbohydrate content, photosynthetic efficiency, nitrogen-fixing ability, and nitrogen content at high Al concentration. Probably, growth protection was pertained through significant detoxification of H2O2 by employing an efficient antioxidative defense system including antioxidative enzymes (SOD, APX, and CAT) and non-enzymatic antioxidant carotenoids. An enhanced level of phenolics and flavonoids in the root exudates possibly maintained a non-toxic level of aluminum inside the cell (195.8 μg Al/g FW) which makes A. microphylla a suitable pteridophytic plant to not only remove toxic Al from the contaminated sites but also to improve nitrogen status of those regions. Graphical abstract ᅟ.
Collapse
Affiliation(s)
| | - Aditi Mishra
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Ekta Verma
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Balkrishna Tiwari
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Arun K Mishra
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Satya Shila Singh
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
7
|
Shen L, Li Z, Wang J, Liu A, Li Z, Yu R, Wu X, Liu Y, Li J, Zeng W. Characterization of extracellular polysaccharide/protein contents during the adsorption of Cd(II) by Synechocystis sp. PCC6803. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:20713-20722. [PMID: 29754298 DOI: 10.1007/s11356-018-2163-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/26/2018] [Indexed: 05/27/2023]
Abstract
Cyanobacteria have been proven to be cheaper and more effective for the removal of metallic elements in aqueous solutions. In this study, the living cyanobacteria Synechocystis sp. PCC6803 was used to adsorb Cd(II) and its extracellular polymeric substances (EPS) were investigated in the adsorption process. The initial stage of adsorption of Cd(II) was a rapid process, and then increase slowly accompanied with the increases of biomass. The final adsorption percentage could achieve 86% when the Cd(II) concentration was 0.5 mg/L. It proved that Synechocystis sp. PCC6803 has a good adsorption capacity for heavy metal ions. EPS was extracted to investigate the secretion of which was dynamic and the maximum extracellular polysaccharides and proteins were 134.2 and 100.9 mg/g, respectively. Furthermore, the real-time PCR (RT-PCR) results of genes (slr0977 and exoD) involved in EPS synthesis and secretion indicated that the EPS production was firstly increased and then decreased slightly. Transmission electron microscope (TEM) observation revealed that heavy metal ions were absorbed into EPS layer. Fourier transform infrared spectrum (FT-IR) analysis showed that EPS was rich in functional groups which could combine with heavy metal ions, such as -OH and -NH groups. All the results obtained show that the secretion of EPS by cyanobacteria was one of the ways to resist heavy metal stress. And it shows a trend of rising first and then decreasing, the change regulation of which was consistent with adsorptive behavior.
Collapse
Affiliation(s)
- Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Zhanfei Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Junjun Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Ajuan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Zhenhua Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Yuandong Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
- CSIRO Process Science and Engineering, Clayton, Victoria, Australia.
| |
Collapse
|
8
|
Mlewski EC, Pisapia C, Gomez F, Lecourt L, Soto Rueda E, Benzerara K, Ménez B, Borensztajn S, Jamme F, Réfrégiers M, Gérard E. Characterization of Pustular Mats and Related Rivularia-Rich Laminations in Oncoids From the Laguna Negra Lake (Argentina). Front Microbiol 2018; 9:996. [PMID: 29872427 PMCID: PMC5972317 DOI: 10.3389/fmicb.2018.00996] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/27/2018] [Indexed: 11/13/2022] Open
Abstract
Stromatolites are organo-sedimentary structures that represent some of the oldest records of the early biosphere on Earth. Cyanobacteria are considered as a main component of the microbial mats that are supposed to produce stromatolite-like structures. Understanding the role of cyanobacteria and associated microorganisms on the mineralization processes is critical to better understand what can be preserved in the laminated structure of stromatolites. Laguna Negra (Catamarca, Argentina), a high-altitude hypersaline lake where stromatolites are currently formed, is considered as an analog environment of early Earth. This study aimed at characterizing carbonate precipitation within microbial mats and associated oncoids in Laguna Negra. In particular, we focused on carbonated black pustular mats. By combining Confocal Laser Scanning Microscopy, Scanning Electron Microscopy, Laser Microdissection and Whole Genome Amplification, Cloning and Sanger sequencing, and Focused Ion Beam milling for Transmission Electron Microscopy, we showed that carbonate precipitation did not directly initiate on the sheaths of cyanobacterial Rivularia, which dominate in the mat. It occurred via organo-mineralization processes within a large EPS matrix excreted by the diverse microbial consortium associated with Rivularia where diatoms and anoxygenic phototrophic bacteria were particularly abundant. By structuring a large microbial consortium, Rivularia should then favor the formation of organic-rich laminations of carbonates that can be preserved in stromatolites. By using Fourier Transform Infrared spectroscopy and Synchrotron-based deep UV fluorescence imaging, we compared laminations rich in structures resembling Rivularia to putatively chemically-precipitated laminations in oncoids associated with the mats. We showed that they presented a different mineralogy jointly with a higher content in organic remnants, hence providing some criteria of biogenicity to be searched for in the fossil record.
Collapse
Affiliation(s)
- Estela C Mlewski
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Cordoba, Argentina
| | - Céline Pisapia
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, Université Paris Diderot, Paris, France.,Synchrotron SOLEIL, DISCO Beamline, Saint Aubin, France
| | - Fernando Gomez
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Cordoba, Argentina
| | - Lena Lecourt
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, Université Paris Diderot, Paris, France
| | - Eliana Soto Rueda
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Cordoba, Argentina
| | - Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR Centre National de la Recherche Scientifique 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, IRD UMR 206, Paris, France
| | - Bénédicte Ménez
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, Université Paris Diderot, Paris, France
| | - Stephan Borensztajn
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, Université Paris Diderot, Paris, France
| | | | | | - Emmanuelle Gérard
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Centre National de la Recherche Scientifique, Université Paris Diderot, Paris, France
| |
Collapse
|
9
|
Cam N, Benzerara K, Georgelin T, Jaber M, Lambert JF, Poinsot M, Skouri-Panet F, Moreira D, López-García P, Raimbault E, Cordier L, Jézéquel D. Cyanobacterial formation of intracellular Ca-carbonates in undersaturated solutions. GEOBIOLOGY 2018; 16:49-61. [PMID: 29076282 DOI: 10.1111/gbi.12261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Cyanobacteria have long been thought to induce the formation of Ca-carbonates as secondary by-products of their metabolic activity, by shifting the chemical composition of their extracellular environment to conditions favoring mineral precipitation. Some cyanobacterial species forming Ca-carbonates intracellularly were recently discovered. However, the environmental conditions under which this intracellular biomineralization process can occur and the impact of cyanobacterial species forming Ca-carbonates intracellularly on extracellular carbonatogenesis are not known. Here, we show that these cyanobacteria can form Ca-carbonates intracellularly while growing in extracellular solutions undersaturated with respect to all Ca-carbonate phases, that is, conditions thermodynamically unfavorable to mineral precipitation. This shows that intracellular Ca-carbonate biomineralization is an active process; that is, it costs energy provided by the cells. The cost of energy may be due to the active accumulation of Ca intracellularly. Moreover, unlike cyanobacterial strains that have been usually considered before by studies on Ca-carbonate biomineralization, cyanobacteria forming intracellular carbonates may slow down or hamper extracellular carbonatogenesis, by decreasing the saturation index of their extracellular solution following the buffering of the concentration of extracellular calcium to low levels.
Collapse
Affiliation(s)
- N Cam
- Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, Sorbonne Universités, UPMC Univ Paris 6, Paris, France
- Laboratoire de Réactivité de Surface (LRS), UMR CNRS 7197, Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - K Benzerara
- Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - T Georgelin
- Laboratoire de Réactivité de Surface (LRS), UMR CNRS 7197, Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - M Jaber
- Laboratoire d'Archéologie Moléculaire et Structurale (LAMS), Sorbonne Universités, UMR CNRS 8220, UPMC Univ Paris 6, Paris, France
| | - J-F Lambert
- Laboratoire de Réactivité de Surface (LRS), UMR CNRS 7197, Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - M Poinsot
- Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - F Skouri-Panet
- Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - D Moreira
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, AgroParisTech, Université Paris-Sud/Paris-Saclay, Orsay, France
| | - P López-García
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, AgroParisTech, Université Paris-Sud/Paris-Saclay, Orsay, France
| | - E Raimbault
- Institut de Physique du Globe de Paris (IPGP), Sorbonne Paris Cité-Université Paris Diderot, UMR CNRS 7154, Paris Cedex 05, France
| | - L Cordier
- Institut de Physique du Globe de Paris (IPGP), Sorbonne Paris Cité-Université Paris Diderot, UMR CNRS 7154, Paris Cedex 05, France
| | - D Jézéquel
- Institut de Physique du Globe de Paris (IPGP), Sorbonne Paris Cité-Université Paris Diderot, UMR CNRS 7154, Paris Cedex 05, France
| |
Collapse
|
10
|
González-Pleiter M, Rioboo C, Reguera M, Abreu I, Leganés F, Cid Á, Fernández-Piñas F. Calcium mediates the cellular response of Chlamydomonas reinhardtii to the emerging aquatic pollutant Triclosan. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:50-66. [PMID: 28249228 DOI: 10.1016/j.aquatox.2017.02.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/17/2017] [Accepted: 02/19/2017] [Indexed: 06/06/2023]
Abstract
The present study was aimed at investigating the role of intracellular free calcium, [Ca2+]c, in the early cellular response of the green alga Chlamydomonas reinhardtii to the emergent pollutant Triclosan (13.8μM; 24h of exposure). There is a growing concern about the persistence and toxicity of this antimicrobial in aquatic environments, where non-target organisms such as C. reinhardtii, a primary producer of ecological relevance, might be severely impacted. A mechanistic study was undertaken which combined flow cytometry protocols, physiological as well as gene expression analysis. As an early response, Triclosan strongly altered [Ca2+]c homeostasis which could be prevented by prechelation with the intracellular calcium chelator BAPTA-AM. Triclosan induced ROS overproduction which ultimately leads to oxidative stress with loss of membrane integrity, membrane depolarization, photosynthesis inhibition and mitochondrial membrane depolarization; within this context, Triclosan also induced an increase in caspase 3/7 activity and altered the expression of metacaspase genes which are indicative of apoptosis. All these adverse outcomes were dependent on [Ca2+]c. Interestingly, an interconnection between [Ca2+]c alterations and increased ROS formation by Triclosan was found. Taken altogether these results shed light on the mechanisms behind Triclosan toxicity in the green alga Chlamydomonas reinhardtii and demonstrate the role of [Ca2+]c in mediating the observed toxicity.
Collapse
Affiliation(s)
- Miguel González-Pleiter
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Carmen Rioboo
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad da Coruña, Campus de A Zapateira s/n, 15008 A Coruña, Spain
| | - María Reguera
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Isidro Abreu
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Francisco Leganés
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad da Coruña, Campus de A Zapateira s/n, 15008 A Coruña, Spain
| | - Francisca Fernández-Piñas
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
11
|
Singh S, Verma E, Tiwari B, N, Mishra AK. Modulation of fatty acids and hydrocarbons inAnabaena7120 and itsntcAmutant under calcium. J Basic Microbiol 2016; 57:171-183. [DOI: 10.1002/jobm.201600476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/18/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Savita Singh
- Laboratory of Microbial Genetics, Department of Botany; Banaras Hindu University; Varanasi India
| | - Ekta Verma
- Laboratory of Microbial Genetics, Department of Botany; Banaras Hindu University; Varanasi India
| | - Balkrishna Tiwari
- Laboratory of Microbial Genetics, Department of Botany; Banaras Hindu University; Varanasi India
| | - Niveshika
- Laboratory of Microbial Genetics, Department of Botany; Banaras Hindu University; Varanasi India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany; Banaras Hindu University; Varanasi India
| |
Collapse
|
12
|
Singh S, Verma E, Tiwari B, Mishra AK. Exopolysaccharide production in Anabaena sp. PCC 7120 under different CaCl 2 regimes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:557-566. [PMID: 27924128 PMCID: PMC5120037 DOI: 10.1007/s12298-016-0380-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/26/2016] [Accepted: 09/26/2016] [Indexed: 05/31/2023]
Abstract
Influence of various levels of CaCl2 (0, 1, 10 and 100 mM) on exopolysaccharide production has been investigated in the cyanobacterium Anabaena 7120. At the concentration of 1 mM CaCl2, growth was found to be stimulatory while 100 mM was sub lethal for the cyanobacterial cells. Estimation of EPS content revealed that EPS production depends on the concentration of calcium ions in the immediate environment with maximum being at10 mM CaCl2. A possible involvement of alr2882 gene in the process of EPS production was also revealed through qRT-PCR. Further, FTIR-spectra marked the presence of aliphatic alkyl-group, primary amine-group, and polysaccharides along with shift in major absorption peaks suggesting that calcium levels in the external environment regulate the composition of EPS produced by Anabaena 7120. Thus, both quantity and composition of EPS is affected under different calcium chloride concentrations presenting possibilities of EPS with novel unexplored features that may offer biotechnological applications.
Collapse
Affiliation(s)
- Savita Singh
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005 India
| | - Ekta Verma
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005 India
| | - Balkrishna Tiwari
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005 India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
13
|
Walter J, Lynch F, Battchikova N, Aro EM, Gollan PJ. Calcium impacts carbon and nitrogen balance in the filamentous cyanobacterium Anabaena sp. PCC 7120. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3997-4008. [PMID: 27012282 PMCID: PMC4915528 DOI: 10.1093/jxb/erw112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Calcium is integral to the perception, communication and adjustment of cellular responses to environmental changes. However, the role of Ca(2+) in fine-tuning cellular responses of wild-type cyanobacteria under favourable growth conditions has not been examined. In this study, extracellular Ca(2+) has been altered, and changes in the whole transcriptome of Anabaena sp. PCC 7120 have been evaluated under conditions replete of carbon and combined nitrogen. Ca(2+) induced differential expression of many genes driving primary cellular metabolism, with transcriptional regulation of carbon- and nitrogen-related processes responding with opposing trends. However, physiological effects of these transcriptional responses on biomass accumulation, biomass composition, and photosynthetic activity over the 24h period following Ca(2+) adjustment were found to be minor. It is well known that intracellular carbon:nitrogen balance is integral to optimal cell growth and that Ca(2+) plays an important role in the response of heterocystous cyanobacteria to combined-nitrogen deprivation. This work adds to the current knowledge by demonstrating a signalling role of Ca(2+) for making sensitive transcriptional adjustments required for optimal growth under non-limiting conditions.
Collapse
Affiliation(s)
- Julia Walter
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Fiona Lynch
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Natalia Battchikova
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Peter J Gollan
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
14
|
Singh S, Mishra AK. Unraveling of cross talk between Ca(2+) and ROS regulating enzymes in Anabaena 7120 and ntcA mutant. J Basic Microbiol 2015; 56:762-78. [PMID: 26374944 DOI: 10.1002/jobm.201500326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/09/2015] [Indexed: 01/25/2023]
Abstract
In order to understand a cross talk between Ca(2+) and ROS regulating enzymes and the possible involvement of ntcA gene, Anabaena sp. PCC 7120 and its derivative ntcA mutant grown in varied levels of calcium chloride (0, 1, 10, and 100 mM) have been investigated. Scanning Electron Microscopy showed abnormal structure formation at high calcium concentration (100 mM) both in wild type and mutant. Fv /Fm values suggested that 100 mM calcium concentration was detrimental for photosynthetic apparatus. SOD, catalase, APX, GR, and peroxidase activity were found to be maximum for 100 mM and minimum for 1 mM of exogenously supplied calcium salt. NADPH contents were higher for wild type than mutant. RAPD-PCR and SDS-PAGE analysis revealed a difference in DNA as well as proteome pattern with changes in calcium chloride regime. Prominent bands of approximately 70, 33, 21, and 14 kDa expressed in the wild type served as the marker polypeptide bands under calcium supplementation. Results suggest that higher levels of calcium ion disturb the cellular homeostasis generating ROS, thereby inducing enhanced levels of antioxidative enzymes. Further, data also suggests possible involvement of ntcA gene in cross talk between calcium ion and ROS regulating enzymes.
Collapse
Affiliation(s)
- Savita Singh
- Department of Botany, Laboratory of Microbial Genetics, Banaras Hindu University, Varanasi, India
| | - Arun Kumar Mishra
- Department of Botany, Laboratory of Microbial Genetics, Banaras Hindu University, Varanasi, India
| |
Collapse
|