1
|
Zhou L, Sang S, Li J, Li Y, Wang D, Gan L, Zhao Z, Wang J. From waste to resource: Metagenomics uncovers the molecular ecological resources for plastic degradation in estuaries of South China. WATER RESEARCH 2023; 242:120270. [PMID: 37392508 DOI: 10.1016/j.watres.2023.120270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/09/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
Estuaries are hotspots of plastic pollution due to accumulated waste from surrounding rivers and coasts. However, the molecular ecological resources that possess plastic-degrading traits and their biogeographic distributions in estuarine waters remain to be elucidated. In this study, we mapped the distribution profiles of plastic-degrading genes (PDGs) in 30 subtropical estuaries in China based on metagenomic sequencing. A total of 41 PDG subtypes were observed in these estuaries. The Pearl River Estuary had higher diversity and abundance of PDGs than the east and west region estuaries. Genes for degrading synthetic heterochain and natural plastics were the most diverse and abundant types, respectively. The abundance of synthetic PDGs was significantly higher in estuaries affected by intense anthropogenic activities. Further binning strategies revealed diverse microbes with plastic-degrading ability in these estuaries. Rhodobacteraceae, a dominant plastic-degrading bacterial family, primarily carried PDGs for degrading natural plastics. Pseudomonas veronii carrying diverse PDGs was identified, which may be of value for further technical improvement of plastic degradation. In addition, phylogenetic and structural analyses of 19 putative 3HV dehydrogenases, the most diverse and abundant DPGs, showed inconsistent evolution with their hosts, but different sequences were conserved with consistent key functional amino acids. A potential biodegradation pathway for polyhydroxybutyrate by Rhodobacteraceae was proposed. The result implied that plastic-degrading functions are widely distributed in estuarine waters and metagenomics could be used as a promising screening tool for large-scale profiling of plastic-degrading potential in the natural environment. Our findings have important implications and provide potential molecular ecological resources for developing plastic waste removal technologies.
Collapse
Affiliation(s)
- Lei Zhou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shilei Sang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, MEE, Guangzhou, 510655, China
| | - Jiajie Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yusen Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Dapeng Wang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Lihong Gan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zelong Zhao
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China.
| | - Jun Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
He L, Yang SS, Ding J, He ZL, Pang JW, Xing DF, Zhao L, Zheng HS, Ren NQ, Wu WM. Responses of gut microbiomes to commercial polyester polymer biodegradation in Tenebrio molitor Larvae. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131759. [PMID: 37276692 DOI: 10.1016/j.jhazmat.2023.131759] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
Polyethylene terephthalate (PET) is a mass-produced fossil-based plastic polymer that contributes to catastrophic levels of plastic pollution. Here we demonstrated that Tenebrio molitor (mealworms) was capable of rapidly biodegrading two commercial PET resins (microplastics) with respective weight-average molecular weight (Mw) of 39.33 and 29.43 kDa and crystallinity of 22.8 ± 3.06% and 18 ± 2.25%, resulting in an average mass reduction of 71.03% and 73.28% after passage of their digestive tract, and respective decrease by 9.22% and 11.36% in Mw of residual PET polymer in egested frass. Sequencing of 16 S rRNA gene amplicons of gut microbial communities showed that dominant bacterial genera were enriched and associated with PET degradation. Also, PICRUSt prediction exhibited that oxidases (monooxygenases and dioxygenases), hydrolases (cutinase, carboxylesterase and chitinase), and PET metabolic enzymes, and chemotaxis related functions were up-regulated in the PET-fed larvae. Additionally, metabolite analyses revealed that PET uptake caused alterations of stress response and plastic degradation related pathways, and lipid metabolism pathways in the T. molitor larvae could be reprogrammed when the larvae fed on PET. This study provides new insights into gut microbial community adaptation to PET diet under nutritional stress (especially nitrogen deficiency) and its contribution to PET degradation.
Collapse
Affiliation(s)
- Lei He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi-Li He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing 100096, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - He-Shan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Tourova TP, Sokolova DS, Semenova EM, Kireev DM, Laptev AB, Nazina TN. Composition of Microbial Fouling on the Surface of Plastics and Steel Exposed in a Pond at a Solid Waste Landfill. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722601919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
4
|
Marsay KS, Koucherov Y, Davidov K, Iankelevich-Kounio E, Itzahri S, Salmon-Divon M, Oren M. High-Resolution Screening for Marine Prokaryotes and Eukaryotes With Selective Preference for Polyethylene and Polyethylene Terephthalate Surfaces. Front Microbiol 2022; 13:845144. [PMID: 35495680 PMCID: PMC9042255 DOI: 10.3389/fmicb.2022.845144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Marine plastic debris serve as substrates for the colonization of a variety of prokaryote and eukaryote organisms. Of particular interest are the microorganisms that have adapted to thrive on plastic as they may contain genes, enzymes or pathways involved in the adhesion or metabolism of plastics. We implemented DNA metabarcoding with nanopore MinION sequencing to compare the 1-month-old biomes of hydrolyzable (polyethylene terephthalate) and non-hydrolyzable (polyethylene) plastics surfaces vs. those of glass and the surrounding water in a Mediterranean Sea marina. We sequenced longer 16S rRNA, 18S rRNA, and ITS barcode loci for a more comprehensive taxonomic profiling of the bacterial, protist, and fungal communities, respectively. Long read sequencing enabled high-resolution mapping to genera and species. Using previously established methods we performed differential abundance screening and identified 30 bacteria and five eukaryotic species, that were differentially abundant on plastic compared to glass. This approach will allow future studies to characterize the plastisphere communities and to screen for microorganisms with a plastic-metabolism potential.
Collapse
Affiliation(s)
| | - Yuri Koucherov
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Keren Davidov
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | | | - Sheli Itzahri
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Mali Salmon-Divon
- Department of Molecular Biology, Ariel University, Ariel, Israel
- The Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Matan Oren
- Department of Molecular Biology, Ariel University, Ariel, Israel
| |
Collapse
|
5
|
Zhou Y, Kumar M, Sarsaiya S, Sirohi R, Awasthi SK, Sindhu R, Binod P, Pandey A, Bolan NS, Zhang Z, Singh L, Kumar S, Awasthi MK. Challenges and opportunities in bioremediation of micro-nano plastics: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149823. [PMID: 34454140 DOI: 10.1016/j.scitotenv.2021.149823] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Rising level of micro-nano plastics (MNPs) in the natural ecosystem adversely impact the health of the environment and living organisms globally. MNPs enter in to the agro-ecosystem, flora and fauna, and human body via trophic transfer, ingestion and inhalation, resulting impediment in blood vessel, infertility, and abnormal behaviors. Therefore, it becomes indispensable to apply a novel approach to remediate MNPs from natural environment. Amongst the several prevailing technologies of MNPs remediation, microbial remediation is considered as greener technology. Microbial degradation of plastics is typically influenced by several biotic as well as abiotic factors, such as enzymatic mechanisms, substrates and co-substrates concentration, temperature, pH, oxidative stress, etc. Therefore, it is pivotal to recognize the key pathways adopted by microbes to utilize plastic fragments as a sole carbon source for the growth and development. In this context, this review critically discussed the role of various microbes and their enzymatic mechanisms involved in biodegradation of MNPs in wastewater (WW) stream, municipal sludge, municipal solid waste (MSW), and composting starting with biological and toxicological impacts of MNPs. Moreover, this review comprehensively discussed the deployment of various MNPs remediation technologies, such as enzymatic, advanced molecular, and bio-membrane technologies in fostering the bioremediation of MNPs from various environmental compartments along with their pros and cons and prospects for future research.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; School of Engineering, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
6
|
Kotova IB, Taktarova YV, Tsavkelova EA, Egorova MA, Bubnov IA, Malakhova DV, Shirinkina LI, Sokolova TG, Bonch-Osmolovskaya EA. Microbial Degradation of Plastics and Approaches to Make it More Efficient. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721060084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Abstract—
The growing worldwide production of synthetic plastics leads to increased amounts of plastic pollution. Even though microbial degradation of plastics is known to be a very slow process, this capacity has been found in many bacteria, including invertebrate symbionts, and microscopic fungi. Research in this field has been mostly focused on microbial degradation of polyethylene, polystyrene, and polyethylene terephthalate (PET). Quite an arsenal of different methods is available today for detecting processes of plastic degradation and measuring their rates. Given the lack of generally accepted protocols, it is difficult to compare results presented by different authors. PET degradation by recombinant hydrolases from thermophilic actinobacteria happens to be the most efficient among the currently known plastic degradation processes. Various approaches to accelerating microbial plastic degradation are also discussed.
Collapse
|
7
|
Tourova TP, Sokolova DS, Nazina TN, Laptev AB. Comparative Analysis of the Taxonomic Composition of Bacterial Fouling Developing on Various Materials Exposed to Aqueous Environments. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721040159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Kan Y, He L, Luo Y, Bao R. IsPETase Is a Novel Biocatalyst for Poly(ethylene terephthalate) (PET) Hydrolysis. Chembiochem 2021; 22:1706-1716. [PMID: 33434375 DOI: 10.1002/cbic.202000767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/10/2021] [Indexed: 02/05/2023]
Abstract
Poly(ethylene terephthalate) (PET) is one of the most widely used synthetic polyesters, but also a major cause of plastic pollution. Because the chemical degradation of PET would be uneconomical and rather burdensome, considerable efforts have been devoted to exploring enzymatic processes for the disposal of PET waste. Many PET-hydrolyzing enzymes have been reported in recent decades, some of which demonstrate excellent potential for industrial applications. This review sets out to summarize the state of investigation into IsPETase, a cutinase-like enzyme from Ideonella sakaiensis possessing ability to degrade crystalline PET, and to gain further insight into the structure-function relationship of IsPETase. Benefiting from the continuing identification of novel cutinase-like proteins and growing availability of the engineered IsPETase, we may anticipate future developments in this type of enzyme would generate suitable biocatalyst for industrial use.
Collapse
Affiliation(s)
- Yeyi Kan
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, P. R. China
| | - Lihui He
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, P. R. China
| | - Yunzi Luo
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, P. R. China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, P. R. China
| |
Collapse
|
9
|
Plakunov VK, Gannesen AV, Mart’yanov SV, Zhurina MV. Biocorrosion of Synthetic Plastics: Degradation Mechanisms and Methods of Protection. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720060144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Biodiversity of Microorganisms Colonizing the Surface of Polystyrene Samples Exposed to Different Aqueous Environments. SUSTAINABILITY 2020. [DOI: 10.3390/su12093624] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The contamination of marine and freshwater ecosystems with the items from thermoplastics, including polystyrene (PS), necessitates the search for efficient microbial degraders of these polymers. In the present study, the composition of prokaryotes in biofilms formed on PS samples incubated in seawater and the industrial water of a petrochemical plant were investigated. Using a high-throughput sequencing of the V3–V4 region of the 16S rRNA gene, the predominance of Alphaproteobacteria (Blastomonas), Bacteroidetes (Chryseolinea), and Gammaproteobacteria (Arenimonas and Pseudomonas) in the biofilms on PS samples exposed to industrial water was revealed. Alphaproteobacteria (Erythrobacter) predominated on seawater-incubated PS samples. The local degradation of the PS samples was confirmed by scanning microscopy. The PS-colonizing microbial communities in industrial water differed significantly from the PS communities in seawater. Both communities have a high potential ability to carry out the carbohydrates and amino acids metabolism, but the potential for xenobiotic degradation, including styrene degradation, was relatively higher in the biofilms in industrial water. Bacteria of the genera Erythrobacter, Maribacter, and Mycobacterium were potential styrene-degraders in seawater, and Pseudomonas and Arenimonas in industrial water. Our results suggest that marine and industrial waters contain microbial populations potentially capable of degrading PS, and these populations may be used for the isolation of efficient PS degraders.
Collapse
|
11
|
Ability of Trichoderma hamatum Isolated from Plastics-Polluted Environments to Attack Petroleum-Based, Synthetic Polymer Films. Processes (Basel) 2020. [DOI: 10.3390/pr8040467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microorganisms colonizing plastic waste material collected in composting-, landfill-, and anaerobic digestion plants were isolated to obtain novel strains maximally adapted to the degradation of plastics due to long-term contact with plastic polymers. Twenty-six bacterial strains were isolated and identified by the 16 S rRNA method, and eighteen strains of yeasts and fungi using 18 S rRNA and the internal transcribed spacer ITS sequencing of the 18 S rRNA gene. In selected strains, the ability to degrade linear low-density polyethylene (LLDPE), low-density polyethylene (LDPE), polystyrene (PS), and polyvinyl chloride (PVC) was tested in aerobic liquid-medium cultures. An oxidative, two-step pretreatment of LLDPE and LDPE using γ- or UV-irradiation followed by a high-temperature treatment was carried out, and the pretreated plastics were also included in the degradation experiments. The respective weight losses after biodegradation by Trichoderma hamatum were: virgin and γ/T90-pretreated LLDPE (2.2 ± 1.2 and 3.9 ± 0.5%), virgin and UV/T60-pretreated LDPE (0.5 ± 0.4 and 1.3 ± 0.4%), and virgin PS (0.9 ± 0.4%). The Fourier transform infrared spectroscopy (FTIR) analysis showed that during the treatment of pretreated LLDPE, T. hamatum attacked low molecular weight LLDPE oligomers, reducing the functional groups (carbonyl C = O), which was paralleled by a slight increase of the molar mass of pretreated LLDPE and a decrease of the dispersity index, as demonstrated by gel permeation chromatography (GPC). Thermogravimetric analysis (TGA) highlighted the formation of functional groups on LLDPE due to polymer pretreatment that favored fungal attack at the polymer surface. The results provide insight into microbial consortia that spontaneously colonize the surface of plastics in various environments and their capability to attack plastic polymers.
Collapse
|