1
|
Mouchtaris Michailidis T, De Saeger S, Khoueiry R, Odongo GA, Bader Y, Dhaenens M, Herceg Z, De Boevre M. The interplay of dietary mycotoxins and oncogenic viruses toward human carcinogenesis: a scoping review. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39422902 DOI: 10.1080/10408398.2024.2414828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND Mycotoxins, fungal metabolites prevalent in many foods, are recognized for their role in carcinogenesis, especially when interacting with oncogenic viruses. OBJECTIVES This scoping review synthesizes current evidence on the human cancer risk associated with mycotoxin exposure and oncogenic virus infections. METHODS Searches were conducted on PubMed, Embase, and Web of Science. Studies were selected based on the PECOS framework. Data extraction involved narrative and qualitative presentation of findings, with meta-analysis where feasible. Risk of bias and outcome quality were assessed using the OHAT tool and GRADE approach. RESULTS From 25 included studies, 18 focused on aflatoxins and hepatitis viruses in hepatocellular carcinoma (HCC). Four studies examined aflatoxin B1 (AFB1) and human papilloma virus (HPV) in cervical cancer, while three investigated AFB1 with Epstein-Barr virus (EBV) in lymphomagenesis. The review highlights a significant synergistic effect between AFB1 and hepatitis B and C viruses in HCC development. Significant interactions between AFB1 and HPV, as well as AFB1 and EBV, were observed, but further research is needed. CONCLUSIONS The synergistic impact of mycotoxins and oncogenic viruses is a critical public health concern. Future research, especially prospective cohort studies and investigations into molecular mechanisms, is essential to address this complex issue.
Collapse
Affiliation(s)
- Thanos Mouchtaris Michailidis
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Sarah De Saeger
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
| | - Rita Khoueiry
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Grace A Odongo
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
- Institute of Cancer Research and Genomics Sciences, University of Birmingham, Birmingham, UK
| | - Yasmine Bader
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
| | - Maarten Dhaenens
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Marthe De Boevre
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
2
|
Firoz A, Ali HM, Rehman S, Rather IA. Gastric Cancer and Viruses: A Fine Line between Friend or Foe. Vaccines (Basel) 2022; 10:vaccines10040600. [PMID: 35455349 PMCID: PMC9025827 DOI: 10.3390/vaccines10040600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Gastric cancer (GC) is a significant health concern worldwide, with a GLOBOCAN estimate of 1.08 million novel cases in 2020. It is the leading cause of disability-adjusted life years lost to cancer, with the fourth most common cancer in males and the fifth most common cancer in females. Strategies are pursued across the globe to prevent gastric cancer progression as a significant fraction of gastric cancers have been linked to various pathogenic (bacterial and viral) infections. Early diagnosis (in Asian countries), and non-invasive and surgical treatments have helped manage this disease with 5-year survival for stage IA and IB tumors ranging between 60% and 80%. However, the most prevalent aggressive stage III gastric tumors undergoing surgery have a lower 5-year survival rate between 18% and 50%. These figures point to a need for more efficient diagnostic and treatment strategies, for which the oncolytic viruses (OVs) appear to have some promise. OVs form a new therapeutic agent class that induces anti-tumor immune responses by selectively killing tumor cells and inducing systemic anti-tumor immunity. On the contrary, several oncogenic viruses have been shown to play significant roles in malignancy progression in the case of gastric cancer. Therefore, this review evaluates the current state of research and advances in understanding the dual role of viruses in gastric cancer.
Collapse
Affiliation(s)
- Ahmad Firoz
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.F.); (H.M.A.)
- Princess Dr Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hani Mohammed Ali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.F.); (H.M.A.)
- Princess Dr Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Suriya Rehman
- Department of Epidemic Disease Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University (IAU), Dammam 31441, Saudi Arabia
- Correspondence: (S.R.); (I.A.R.)
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.F.); (H.M.A.)
- Correspondence: (S.R.); (I.A.R.)
| |
Collapse
|
3
|
Vincze O, Colchero F, Lemaître JF, Conde DA, Pavard S, Bieuville M, Urrutia AO, Ujvari B, Boddy AM, Maley CC, Thomas F, Giraudeau M. Cancer risk across mammals. Nature 2022; 601:263-267. [PMID: 34937938 PMCID: PMC8755536 DOI: 10.1038/s41586-021-04224-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022]
Abstract
Cancer is a ubiquitous disease of metazoans, predicted to disproportionately affect larger, long-lived organisms owing to their greater number of cell divisions, and thus increased probability of somatic mutations1,2. While elevated cancer risk with larger body size and/or longevity has been documented within species3-5, Peto's paradox indicates the apparent lack of such an association among taxa6. Yet, unequivocal empirical evidence for Peto's paradox is lacking, stemming from the difficulty of estimating cancer risk in non-model species. Here we build and analyse a database on cancer-related mortality using data on adult zoo mammals (110,148 individuals, 191 species) and map age-controlled cancer mortality to the mammalian tree of life. We demonstrate the universality and high frequency of oncogenic phenomena in mammals and reveal substantial differences in cancer mortality across major mammalian orders. We show that the phylogenetic distribution of cancer mortality is associated with diet, with carnivorous mammals (especially mammal-consuming ones) facing the highest cancer-related mortality. Moreover, we provide unequivocal evidence for the body size and longevity components of Peto's paradox by showing that cancer mortality risk is largely independent of both body mass and adult life expectancy across species. These results highlight the key role of life-history evolution in shaping cancer resistance and provide major advancements in the quest for natural anticancer defences.
Collapse
Affiliation(s)
- Orsolya Vincze
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France.
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France.
- Institute of Aquatic Ecology, Centre for Ecological Research, Debrecen, Hungary.
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania.
| | - Fernando Colchero
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Odense, Denmark
- Species360 Conservation Science Alliance, Bloomington, MN, USA
| | - Jean-Francois Lemaître
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1; CNRS,UMR5558, Villeurbanne, France
| | - Dalia A Conde
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Odense, Denmark
- Species360 Conservation Science Alliance, Bloomington, MN, USA
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Samuel Pavard
- Eco-Anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université de Paris, Musée de l'Homme, Paris, France
| | - Margaux Bieuville
- Eco-Anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université de Paris, Musée de l'Homme, Paris, France
| | - Araxi O Urrutia
- Instituto de Ecologia, UNAM, Mexico City, Mexico
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Amy M Boddy
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Frédéric Thomas
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Mathieu Giraudeau
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| |
Collapse
|
4
|
Venerin AA, Venerina YA, Alexandrov YI. Cell functioning in norm and pathology in terms of the activity paradigm: Oncogenesis. Med Hypotheses 2020; 144:110240. [PMID: 33254546 DOI: 10.1016/j.mehy.2020.110240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/09/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Over the past years many theories of carcinogenesis have been developed. Nowadays, there are two prevalent theories of carcinogenesis - two-hit hypothesis, which considers mutations as the main factor in malignization and tissue hypothesis, which considers tissue homeostasis disruption for providing cells transformation. Both of these theories explain cancer origin basing on principles of the reactivity paradigm. This paradigm emphasizes role of different stimuli in malignization. However, this approach does not provide us with sufficient support in progress towards either understanding of cancer origin or effective treatment strategies. In contrast to the reactivity paradigm, we intend to explain oncogenesis within the activity paradigm. Upon this approach, cells' activity is goal-directed and is determined by a future event - the adaptive result. The adaptive result is a proper interaction between the cell and its environment, which provides the cell with required metabolites. To achieve this result cells have to cooperate with each other and synchronize their needs. If cells fail to satisfy their metabolic 'needs' they have to reorganize their activity. This results in morpho-functional restructuring of cells. Summing up, we consider carcinogenesis to be a part of goal-directed adaptive activity of cells. Morphological and genetic atypia of cancer cells is a variant reorganization of cells' activity. Consequently, for better treatment, we should bring both transforming cells and their microenvironment to a novel cooperation and reorganization of their activity.
Collapse
Affiliation(s)
- Andrey A Venerin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Yana A Venerina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Yury I Alexandrov
- Shvyrkov's Lab, Neural Bases of Mind, Institute of Psychology, Russian Academy of Sciences, Moscow, Russia; Department of Psychology, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
5
|
Niedźwiedzka-Rystwej P, Grywalska E, Hrynkiewicz R, Wołącewicz M, Becht R, Roliński J. The Double-Edged Sword Role of Viruses in Gastric Cancer. Cancers (Basel) 2020; 12:cancers12061680. [PMID: 32599870 PMCID: PMC7352989 DOI: 10.3390/cancers12061680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Due to its high morbidity and mortality, gastric cancer is a topic of a great concern throughout the world. Major ways of treatment are gastrectomy and chemotherapy, unfortunately they are not always successful. In a search for more efficient therapy strategies, viruses and their potential seem to be an important issue. On one hand, several oncogenic viruses have been noticed in the case of gastric cancer, making the positive treatment even more advantageous, but on the other, viruses exist with a potential therapeutic role in this malignancy.
Collapse
Affiliation(s)
- Paulina Niedźwiedzka-Rystwej
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (M.W.)
- Correspondence:
| | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (E.G.); (J.R.)
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (M.W.)
| | - Mikołaj Wołącewicz
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (M.W.)
| | - Rafał Becht
- Clinical Department of Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University of Szczecin, 70-204 Szczecin, Poland;
| | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (E.G.); (J.R.)
| |
Collapse
|