1
|
Chen Y, Jiang B, Qu C, Jiang C, Zhang C, Wang Y, Chen F, Sun X, Su L, Luo Y. Genetically predicted metabolites mediate the causal associations between autoimmune thyroiditis and immune cells. Front Endocrinol (Lausanne) 2024; 15:1424957. [PMID: 39045270 PMCID: PMC11263034 DOI: 10.3389/fendo.2024.1424957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction We aimed to comprehensively investigate the causal relationship between 731 immune cell traits and autoimmune thyroiditis (AIT) and to identify and quantify the role of 1400 metabolic traits as potential mediators in between. Methods Using summary-level data from genome-wide association studies (GWAS) we performed a two-sample bidirectional Mendelian randomization (MR) analysis of genetically predicted AIT and 731 immune cell traits. Furthermore, we used a two-step MR analysis to quantify the proportion of the total effects (that the immune cells exerted on the risk of AIT) mediated by potential metabolites. Results We identified 24 immune cell traits (with odds ratio (OR) ranging from 1.3166 6 to 0.6323) and 10 metabolic traits (with OR ranging from 1.7954 to 0.6158) to be causally associated with AIT, respectively. Five immune cell traits (including CD38 on IgD+ CD24-, CD28 on CD28+ CD45RA+ CD8br, HLA DR+ CD4+ AC, TD CD4+ %CD4+, and CD8 on EM CD8br) were found to be associated with the risk of AIT, which were partially mediated by metabolites (including glycolithocholate sulfate, 5alpha-androstan-3alpha,17beta-diol disulfate, arachidonoylcholine, X-15486, and kynurenine). The proportion of genetically predicted AIT mediated by the identified metabolites could range from 5.58% to 17.7%. Discussion Our study identified causal associations between AIT and immune cells which were partially mediated by metabolites, thus providing guidance for future clinical and basic research.
Collapse
Affiliation(s)
- Yongzhao Chen
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Cheng Qu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chaoyu Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chen Zhang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yanxue Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fei Chen
- General Surgery Center, Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xitai Sun
- Division of Pancreas and Metabolism Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Su
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuqian Luo
- Clinical Medicine Research Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
2
|
Moon JY, Chai JC, Yu B, Song RJ, Chen GC, Graff M, Daviglus ML, Chan Q, Thyagarajan B, Castaneda SF, Grove ML, Cai J, Xue X, Mossavar-Rahmani Y, Vasan RS, Boerwinkle E, Kaplan R, Qi Q. Metabolomic Signatures of Sedentary Behavior and Cardiometabolic Traits in US Hispanics/Latinos: Results from HCHS/SOL. Med Sci Sports Exerc 2023; 55:1781-1791. [PMID: 37170952 PMCID: PMC10523950 DOI: 10.1249/mss.0000000000003205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
PURPOSE The aim of this study was to understand the serum metabolomic signatures of moderate-to-vigorous physical activity (MVPA) and sedentary behavior, and further associate their metabolomic signatures with incident cardiometabolic diseases. METHODS This analysis included 2711 US Hispanics/Latinos from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) aged 18-74 yr (2008-2011). An untargeted, liquid chromatography-mass spectrometry was used to profile the serum metabolome. The associations of metabolites with accelerometer-measured MVPA and sedentary time were examined using survey linear regressions adjusting for covariates. The weighted correlation network analysis identified modules of correlated metabolites in relation to sedentary time, and the modules were associated with incident diabetes, dyslipidemia, and hypertension over the 6-yr follow-up. RESULTS Of 624 metabolites, 5 and 102 were associated with MVPA and sedentary behavior at false discovery rate (FDR) <0.05, respectively, after adjusting for socioeconomic and lifestyle factors. The weighted correlation network analysis identified 8 modules from 102 metabolites associated with sedentary time. Four modules (branched-chain amino acids, erythritol, polyunsaturated fatty acid, creatine) were positively, and the other four (acyl choline, plasmalogen glycerol phosphatidyl choline, plasmalogen glycerol phosphatidyl ethanolamine, urea cycle) were negatively correlated with sedentary time. Among these modules, a higher branched-chain amino acid score and a lower plasmalogen glycerol phosphatidyl choline score were associated with increased risks of diabetes and dyslipidemia. A higher erythritol score was associated with an increased risk of diabetes, and a lower acyl choline score was linked to an increased risk of hypertension. CONCLUSIONS In this study of US Hispanics/Latinos, we identified multiple serum metabolomic signatures of sedentary behavior and their associations with risk of incident diabetes, hypertension, and dyslipidemia. These findings suggest a potential role of circulating metabolites in the links between sedentary behavior and cardiometabolic diseases.
Collapse
Affiliation(s)
- Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Jin Choul Chai
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Rebecca J. Song
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Guo-chong Chen
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, CHINA
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC
| | - Martha L. Daviglus
- Institute for Minority Health Research, University of Illinois Chicago, Chicago, IL
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, IL
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | | | - Megan L. Grove
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, CHINA
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina at Chapel Hill, NC
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Yasmin Mossavar-Rahmani
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | | | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
3
|
Gretskaya N, Akimov M, Andreev D, Zalygin A, Belitskaya E, Zinchenko G, Fomina-Ageeva E, Mikhalyov I, Vodovozova E, Bezuglov V. Multicomponent Lipid Nanoparticles for RNA Transfection. Pharmaceutics 2023; 15:pharmaceutics15041289. [PMID: 37111773 PMCID: PMC10141487 DOI: 10.3390/pharmaceutics15041289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Despite the wide variety of available cationic lipid platforms for the delivery of nucleic acids into cells, the optimization of their composition has not lost its relevance. The purpose of this work was to develop multi-component cationic lipid nanoparticles (LNPs) with or without a hydrophobic core from natural lipids in order to evaluate the efficiency of LNPs with the widely used cationic lipoid DOTAP (1,2-dioleoyloxy-3-[trimethylammonium]-propane) and the previously unstudied oleoylcholine (Ol-Ch), as well as the ability of LNPs containing GM3 gangliosides to transfect cells with mRNA and siRNA. LNPs containing cationic lipids, phospholipids and cholesterol, and surfactants were prepared according to a three-stage procedure. The average size of the resulting LNPs was 176 nm (PDI 0.18). LNPs with DOTAP mesylate were more effective than those with Ol-Ch. Core LNPs demonstrated low transfection activity compared with bilayer LNPs. The type of phospholipid in LNPs was significant for the transfection of MDA-MB-231 and SW 620 cancer cells but not HEK 293T cells. LNPs with GM3 gangliosides were the most efficient for the delivery of mRNA to MDA-MB-231 cells and siRNA to SW620 cells. Thus, we developed a new lipid platform for the efficient delivery of RNA of various sizes to mammalian cells.
Collapse
Affiliation(s)
- Nataliya Gretskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Mikhail Akimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitry Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Anton Zalygin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Department of Translational Medicine, National Research Nuclear University, Moscow Engineering Physics Institute, Moscow 115409, Russia
| | - Ekaterina Belitskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Department of Translational Medicine, National Research Nuclear University, Moscow Engineering Physics Institute, Moscow 115409, Russia
| | - Galina Zinchenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Elena Fomina-Ageeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Ilya Mikhalyov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Elena Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Vladimir Bezuglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
4
|
Nie YY, Zhou LJ, Li YM, Yang WC, Liu YY, Yang ZY, Ma XX, Zhang YP, Hong PZ, Zhang Y. Hizikia fusiforme functional oil (HFFO) prevents neuroinflammation and memory deficits evoked by lipopolysaccharide/aluminum trichloride in zebrafish. Front Aging Neurosci 2022; 14:941994. [PMID: 36158548 PMCID: PMC9500236 DOI: 10.3389/fnagi.2022.941994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundOxidative stress, cholinergic deficiency, and neuroinflammation are hallmarks of most neurodegenerative disorders (NDs). Lipids play an important role in brain development and proper functioning. Marine-derived lipids have shown good memory-improving potentials, especially those from fish and microalgae. The cultivated macroalga Hizikia fusiforme is healthy food and shows benefits to memory, but the study is rare on the brain healthy value of its oil. Previously, we had reported that the Hizikia fusiforme functional oil (HFFO) contains arachidonic acid, 11,14,17-eicosatrienoic acid, phytol, and other molecules displaying in vitro acetylcholinesterase inhibitory and nitroxide scavenging activity; however, the in vivo effect remains unclear. In this study, we further investigated its potential effects against lipopolysaccharides (LPS)- or aluminum trichloride (AlCl3)-induced memory deficiency in zebrafish and its drug-related properties in silica.MethodsWe established memory deficit models in zebrafish by intraperitoneal (i.p.) injection of lipopolysaccharides (LPS) (75 ng) or aluminum trichloride (AlCl3) (21 μg), and assessed their behaviors in the T-maze test. The interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), acetylcholine (ACh), and malondialdehyde (MDA) levels were measured 24 h after the LPS/AlCl3 injection as markers of inflammation, cholinergic activity, and oxidative stress. Furthermore, the interaction of two main components, 11,14,17-eicosatrienoic acid and phytol, was investigated by molecular docking, with the important anti-inflammatory targets nuclear factor kappa B (NF-κB) and cyclooxygenase 2 (COX-2). Specifically, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug-likeness properties of HFFO were studied by ADMETlab.ResultsThe results showed that HFFO reduced cognitive deficits in zebrafish T-maze induced by LPS/AlCl3. While the LPS/AlCl3 treatment increased MDA content, lowered ACh levels in the zebrafish brain, and elevated levels of central and peripheral proinflammatory cytokines, these effects were reversed by 100 mg/kg HFFO except for MDA. Moreover, 11,14,17-eicosatrienoic acid and phytol showed a good affinity with NF-κB, COX-2, and HFFO exhibited acceptable drug-likeness and ADMET profiles in general.ConclusionCollectively, this study's findings suggest HFFO as a potent neuroprotectant, potentially valuable for the prevention of memory impairment caused by cholinergic deficiency and neuroinflammation.
Collapse
Affiliation(s)
- Ying-Ying Nie
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Long-Jian Zhou
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yan-Mei Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjian, China
| | - Wen-Cong Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjian, China
| | - Ya-Yue Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Zhi-You Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjian, China
| | - Xiao-Xiang Ma
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjian, China
| | - Yong-Ping Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjian, China
| | - Peng-Zhi Hong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- *Correspondence: Yi Zhang ;
| |
Collapse
|
5
|
Paidi RK, Sarkar S, Ambareen N, Biswas SC. Medha Plus - A novel polyherbal formulation ameliorates cognitive behaviors and disease pathology in models of Alzheimer's disease. Biomed Pharmacother 2022; 151:113086. [PMID: 35617801 DOI: 10.1016/j.biopha.2022.113086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022] Open
Abstract
Alzheimer's disease (AD) is a multi-faceted neurodegenerative disorder that leads to drastic cognitive impairments culminating in death. Pathologically, it is characterized by amyloid-β (Aβ) plaques, neurofibrillary tangles and neurodegeneration in brain. Complete cure of AD remains elusive to date. Available synthetic drugs only provide symptomatic reliefs targeting single molecule, hence, are unable to address the multi-factorial aspects in AD pathogenesis. It is imperative to develop combinatorial drugs that address the multiple molecular targets in AD. We show a unique polyherbal formulation of Brahmi, Mandukaparni, Shankhpushpi, Yastimadhu, Kokilaksha and Shunthi called 'Medha Plus' (MP), conventionally used for improving memory and reducing anxiety, was able to ameliorate cognitive deficits and associated pathological hallmarks of AD. Viability assays revealed that MP prevented Aβ-induced loss of neurites as well as neuronal apoptosis in cellular models. An array of behavioral studies showed that MP was able to recover AD-associated memory deficits in both Aβ-injected rats and 5XFAD mice. Immunohistochemical studies further revealed that MP treatment reduced Aβ depositshpi and decreased apoptotic cell death in the hippocampus. Enzymatic assays demonstrated anti-oxidative and anti-acetyl cholinesterase properties of MP especially in hippocampus of Aβ-injected rats. An underlying improvement in synaptic plasticity was observed with MP treatment in 5XFAD mice along with an increased expression of phospho-Akt at serine 473 indicating a role of PI3K/Akt signaling in correcting these synaptic deficits. Thus, our strong experiment-driven approach shows that MP is an incredible combinatorial drug that targets multiple molecular targets with exemplary neuroprotective properties and is proposed for clinical trial.
Collapse
Affiliation(s)
- Ramesh Kumar Paidi
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Sukanya Sarkar
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Naqiya Ambareen
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Headquarters, CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, India
| | - Subhas Chandra Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Headquarters, CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, India.
| |
Collapse
|
6
|
Schoen MS, Singh RH. Plasma metabolomic profile changes in females with phenylketonuria following a camp intervention. Am J Clin Nutr 2022; 115:811-821. [PMID: 34864852 PMCID: PMC8895208 DOI: 10.1093/ajcn/nqab400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND There remains a limited understanding of the metabolic perturbations, beyond phenylalanine (Phe) metabolism, that contribute to phenotypic variability in phenylketonuria (PKU). OBJECTIVES This study aimed to characterize changes in the PKU plasma metabolome following a 5-d metabolic camp intervention and to compare PKU profiles with those of matched healthy controls. METHODS In 28 females (aged 12-57 y), fasting plasma samples were collected on the first (day 1) and final (day 5) days of camp to measure metabolic control and to complete untargeted metabolomic profiling. Three-day dietary records were collected to assess changes in dietary adherence and composition. Univariate (Wilcoxon signed-rank and Mann-Whitney U test) and multivariate (random forest, hierarchical clustering) analyses were performed to identify clinical and metabolic features that were associated with the intervention and disease state. RESULTS Relative to healthy controls, Phe catabolites, ketones, and carnitine- and glycine-conjugated fatty acids were elevated in females with PKU at baseline, whereas fatty acylcholine metabolites were substantially lower. After the camp intervention, plasma Phe concentrations decreased [median change: -173 µmol/L (IQR: -325, -28 µmol/L)] and 70% of PKU participants demonstrated improved dietary adherence by decreasing Phe intake and/or increasing medical food consumption. This was accompanied by a shift in abundance for 223 metabolites (q < 0.05). Compounds associated with the metabolism of Phe, fatty acids, and choline contributed most to profile differences between camp days 1 and 5. CONCLUSIONS In females with PKU, untargeted metabolomics identified prominent perturbations in amino acid and lipid metabolites associated with bioenergetic impairment and oxidative stress. Choline-conjugated lipids could have fundamental roles in these pathways and they have not been previously evaluated in PKU. A short-term camp intervention was effective for improving or fully normalizing the abundance of the identified discriminatory metabolites.
Collapse
Affiliation(s)
- Meriah S Schoen
- Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Rani H Singh
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
7
|
Sperk M, Mikaeloff F, Svensson-Akusjärvi S, Krishnan S, Ponnan SM, Ambikan AT, Nowak P, Sönnerborg A, Neogi U. Distinct lipid profile, low-level inflammation, and increased antioxidant defense signature in HIV-1 elite control status. iScience 2021; 24:102111. [PMID: 33659876 PMCID: PMC7892918 DOI: 10.1016/j.isci.2021.102111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/04/2021] [Accepted: 01/21/2021] [Indexed: 01/08/2023] Open
Abstract
HIV-1 elite controllers (EC) are a rare but heterogeneous group of HIV-1-infected individuals who can suppress viral replication in the absence of antiretroviral therapy. The mechanisms of how EC achieve undetectable viral loads remain unclear. This study aimed to investigate host plasma metabolomics and targeted plasma proteomics in a Swedish HIV-1 cohort including EC and treatment-naïve viremic progressors (VP) as well as HIV-negative individuals (HC) to get insights into EC phenotype. Metabolites belonging to antioxidant defense had higher levels in EC relative to VP, whereas inflammation markers were increased in VP compared with EC. Only four plasma proteins (CCL4, CCL7, CCL20, and NOS3) were increased in EC compared with HC, and CCL20/CCR6 axis can play an essential role in EC status. Our study suggests that low-level inflammation and oxidative stress at physiological levels could be important factors contributing to elite control phenotype. Increased acylcholine as unique HIV-1 positive elite controllers (EC) feature Physiological oxidative stress and inflammation profile in EC Increased in CCL4, CCL7, CCL20, and NOS3 in EC compared with HIV-ve control CCR6-CCL20-dependent anti-HIV mechanism can play an essential role in EC status
Collapse
Affiliation(s)
- Maike Sperk
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Flora Mikaeloff
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Sara Svensson-Akusjärvi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Shuba Krishnan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Sivasankaran Munusamy Ponnan
- Centre for Infectious Disease Research, Indian Institute of Science (IISc), CV Raman Avenue, Bangalore, Karnataka 560012, India
| | - Anoop T Ambikan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Piotr Nowak
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institute, I73, Karolinska University Hospital, Huddinge, Stockholm 141 86, Sweden
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden.,Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institute, I73, Karolinska University Hospital, Huddinge, Stockholm 141 86, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden.,Department of Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|