1
|
Ponraj K, Gaither KA, Kumar Singh D, Davydova N, Zhao M, Luo S, Lazarus P, Prasad B, Davydov DR. Non-additivity of the functional properties of individual P450 species and its manifestation in the effects of alcohol consumption on the metabolism of ketamine and amitriptyline. Biochem Pharmacol 2024; 230:116569. [PMID: 39393643 DOI: 10.1016/j.bcp.2024.116569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
To explore functional interconnections between multiple P450 enzymes and their manifestation in alcohol-induced changes in drug metabolism, we implemented a high-throughput study of correlations between the composition of the P450 pool and the substrate saturation profiles (SSP) of amitriptyline and ketamine demethylation in a series of 23 individual human liver microsomes preparations from donors with a known history of alcohol consumption. The SSPs were approximated with linear combinations of three Michaelis-Menten equations with globally optimized KM (substrate affinity) values. This analysis revealed a strong correlation between the rate of ketamine metabolism and alcohol exposure. For both substrates, alcohol consumption caused a significant increase in the role of the low-affinity enzymes. The amplitudes of the kinetic components and the total rate were further analyzed for correlations with the abundance of 11 major P450 enzymes assessed by global proteomics. The maximal rate of metabolism of both substrates correlated with the abundance of CYP3A4, their predicted principal metabolizer. However, except for CYP2D6 and CYP2E1, responsible for the low-affinity metabolism of ketamine and amitriptyline, respectively, none of the other potent metabolizers of the drugs revealed a positive correlation. Instead, in the case of ketamine, we observed negative correlations with the abundances of CYP1A2, CYP2C9, and CYP3A5. For amitriptyline, the data suggest inhibitory effects of CYP1A2 and CYP2A6. Our results demonstrate the importance of functional interactions between multiple P450 species and their decisive role in the effects of alcohol exposure on drug metabolism.
Collapse
Affiliation(s)
- Kannapiran Ponraj
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Kari A Gaither
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Dilip Kumar Singh
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Nadezhda Davydova
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Mengqi Zhao
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Shaman Luo
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Phillip Lazarus
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Dmitri R Davydov
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
2
|
Davydov DR, Dangi B, Yue G, Ahire DS, Prasad B, Zgoda VG. Exploring the Interactome of Cytochrome P450 2E1 in Human Liver Microsomes with Chemical Crosslinking Mass Spectrometry. Biomolecules 2022; 12:biom12020185. [PMID: 35204686 PMCID: PMC8869672 DOI: 10.3390/biom12020185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/05/2022] Open
Abstract
Aiming to elucidate the system-wide effects of the alcohol-induced increase in the content of cytochrome P450 2E1 (CYP2E1) on drug metabolism, we explored the array of its protein-protein interactions (interactome) in human liver microsomes (HLM) with chemical crosslinking mass spectrometry (CXMS). Our strategy employs membrane incorporation of purified CYP2E1 modified with photoreactive crosslinkers benzophenone-4-maleimide and 4-(N-succinimidylcarboxy)benzophenone. Exposure of bait-incorporated HLM samples to light was followed by isolating the His-tagged bait protein and its crosslinked aggregates on Ni-NTA agarose. Analyzing the individual bands of SDS-PAGE slabs of thereby isolated protein with the toolset of untargeted proteomics, we detected the crosslinked dimeric and trimeric complexes of CYP2E1 with other drug-metabolizing enzymes. Among the most extensively crosslinked partners of CYP2E1 are the cytochromes P450 2A6, 2C8, 3A4, 4A11, and 4F2, UDP-glucuronosyltransferases (UGTs) 1A and 2B, fatty aldehyde dehydrogenase (ALDH3A2), epoxide hydrolase 1 (EPHX1), disulfide oxidase 1α (ERO1L), and ribophorin II (RPN2). These results demonstrate the exploratory power of the proposed CXMS strategy and corroborate the concept of tight functional integration in the human drug-metabolizing ensemble through protein-protein interactions of the constituting enzymes.
Collapse
Affiliation(s)
- Dmitri R. Davydov
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA;
- Correspondence:
| | - Bikash Dangi
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA;
| | - Guihua Yue
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (G.Y.); (D.S.A.); (B.P.)
| | - Deepak S. Ahire
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (G.Y.); (D.S.A.); (B.P.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (G.Y.); (D.S.A.); (B.P.)
| | - Victor G. Zgoda
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia;
| |
Collapse
|
3
|
Davydov DR, Prasad B. Assembling the P450 puzzle: on the sources of nonadditivity in drug metabolism. Trends Pharmacol Sci 2021; 42:988-997. [PMID: 34602306 PMCID: PMC8595691 DOI: 10.1016/j.tips.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 01/04/2023]
Abstract
There is an increasing number of indications of an oversimplification in the premise that the cumulative properties of the human drug-metabolizing ensemble represent a simple aggregate of the properties of the constituting enzymes. Recent studies of the functional effects of hetero-association of multiple cytochrome P450 species and their interactions with metabolically related enzymes revealed a tight integration in the drug-metabolizing ensemble. In our opinion, the sources of interindividual variability in drug metabolism can be elucidated only when considering this ensemble as a multienzyme system, the functional parameters of which are determined by interactions between its constituents. In this article, we present a conceptual model providing a mechanistic explanation for the functional effects of the interactions between multiple P450 species and propose a clue to understanding the nonadditive behavior of the drug-metabolizing ensemble.
Collapse
Affiliation(s)
- Dmitri R Davydov
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
4
|
Dangi B, Davydova NY, Maldonado MA, Ahire D, Prasad B, Davydov DR. Probing functional interactions between cytochromes P450 with principal component analysis of substrate saturation profiles and targeted proteomics. Arch Biochem Biophys 2021; 708:108937. [PMID: 34058150 PMCID: PMC8260145 DOI: 10.1016/j.abb.2021.108937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/01/2021] [Accepted: 05/21/2021] [Indexed: 11/28/2022]
Abstract
We investigated the correspondence between drug metabolism routes and the composition of the P450 ensemble in human liver microsomes (HLM). As a probe, we used Coumarin 152 (C152), a fluorogenic substrate metabolized by multiple P450 species. Studying the substrate-saturation profiles (SSP) in seven pooled HLM preparations, we sought to correlate them with the P450 pool's composition characterized by targeted proteomics. This analysis, complemented with the assays with specific inhibitors of CYP3A4 and CYP2C19, the primary C152 metabolizers, demonstrated a significant contrast between different HLM samples. To unveil the source of these differences, we implemented Principal Component Analysis (PCA) of the SSP series obtained with HLM samples with a known composition of the P450 pool. Our analysis revealed that the parameters of C152 metabolism are primarily determined by the content of CYP2A6, CYP2B6, CYP2C8, CYP2E1, and CYP3A5 of those only CYP2B6 and CYP3A5 can metabolize C152. To validate this finding, we studied the effect of enriching HLM with CYP2A6, CYP2E1, and CYP3A5. The incorporation of CYP3A5 into HLM decreases the rate of C152 metabolism while increasing the role of CYP2B6 in its turnover. In contrast, incorporation of CYP2A6 and CYP2E1 reroutes the C152 demethylation towards some P450 enzyme with a moderate affinity to the substrate, most likely CYP3A4. Our results reveal a sharp non-additivity of the individual P450 properties and suggest a pivotal role of P450-P450 interactions in determining drug metabolism routes. This study demonstrates the high potential of our new PCA-based approach in unveiling functional interrelationships between different P450 species.
Collapse
Affiliation(s)
- Bikash Dangi
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Nadezhda Y Davydova
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Marc A Maldonado
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Deepak Ahire
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Dmitri R Davydov
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
5
|
Ducharme J, Sevrioukova IF, Thibodeaux CJ, Auclair K. Structural Dynamics of Cytochrome P450 3A4 in the Presence of Substrates and Cytochrome P450 Reductase. Biochemistry 2021; 60:2259-2271. [PMID: 34196520 DOI: 10.1021/acs.biochem.1c00178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450 3A4 (CYP3A4) is the most important drug-metabolizing enzyme in humans and has been associated with harmful drug interactions. The activity of CYP3A4 is known to be modulated by several compounds and by the electron transfer partner, cytochrome P450 reductase (CPR). The underlying mechanism of these effects, however, is poorly understood. We have used hydrogen-deuterium exchange mass spectrometry to investigate the impact of binding of CPR and of three different substrates (7-benzyloxy-4-trifluoromethyl-coumarin, testosterone, and progesterone) on the conformational dynamics of CYP3A4. Here, we report that interaction of CYP3A4 with substrates or with the oxidized or reduced forms of CPR leads to a global rigidification of the CYP3A4 structure. This was evident from the suppression of deuterium exchange in several regions of CYP3A4, including regions known to be involved in protein-protein interactions (helix C) and substrate binding and specificity (helices B' and E, and loop K/β1). Furthermore, the bimodal isotopic distributions observed for some CYP3A4-derived peptides were drastically impacted upon binding to CPR and/or substrates, suggesting the existence of stable CYP3A4 conformational populations that are perturbed by ligand/CPR binding. The results have implications for understanding the mechanisms of ligand binding, allostery, and catalysis in CYP enzymes.
Collapse
Affiliation(s)
- Julie Ducharme
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Christopher J Thibodeaux
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| |
Collapse
|
6
|
Dangi B, Davydova NY, Maldonado MA, Abbasi A, Vavilov NE, Zgoda VG, Davydov DR. Effects of alcohol-induced increase in CYP2E1 content in human liver microsomes on the activity and cooperativity of CYP3A4. Arch Biochem Biophys 2021; 698:108677. [PMID: 33197431 PMCID: PMC7856178 DOI: 10.1016/j.abb.2020.108677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/15/2020] [Accepted: 11/08/2020] [Indexed: 12/23/2022]
Abstract
We investigate the effect of the alcohol-induced increase in the content of CYP2E1 in human liver microsomes (HLM) on the function of CYP3A4. Membrane incorporation of the purified CYP2E1 into HLM considerably increases the rate of metabolism of 7-benzyloxyquinoline (BQ) and attenuates the homotropic cooperativity observed with this CYP3A4-specific substrate. It also eliminates the activating effect of α-naphthoflavone (ANF) seen in some HLM samples. To probe the physiological relevance of these effects, we compared three pooled preparations of HLM from normal donors (HLM-N) with a pooled preparation from ten heavy alcohol consumers (HLM-A). The composition of the P450 pool in all samples was characterized by the mass-spectrometric determination of 11 cytochrome P450 species. The fractional content of CYP2E1 in HLM-A was from 2.0 to 3.4 times higher than in HLM-N. In contrast, the content of CYP3A4 in HLM-A was the lowest among all samples. Despite that, HLM-A exhibited a much higher metabolism rate and a lower homotropic cooperativity with BQ, similar to CYP2E1-enriched HLM-N. To substantiate the involvement of interactions between CYP2E1 and CYP3A4 in these effects, we probed hetero-association of these proteins in CYP3A4-containing Supersomes™ with a technique employing CYP2E1 labeled with BODIPY-618 maleimide. These experiments evinced the interactions between the two enzymes and revealed an inhibitory effect of ANF on their association. Our results demonstrate that the functional properties of CYP3A4 are fundamentally dependent on the composition of the cytochrome P450 ensemble and suggest a possible impact of chronic alcohol exposure on the pharmacokinetics of drugs metabolized by CYP3A4.
Collapse
Affiliation(s)
- Bikash Dangi
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Nadezhda Y Davydova
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Marc A Maldonado
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Armina Abbasi
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | | | - Victor G Zgoda
- Institute of Biomedical Chemistry, Moscow, 119121, Russia; Skolkovo Institute of Science and Technology, 143025, Skolkovo, Moscow Region, Russia
| | - Dmitri R Davydov
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
7
|
Davydova NY, Dangi B, Maldonado MA, Vavilov NE, Zgoda VG, Davydov DR. Toward a systems approach to cytochrome P450 ensemble: interactions of CYP2E1 with other P450 species and their impact on CYP1A2. Biochem J 2019; 476:3661-3685. [PMID: 31750875 PMCID: PMC7085345 DOI: 10.1042/bcj20190532] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/11/2019] [Accepted: 11/21/2019] [Indexed: 11/17/2022]
Abstract
In this study, we investigate the ability of ethanol-inducible CYP2E1 to interact with other cytochrome P450 species and affect the metabolism of their substrates. As a model system, we used CYP2E1-enriched human liver microsomes (HLM) obtained by the incorporation of purified CYP2E1. Using a technique based on homo-FRET in oligomers of CYP2E1 labeled with BODIPY 577/618 maleimide we demonstrated that the interactions of CYP2E1 with HLM result in the formation of its mixed oligomers with other P450 species present in the microsomal membrane. Incorporation of CYP2E1 results in a multifold increase in the rate of metabolism of CYP2E1-specific substrates p-Nitrophenol and Chlorzaxozone. The rate of their oxidation remains proportional to the amount of incorporated CYP2E1 up to the content of 0.3-0.4 nmol/mg protein (or ∼50% CYP2E1 in the P450 pool). The incorporated CYP2E1 becomes a fully functional member of the P450 ensemble and do not exhibit any detectable functional differences with the endogenous CYP2E1. Enrichment of HLM with CYP2E1 results in pronounced changes in the metabolism of 7-ethoxy-4-cyanocoumarin (CEC), the substrate of CYP2C19 and CYP1A2 suggesting an increase in the involvement of the latter in its metabolism. This effect goes together with an augmentation of the rate of dealkylation of CYP1A2-specific substrate 7-ethoxyresorufin. Furthermore, probing the interactions of CYP2E1 with model microsomes containing individual P450 enzymes we found that CYP2E1 efficiently interacts with CYP1A2, but lacks any ability to form complexes with CYP2C19. This finding goes inline with CYP2E1-induced redirection of the main route of CEC metabolism from CYP2C19 to CYP1A2.
Collapse
Affiliation(s)
| | - Bikash Dangi
- Department of Chemistry, Washington State University,
Pullman, WA, 99164
| | - Marc A. Maldonado
- Department of Chemistry, Washington State University,
Pullman, WA, 99164
| | | | | | - Dmitri R. Davydov
- Department of Chemistry, Washington State University,
Pullman, WA, 99164
| |
Collapse
|
8
|
Toward a systems approach to the human cytochrome P450 ensemble: interactions between CYP2D6 and CYP2E1 and their functional consequences. Biochem J 2017; 474:3523-3542. [PMID: 28904078 DOI: 10.1042/bcj20170543] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/30/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022]
Abstract
Functional cross-talk among human drug-metabolizing cytochrome P450 through their association is a topic of emerging importance. Here, we studied the interactions of human CYP2D6, a major metabolizer of psychoactive drugs, with one of the most prevalent human P450 enzymes, ethanol-inducible CYP2E1. Detection of P450-P450 interactions was accomplished through luminescence resonance energy transfer between labeled proteins incorporated into human liver microsomes and the microsomes of insect cells containing NADPH-cytochrome P450 reductase. The potential of CYP2D6 to form oligomers in the microsomal membrane is among the highest observed with human cytochrome P450 studied up to date. We also observed the formation of heteromeric complexes of CYP2D6 with CYP2E1 and CYP3A4, and found a significant modulation of these interactions by 3,4-methylenedioxymethylamphetamine, a widespread drug of abuse metabolized by CYP2D6. Our results demonstrate an ample alteration of the catalytic properties of CYP2D6 and CYP2E1 caused by their association. In particular, we demonstrated that preincubation of microsomes containing co-incorporated CYP2D6 and CYP2E1 with CYP2D6-specific substrates resulted in considerable time-dependent activation of CYP2D6, which presumably occurs via a slow substrate-induced reorganization of CYP2E1-CYP2D6 hetero-oligomers. Furthermore, we demonstrated that the formation of heteromeric complexes between CYP2E1 and CYP2D6 affects the stoichiometry of futile cycling and substrate oxidation by CYP2D6 by means of decreasing the electron leakage through the peroxide-generating pathways. Our results further emphasize the role of P450-P450 interactions in regulatory cross-talk in human drug-metabolizing ensemble and suggest a role of interactions of CYP2E1 with CYP2D6 in pharmacologically important instances of alcohol-drug interactions.
Collapse
|
9
|
Lampe JN. Advances in the Understanding of Protein-Protein Interactions in Drug Metabolizing Enzymes through the Use of Biophysical Techniques. Front Pharmacol 2017; 8:521. [PMID: 28848438 PMCID: PMC5550701 DOI: 10.3389/fphar.2017.00521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/24/2017] [Indexed: 02/01/2023] Open
Abstract
In recent years, a growing appreciation has developed for the importance of protein-protein interactions to modulate the function of drug metabolizing enzymes. Accompanied with this appreciation, new methods and technologies have been designed for analyzing protein-protein interactions both in vitro and in vivo. These technologies have been applied to several classes of drug metabolizing enzymes, including: cytochrome P450's (CYPs), monoamine oxidases (MAOs), UDP-glucuronosyltransferases (UGTs), glutathione S-transferases (GSTs), and sulfotransferases (SULTs). In this review, we offer a brief description and assessment of the impact of many of these technologies to the study of protein-protein interactions in drug disposition. The still expanding list of these techniques and assays has the potential to revolutionize our understanding of how these enzymes carry out their important functions in vivo.
Collapse
Affiliation(s)
- Jed N Lampe
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical CenterKansas City, MO, United States
| |
Collapse
|