1
|
Satoh-Kanda Y, Nakayamada S, Tanaka Y. Fine-tuning SLE treatment: the potential of selective TYK2 inhibition. RMD Open 2024; 10:e005072. [PMID: 39740929 PMCID: PMC11749029 DOI: 10.1136/rmdopen-2024-005072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/11/2024] [Indexed: 01/02/2025] Open
Abstract
In systemic lupus erythematosus (SLE), adaptive immunity is activated by the stimulation of innate immunity, leading to the development of autoreactive T cells and activation and differentiation of B cells. Cytokine signalling plays an essential role in the pathogenesis and progression of this disease. In particular, the differentiation and function of CD4+ T cell subsets, which play a central role in SLE pathology, are significantly altered by cytokine stimulation. Many cytokines transmit signals via the Janus-activated kinase (JAK)-STAT pathway, but there is no one-to-one correspondence between cytokine receptors and JAK/TYK2. Multiple cytokines activate JAK/TYK2, and multiple JAK/TYK2 molecules are simultaneously activated by a single cytokine. Therefore, the modulation of the JAK-STAT pathway has the potential to control immune responses in SLE. Although several JAK/TYK2 inhibitors are currently undergoing clinical trials, more selective drugs that can target cytokine signals according to the specific pathology of the disease are required. TYK2 inhibitors, which are involved in the signal transduction of type I interferon and interleukin-12/23 pathways and are linked to disease susceptibility genes in SLE, may have the potential to fine-tune the differentiation and function of immune cells, particularly CD4+ T cells.
Collapse
Affiliation(s)
- Yurie Satoh-Kanda
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| | - Shingo Nakayamada
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
2
|
Liu M, Wang S, Liang Y, Fan Y, Wang W. Genetic polymorphisms in genes involved in the type I interferon system (STAT4 and IRF5): association with Asian SLE patients. Clin Rheumatol 2024; 43:2403-2416. [PMID: 38963465 DOI: 10.1007/s10067-024-07046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/21/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Systemic lupus erythematosus (SLE) is a common autoimmune disease with a polymorphic clinical presentation involving multisystem damages with significant differences in prevalence and disease severity among different ethnic groups. Although genetic, hormonal, and environmental factors have been demonstrated to contribute a lot to SLE, the pathogenesis of SLE is still unknown. Numerous evidence revealed that gene variants within the type I interferons (IFN) signaling pathway performed the great genetic associations with autoimmune diseases including SLE. To date, through genome-wide association studies (GWAS), genetic association studies showed that more than 100 susceptibility genes have been linked to the pathogenesis of SLE, among which TYK2, STAT1, STAT4, and IRF5 are important molecules directly connected to the type I interferon signaling system. The review summarized the genetic associations and the detailed risk loci of STAT4 and IRF5 with Asian SLE patients, explored the genotype distributions associated with the main clinical manifestations of SLE, and sorted out the potential reasons for the differences in susceptibility in Asia and Europe. Moreover, the therapies targeting STAT4 and IRF5 were also evaluated in order to propose more personalized and targeted treatment plans in SLE.
Collapse
Affiliation(s)
- Mengyao Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shenglong Wang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yujiao Liang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yongsheng Fan
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Weijie Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|
3
|
Justiz-Vaillant AA, Gopaul D, Soodeen S, Arozarena-Fundora R, Barbosa OA, Unakal C, Thompson R, Pandit B, Umakanthan S, Akpaka PE. Neuropsychiatric Systemic Lupus Erythematosus: Molecules Involved in Its Imunopathogenesis, Clinical Features, and Treatment. Molecules 2024; 29:747. [PMID: 38398500 PMCID: PMC10892692 DOI: 10.3390/molecules29040747] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an idiopathic chronic autoimmune disease that can affect any organ in the body, including the neurological system. Multiple factors, such as environmental (infections), genetic (many HLA alleles including DR2 and DR3, and genes including C4), and immunological influences on self-antigens, such as nuclear antigens, lead to the formation of multiple autoantibodies that cause deleterious damage to bodily tissues and organs. The production of autoantibodies, such as anti-dsDNA, anti-SS(A), anti-SS(B), anti-Smith, and anti-neuronal DNA are characteristic features of this disease. This autoimmune disease results from a failure of the mechanisms responsible for maintaining self-tolerance in T cells, B cells, or both. Immune complexes, circulating antibodies, cytokines, and autoreactive T lymphocytes are responsible for tissue injury in this autoimmune disease. The diagnosis of SLE is a rheumatological challenge despite the availability of clinical criteria. NPSLE was previously referred to as lupus cerebritis or lupus sclerosis. However, these terms are no longer recommended because there is no definitive pathological cause for the neuropsychiatric manifestations of SLE. Currently, the treatment options are primarily based on symptomatic presentations. These include the use of antipsychotics, antidepressants, and anxiolytic medications for the treatment of psychiatric and mood disorders. Antiepileptic drugs to treat seizures, and immunosuppressants (e.g., corticosteroids, azathioprine, and mycophenolate mofetil), are directed against inflammatory responses along with non-pharmacological interventions.
Collapse
Affiliation(s)
- Angel A. Justiz-Vaillant
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Darren Gopaul
- Port of Spain General Hospital, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago;
| | - Sachin Soodeen
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Rodolfo Arozarena-Fundora
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs, San Juan 00000, Trinidad and Tobago; (R.A.-F.); (O.A.B.)
- Department of Clinical and Surgical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 00000, Trinidad and Tobago
| | - Odette Arozarena Barbosa
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs, San Juan 00000, Trinidad and Tobago; (R.A.-F.); (O.A.B.)
| | - Chandrashehkar Unakal
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Reinand Thompson
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Bijay Pandit
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Srikanth Umakanthan
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Patrick E. Akpaka
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| |
Collapse
|
4
|
Carmona‐Pérez L, Rojas M, Muñoz‐Vahos C, Vanegas‐García A, Vásquez G. Plasma microparticles from patients with systemic lupus erythematosus modulate the content of miRNAs in U937 cells. Immunology 2021; 164:253-265. [PMID: 34003488 PMCID: PMC8442235 DOI: 10.1111/imm.13366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
In systemic lupus erythematosus (SLE), the clearance of apoptotic cells and microparticles (MPs) is reduced. Some MPs contain molecules that can modulate immune responses. This study aimed to evaluate the presence of miR-126 and miR-146a in plasma MPs of patients with SLE (SLE MPs) and analyse the ability of MPs to modulate some events in the promonocytic U937 cell line. Circulating MPs were isolated from plasma samples of healthy controls (HCs), patients with SLE and other autoimmune diseases (OAD). MPs were analysed for size and cell origin by flow cytometry and content of miR-126 and miR-146a by RT-qPCR. MPs were then added to U937 cell cultures to evaluate changes in cell phenotype, cytokine expression, content of miR-126 and miR-146a, and levels of IRF5. Patients with active SLE (aSLE) showed an increase in concentration of plasma MPs that positively correlated with the SLEDAI (SLE Disease Activity Index) score. CD14+ MPs were significantly more abundant in patients with SLE than HCs. SLE MPs contained decreased levels of miR-146a, but the miR-126 content in aSLE MPs was increased. The miR-126 content in SLE MPs correlated positively with the SLEDAI score. The treatment of U937 cells with MPs from HCs and patients induced reduced expression of HLA-DR, CD18 and CD119, increased frequency of IL-6+ and TNF-α+ cells, accumulation of IL-8 in culture supernatants, increased miR-126 levels and decreased miR-146a content, but no change in the expression of IRF5. These findings suggest that plasma MPs, especially SLE MPs, could modulate some biological events in U937 cells.
Collapse
Affiliation(s)
- Liseth Carmona‐Pérez
- Grupo de Inmunología Celular e Inmunogenética (GICIG)Facultad de MedicinaInstituto de Investigaciones MédicasUniversidad de Antioquia (UDEA)MedellínColombia
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética (GICIG)Facultad de MedicinaInstituto de Investigaciones MédicasUniversidad de Antioquia (UDEA)MedellínColombia
- Unidad de Citometría de FlujoSede de Investigación UniversitariaUniversidad de Antioquia (UDEA)MedellínColombia
| | - Carlos Muñoz‐Vahos
- Sección de ReumatologíaHospital San Vicente FundaciónMedellínColombia
- Grupo de Reumatología de la Universidad de Antioquia (GRUA)MedellínColombia
| | - Adiana Vanegas‐García
- Sección de ReumatologíaHospital San Vicente FundaciónMedellínColombia
- Grupo de Reumatología de la Universidad de Antioquia (GRUA)MedellínColombia
| | - Gloria Vásquez
- Grupo de Inmunología Celular e Inmunogenética (GICIG)Facultad de MedicinaInstituto de Investigaciones MédicasUniversidad de Antioquia (UDEA)MedellínColombia
- Grupo de Reumatología de la Universidad de Antioquia (GRUA)MedellínColombia
| |
Collapse
|
5
|
Xuan J, Xiong Y, Shi L, Aramini B, Wang H. Do lncRNAs and circRNAs expression profiles influence discoid lupus erythematosus progression?-a comprehensive analysis. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:728. [PMID: 32042744 DOI: 10.21037/atm.2019.12.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs)are involved in the progression of discoid lupus erythematosus (DLE), but an understanding of their underlying mechanisms remains elusive. To explore the expression profiles of lncRNAs and circRNAs in DLE, we surveyed the lncRNA/circRNA and mRNA expression profiles in the epithelia of oral DLE and adjacent normal tissues. Methods The lesional and non-lesional lower lips of three DLE patients were analysed by RNA-sequencing (RNA-seq). The principal functions of the significantly deregulated genes were identified using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. And the correlated expression networks (coding-noncoding co-expression and lncRNAs-transcription factor-mRNA) were evaluated as well. Results Hundreds of significantly changed lncRNAs and mRNAs and dozens of significantly changed circRNAs were identified. lncRNA lnc-MIPOL1-6 and IncRNA IncDDX47-3 expressions were correlated with immune response-related genes, including IL19, CXCL1, CXCL11, and TNFSF15. Up-regulated IncRNA-TF network consists of 8 TFs and 74 related lncRNAs. The lncRNA-TF-gene trans-regulation consisting of 204 lncRNAs,39 TFs, and correlated 3 genes. Conclusions These results demonstrate that lncRNAs and circRNAs can influence the progression of DLE. Certain mRNAs/lncRNAs/circRNAs may have substantial value in DLE diagnosis and therapy.
Collapse
Affiliation(s)
- Jing Xuan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Yaoyang Xiong
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Linjun Shi
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China.,Department of Oral Mucosa Diseases, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Haiyan Wang
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China.,Department of Oral Mucosa Diseases, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
6
|
Arvaniti P, Le Dantec C, Charras A, Arleevskaya MA, Hedrich CM, Zachou K, Dalekos GN, Renaudineau Y. Linking genetic variation with epigenetic profiles in Sjögren's syndrome. Clin Immunol 2019; 210:108314. [PMID: 31765834 DOI: 10.1016/j.clim.2019.108314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022]
Abstract
DNA methylation represents an important regulatory event governing gene expression that is dysregulated in Sjögren's syndrome (SjS) and a number of autoimmune/inflammatory diseases. As disease-associated single-nucleotide polymorphisms (SNPs) have relevance in controlling DNA methylation, 94 non-HLA SjS-SNPs were investigated, among them 57 (60.6%) with widespread effects on 197 individual DNA methylation quantitative trait loci (meQTL) were selected. Typically, these SNPs are intronic, possess an active promoter histone mark, and control cis-meQTLs located around transcription start sites. Interplay is independent of the physical distance between SNPs and meQTLs. Using epigenome-wide association study datasets, SjS-meQTLs were characterized (41 genes and 13 DNA methylation CpG motifs) and for the most part map to a pro-inflammatory cytokine pathway, which is important for the control of DNA methylation in autoimmune diseases. In conclusion, exploring meQTLs represents a valuable tool to predict and investigate downstream effects of genetic factors in complex diseases such as SjS.
Collapse
Affiliation(s)
- Pinelopi Arvaniti
- Laboratory of Immunology and Immunotherapy, Brest University Medical School Hospital, Brest, France; Department of Medicine and Research Laboratory of Internal Medicine, University Hospital of Larissa, Larissa, Greece.
| | - Christelle Le Dantec
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, Brest, France.
| | - Amandine Charras
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, Brest, France; Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, UK & Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK.
| | | | - Christian M Hedrich
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, UK & Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK.
| | - Kalliopi Zachou
- Department of Medicine and Research Laboratory of Internal Medicine, University Hospital of Larissa, Larissa, Greece.
| | - George N Dalekos
- Department of Medicine and Research Laboratory of Internal Medicine, University Hospital of Larissa, Larissa, Greece.
| | - Yves Renaudineau
- Laboratory of Immunology and Immunotherapy, Brest University Medical School Hospital, Brest, France; UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, Brest, France.
| |
Collapse
|
7
|
Pan Q, Chen X, Liao S, Chen X, Zhao C, Xu YZ, Liu HF. Updated advances of linking psychosocial factors and sex hormones with systemic lupus erythematosus susceptibility and development. PeerJ 2019; 7:e7179. [PMID: 31275761 PMCID: PMC6598654 DOI: 10.7717/peerj.7179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that primarily affects women, especially those of reproductive age. Genetics, environment, and gene-environment interactions play key roles in the development of SLE. Despite the numerous susceptibility genes of SLE identified to date, gene therapy is far from a clinical reality. Thus, more attention should be paid to the risk factors and underlying mechanisms of SLE. Currently, it is reported that psychosocial factors and sex hormones play vital roles in patients with SLE, which still need further investigated. The purpose of this review is to update the roles and mechanisms of psychosocial factors and sex hormones in the susceptibility and development of SLE. Based on review articles and reports in reputable peer-reviewed journals and government websites, this paper summarized psychosocial factors (e.g., alexithymia, depression, anxiety, negative emotions, and perceived stress) and sex hormones (e.g., estrogens, progesterone, androgens, and prolactin) involved in SLE. We further explore the mechanisms linking these factors with SLE susceptibility and development, which can guide the establishment of practical measures to benefit SLE patients and offer new ideas for therapeutic strategies.
Collapse
Affiliation(s)
- Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Division of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoqun Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Division of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Division of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaocui Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Division of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunfei Zhao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Division of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yong-Zhi Xu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Division of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Division of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
8
|
Amariuta T, Luo Y, Gazal S, Davenport EE, van de Geijn B, Ishigaki K, Westra HJ, Teslovich N, Okada Y, Yamamoto K, Price AL, Raychaudhuri S. IMPACT: Genomic Annotation of Cell-State-Specific Regulatory Elements Inferred from the Epigenome of Bound Transcription Factors. Am J Hum Genet 2019; 104:879-895. [PMID: 31006511 PMCID: PMC6506796 DOI: 10.1016/j.ajhg.2019.03.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/14/2019] [Indexed: 12/18/2022] Open
Abstract
Despite significant progress in annotating the genome with experimental methods, much of the regulatory noncoding genome remains poorly defined. Here we assert that regulatory elements may be characterized by leveraging local epigenomic signatures where specific transcription factors (TFs) are bound. To link these two features, we introduce IMPACT, a genome annotation strategy that identifies regulatory elements defined by cell-state-specific TF binding profiles, learned from 515 chromatin and sequence annotations. We validate IMPACT using multiple compelling applications. First, IMPACT distinguishes between bound and unbound TF motif sites with high accuracy (average AUPRC 0.81, SE 0.07; across 8 tested TFs) and outperforms state-of-the-art TF binding prediction methods, MocapG, MocapS, and Virtual ChIP-seq. Second, in eight tested cell types, RNA polymerase II IMPACT annotations capture more cis-eQTL variation than sequence-based annotations, such as promoters and TSS windows (25% average increase in enrichment). Third, integration with rheumatoid arthritis (RA) summary statistics from European (N = 38,242) and East Asian (N = 22,515) populations revealed that the top 5% of CD4+ Treg IMPACT regulatory elements capture 85.7% of RA h2, the most comprehensive explanation for RA h2 to date. In comparison, the average RA h2 captured by compared CD4+ T histone marks is 42.3% and by CD4+ T specifically expressed gene sets is 36.4%. Lastly, we find that IMPACT may be used in many different cell types to identify complex trait associated regulatory elements.
Collapse
Affiliation(s)
- Tiffany Amariuta
- Center for Data Sciences, Harvard Medical School, Boston, MA 02115, USA; Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Yang Luo
- Center for Data Sciences, Harvard Medical School, Boston, MA 02115, USA; Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven Gazal
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Emma E Davenport
- Center for Data Sciences, Harvard Medical School, Boston, MA 02115, USA; Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bryce van de Geijn
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kazuyoshi Ishigaki
- Center for Data Sciences, Harvard Medical School, Boston, MA 02115, USA; Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Harm-Jan Westra
- Center for Data Sciences, Harvard Medical School, Boston, MA 02115, USA; Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Faculty of Medical Sciences, University of Groningen, Groningen, the Netherlands
| | - Nikola Teslovich
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yukinori Okada
- Osaka University Graduate School of Medicine, Osaka, Japan; Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, Japan
| | - Kazuhiko Yamamoto
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Alkes L Price
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Soumya Raychaudhuri
- Center for Data Sciences, Harvard Medical School, Boston, MA 02115, USA; Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA; Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| |
Collapse
|
9
|
Chen F, Li Z, Li R, Li Y. Whole‑genome sequencing of a monozygotic twin discordant for systemic lupus erythematosus. Mol Med Rep 2018; 17:8391-8396. [PMID: 29693174 DOI: 10.3892/mmr.2018.8912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/05/2018] [Indexed: 11/06/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease, and its genetic causes remain to be fully elucidated. Previous studies have identified several susceptibility genes for SLE, such as deoxyribonuclease 1‑like 3. In the present study, whole‑genome sequencing (30X coverage) was performed on the leukocytes of a monozygotic twin discordant for SLE to assess the potential association of de novo variants and copy number variations (CNVs) with the susceptibility to SLE. After analyzing the genomic data, 8 putative discordant exonic variants between the twins were selected. However, the 8 variants that were chosen for validation with Sanger sequencing exhibited no discrepancy in the leukocytes from the twins. Of note, CNV alterations in genes of SLE‑associated pathways were identified between the twins, which may be linked with the phenotype of the monozygotic twin discordant for SLE. The above results suggest that genomic sequences of leukocytes in the monozygotic twins may exhibit a rare difference, and that CNV changes may be associated with phenotype differences in the twin discordant for SLE.
Collapse
Affiliation(s)
- Fei Chen
- Department of Clinical Medicine, Affiliated Hospital of Kunming University of Science and Technology (The First People's Hospital of Yunnan Province), Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Zhen Li
- Department of Breast Surgery, Yunnan Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Rong Li
- Department of Clinical Medicine, Affiliated Hospital of Kunming University of Science and Technology (The First People's Hospital of Yunnan Province), Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yunlong Li
- Department of Clinical Medicine, Affiliated Hospital of Kunming University of Science and Technology (The First People's Hospital of Yunnan Province), Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
10
|
De S, Zhang B, Shih T, Singh S, Winkler A, Donnelly R, Barnes BJ. B Cell-Intrinsic Role for IRF5 in TLR9/BCR-Induced Human B Cell Activation, Proliferation, and Plasmablast Differentiation. Front Immunol 2018; 8:1938. [PMID: 29367853 PMCID: PMC5768180 DOI: 10.3389/fimmu.2017.01938] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
Upon recognition of antigen, B cells undergo rapid proliferation followed by differentiation to specialized antibody secreting cells (ASCs). During this transition, B cells are reliant upon a multilayer transcription factor network to achieve a dramatic remodeling of the B cell transcriptional landscape. Increased levels of ASCs are often seen in autoimmune diseases and it is believed that altered expression of regulatory transcription factors play a role in this imbalance. The transcription factor interferon regulatory factor 5 (IRF5) is one such candidate as polymorphisms in IRF5 associate with risk of numerous autoimmune diseases and correlate with elevated IRF5 expression. IRF5 genetic risk has been widely replicated in systemic lupus erythematosus (SLE), and loss of Irf5 ameliorates disease in murine lupus models, in part, through the lack of pathogenic autoantibody secretion. It remains unclear, however, whether IRF5 is contributing to autoantibody production through a B cell-intrinsic function. To date, IRF5 function in healthy human B cells has not been characterized. Using human primary naive B cells, we define a critical intrinsic role for IRF5 in B cell activation, proliferation, and plasmablast differentiation. Targeted IRF5 knockdown resulted in significant immunoglobulin (Ig) D retention, reduced proliferation, plasmablast differentiation, and IgG secretion. The observed decreases were due to impaired B cell activation and clonal expansion. Distinct from murine studies, we identify and confirm new IRF5 target genes, IRF4, ERK1, and MYC, and pathways that mediate IRF5 B cell-intrinsic function. Together, these results identify IRF5 as an early regulator of human B cell activation and provide the first dataset in human primary B cells to map IRF5 dysfunction in SLE.
Collapse
Affiliation(s)
- Saurav De
- Rutgers Graduate School of Biomedical Sciences, Newark, NJ, United States.,Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Baohong Zhang
- Clinical Genetics and Bioinformatics, Pfizer Inc., Cambridge, MA, United States
| | - Tiffany Shih
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Sukhwinder Singh
- Department of Pathology and Laboratory Medicine, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, United States
| | - Aaron Winkler
- Department of Inflammation and Immunology, Pfizer Inc., Cambridge, MA, United States
| | - Robert Donnelly
- Department of Pathology and Laboratory Medicine, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, United States
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ, United States
| |
Collapse
|
11
|
Hedl M, Yan J, Abraham C. IRF5 and IRF5 Disease-Risk Variants Increase Glycolysis and Human M1 Macrophage Polarization by Regulating Proximal Signaling and Akt2 Activation. Cell Rep 2016; 16:2442-55. [PMID: 27545875 DOI: 10.1016/j.celrep.2016.07.060] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 04/21/2016] [Accepted: 07/22/2016] [Indexed: 12/19/2022] Open
Abstract
Interferon regulatory factor 5 (IRF5) regulates inflammatory M1 macrophage polarization, and disease-associated IRF5 genetic variants regulate pattern-recognition-receptor (PRR)-induced cytokines. PRR-stimulated macrophages and M1 macrophages exhibit enhanced glycolysis, a central mediator of inflammation. We find that IRF5 is needed for PRR-enhanced glycolysis in human macrophages and in mice in vivo. Upon stimulation of the PRR nucleotide binding oligomerization domain containing 2 (NOD2) in human macrophages, IRF5 binds RIP2, IRAK1, and TRAF6. IRF5, in turn, is required for optimal Akt2 activation, which increases expression of glycolytic pathway genes and HIF1A as well as pro-inflammatory cytokines and M1 polarization. Furthermore, pro-inflammatory cytokines and glycolytic pathways co-regulate each other. Rs2004640/rs2280714 TT/TT IRF5 disease-risk-carrier cells demonstrate increased IRF5 expression and increased PRR-induced Akt2 activation, glycolysis, pro-inflammatory cytokines, and M1 polarization relative to GG/CC carrier macrophages. Our findings identify that IRF5 disease-associated polymorphisms regulate diverse immunological and metabolic outcomes and provide further insight into mechanisms contributing to the increasingly recognized important role for glycolysis in inflammation.
Collapse
Affiliation(s)
- Matija Hedl
- Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Jie Yan
- Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
12
|
Du Y, Su Y, He J, Yang Y, Shi Y, Cui Y, Luo C, Wu X, Liu X, Hu F, Ma X, Zheng L, Zhang J, Zuo X, Sheng Y, Wu L, Zhang X, Guo J, Li Z. Impact of the leucocyte immunoglobulin-like receptor A3 (LILRA3) on susceptibility and subphenotypes of systemic lupus erythematosus and Sjögren's syndrome. Ann Rheum Dis 2015; 74:2070-5. [PMID: 24906639 DOI: 10.1136/annrheumdis-2013-204441] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 05/25/2014] [Indexed: 11/03/2022]
Abstract
BACKGROUND Recently, our research group identified the non-deleted (functional) leucocyte immunoglobulin-like receptor A3 (LILRA3) as a new genetic risk for rheumatoid arthritis. OBJECTIVES To further investigate whether the functional LILRA3 is a new susceptibility factor for other autoimmune diseases-for example, systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS). METHODS The LILRA3 deletion polymorphism and its tagging single nucleotide polymorphism rs103294 were genotyped for 1099 patients with SLE, 403 patients with pSS and 2169 healthy controls. Association analyses were performed in whole dataset or clinical/serological subsets. The impact of LILRA3 on SLE activity and LILRA3 expression was evaluated. RESULTS The functional LILRA3 conferred high susceptibility to both SLE (p=3.51×10(-7), OR=2.03) and pSS (p=1.40×10(-3), OR=2.32). It was associated with almost all the clinical/serological features in SLE, especially with leucopenia (p=4.09×10(-7), OR=2.19) and thrombocytopenia (p=1.68×10(-5), OR=1.70). In pSS, functional LILRA3 was specifically associated with leucopenia (p=4.39×10(-4), OR=3.25), anti-Ro/SSA-positive subphenotypes (p=4.54×10(-3), OR=2.34) and anti-La/SSB-positive subphenotypes (p=0.012, OR=2.49). Functional LILRA3 conferred higher disease activity in patients with SLE (p=0.044) and higher LILRA3 expression in both SLE (p=5.57×10(-8)) and pSS (p=1.49×10(-7)) than in controls. CONCLUSIONS Functional LILRA3 is a new susceptibility factor for SLE and pSS. It highly predisposes to certain phenotypes such as leucopenia and thrombocytopenia in SLE, and may confer increased disease activity in SLE and a higher risk of leucopenia and autoantibody-positive subphenotypes in pSS.
Collapse
Affiliation(s)
- Yan Du
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Yue Yang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Yamei Shi
- Department of Rheumatology and Immunology, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yong Cui
- Department of Dermatology, Institute of Dermatology, No 1 Hospital, Anhui Medical University, Hefei, China
| | - Cainan Luo
- Department of Rheumatology and Immunology, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xinyu Wu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Xu Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Xiaoxu Ma
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Li Zheng
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Jing Zhang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Xianbo Zuo
- Department of Dermatology, Institute of Dermatology, No 1 Hospital, Anhui Medical University, Hefei, China
| | - Yujun Sheng
- Department of Dermatology, Institute of Dermatology, No 1 Hospital, Anhui Medical University, Hefei, China
| | - Lijun Wu
- Department of Rheumatology and Immunology, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuejun Zhang
- Department of Dermatology, Institute of Dermatology, No 1 Hospital, Anhui Medical University, Hefei, China
| | - Jianping Guo
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
13
|
Kar SP, Tyrer JP, Li Q, Lawrenson K, Aben KKH, Anton-Culver H, Antonenkova N, Chenevix-Trench G, Baker H, Bandera EV, Bean YT, Beckmann MW, Berchuck A, Bisogna M, Bjørge L, Bogdanova N, Brinton L, Brooks-Wilson A, Butzow R, Campbell I, Carty K, Chang-Claude J, Chen YA, Chen Z, Cook LS, Cramer D, Cunningham JM, Cybulski C, Dansonka-Mieszkowska A, Dennis J, Dicks E, Doherty JA, Dörk T, du Bois A, Dürst M, Eccles D, Easton DF, Edwards RP, Ekici AB, Fasching PA, Fridley BL, Gao YT, Gentry-Maharaj A, Giles GG, Glasspool R, Goode EL, Goodman MT, Grownwald J, Harrington P, Harter P, Hein A, Heitz F, Hildebrandt MAT, Hillemanns P, Hogdall E, Hogdall CK, Hosono S, Iversen ES, Jakubowska A, Paul J, Jensen A, Ji BT, Karlan BY, Kjaer SK, Kelemen LE, Kellar M, Kelley J, Kiemeney LA, Krakstad C, Kupryjanczyk J, Lambrechts D, Lambrechts S, Le ND, Lee AW, Lele S, Leminen A, Lester J, Levine DA, Liang D, Lissowska J, Lu K, Lubinski J, Lundvall L, Massuger L, Matsuo K, McGuire V, McLaughlin JR, McNeish IA, Menon U, Modugno F, Moysich KB, Narod SA, Nedergaard L, Ness RB, Nevanlinna H, Odunsi K, Olson SH, Orlow I, Orsulic S, Weber RP, et alKar SP, Tyrer JP, Li Q, Lawrenson K, Aben KKH, Anton-Culver H, Antonenkova N, Chenevix-Trench G, Baker H, Bandera EV, Bean YT, Beckmann MW, Berchuck A, Bisogna M, Bjørge L, Bogdanova N, Brinton L, Brooks-Wilson A, Butzow R, Campbell I, Carty K, Chang-Claude J, Chen YA, Chen Z, Cook LS, Cramer D, Cunningham JM, Cybulski C, Dansonka-Mieszkowska A, Dennis J, Dicks E, Doherty JA, Dörk T, du Bois A, Dürst M, Eccles D, Easton DF, Edwards RP, Ekici AB, Fasching PA, Fridley BL, Gao YT, Gentry-Maharaj A, Giles GG, Glasspool R, Goode EL, Goodman MT, Grownwald J, Harrington P, Harter P, Hein A, Heitz F, Hildebrandt MAT, Hillemanns P, Hogdall E, Hogdall CK, Hosono S, Iversen ES, Jakubowska A, Paul J, Jensen A, Ji BT, Karlan BY, Kjaer SK, Kelemen LE, Kellar M, Kelley J, Kiemeney LA, Krakstad C, Kupryjanczyk J, Lambrechts D, Lambrechts S, Le ND, Lee AW, Lele S, Leminen A, Lester J, Levine DA, Liang D, Lissowska J, Lu K, Lubinski J, Lundvall L, Massuger L, Matsuo K, McGuire V, McLaughlin JR, McNeish IA, Menon U, Modugno F, Moysich KB, Narod SA, Nedergaard L, Ness RB, Nevanlinna H, Odunsi K, Olson SH, Orlow I, Orsulic S, Weber RP, Pearce CL, Pejovic T, Pelttari LM, Permuth-Wey J, Phelan CM, Pike MC, Poole EM, Ramus SJ, Risch HA, Rosen B, Rossing MA, Rothstein JH, Rudolph A, Runnebaum IB, Rzepecka IK, Salvesen HB, Schildkraut JM, Schwaab I, Shu XO, Shvetsov YB, Siddiqui N, Sieh W, Song H, Southey MC, Sucheston-Campbell LE, Tangen IL, Teo SH, Terry KL, Thompson PJ, Timorek A, Tsai YY, Tworoger SS, van Altena AM, Van Nieuwenhuysen E, Vergote I, Vierkant RA, Wang-Gohrke S, Walsh C, Wentzensen N, Whittemore AS, Wicklund KG, Wilkens LR, Woo YL, Wu X, Wu A, Yang H, Zheng W, Ziogas A, Sellers TA, Monteiro ANA, Freedman ML, Gayther SA, Pharoah PDP. Network-Based Integration of GWAS and Gene Expression Identifies a HOX-Centric Network Associated with Serous Ovarian Cancer Risk. Cancer Epidemiol Biomarkers Prev 2015; 24:1574-84. [PMID: 26209509 PMCID: PMC4592449 DOI: 10.1158/1055-9965.epi-14-1270] [Show More Authors] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 06/29/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by coexpression may also be enriched for additional EOC risk associations. METHODS We selected TF genes within 1 Mb of the top signal at the 12 genome-wide significant risk loci. Mutual information, a form of correlation, was used to build networks of genes strongly coexpressed with each selected TF gene in the unified microarray dataset of 489 serous EOC tumors from The Cancer Genome Atlas. Genes represented in this dataset were subsequently ranked using a gene-level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 controls). RESULTS Gene set enrichment analysis identified six networks centered on TF genes (HOXB2, HOXB5, HOXB6, HOXB7 at 17q21.32 and HOXD1, HOXD3 at 2q31) that were significantly enriched for genes from the risk-associated end of the ranked list (P < 0.05 and FDR < 0.05). These results were replicated (P < 0.05) using an independent association study (7,035 cases/21,693 controls). Genes underlying enrichment in the six networks were pooled into a combined network. CONCLUSION We identified a HOX-centric network associated with serous EOC risk containing several genes with known or emerging roles in serous EOC development. IMPACT Network analysis integrating large, context-specific datasets has the potential to offer mechanistic insights into cancer susceptibility and prioritize genes for experimental characterization.
Collapse
Affiliation(s)
- Siddhartha P Kar
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom.
| | - Jonathan P Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Qiyuan Li
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kate Lawrenson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Katja K H Aben
- Radboud University Medical Centre, Radboud Institute for Health Sciences, Nijmegen, the Netherlands. Comprehensive Cancer Center The Netherlands, Utrecht, the Netherlands
| | - Hoda Anton-Culver
- Department of Epidemiology, Director of Genetic Epidemiology Research Institute, School of Medicine, University of California Irvine, Irvine, California
| | - Natalia Antonenkova
- Byelorussian Institute for Oncology and Medical Radiology Aleksandrov N.N., Minsk, Belarus
| | | | - Helen Baker
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Elisa V Bandera
- Cancer Prevention and Control, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Yukie T Bean
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon. Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Matthias W Beckmann
- University Hospital Erlangen, Department of Gynecology and Obstetrics, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Maria Bisogna
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Line Bjørge
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway. Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Natalia Bogdanova
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Louise Brinton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Angela Brooks-Wilson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada. Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ralf Butzow
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, HUS, Finland. Department of Pathology, Helsinki University Central Hospital, Helsinki, Finland
| | - Ian Campbell
- Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. Department of Pathology, University of Melbourne, Parkville, Victoria, Australia. Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Karen Carty
- Cancer Research UK Clinical Trials Unit, The Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Jenny Chang-Claude
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Yian Ann Chen
- Department of Biostatistics, Moffitt Cancer Center, Tampa, Florida
| | - Zhihua Chen
- Department of Biostatistics, Moffitt Cancer Center, Tampa, Florida
| | - Linda S Cook
- Division of Epidemiology and Biostatistics, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Daniel Cramer
- Obstetrics and Gynecology Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Harvard School of Public Health, Boston, Massachusetts
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Cezary Cybulski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Agnieszka Dansonka-Mieszkowska
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Ed Dicks
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Jennifer A Doherty
- Department of Community and Family Medicine, Section of Biostatistics & Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Andreas du Bois
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Essen, Germany. Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
| | - Matthias Dürst
- Department of Gynecology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Diana Eccles
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, United Kingdom
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom. Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Robert P Edwards
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, United Kingdom. Ovarian Cancer Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Arif B Ekici
- University Hospital Erlangen, Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Peter A Fasching
- University Hospital Erlangen, Department of Gynecology and Obstetrics, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany. University of California at Los Angeles, David Geffen School of Medicine, Department of Medicine, Division of Hematology and Oncology, Los Angeles, California
| | - Brooke L Fridley
- Biostatistics and Informatics Shared Resource, University of Kansas Medical Center, Kansas City, Kansas
| | | | - Aleksandra Gentry-Maharaj
- Women's Cancer, University College London Elizabeth Garrett Anderson Institute for Women's Health, London, United Kingdom
| | - Graham G Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Rosalind Glasspool
- Cancer Research UK Clinical Trials Unit, The Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Ellen L Goode
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota
| | - Marc T Goodman
- Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California. Community and Population Health Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jacek Grownwald
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Patricia Harrington
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Philipp Harter
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Essen, Germany. Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
| | - Alexander Hein
- University Hospital Erlangen, Department of Gynecology and Obstetrics, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Florian Heitz
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Essen, Germany. Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
| | | | - Peter Hillemanns
- Departments of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Estrid Hogdall
- Virus, Lifestyle, and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark. Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Claus K Hogdall
- Department of Gynecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Satoyo Hosono
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, North Carolina
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - James Paul
- Cancer Research UK Clinical Trials Unit, The Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Allan Jensen
- Virus, Lifestyle, and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Beth Y Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Susanne K Kjaer
- Virus, Lifestyle, and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark. Department of Gynecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Linda E Kelemen
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Melissa Kellar
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon. Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Joseph Kelley
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lambertus A Kiemeney
- Radboud University Medical Centre, Radboud Institute for Health Sciences, Nijmegen, the Netherlands
| | - Camilla Krakstad
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway. Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jolanta Kupryjanczyk
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Diether Lambrechts
- Vesalius Research Center, VIB, Leuven, Belgium. Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Sandrina Lambrechts
- Division of Gynecological Oncology, Department of Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Nhu D Le
- Cancer Control Research, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Alice W Lee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Shashi Lele
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| | - Arto Leminen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, HUS, Finland
| | - Jenny Lester
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Douglas A Levine
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dong Liang
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Karen Lu
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Lene Lundvall
- Department of Gynecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Leon Massuger
- Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Keitaro Matsuo
- Department of Preventive Medicine, Kyushu University Faculty of Medical Sciences, Fukuoka, Japan
| | - Valerie McGuire
- Department of Health Research and Policy-Epidemiology, Stanford University School of Medicine, Stanford, California
| | - John R McLaughlin
- Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Iain A McNeish
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Usha Menon
- Women's Cancer, University College London Elizabeth Garrett Anderson Institute for Women's Health, London, United Kingdom
| | - Francesmary Modugno
- Ovarian Cancer Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania. Women's Cancer Research Program, Magee-Women's Research Institute and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Kirsten B Moysich
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| | - Steven A Narod
- Women's College Research Institute, Toronto, Ontario, Canada
| | - Lotte Nedergaard
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Roberta B Ness
- The University of Texas School of Public Health, Houston, Texas
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, HUS, Finland
| | - Kunle Odunsi
- Department of Gynecological Oncology, Roswell Park Cancer Institute, Buffalo, New York
| | - Sara H Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sandra Orsulic
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Rachel Palmieri Weber
- Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina
| | - Celeste Leigh Pearce
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Tanja Pejovic
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon. Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Liisa M Pelttari
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, HUS, Finland
| | | | - Catherine M Phelan
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Malcolm C Pike
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California. Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elizabeth M Poole
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Susan J Ramus
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut
| | - Barry Rosen
- Department of Gynecologic-Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, Canada. Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mary Anne Rossing
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Epidemiology, University of Washington, Seattle, Washington
| | - Joseph H Rothstein
- Department of Health Research and Policy-Epidemiology, Stanford University School of Medicine, Stanford, California
| | - Anja Rudolph
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Ingo B Runnebaum
- Department of Gynecology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Iwona K Rzepecka
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Helga B Salvesen
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway. Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Joellen M Schildkraut
- Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina. Cancer Control and Population Sciences, Duke Cancer Institute, Durham, North Carolina
| | - Ira Schwaab
- Institut für Humangenetik Wiesbaden, Wiesbaden, Germany
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yurii B Shvetsov
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Nadeem Siddiqui
- Department of Gynaecological Oncology, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Weiva Sieh
- Department of Health Research and Policy-Epidemiology, Stanford University School of Medicine, Stanford, California
| | - Honglin Song
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Melissa C Southey
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | | | - Ingvild L Tangen
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway. Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Soo-Hwang Teo
- Cancer Research Initiatives Foundation, Sime Darby Medical Centre, Subang Jaya, Malaysia. University Malaya Cancer Research Institute, Faculty of Medicine, University Malaya Medical Centre, University Malaya, Kuala Lumpur, Malaysia
| | - Kathryn L Terry
- Obstetrics and Gynecology Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Harvard School of Public Health, Boston, Massachusetts
| | - Pamela J Thompson
- Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California. Community and Population Health Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Agnieszka Timorek
- Department of Obstetrics, Gynecology, and Oncology, IInd Faculty of Medicine, Warsaw Medical University and Brodnowski Hospital, Warsaw, Poland
| | - Ya-Yu Tsai
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Shelley S Tworoger
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Anne M van Altena
- Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Els Van Nieuwenhuysen
- Division of Gynecological Oncology, Department of Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Ignace Vergote
- Division of Gynecological Oncology, Department of Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Robert A Vierkant
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota
| | - Shan Wang-Gohrke
- Department of Obstetrics and Gynecology, University of Ulm, Ulm, Germany
| | - Christine Walsh
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Alice S Whittemore
- Department of Health Research and Policy-Epidemiology, Stanford University School of Medicine, Stanford, California
| | - Kristine G Wicklund
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Lynne R Wilkens
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Yin-Ling Woo
- University Malaya Cancer Research Institute, Faculty of Medicine, University Malaya Medical Centre, University Malaya, Kuala Lumpur, Malaysia. Department of Obstetrics and Gynaecology, University Malaya Medical Centre, University Malaya, Kuala Lumpur, Malaysia
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anna Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Hannah Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Argyrios Ziogas
- Department of Epidemiology, Director of Genetic Epidemiology Research Institute, School of Medicine, University of California Irvine, Irvine, California
| | - Thomas A Sellers
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | | | - Matthew L Freedman
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Simon A Gayther
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom. Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Wang Y, Qu A, Wang H. Signal transducer and activator of transcription 4 in liver diseases. Int J Biol Sci 2015; 11:448-55. [PMID: 25798064 PMCID: PMC4366643 DOI: 10.7150/ijbs.11164] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/24/2015] [Indexed: 12/14/2022] Open
Abstract
STAT4 is a member of the signal transducer and activator of transcription (STAT) family of molecules that localizes to the cytoplasm. STAT4 regulates various genes expression as a transcription factor after it is phosphorylated, dimerizes and translocates to the nucleus. STAT4 activation is detected virtually in the liver of several mouse models of liver injury, as well as the human liver of chronic liver diseases. STAT4 gene polymorphism has been shown to be associated with the antiviral response in chronic hepatitis C and drug-induced liver injury (DILI), primary biliary cirrhosis (PBC), HCV-associated liver fibrosis and in hepatocellular carcinoma (HCC). However, the roles of STAT4 in the pathogeneses of liver diseases are still not understood entirely. This review summarizes the recent advances on the functional roles of STAT4 and its related cytokines in liver diseases, especially in regulating hepatic anti-viral responses, inflammation, proliferation, apoptosis and tumorigenesis. Targeting STAT4 signaling pathway might be a promising strategy in developing therapeutic approaches for treating hepatitis in order to prevent further injury like cirrhosis and liver cancer.
Collapse
Affiliation(s)
- Yan Wang
- 1. Department of Infectious Diseases, Peking University First Hospital, Beijing 100034
| | - Aijuan Qu
- 3. Institute of Hypoxic Disease, School of Basic Medical Sciences, Capital Medical University, Beijing 100069 ; 4. Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hua Wang
- 2. Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032
| |
Collapse
|
15
|
Dey-Rao R, Sinha AA. Genome-wide transcriptional profiling of chronic cutaneous lupus erythematosus (CCLE) peripheral blood identifies systemic alterations relevant to the skin manifestation. Genomics 2014; 105:90-100. [PMID: 25451738 DOI: 10.1016/j.ygeno.2014.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/24/2014] [Accepted: 11/11/2014] [Indexed: 12/15/2022]
Abstract
Major gaps remain regarding pathogenetic mechanisms underlying clinical heterogeneity in lupus erythematosus (LE). As systemic changes are likely to underlie skin specific manifestation, we analyzed global gene expression in peripheral blood of a small cohort of chronic cutaneous LE (CCLE) patients and healthy individuals. Unbiased hierarchical clustering distinguished patients from controls revealing a "disease" based signature. Functional annotation of the differentially expressed genes (DEGs) highlight enrichment of interferon related immune response and apoptosis signatures, along with other key pathways. There is a 26% overlap of the blood and lesional skin transcriptional profile from a previous analysis by our group. We identified four transcriptional "hot spots" at chromosomal regions harboring statistically increased numbers of DEGs which offer prioritized potential loci for downstream fine mapping studies in the search for CCLE specific susceptibility loci. Additionally, we uncover evidence to support both shared and distinct mechanisms for cutaneous and systemic manifestations of lupus.
Collapse
Affiliation(s)
- R Dey-Rao
- Department of Dermatology, University at Buffalo, Buffalo, NY, USA
| | - A A Sinha
- Department of Dermatology, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
16
|
A multilocus genetic study in a cohort of Italian SLE patients confirms the association with STAT4 gene and describes a new association with HCP5 gene. PLoS One 2014; 9:e111991. [PMID: 25369137 PMCID: PMC4219822 DOI: 10.1371/journal.pone.0111991] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 10/10/2014] [Indexed: 12/12/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is an autoimmune disease with complex pathogenesis in which genes and environmental factors are involved. We aimed at analyzing previously identified loci associated with SLE or with other autoimmune and/or inflammatory disorders (STAT4, IL10, IL23R, IRAK1, PSORS1C1, HCP5, MIR146a, PTPN2, ERAP1, ATG16L1, IRGM) in a sample of Italian SLE patients in order to verify or confirm their possible involvement and relative contribution in the disease. Materials and methods Two hundred thirty-nine consecutive SLE patients and 278 matched healthy controls were enrolled. Study protocol included complete physical examination, and clinical and laboratory data collection. Nineteen polymorphisms were genotyped by allelic discrimination assays. A case-control association study and a genotype-phenotype correlation were performed. Results STAT4 was the most associated gene [P = 3×10−7, OR = 2.13 (95% CI: 1.59–2.85)]. IL10 confirmed its association with SLE [rs3024505: P = 0.02, OR = 1.52 (95% CI: 1.07–2.16)]. We describe a novel significant association between HCP5 locus and SLE susceptibility [rs3099844: P = 0.01, OR = 2.06 (95% CI: 1.18–3.6)]. The genotype/phenotype correlation analysis showed several associations including a higher risk to develop pericarditis with STAT4, and an association between HCP5 rs3099844 and anti-Ro/SSA antibodies. Conclusions STAT4 and IL10 confirm their association with SLE. We found that some SNPs in PSORS1C1, ATG16L1, IL23R, PTPN2 and MIR146a genes can determine particular disease phenotypes. HCP5 rs3099844 is associated with SLE and with anti-Ro/SSA. This polymorphism has been previously found associated with cardiac manifestations of SLE, a condition related with anti-Ro/SSA antibodies. Thus, our results may provide new insights into SLE pathogenesis.
Collapse
|
17
|
Pawar RD, Goilav B, Xia Y, Zhuang H, Herlitz L, Reeves WH, Putterman C. Serum autoantibodies in pristane induced lupus are regulated by neutrophil gelatinase associated lipocalin. Clin Immunol 2014; 154:49-65. [PMID: 24971701 PMCID: PMC4119527 DOI: 10.1016/j.clim.2014.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 11/28/2022]
Abstract
The onset of autoantibodies in systemic autoimmunity can be the result of a breakdown in tolerance at multiple checkpoints. Genetic, hormonal, and immunological factors can combine with environmental influences to accelerate the onset of disease and aggravate disease outcome. Here, we describe a novel mechanism relating to the regulatory role of Neutrophil Gelatinase Associated Lipocalin (NGAL) in modulating the levels of autoantibodies in pristane induced lupus. Following a single injection of pristane intraperitoneally, NGAL expression was induced in both the serum and spleen. Furthermore, NGAL deficient mice were more susceptible to the induction of pristane stimulated autoimmunity, and displayed higher numbers of autoantibody secreting cells and increased expression of activation induced cytidine deaminase (AID) and other inflammatory mediators in the spleen. In contrast, kidney damage was milder in NGAL deficient mice, indicating that NGAL was detrimental in autoantibody mediated kidney disease. These studies indicate that NGAL plays differential roles in different tissues in the context of lupus, and suggest a previously unrecognized role for NGAL in adaptive immunity.
Collapse
Affiliation(s)
- Rahul D Pawar
- The Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Beatrice Goilav
- The Division of Pediatric Nephrology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yumin Xia
- The Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Haoyang Zhuang
- The Division of Rheumatology & Clinical Immunology, University of Florida, Gainesville, FL 32611, USA
| | - Leal Herlitz
- The Department of Pathology, Columbia University Medical Center, NY 10032, USA
| | - Westley H Reeves
- The Division of Rheumatology & Clinical Immunology, University of Florida, Gainesville, FL 32611, USA
| | - Chaim Putterman
- The Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
18
|
Saliba DG, Heger A, Eames HL, Oikonomopoulos S, Teixeira A, Blazek K, Androulidaki A, Wong D, Goh FG, Weiss M, Byrne A, Pasparakis M, Ragoussis J, Udalova IA. IRF5:RelA interaction targets inflammatory genes in macrophages. Cell Rep 2014; 8:1308-17. [PMID: 25159141 PMCID: PMC4471814 DOI: 10.1016/j.celrep.2014.07.034] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/10/2014] [Accepted: 07/22/2014] [Indexed: 12/23/2022] Open
Abstract
Interferon Regulatory Factor 5 (IRF5) plays a major role in setting up an inflammatory macrophage phenotype, but the molecular basis of its transcriptional activity is not fully understood. In this study, we conduct a comprehensive genome-wide analysis of IRF5 recruitment in macrophages stimulated with bacterial lipopolysaccharide and discover that IRF5 binds to regulatory elements of highly transcribed genes. Analysis of protein:DNA microarrays demonstrates that IRF5 recognizes the canonical IRF-binding (interferon-stimulated response element [ISRE]) motif in vitro. However, IRF5 binding in vivo appears to rely on its interactions with other proteins. IRF5 binds to a noncanonical composite PU.1:ISRE motif, and its recruitment is aided by RelA. Global gene expression analysis in macrophages deficient in IRF5 and RelA highlights the direct role of the RelA:IRF5 cistrome in regulation of a subset of key inflammatory genes. We map the RelA:IRF5 interaction domain and suggest that interfering with it would offer selective targeting of macrophage inflammatory activities. Genome-wide function of IRF5 in LPS-stimulated macrophages was analyzed IRF5 cistrome overlaps with RelA cistrome at multiple loci IRF5 targets regulatory elements of highly inducible inflammatory genes IRF5 recruitment to key inflammatory loci is assisted by RelA
Collapse
Affiliation(s)
- David G Saliba
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX37FY, UK
| | - Andreas Heger
- CGAT, MRC Functional Genomics Unit, University of Oxford, South Parks Road, Oxford OX13PT, UK
| | - Hayley L Eames
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX37FY, UK
| | - Spyros Oikonomopoulos
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Ana Teixeira
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Katrina Blazek
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX37FY, UK
| | - Ariadne Androulidaki
- Institute for Genetics, University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne 50931, Germany
| | - Daniel Wong
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Fui G Goh
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX37FY, UK
| | - Miriam Weiss
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX37FY, UK
| | - Adam Byrne
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX37FY, UK
| | - Manolis Pasparakis
- Institute for Genetics, University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne 50931, Germany
| | - Jiannis Ragoussis
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Irina A Udalova
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX37FY, UK.
| |
Collapse
|
19
|
Singh N, Traisak P, Martin KA, Kaplan MJ, Cohen PL, Denny MF. Genomic alterations in abnormal neutrophils isolated from adult patients with systemic lupus erythematosus. Arthritis Res Ther 2014; 16:R165. [PMID: 25107306 PMCID: PMC4262380 DOI: 10.1186/ar4681] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/18/2014] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Patients with systemic lupus erythematosus (SLE) have an abnormal population of neutrophils, called low-density granulocytes (LDGs), that express the surface markers of mature neutrophils, yet their nuclear morphology resembles an immature cell. Because a similar discrepancy in maturation status is observed in myelodysplasias, and disruption of neutrophil development is frequently associated with genomic alterations, genomic DNA isolated from autologous pairs of LDGs and normal-density neutrophils was compared for genomic changes. METHODS Alterations in copy number and losses of heterozygosity (LOH) were detected by cytogenetic microarray analysis. Microsatellite instability (MSI) was detected by capillary gel electrophoresis of fluorescently labeled PCR products. RESULTS Control neutrophils and normal-density SLE neutrophils had similar levels of copy number variations, while the autologous SLE LDGs had an over twofold greater number of copy number alterations per genome. The additional copy number alterations found in LDGs were prevalent in six of the thirteen SLE patients, and occurred preferentially on chromosome 19, 17, 8, and X. These same SLE patients also displayed an increase in LOH. Several SLE patients had a common LOH on chromosome 5q that includes several cytokine genes and a DNA repair enzyme. In addition, three SLE patients displayed MSI. Two patients displayed MSI in greater than one marker, and one patient had MSI and increased copy number alterations. No correlations between genomic instability and immunosuppressive drugs, disease activity or disease manifestations were apparent. CONCLUSIONS The increased level of copy number alterations and LOH in the LDG samples relative to autologous normal-density SLE neutrophils suggests somatic alterations that are consistent with DNA strand break repair, while MSI suggests a replication error-prone status. Thus, the LDGs isolated have elevated levels of somatic alterations that are consistent with genetic damage or genomic instability. This suggests that the LDGs in adult SLE patients are derived from cell progenitors that are distinct from the autologous normal-density neutrophils, and may reflect a role for genomic instability in the disease.
Collapse
Affiliation(s)
- Namrata Singh
- />Section of Rheumatology, Temple University, 3322 North Broad Street, Philadelphia, PA 19140 USA
| | - Pamela Traisak
- />Section of Rheumatology, Temple University, 3322 North Broad Street, Philadelphia, PA 19140 USA
| | - Kayla A Martin
- />Department of Microbiology and Immunology, Temple University, 3500 North Broad Street, Philadelphia, PA 19140 USA
| | - Mariana J Kaplan
- />Systemic Autoimmunity Branch, Intramural Research Program, NIAMS/NIH, 10 Center Drive, Bethesda, MD 20892 USA
| | - Philip L Cohen
- />Section of Rheumatology, Temple University, 3322 North Broad Street, Philadelphia, PA 19140 USA
- />Department of Microbiology and Immunology, Temple University, 3500 North Broad Street, Philadelphia, PA 19140 USA
- />Temple Autoimmunity Center, Temple University, 3500 North Broad Street, Philadelphia, PA 19140 USA
| | - Michael F Denny
- />Section of Rheumatology, Temple University, 3322 North Broad Street, Philadelphia, PA 19140 USA
- />Department of Microbiology and Immunology, Temple University, 3500 North Broad Street, Philadelphia, PA 19140 USA
- />Temple Autoimmunity Center, Temple University, 3500 North Broad Street, Philadelphia, PA 19140 USA
| |
Collapse
|
20
|
Chen Y, Chen Q, McEachin RC, Cavalcoli JD, Yu X. H2A.B facilitates transcription elongation at methylated CpG loci. Genome Res 2014; 24:570-9. [PMID: 24402521 PMCID: PMC3975057 DOI: 10.1101/gr.156877.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
H2A.B is a unique histone H2A variant that only exists in mammals. Here we found that H2A.B is ubiquitously expressed in major organs. Genome-wide analysis of H2A.B in mouse ES cells shows that H2A.B is associated with methylated DNA in gene body regions. Moreover, H2A.B-enriched gene loci are actively transcribed. One typical example is that H2A.B is enriched in a set of differentially methylated regions at imprinted loci and facilitates transcription elongation. These results suggest that H2A.B positively regulates transcription elongation by overcoming DNA methylation in the transcribed region. It provides a novel mechanism by which transcription is regulated at DNA hypermethylated regions.
Collapse
Affiliation(s)
- Yibin Chen
- Division of Molecular Medicine and Genetics, Department of Internal Medicine
| | | | | | | | | |
Collapse
|
21
|
Olferiev M, Lliguicota M, Kirou KA, Crow MK. Measuring interferon alpha and other cytokines in SLE. Methods Mol Biol 2014; 1134:131-150. [PMID: 24497359 DOI: 10.1007/978-1-4939-0326-9_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The progression of disease in patients with systemic lupus erythematosus (SLE) is affected by production, accumulation, and actions of cytokines. Type I interferon (IFN), specifically IFN-α, is recognized as a central mediator of disease pathogenesis in SLE. We describe a functional assay to measure type I IFN activity in SLE plasma and have also measured the response of peripheral blood cells to that cytokine family. This method can be scaled to assess IFN functional activity, as well as activity and cellular response to other cytokines, in relation to cellular and serologic parameters relevant to SLE.
Collapse
Affiliation(s)
- Mikhail Olferiev
- Division of Rheumatology, Hospital for Special Surgery, New York, NY, USA
| | | | | | | |
Collapse
|
22
|
Arriens C, Mohan C. Systemic lupus erythematosus diagnostics in the 'omics' era. ACTA ACUST UNITED AC 2013; 8:671-687. [PMID: 24860621 DOI: 10.2217/ijr.13.59] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Systemic lupus erythematosus is a complex autoimmune disease affecting multiple organ systems. Currently, diagnosis relies upon meeting at least four out of eleven criteria outlined by the ACR. The scientific community actively pursues discovery of novel diagnostics in the hope of better identifying susceptible individuals in early stages of disease. Comprehensive studies have been conducted at multiple biological levels including: DNA (or genomics), mRNA (or transcriptomics), protein (or proteomics) and metabolites (or metabolomics). The 'omics' platforms allow us to re-examine systemic lupus erythematosus at a greater degree of molecular resolution. More importantly, one is hopeful that these 'omics' platforms may yield newer biomarkers for systemic lupus erythematosus that can help clinicians track the disease course with greater sensitivity and specificity.
Collapse
Affiliation(s)
- Cristina Arriens
- Rheumatic Diseases Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8884, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Room 2018, Houston, TX 77204, USA
| |
Collapse
|
23
|
Handel AE, Sandve GK, Disanto G, Handunnetthi L, Giovannoni G, Ramagopalan SV. Integrating multiple oestrogen receptor alpha ChIP studies: overlap with disease susceptibility regions, DNase I hypersensitivity peaks and gene expression. BMC Med Genomics 2013; 6:45. [PMID: 24171864 PMCID: PMC4228442 DOI: 10.1186/1755-8794-6-45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/23/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND A wealth of nuclear receptor binding data has been generated by the application of chromatin immunoprecipitation (ChIP) techniques. However, there have been relatively few attempts to apply these datasets to human complex disease or traits. METHODS We integrated multiple oestrogen receptor alpha (ESR1) ChIP datasets in the Genomic Hyperbrowser. We analysed these datasets for overlap with DNase I hypersensitivity peaks, differentially expressed genes with estradiol treatment and regions near single nucleotide polymorphisms associated with sex-related diseases and traits. We used FIMO to scan ESR1 binding sites for classical ESR1 binding motifs drawn from the JASPAR database. RESULTS We found that binding sites present in multiple datasets were enriched for classical ESR1 binding motifs, DNase I hypersensitivity peaks and differentially expressed genes after estradiol treatment compared with those present in only few datasets. There was significant enrichment of ESR1 binding present in multiple datasets near genomic regions associated with breast cancer (7.45-fold, p = 0.001), height (2.45-fold, p = 0.002), multiple sclerosis (5.97-fold, p < 0.0002) and prostate cancer (4.47-fold, p = 0.0008), and suggestive evidence of ESR1 enrichment for regions associated with coronary artery disease, ovarian cancer, Parkinson's disease, polycystic ovarian syndrome and testicular cancer. Integration of multiple cell line ESR1 ChIP datasets also increases overlap with ESR1 ChIP-seq peaks from primary cancer samples, further supporting this approach as helpful in identifying true positive ESR1 binding sites in cell line systems. CONCLUSIONS Our study suggests that integration of multiple ChIP datasets can highlight binding sites likely to be of particular biological importance and can provide important insights into understanding human health and disease. However, it also highlights the high number of likely false positive binding sites in ChIP datasets drawn from cell lines and illustrates the importance of considering multiple independent experiments together.
Collapse
Affiliation(s)
- Adam E Handel
- Medical Research Council Functional Genomics Unit and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Blizard Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
| | - Geir K Sandve
- Department of Informatics, University of Oslo, Blindern, Norway
| | - Giulio Disanto
- Medical Research Council Functional Genomics Unit and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Lahiru Handunnetthi
- Medical Research Council Functional Genomics Unit and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Gavin Giovannoni
- Blizard Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
| | - Sreeram V Ramagopalan
- Medical Research Council Functional Genomics Unit and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Blizard Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
| |
Collapse
|
24
|
Frangou EA, Bertsias GK, Boumpas DT. Gene expression and regulation in systemic lupus erythematosus. Eur J Clin Invest 2013; 43:1084-96. [PMID: 23902282 DOI: 10.1111/eci.12130] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/21/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disease. Genome-wide (GW) association studies have identified more than 40 disease-associated loci, together accounting for only 10-20% of disease heritability. Gene expression represents the intermediate phenotype between DNA and disease phenotypic variation, and provides insights regarding genetic and epigenetic effects. We review data on gene expression and regulation in SLE by our group and other investigators. MATERIALS AND METHODS Systematic PubMed search for GW expression studies in SLE published since the year 2000. RESULTS Deregulation of genes involved in type I interferon signaling is a consistent finding in the peripheral blood of active and severe SLE patients. Upregulation of granulocyte-specific transcripts especially in bone marrow mononuclear cells (BMMCs), and of myeloid lineage transcripts in lupus nephritis, provide evidence for pathogenic role of these cells. Gene network analysis in BMMCs identified central gene regulators which could represent therapeutic targets and a high similarity between SLE and non-Hodgkin lymphoma providing a molecular basis for the reported association of the two diseases. Gene expression abnormalities driven by deregulated expression of certain microRNAs in SLE contribute to interferon production, T- and B-cell hyperactivity, DNA hypomethylation, and defective tissue response to injury. Methylation arrays have revealed alterations in white blood cell DNA methylation in SLE suggesting an important role of epigenetics and the environment. CONCLUSIONS Gene expression studies have contributed to the characterization of pathogenic processes in SLE. Integrated approaches utilizing genetic variation, transcriptome and epigenome profiling will facilitate efforts towards a molecular-based disease taxonomy.
Collapse
Affiliation(s)
- Eleni A Frangou
- Biomedical Research Foundation of the Academy of Athens, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | | | | |
Collapse
|
25
|
Feng D, Barnes BJ. Bioinformatics analysis of the factors controlling type I IFN gene expression in autoimmune disease and virus-induced immunity. Front Immunol 2013; 4:291. [PMID: 24065968 PMCID: PMC3776951 DOI: 10.3389/fimmu.2013.00291] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/04/2013] [Indexed: 12/18/2022] Open
Abstract
Patients with systemic lupus erythematosus (SLE) and Sjögren’s syndrome (SS) display increased levels of type I interferon (IFN)-induced genes. Plasmacytoid dendritic cells (PDCs) are natural interferon producing cells and considered to be a primary source of IFN-α in these two diseases. Differential expression patterns of type I IFN-inducible transcripts can be found in different immune cell subsets and in patients with both active and inactive autoimmune disease. A type I IFN gene signature generally consists of three groups of IFN-induced genes – those regulated in response to virus-induced type I IFN, those regulated by the IFN-induced mitogen-activated protein kinase/extracellular-regulated kinase (MAPK/ERK) pathway, and those by the IFN-induced phosphoinositide-3 kinase (PI-3K) pathway. These three groups of type I IFN-regulated genes control important cellular processes such as apoptosis, survival, adhesion, and chemotaxis, that when dysregulated, contribute to autoimmunity. With the recent generation of large datasets in the public domain from next-generation sequencing and DNA microarray experiments, one can perform detailed analyses of cell-type specific gene signatures as well as identify distinct transcription factors (TFs) that differentially regulate these gene signatures. We have performed bioinformatics analysis of data in the public domain and experimental data from our lab to gain insight into the regulation of type I IFN gene expression. We have found that the genetic landscape of the IFNA and IFNB genes are occupied by TFs, such as insulators CTCF and cohesin, that negatively regulate transcription, as well as interferon regulatory factor (IRF)5 and IRF7, that positively and distinctly regulate IFNA subtypes. A detailed understanding of the factors controlling type I IFN gene transcription will significantly aid in the identification and development of new therapeutic strategies targeting the IFN pathway in autoimmune disease.
Collapse
Affiliation(s)
- Di Feng
- Department of Biochemistry and Molecular Biology, Rutgers Biomedical and Health Sciences , Newark, NJ , USA ; Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, University of Medicine and Dentistry of New Jersey , Newark, NJ , USA
| | | |
Collapse
|
26
|
Kim K, Cho SK, Han TU, Kim JH, Kang SJ, Kang C, Bae SC. A redundant epistatic interaction between IRF5 and STAT4 of the type I interferon pathway in susceptibility to lupus and rheumatoid arthritis. Lupus 2013; 22:1336-40. [DOI: 10.1177/0961203313504479] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective K. K. and S.-K. C. are co-first authors, and C. K. and S.-C. B. are co-senior authors. Two transcription factors in the type I interferon pathway, IRF5 and STAT4, have been genetically associated with susceptibility to both systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). This study aimed to determine whether these two genes interact with each other to affect the disease susceptibilities. Methods The genetic interactions between IRF5 and STAT4 polymorphisms in SLE and RA susceptibility were examined using the epistasis options in PLINK software. This study analyzes the genetic data from 2558 unrelated Korean participants including 589 SLE patients, 987 RA patients, and 982 controls. Results All 12 polymorphisms were individually associated with SLE susceptibility ( p = 2.49 × 10−8 to 0.00360). Among the three SLE-associated polymorphisms of IRF5, rs77571059, alternatively called CGGGG(3–4) indel, exhibited the lowest p value (4.60 × 10−5) and accounted for the observed associations of the other two single-nucleotide polymorphisms (SNPs). Among the nine SLE-associated SNPs of STAT4, rs16833215 exhibited the lowest p value (2.49 × 10−8) and accounted for all the other associations. These two polymorphisms, rs77571059 of IRF5 and rs16833215 of STAT4, interacted with each other for SLE susceptibility in a redundant manner (ORinteraction = 0.77, Pepistasis = 0.040). Furthermore, these two polymorphisms, which had been individually associated with RA susceptibility, also interacted for RA susceptibility in the same manner (ORinteraction = 0.75, Pepistasis = 0.014). Conclusions A redundant interaction between IRF5 and STAT4 polymorphisms was found in susceptibility to the type I interferon pathway-associated rheumatic autoimmune diseases, SLE and RA, calling for further studies on confirmation of these findings.
Collapse
Affiliation(s)
- K Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Korea
| | - S-K Cho
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Korea
| | - T-U Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Korea
| | - J-H Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Korea
| | - S-J Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Korea
| | - C Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Korea
| | - S-C Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Korea
| |
Collapse
|
27
|
Xu J, Cheng YQ, Chen B, Bai R, Li S, Xu XF, Xu L, Wen JF, Lu ZP, Zeng XF. Depression in systemic lupus erythematosus patients is associated with link-polymorphism but not methylation status of the 5HTT promoter region. Lupus 2013; 22:1001-10. [PMID: 23893825 DOI: 10.1177/0961203313498793] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A higher prevalence of depression in systemic lupus erythematosus (SLE) patients has been reported, though the mechanism underlying this phenomenon remains unclear. The present study was conducted to explore whether the polymorphism and methylation status of the serotonin transporter gene (5HTT) promoter region (PR-5HTT) contribute to depression in SLE patients from both genetic and epigenetic perspectives. In this study, 96 SLE patients and 96 healthy controls (HCs) were recruited. Depression levels of all subjects were evaluated using the Hamilton Depression Rating Scale (HDRS). The serotonin transporter-linked polymorphism (5HTTLPR) and the DNA methylation status of PR-5HTT were detected in peripheral lymphocytes of SLE patients and HCs. The differences in 5HTTLPR and DNA methylation of PR-5HTT between SLEs and HCs were compared. In SLE patients, the frequencies of short allele (S) and SS genotype of 5HTTLPR were higher in depressive SLE (SLE-D) patients than in non-depressive SLE (SLE-ND) patients. The mean HDRS score of SS homozygote patients was higher than that of patients with SL/LL genotypes. Conversely, PR-5HTT was hypomethylated in HCs as well as SLE patients. There was no difference in the methylation status between HCs and SLEs. Thus, the functional expression of PR-5HTT may be primarily regulated by gene polymorphism and not by DNA methylation. The risk allele of 5HTTLPR appears to be a major contributor to depression in SLE patients.
Collapse
Affiliation(s)
- J Xu
- Department of Rheumatology and Immunology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, PR China
| | - YQ Cheng
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, PR China
| | - B Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, PR China
| | - R Bai
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, PR China
| | - S Li
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, PR China
| | - XF Xu
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, PR China
| | - L Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, PR China
| | - JF Wen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, PR China
| | - ZP Lu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, PR China
| | - XF Zeng
- Department of Rheumatology and Immunology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
| |
Collapse
|