1
|
Xu Z, Yang J, Hu Y, Wan Q, Wang X, Lu C, Liu Y. Qifu yixin prescription ameliorates cardiac fibrosis by activating soluble guanylate cyclase (sGC) in heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119229. [PMID: 39653101 DOI: 10.1016/j.jep.2024.119229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qifu yixin prescription (QYP), an effective traditional Chinese medicine formula, has been utilized in the clinical treatment of cardiovascular diseases for over two decades and has been granted a national invention patent in China. It has demonstrated the ability to improve clinical symptoms in patients with heart failure. However, its precise effects and underlying molecular mechanisms remain unclear. AIM OF THE STUDY To evaluate the efficacy of QYP in treating HF and the underlying mechanisms. MATERIALS AND METHODS The heart failure (HF) model in mice was established using transverse aortic constriction (TAC), while neonatal rat cardiac fibroblasts (CFs) were utilized for in vitro experiments. The bioactive compounds in QYP were identified through high-performance liquid chromatography (HPLC). Cardiac hypertrophy, function, and fibrosis were assessed using morphological observations, echocardiography, and histomorphometric analyses. To investigate the underlying mechanisms by which QYP alleviates HF, transcriptomic analysis was conducted, and network pharmacology was employed to explore its potential mechanisms of action. Mechanistically, the expression levels of sGC, PKG, ERK, and p-ERK were analyzed using western blotting, immunohistochemistry, and immunofluorescence. Molecular docking was conducted to assess the binding affinity of the compounds of QYP to sGC. Additionally, the effects of QYP on CFs were investigated through cell-based assays. RESULTS We identified 33 bioactive compounds in QYP. Histomorphometric and transcriptomic analyses indicated that QYP alleviates cardiac fibrosis in HF. Network pharmacological analysis suggested that the sGC/cGMP/PKG and MAPK pathways are key mechanisms underlying the effects of QYP on cardiac fibrosis. The findings confirmed that QYP activates sGC, leading to the inhibition of ERK phosphorylation. Molecular docking revealed that the compounds of QYP exhibit strong binding affinity to sGC. Additionally, cell-based experiments demonstrated that QYP effectively suppresses CFs activation by stimulating sGC. CONCLUSIONS These results indicate QYP improves cardiac fibrosis in HF by activating sGC to inhibit ERK phosphorylation. We propose that QYP is a potential treatment for HF with anti-fibrotic properties.
Collapse
Affiliation(s)
- Zhaohui Xu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jiahui Yang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yinqin Hu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qiqi Wan
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xinting Wang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Cheng Lu
- Department of Cardiology, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China.
| | - Yongming Liu
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Cardiology, Anhui Hospital of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Hefei Anhui, 230011, China.
| |
Collapse
|
2
|
Tian J, Dong M, Sun X, Jia X, Zhang G, Zhang Y, Lin Z, Xiao J, Zhang X, Lu H. Vericiguat in heart failure with reduced ejection fraction patients on guideline-directed medical therapy: Insights from a 6-month real-world study. Int J Cardiol 2024; 417:132524. [PMID: 39244100 DOI: 10.1016/j.ijcard.2024.132524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Vericiguat has demonstrated efficacy in improving the prognosis of patients with heart failure with reduced ejection fraction (HFrEF) following recent clinical deterioration. However, its real-world impact on reducing N-terminal B-type natriuretic peptide (NT-proBNP) levels and improving ventricular remodeling remains uncertain in stable HFrEF patients receiving guideline-directed medical therapy (GDMT) over the short term. METHODS This multicenter, observational cohort study included 200 HFrEF patients. Patients were grouped based on their preference for vericiguat use. We evaluated the impact of vericiguat on HFrEF patients by analyzing the difference in the proportion of patients with NT-proBNP levels ≤1000 pg/ml between two groups after a 6-month follow-up, using logistic regression and covariance analysis. Changes in echocardiographic parameters, left ventricular reverse remodeling (LVRR) ratio, and safety outcomes were also evaluated. RESULTS During the 6-month follow-up, 105 patients (82.68 %) in the vericiguat group and 46 patients (63.01 %) in the control group reached the primary endpoint. Multivariate logistic regression confirmed vericiguat as a significant factor in reducing NT-proBNP levels (Model 2: odds ratio (OR) = 2.67, 95 % confidence interval (CI): 1.24-5.77, P = 0.013), but it showed no significant association with LVRR (Model 2: OR = 0.52, 95 % CI: 0.24-1.13, P = 0.097). The safety analysis indicated a higher incidence of mild to moderate gastrointestinal symptoms in the vericiguat group compared to the control group (23.62 % vs. 2.74 %, P < 0.001). CONCLUSIONS Vericiguat significantly reduced NT-proBNP levels in patients with chronic HErEF under GDMT but was ineffective for LVRR during the 6-month follow-up.
Collapse
Affiliation(s)
- Jiangyue Tian
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Mei Dong
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoqian Sun
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoning Jia
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Guihua Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yanling Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zongwei Lin
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Xiao
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyu Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Huixia Lu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
3
|
Al-Maskari R, Abdelrahman AM, Ali H, Manoj P, Al Suleimani Y. Nephroprotective effects of the soluble guanylyl cyclase stimulator, riociguat in doxorubicin-induced acute kidney injury in rats. Toxicol Rep 2024; 13:101800. [PMID: 39606778 PMCID: PMC11600010 DOI: 10.1016/j.toxrep.2024.101800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
This study aimed to investigate the potential protective effects of riociguat, a soluble guanylyl cyclase (sGC) stimulator, on kidney function and structure in rats with acute kidney injury (AKI) induced by the chemotherapeutic drug doxorubicin (DX). Rats were subjected to a single intraperitoneal injection of DX (13.5 mg/kg) on the 5th day, either alone or in combination with low-dose riociguat (3 mg/kg/day), or high-dose riociguat (10 mg/kg/day) for 8 consecutive days. Various markers related to kidney function, oxidative stress, and inflammation were measured in plasma and urine. Kidney tissues were examined histopathologically. DX-induced nephrotoxicity was characterized by increased plasma urea, creatinine, uric acid and neutrophil gelatinase-associated lipocalin (NGAL). DX also decreased creatinine clearance and albumin levels and increased urinary N-acetyl-β-D-glucosaminidase (NAG) activity. Furthermore, DX increased the inflammatory markers interleukin 1 beta (IL-1 β), interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α). DX further induced oxidative stress injury evidenced by decreased glutathione reductase (GR) activity, total antioxidant capacity (TAC), superoxide dismutase (SOD) and catalase levels and increased malondialdehyde (MDA) levels. Concomitant treatment with riociguat ameliorated these DX-induced changes with parallel histopathological improvements but the effects were more favorable with high-dose riociguat. The observed renoprotective effects of riociguat can be partly attributed to the anti-inflammatory and anti-oxidant properties of this drug.
Collapse
Affiliation(s)
- Raya Al-Maskari
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| | - Aly M. Abdelrahman
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| | - Haytham Ali
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Priyadarsini Manoj
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| | - Yousuf Al Suleimani
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| |
Collapse
|
4
|
Khanna D, de Vries-Bouwstra J, Hoffmann-Vold AM, Kuwana M, Low AHL, Proudman S, Flack M, Kukreja A, Fagan N, Distler O. A Phase II study of avenciguat, a novel soluble guanylate cyclase activator, in patients with systemic sclerosis: Study design and rationale of the VITALISScE™ study. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2024:23971983241291923. [PMID: 39544899 PMCID: PMC11559521 DOI: 10.1177/23971983241291923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 11/17/2024]
Abstract
Introduction Systemic sclerosis is a rare autoimmune connective tissue disease characterised by (1) microvasculopathy; (2) immune dysregulation; and (3) progressive fibrosis of the skin and internal organs. Soluble guanylate cyclase plays an important role in maintaining vascular and immunological homeostasis and preventing organ fibrosis. Pharmacological modulation of soluble guanylate cyclase with soluble guanylate cyclase stimulators has shown anti-inflammatory and antifibrotic effects in animal models of systemic sclerosis, with a trend towards clinical efficacy in a Phase II study (RISE-SSc). However, the efficacy of soluble guanylate cyclase stimulators may be reduced under conditions of hypoxia and oxidative stress. Soluble guanylate cyclase activators have the potential to overcome this limitation. This paper describes the study design of VITALISScE™, a Phase II clinical trial assessing the efficacy, safety and tolerability of avenciguat, a novel soluble guanylate cyclase activator in patients with active systemic sclerosis at risk of progression. Methods The VITALISScE™ study (NCT05559580) is evaluating the action of avenciguat on all three aspects of systemic sclerosis pathophysiology. The primary endpoint is the rate of decline in forced vital capacity (mL) over 48 weeks. Secondary endpoints include absolute change from baseline at Week 48 in modified Rodnan skin score, Health Assessment Questionnaire Disability Index score and the proportion of responders based on the revised Composite Response Index in Systemic Sclerosis. Additional endpoints include a composite assessment of Raynaud's phenomenon, digital ulcer burden, functional outcomes and quality of life, safety, pharmacokinetics, and biomarkers associated with systemic sclerosis and the mechanism of action of avenciguat. Results VITALISScE™ is an ongoing, multicentre (180 sites; 38 countries), placebo-controlled, double-blind, parallel-group, Phase II clinical study. Recruitment is currently ongoing. Conclusions The VITALISScE™ study is assessing the efficacy, safety and tolerability of avenciguat in patients with active systemic sclerosis at risk of progression. Results will inform further development of avenciguat. Trial Registration VITALISScE™; EU CT No. 2022-500332-11-00; Clinicaltrials.gov: NCT05559580 (https://www.clinicaltrials.gov/study/NCT05559580).
Collapse
Affiliation(s)
- Dinesh Khanna
- Department of Internal Medicine, University of Michigan Scleroderma Clinic, Ann Arbor, MI, USA
| | | | - Anna-Maria Hoffmann-Vold
- Department of Rheumatology, Oslo University Hospital, Oslo, Norway
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Andrea Hsiu Ling Low
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore
- Duke-National University of Singapore Medical School, Singapore
| | - Susanna Proudman
- Discipline of Medicine, University of Adelaide and Rheumatology Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Mary Flack
- TA Inflammation Medicine, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Anjli Kukreja
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Nora Fagan
- Global Biostatistics & Data Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Tsai J, Malik S, Tjen-A-Looi SC. Pulmonary Hypertension: Pharmacological and Non-Pharmacological Therapies. Life (Basel) 2024; 14:1265. [PMID: 39459565 PMCID: PMC11509317 DOI: 10.3390/life14101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Pulmonary hypertension (PH) is a severe and chronic disease characterized by increased pulmonary vascular resistance and remodeling, often precipitating right-sided heart dysfunction and death. Although the condition is progressive and incurable, current therapies for the disease focus on multiple different drugs and general supportive therapies to manage symptoms and prolong survival, ranging from medications more specific to pulmonary arterial hypertension (PAH) to exercise training. Moreover, there are multiple studies exploring novel experimental drugs and therapies including unique neurostimulation, to help better manage the disease. Here, we provide a narrative review focusing on current PH treatments that target multiple underlying biochemical mechanisms, including imbalances in vasoconstrictor-vasodilator and autonomic nervous system function, inflammation, and bone morphogenic protein (BMP) signaling. We also focus on the potential of novel therapies for managing PH, focusing on multiple types of neurostimulation including acupuncture. Lastly, we also touch upon the disease's different subgroups, clinical presentations and prognosis, diagnostics, demographics, and cost.
Collapse
Affiliation(s)
- Jason Tsai
- Susan Samueli Integrative Health Institute, College of Health Sciences, University of California-Irvine, Irvine, CA 92617, USA;
| | | | - Stephanie C. Tjen-A-Looi
- Susan Samueli Integrative Health Institute, College of Health Sciences, University of California-Irvine, Irvine, CA 92617, USA;
| |
Collapse
|
6
|
Milara J, Ribera P, Marín S, Montero P, Roger I, Tenor H, Cortijo J. Phosphodiesterase 4 is overexpressed in human keloids and its inhibition reduces fibroblast activation and skin fibrosis. Chem Biol Interact 2024; 402:111211. [PMID: 39197814 DOI: 10.1016/j.cbi.2024.111211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
There is a pressing medical need for improved treatments in skin fibrosis including keloids and hypertrophic scars (HTS). This study aimed to characterize the role of phosphodiesterase 4 (PDE4), specifically PDE4B in fibrotic skin remodeling in vitro and in vivo. In vitro, effects of PDE4A-D (Roflumilast) or PDE4B (siRNA) inhibition on TGFβ1-induced myofibroblast differentiation and dedifferentiation were studied in normal (NHDF) and keloid (KF) human dermal fibroblasts. In vivo, the role of PDE4 on HOCl-induced skin fibrosis in mice was addressed in preventive and therapeutic protocols. PDE4B (mRNA, protein) was increased in Keloid > HTS compared to healthy skin and in TGFβ-stimulated NHDF and KF. In Keloid > HTS, collagen Iα1, αSMA, TGFβ1 and NOX4 mRNA were all elevated compared to healthy skin confirming skin fibrosis. In vitro, inhibition of PDE4A-D and PDE4B similarly prevented TGFβ1-induced Smad3 and ERK1/2 phosphorylation and myofibroblast differentiation, elevated NOX4 protein and proliferation in NHDF. PDE4A-D inhibition enabled myofibroblast dedifferentiation and curbed TGFβ1-induced reactive oxygen species and fibroblast senescence. In KF PDE4A-D inhibition restrained TGFβ1-induced Smad3 and ERK1/2 phosphorylation, myofibroblast differentiation and senescence. Mechanistically, PDE4A-D inhibition rescued from TGFβ1-induced loss in PPM1A, a Smad3 phosphatase. In vivo, PDE4 inhibition mitigated HOCl-induced skin fibrosis in mice in preventive and therapeutic protocols. The current study provides novel evidence evolving rationale for PDE4 inhibitors in skin fibrosis (including keloids and HTS) and delivered evidence for a functional role of PDE4B in this fibrotic condition.
Collapse
Affiliation(s)
- Javier Milara
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain; Pharmacy Unit, University General Hospital Consortium of Valencia, Spain.
| | - Pilar Ribera
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain
| | - Severiano Marín
- Plastic Surgery Unit, University General Hospital Consortium, 46014, Valencia, Spain
| | - Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain; Faculty of Health Sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
| | - Inés Roger
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain; Faculty of Health Sciences, Universidad Europea de Valencia, 46010, Valencia, Spain
| | | | - Julio Cortijo
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain
| |
Collapse
|
7
|
Xiang Y, Chen Q, Nan Y, Liu M, Xiao Z, Yang Y, Zhang J, Ying X, Long X, Wang S, Sun J, Huang Q, Ai K. Nitric Oxide‐Based Nanomedicines for Conquering TME Fortress: Say “NO” to Insufficient Tumor Treatment. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202312092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Indexed: 01/02/2025]
Abstract
AbstractAlmost all cancer treatments are significantly limited by the strong tumor microenvironment (TME) fortress formed by abnormal vasculature, dense extracellular matrix (ECM), multidrug resistance (MDR) system, and immune “cold” environment. In the huge efforts of dismantling the TME fortress, nitric oxide (NO)‐based nanomedicines are increasingly occupying a central position and have already been identified as super “strong polygonal warriors” to dismantle TME fortress for efficient cancer treatment, benefiting from NO's unique physicochemical properties and extremely fascinating biological effects. However, there is a paucity of systematic review to elaborate on the progress and fundamental mechanism of NO‐based nanomedicines in oncology from this aspect. Herein, the key characteristics of TME fortress and the potential of NO in reprogramming TME are delineated and highlighted. The evolution of NO donors and the advantages of NO‐based nanomedicines are discussed subsequently. Moreover, the latest progress of NO‐based nanomedicines for solid tumors is comprehensively reviewed, including normalizing tumor vasculature, overcoming ECM barrier, reversing MDR, and reactivating the immunosuppression TME. Lastly, the prospects, limitations, and future directions on NO‐based nanomedicines for TME manipulation are discussed to provide new insights into the construction of more applicable anticancer nanomedicines.
Collapse
Affiliation(s)
- Yuting Xiang
- Department of Pharmacy Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Yayun Nan
- Geriatric Medical Center People's Hospital of Ningxia Hui Autonomous Region Yinchuan Ningxia 750002 P. R. China
| | - Min Liu
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Yuqi Yang
- Department of Pharmacy Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
| | - Jinping Zhang
- Department of Pharmacy Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
| | - Xiaohong Ying
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Xingyu Long
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Shuya Wang
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Jian Sun
- College of Pharmacy Xinjiang Medical University Urumqi 830017 P. R. China
| | - Qiong Huang
- Department of Pharmacy Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and Treatment Ministry of Education Xiangya Hospital Central South University Changsha 410078 P. R. China
| |
Collapse
|
8
|
Fioretto BS, Rosa I, Andreucci E, Mencucci R, Marini M, Romano E, Manetti M. Pharmacological Stimulation of Soluble Guanylate Cyclase Counteracts the Profibrotic Activation of Human Conjunctival Fibroblasts. Cells 2024; 13:360. [PMID: 38391973 PMCID: PMC10887040 DOI: 10.3390/cells13040360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
Conjunctival fibrosis is a serious clinical concern implicated in a wide spectrum of eye diseases, including outcomes of surgery for pterygium and glaucoma. It is mainly driven by chronic inflammation that stimulates conjunctival fibroblasts to differentiate into myofibroblasts over time, leading to abnormal wound healing and scar formation. Soluble guanylate cyclase (sGC) stimulation was found to suppress transforming growth factor β (TGFβ)-induced myofibroblastic differentiation in various stromal cells such as skin and pulmonary fibroblasts, as well as corneal keratocytes. Here, we evaluated the in vitro effects of stimulation of the sGC enzyme with the cell-permeable pyrazolopyridinylpyrimidine compound BAY 41-2272 in modulating the TGFβ1-mediated profibrotic activation of human conjunctival fibroblasts. Cells were pretreated with the sGC stimulator before challenging with recombinant human TGFβ1, and subsequently assayed for viability, proliferation, migration, invasiveness, myofibroblast marker expression, and contractile properties. Stimulation of sGC significantly counteracted TGFβ1-induced cell proliferation, migration, invasiveness, and acquisition of a myofibroblast-like phenotype, as shown by a significant downregulation of FAP, ACTA2, COL1A1, COL1A2, FN1, MMP2, TIMP1, and TIMP2 mRNA levels, as well as by a significant reduction in α-smooth muscle actin, N-cadherin, COL1A1, and FN-EDA protein expression. In addition, pretreatment with the sGC stimulator was capable of significantly dampening TGFβ1-induced acquisition of a contractile phenotype by conjunctival fibroblasts, as well as phosphorylation of Smad3 and release of the proinflammatory cytokines IL-1β and IL-6. Taken together, our findings are the first to demonstrate the effectiveness of pharmacological sGC stimulation in counteracting conjunctival fibroblast-to-myofibroblast transition, thus providing a promising scientific background to further explore the feasibility of sGC stimulators as potential new adjuvant therapeutic compounds to treat conjunctival fibrotic conditions.
Collapse
Affiliation(s)
- Bianca Saveria Fioretto
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (M.M.)
| | - Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (M.M.)
| | - Elena Andreucci
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Rita Mencucci
- Eye Clinic, Careggi Hospital, Department of Neurosciences, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Mirca Marini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (M.M.)
| | - Eloisa Romano
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (M.M.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
9
|
Benza RL, Grünig E, Sandner P, Stasch JP, Simonneau G. The nitric oxide-soluble guanylate cyclase-cGMP pathway in pulmonary hypertension: from PDE5 to soluble guanylate cyclase. Eur Respir Rev 2024; 33:230183. [PMID: 38508664 PMCID: PMC10957071 DOI: 10.1183/16000617.0183-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/18/2024] [Indexed: 03/22/2024] Open
Abstract
The nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway plays a key role in the pathogenesis of pulmonary hypertension (PH). Targeted treatments include phosphodiesterase type 5 inhibitors (PDE5i) and sGC stimulators. The sGC stimulator riociguat is approved for the treatment of pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). sGC stimulators have a dual mechanism of action, enhancing the sGC response to endogenous NO and directly stimulating sGC, independent of NO. This increase in cGMP production via a dual mechanism differs from PDE5i, which protects cGMP from degradation by PDE5, rather than increasing its production. sGC stimulators may therefore have the potential to increase cGMP levels under conditions of NO depletion that could limit the effectiveness of PDE5i. Such differences in mode of action between sGC stimulators and PDE5i could lead to differences in treatment efficacy between the classes. In addition to vascular effects, sGC stimulators have the potential to reduce inflammation, angiogenesis, fibrosis and right ventricular hypertrophy and remodelling. In this review we describe the evolution of treatments targeting the NO-sGC-cGMP pathway, with a focus on PH.
Collapse
Affiliation(s)
| | - Ekkehard Grünig
- Pulmonary Hypertension Unit, Thoraxklinik at Heidelberg University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Sandner
- Bayer AG, Wuppertal, Germany
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Johannes-Peter Stasch
- Bayer AG, Wuppertal, Germany
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Gérald Simonneau
- Centre de Référence de l'Hypertension Pulmonaire Sévère, CHU Kremlin Bicêtre, Kremlin Bicêtre, France
| |
Collapse
|
10
|
Li N, Huang Y, Yi Y, Qian J, Li Q, Xu SQ, Wang HF, Wu XX, Peng JC, Li LH, Yao JJ, Liu XR. Analysis of abnormal expression of signaling pathways in PQ-induced acute lung injury in SD rats based on RNA-seq technology. Inhal Toxicol 2024; 36:1-12. [PMID: 38175690 DOI: 10.1080/08958378.2023.2300373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Background: Paraquat (PQ) plays an important role in agricultural production due to its highly effective herbicidal effect. However, it has led to multiple organ failure in those who have been poisoned, with damage most notable in the lungs and ultimately leading to death. Because of little research has been performed at the genetic level, and therefore, the specific genetic changes caused by PQ exposure are unclear.Methods: Paraquat poisoning model was constructed in Sprague Dawley (SD) rats, and SD rats were randomly divided into Control group, paraquat (PQ) poisoning group and Anthrahydroquinone-2,6-disulfonate (AH2QDS) treatment group. Then, the data was screened and quality controlled, compared with reference genes, optimized gene structure, enriched at the gene expression level, and finally, signal pathways with significantly different gene enrichment were screened.Results: This review reports on lung tissues from paraquat-intoxicated Sprague Dawley (SD) rats that were subjected to RNA-seq, the differentially expressed genes were mainly enriched in PI3K-AKT, cGMP-PKG, MAPK, Focal adhesion and other signaling pathways.Conclusion: The signaling pathways enriched with these differentially expressed genes are summarized, and the important mechanisms mediated through these pathways in acute lung injury during paraquat poisoning are outlined to identify important targets for AH2QDS treatment of acute lung injury due to paraquat exposure, information that will be used to support a subsequent in-depth study on the mechanism of PQ action.
Collapse
Affiliation(s)
- Nan Li
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| | - Yue Huang
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| | - Yang Yi
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| | - Jin Qian
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| | - Qi Li
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| | - Shuang-Qin Xu
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| | - Hang-Fei Wang
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| | - Xin-Xin Wu
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ji-Chao Peng
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Li-Hua Li
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jin-Jian Yao
- Emergency Department, Hainan General Hospital, Affiliated to Hainan Medical University, Haikou, China
| | - Xiao-Ran Liu
- College of Emergency and Trauma, Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Research, Hainan Medical University, Haikou, China
| |
Collapse
|
11
|
Englert N, Burkard P, Aue A, Rosenwald A, Nieswandt B, Friebe A. Anti-Fibrotic and Anti-Inflammatory Role of NO-Sensitive Guanylyl Cyclase in Murine Lung. Int J Mol Sci 2023; 24:11661. [PMID: 37511420 PMCID: PMC10380760 DOI: 10.3390/ijms241411661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Pulmonary fibrosis is a chronic and progressive disease with limited therapeutic options. Nitric oxide (NO) is suggested to reduce the progression of pulmonary fibrosis via NO-sensitive guanylyl cyclase (NO-GC). The exact effects of NO-GC during pulmonary fibrosis are still elusive. Here, we used a NO-GC knockout mouse (GCKO) and examined fibrosis and inflammation after bleomycin treatment. Compared to wildtype (WT), GCKO mice showed an increased fibrotic reaction, as myofibroblast occurrence (p = 0.0007), collagen content (p = 0.0006), and mortality (p = 0.0009) were significantly increased. After fibrosis induction, lymphocyte accumulations were observed in the lungs of GCKO but not in WT littermates. In addition, the total number of immune cells, specifically lymphocytes (p = <0.0001) and neutrophils (p = 0.0047), were significantly higher in the bronchoalveolar lavage fluid (BALF) of GCKO animals compared to WT, indicating an increased inflammatory response in the absence of NO-GC. The pronounced fibrotic response in GCKO mice was paralleled by significantly increased levels of transforming growth factor β (TGFβ) in BALF (p = 0.0207), which correlated with the total number of immune cells. Taken together, our data show the effect of NO-GC deletion in the pathology of lung fibrosis and the effect on immune cells in BALF. In summary, our results show that NO-GC has anti-inflammatory and anti-fibrotic properties in the murine lung, very likely by attenuating TGFβ-mediated effects.
Collapse
Affiliation(s)
- Nils Englert
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, 97070 Würzburg, Germany
| | - Philipp Burkard
- Institute of Experimental Biomedicine, Chair of Experimental Biomedicine I, University Hospital Würzburg, 97080 Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, 97070 Würzburg, Germany
| | - Annemarie Aue
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, 97070 Würzburg, Germany
- Klinik und Poliklinik für Anästhesiologie, Intensivmedizin, Notfallmedizin und Schmerztherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Andreas Rosenwald
- Institut für Pathologie, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, Chair of Experimental Biomedicine I, University Hospital Würzburg, 97080 Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, 97070 Würzburg, Germany
| | - Andreas Friebe
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
12
|
Gonzales J, Fraidenburg DR. Pharmacology and Emerging Therapies for Group 3 Pulmonary Hypertension Due to Chronic Lung Disease. Pharmaceuticals (Basel) 2023; 16:418. [PMID: 36986517 PMCID: PMC10058846 DOI: 10.3390/ph16030418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Pulmonary hypertension (PH) frequently complicates chronic lung disease and is associated with high morbidity and poor outcomes. Individuals with interstitial lung disease and chronic obstructive pulmonary disease develop PH due to structural changes associated with the destruction of lung parenchyma and vasculature with concurrent vasoconstriction and pulmonary vascular remodeling similar to what is observed in idiopathic pulmonary arterial hypertension (PAH). Treatment for PH due to chronic lung disease is largely supportive and therapies specific to PAH have had minimal success in this population with exception of the recently FDA-approved inhaled prostacyclin analogue treprostinil. Given the significant disease burden of PH due to chronic lung diseases and its associated mortality, a great need exists for improved understanding of molecular mechanisms leading to vascular remodeling in this population. This review will discuss the current understanding of pathophysiology and emerging therapeutic targets and potential pharmaceuticals.
Collapse
|
13
|
Bueno M, Calyeca J, Khaliullin T, Miller MP, Alvarez D, Rosas L, Brands J, Baker C, Nasser A, Shulkowski S, Mathien A, Uzoukwu N, Sembrat J, Mays BG, Fiedler K, Hahn SA, Salvatore SR, Schopfer FJ, Rojas M, Sandner P, Straub AC, Mora AL. CYB5R3 in type II alveolar epithelial cells protects against lung fibrosis by suppressing TGF-β1 signaling. JCI Insight 2023; 8:e161487. [PMID: 36749633 PMCID: PMC10077481 DOI: 10.1172/jci.insight.161487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Type II alveolar epithelial cell (AECII) redox imbalance contributes to the pathogenesis of idiopathic pulmonary fibrosis (IPF), a deadly disease with limited treatment options. Here, we show that expression of membrane-bound cytochrome B5 reductase 3 (CYB5R3), an enzyme critical for maintaining cellular redox homeostasis and soluble guanylate cyclase (sGC) heme iron redox state, is diminished in IPF AECIIs. Deficiency of CYB5R3 in AECIIs led to sustained activation of the pro-fibrotic factor TGF-β1 and increased susceptibility to lung fibrosis. We further show that CYB5R3 is a critical regulator of ERK1/2 phosphorylation and the sGC/cGMP/protein kinase G axis that modulates activation of the TGF-β1 signaling pathway. We demonstrate that sGC agonists (BAY 41-8543 and BAY 54-6544) are effective in reducing the pulmonary fibrotic outcomes of in vivo deficiency of CYB5R3 in AECIIs. Taken together, these results show that CYB5R3 in AECIIs is required to maintain resilience after lung injury and fibrosis and that therapeutic manipulation of the sGC redox state could provide a basis for treating fibrotic conditions in the lung and beyond.
Collapse
Affiliation(s)
- Marta Bueno
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jazmin Calyeca
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Timur Khaliullin
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Megan P. Miller
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Diana Alvarez
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lorena Rosas
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Judith Brands
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christian Baker
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amro Nasser
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephanie Shulkowski
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - August Mathien
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nneoma Uzoukwu
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brenton G. Mays
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kaitlin Fiedler
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Scott A. Hahn
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Francisco J. Schopfer
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology
- Pittsburgh Liver Research Center (PLRC), and
- Center for Metabolism and Mitochondrial Medicine (C3M), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mauricio Rojas
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Peter Sandner
- Bayer Pharmaceuticals Wuppertal, Germany
- Hannover Medical School, Hannover, Germany
| | | | - Ana L. Mora
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
14
|
Romano E, Rosa I, Fioretto BS, Giuggioli D, Manetti M, Matucci-Cerinic M. Soluble guanylate cyclase stimulation fosters angiogenesis and blunts myofibroblast-like features of systemic sclerosis endothelial cells. Rheumatology (Oxford) 2023; 62:SI125-SI137. [PMID: 35900177 DOI: 10.1093/rheumatology/keac433] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES In SSc, angiogenesis impairment advances in parallel with the development of fibrosis orchestrated by myofibroblasts originating from different sources, including endothelial-to-mesenchymal transition (EndoMT). Soluble guanylate cyclase (sGC) stimulation has shown antifibrotic effects in SSc skin fibroblasts and mouse models. Here, we investigated the effects of pharmacological sGC stimulation on impaired angiogenesis and myofibroblast-like features of SSc dermal microvascular endothelial cells (SSc-MVECs). METHODS To determine whether sGC stimulation affected cell viability/proliferation, SSc-MVECs and healthy dermal MVECs (H-MVECs) were challenged with the sGC stimulator (sGCS) MK-2947 and assayed by annexin V/propidium iodide flow cytometry and the water-soluble tetrazolium salt (WST-1) assay. To study angiogenesis and EndoMT, MK-2947-treated SSc-MVECs were subjected to wound healing and capillary morphogenesis assays and analysed for the expression of endothelial/myofibroblast markers and contractile ability. RESULTS MK-2947 treatment did not affect H-MVEC viability/proliferation, while it significantly increased SSc-MVEC proliferation, wound healing capability and angiogenic performance. After MK-2947 treatment, SSc-MVECs exhibited significantly increased proangiogenic MMP9 and decreased antiangiogenic MMP12 and PTX3 gene expression. A significant increase in the expression of CD31 and vascular endothelial cadherin paralleled by a decrease in α-smooth muscle actin, S100A4, type I collagen and Snail1 mesenchymal markers was also found in MK-2947-treated SSc-MVECs. Furthermore, stimulation of sGC with MK-2947 significantly counteracted the intrinsic ability of SSc-MVECs to contract collagen gels and reduced phosphorylated-extracellular signal-regulated kinases 1 and 2 protein levels. CONCLUSION These findings demonstrate for the first time that pharmacological sGC stimulation effectively ameliorates the angiogenic performance and blunts the myofibroblast-like profibrotic phenotype of SSc-MVECs, thus providing new evidence for repurposing sGCSs for SSc.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology.,Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence
| | - Dilia Giuggioli
- Department of Medical and Surgical Sciences for Children and Adults, Scleroderma Unit, University of Modena and Reggio Emilia, Modena
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology.,Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
15
|
The Soluble Guanylate Cyclase Stimulator BAY 41-2272 Attenuates Transforming Growth Factor β1-Induced Myofibroblast Differentiation of Human Corneal Keratocytes. Int J Mol Sci 2022; 23:ijms232315325. [PMID: 36499651 PMCID: PMC9737374 DOI: 10.3390/ijms232315325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/07/2022] Open
Abstract
Corneal transparency, necessary for vision and depending on the high organization of stromal extracellular matrix, is maintained by keratocytes. Severe or continuous corneal injuries determine exaggerated healing responses resulting in the formation of irreversible fibrotic scars and vision impairment. Soluble guanylate cyclase (sGC) stimulation demonstrated antifibrotic effects in both experimental fibrosis and human lung and skin fibroblasts. Here, we assessed whether sGC stimulation with BAY 41-2272 could attenuate transforming growth factor β1 (TGFβ1)-induced myofibroblast differentiation of human corneal keratocytes. Cells were challenged with TGFβ1, with/without BAY 41-2272 preincubation, and subsequently assessed for viability, proliferation, migration, chemoinvasion, as well for the expression of myofibroblast/fibroblast activation markers and contractile abilities. Treatment with BAY 41-2272 did not affect keratocyte viability, while preincubation of cells with the sGC stimulator was able to inhibit TGFβ1-induced proliferation, wound healing capacity, and invasiveness. BAY 41-2272 was also able to attenuate TGFβ1-induced myofibroblast-like profibrotic phenotype of keratocytes, as demonstrated by the significant decrease in ACTA2, COL1A1, COL1A2, FN1 and PDPN gene expression, as well as in α-smooth muscle actin, α-1 chain of type I collagen, podoplanin, vimentin and N-cadherin protein expression. Finally, BAY 41-2272 significantly counteracted the TGFβ1-induced myofibroblast-like ability of keratocytes to contract collagen gels, reduced phosphorylated Smad3 protein levels, and attenuated gene expression of proinflammatory cytokines. Collectively, our data show for the first time that BAY 41-2272 is effective in counteracting keratocyte-to-myofibroblast transition, thus providing the rationale for the development of sGC stimulators as novel promising modulators of corneal scarring and fibrosis.
Collapse
|
16
|
Faleeva M, Diakonov I, Srivastava P, Ramuz M, Calamera G, Andressen KW, Bork N, Tsansizi L, Cosson MV, Bernardo AS, Nikolaev V, Gorelik J. Compartmentation of cGMP Signaling in Induced Pluripotent Stem Cell Derived Cardiomyocytes during Prolonged Culture. Cells 2022; 11:3257. [PMID: 36291124 PMCID: PMC9600086 DOI: 10.3390/cells11203257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
The therapeutic benefit of stimulating the cGMP pathway as a form of treatment to combat heart failure, as well as other fibrotic pathologies, has become well established. However, the development and signal compartmentation of this crucial pathway has so far been overlooked. We studied how the three main cGMP pathways, namely, nitric oxide (NO)-cGMP, natriuretic peptide (NP)-cGMP, and β3-adrenoreceptor (AR)-cGMP, mature over time in culture during cardiomyocyte differentiation from human pluripotent stem cells (hPSC-CMs). After introducing a cGMP sensor for Förster Resonance Energy Transfer (FRET) microscopy, we used selective phosphodiesterase (PDE) inhibition to reveal cGMP signal compartmentation in hPSC-CMs at various times of culture. Methyl-β-cyclodextrin was employed to remove cholesterol and thus to destroy caveolae in these cells, where physical cGMP signaling compartmentalization is known to occur in adult cardiomyocytes. We identified PDE3 as regulator of both the NO-cGMP and NP-cGMP pathway in the early stages of culture. At the late stage, the role of the NO-cGMP pathway diminished, and it was predominantly regulated by PDE1, PDE2, and PDE5. The NP-cGMP pathway shows unrestricted locally and unregulated cGMP signaling. Lastly, we observed that maturation of the β3-AR-cGMP pathway in prolonged cultures of hPSC-CMs depends on the accumulation of caveolae. Overall, this study highlighted the importance of structural development for the necessary compartmentation of the cGMP pathway in maturing hPSC-CMs.
Collapse
Affiliation(s)
- Maria Faleeva
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Ivan Diakonov
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Prashant Srivastava
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Masoud Ramuz
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Gaia Calamera
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, P.O. Box 1057 Blindern, 0316 Oslo, Norway
| | - Kjetil Wessel Andressen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, P.O. Box 1057 Blindern, 0316 Oslo, Norway
| | - Nadja Bork
- German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf and Institute of Experimental Cardiovascular Research, Martinistrasse 52, 20251 Hamburg, Germany
| | | | | | - Andreia Sofia Bernardo
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Viacheslav Nikolaev
- German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf and Institute of Experimental Cardiovascular Research, Martinistrasse 52, 20251 Hamburg, Germany
| | - Julia Gorelik
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
17
|
Galley JC, Hahn SA, Miller MP, Durgin BG, Jackson EK, Stocker SD, Straub AC. Angiotensin II augments renal vascular smooth muscle soluble GC expression via an AT 1 receptor-forkhead box subclass O transcription factor signalling axis. Br J Pharmacol 2022; 179:2490-2504. [PMID: 33963547 PMCID: PMC8883839 DOI: 10.1111/bph.15522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Reduced renal blood flow triggers activation of the renin-angiotensin-aldosterone system (RAAS) leading to renovascular hypertension. Renal vascular smooth muscle expression of the NO receptor, soluble GC (sGC), modulates the vasodilator response needed to control renal vascular tone and blood flow. Here, we tested if angiotensin II (Ang II) affects sGC expression via an AT1 receptor-forkhead box subclass O (FoxO) transcription factor dependent mechanism. EXPERIMENTAL APPROACH Using a murine two-kidney-one-clip (2K1C) renovascular hypertension model, we measured renal artery vasodilatory function and sGC expression. Additionally, we conducted cell culture studies using rat renal pre-glomerular smooth muscle cells (RPGSMCs) to test the in vitro mechanistic effects of Ang II treatment on sGC expression and downstream function. KEY RESULTS Contralateral, unclipped renal arteries in 2K1C mice showed increased NO-dependent vasorelaxation compared to sham control mice. Immunofluorescence studies revealed increased sGC protein expression in 2K1C contralateral renal arteries over sham controls. RPGSMCs treated with Ang II caused a significant up-regulation of sGC mRNA and protein expression as well as downstream sGC-dependent signalling. Ang II signalling effects on sGC expression occurred through an AT1 receptor and FoxO transcription factor-dependent mechanism at both the mRNA and protein expression levels. CONCLUSION AND IMPLICATIONS Renal artery smooth muscle, in vivo and in vitro, up-regulates expression of sGC following RAAS activity. In both cases, up-regulation of sGC leads to increased downstream cGMP signalling, suggesting a previously unrecognized protective mechanism to improve renal blood flow in the uninjured contralateral renal artery. LINKED ARTICLES This article is part of a themed issue on cGMP Signalling in Cell Growth and Survival. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.11/issuetoc.
Collapse
Affiliation(s)
- Joseph C. Galley
- Heart, Lung, Blood and Vascular Medicine Institute,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Scott A. Hahn
- Heart, Lung, Blood and Vascular Medicine Institute,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Megan P. Miller
- Heart, Lung, Blood and Vascular Medicine Institute,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brittany G. Durgin
- Heart, Lung, Blood and Vascular Medicine Institute,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sean D. Stocker
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adam C. Straub
- Heart, Lung, Blood and Vascular Medicine Institute,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
Li H. Intercellular crosstalk of liver sinusoidal endothelial cells in liver fibrosis, cirrhosis and hepatocellular carcinoma. Dig Liver Dis 2022; 54:598-613. [PMID: 34344577 DOI: 10.1016/j.dld.2021.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Intercellular crosstalk among various liver cells plays an important role in liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Capillarization of liver sinusoidal endothelial cells (LSECs) precedes fibrosis and accumulating evidence suggests that the crosstalk between LSECs and other liver cells is critical in the development and progression of liver fibrosis. LSECs dysfunction, a key event in the progression from fibrosis to cirrhosis, and subsequently obstruction of hepatic sinuses and increased intrahepatic vascular resistance (IHVR) contribute to development of portal hypertension (PHT) and cirrhosis. More importantly, immunosuppressive tumor microenvironment (TME), which is closely related to the crosstalk between LSECs and immune liver cells like CD8+ T cells, promotes advances tumorigenesis, especially HCC. However, the connections within the crosstalk between LSECs and other liver cells during the progression from liver fibrosis to cirrhosis to HCC have yet to be discussed. In this review, we first summarize the current knowledge of how different crosstalk between LSECs and other liver cells, including hepatocytes, hepatic stellate cells (HSCs), macrophoges, immune cells in liver and extra cellular matrix (ECM) contribute to the physiological function and the progrssion from liver fibrosis to cirrhosis, or even to HCC. Then we examine current treatment strategies for LSECs crosstalk in liver fibrosis, cirrhosis and HCC.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, PR China.
| |
Collapse
|
19
|
Bohdziewicz A, Pawlik KK, Maciejewska M, Sikora M, Alda-Malicka R, Czuwara J, Rudnicka L. Future Treatment Options in Systemic Sclerosis-Potential Targets and Ongoing Clinical Trials. J Clin Med 2022; 11:1310. [PMID: 35268401 PMCID: PMC8911443 DOI: 10.3390/jcm11051310] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/14/2022] [Accepted: 02/24/2022] [Indexed: 02/03/2023] Open
Abstract
Systemic sclerosis is an autoimmune connective tissue disease characterized by vasculopathy and fibrosis of the skin and internal organs. The pathogenesis of systemic sclerosis is very complex. Mediators produced by immune cells are involved in the inflammatory processes occurring in the tissues. The currently available therapeutic options are often insufficient to halt disease progress. This article presents an overview of potential therapeutic targets and the pipeline of possible future therapeutic options. It is based on research of clinical trials involving novel, unestablished methods of treatment. Increasing knowledge of the processes and mediators involved in systemic scleroderma has led to the initiation of drug trials with therapeutic targets of CD28-CD80/86, CD19, CCL24, CD20, CD30, tumor necrosis factor (TNF), transforming growth factor β (TGF-β), B-cell activating factor (BAFF), lysophosphatidic acid receptor 1 (LPA1 receptor), soluble guanylate cyclase (sGC), Janus kinases (JAK), interleukin 6 (IL-6), endothelin receptor, and autotaxin. Data from clinical trials on these drugs indicate a significant potential for several new therapeutic options for systemic sclerosis in the upcoming future.
Collapse
Affiliation(s)
- Anna Bohdziewicz
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.B.); (K.K.P.); (R.A.-M.); (J.C.); (L.R.)
| | - Katarzyna Karina Pawlik
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.B.); (K.K.P.); (R.A.-M.); (J.C.); (L.R.)
| | - Magdalena Maciejewska
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.B.); (K.K.P.); (R.A.-M.); (J.C.); (L.R.)
| | - Mariusz Sikora
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland;
| | - Rosanna Alda-Malicka
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.B.); (K.K.P.); (R.A.-M.); (J.C.); (L.R.)
| | - Joanna Czuwara
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.B.); (K.K.P.); (R.A.-M.); (J.C.); (L.R.)
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland; (A.B.); (K.K.P.); (R.A.-M.); (J.C.); (L.R.)
| |
Collapse
|
20
|
Yamamoto A, Saito T, Hosoya T, Kawahata K, Asano Y, Sato S, Mizoguchi F, Yasuda S, Kohsaka H. Therapeutic effect of cyclin-dependent kinase 4/6 inhibitor on dermal fibrosis in murine models of systemic sclerosis. Arthritis Rheumatol 2021; 74:860-870. [PMID: 34882985 DOI: 10.1002/art.42042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/18/2021] [Accepted: 12/02/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Histology of systemic sclerosis (SSc) includes an increased number of myofibroblasts, where transforming growth factor-β (TGF-β) plays a crucial role to promote dermal fibrosis. The objectives of this study were to examine whether the inhibition of cell cycle with cyclin-dependent kinase (CDK) 4/6 inhibitor suppress fibroblast proliferation and the differentiation into myofibroblasts, and the therapeutic effect of a CDK4/6 inhibitor on dermal fibrosis in murine models of SSc in monotherapy or in combination with TGF-β receptor inhibitor (TGFβRI). METHODS SSc fibroblasts were cultured in the presence or absence of TGF-β. Effects of palbociclib (CDKI), a CDK4/6 inhibitor, on fibroblast proliferation and TGF-β-induced differentiation into myofibroblasts were examined with BrdU uptake, immunofluorescence, and immunoblotting. Hypochlorous acid (HOCl)- and bleomycin-induced dermal fibrosis models were used to study the effect of CDKI on dermal fibrosis in monotherapy or in combination with galunisertib, a TGFβRI. RESULTS CDKI suppressed the proliferation of SSc fibroblasts and their TGF-β-induced differentiation into myofibroblast without inhibiting canonical and non-canonical TGF-β signals. Treatment of dermal fibrosis models with CDKI decreased dermal thickness and collagen content, as well as fibroblast proliferation and myofibroblast number. The combination therapy with CDKI and TGFβRI exerted additive anti-fibrotic effects. Mechanistically, CDKI suppressed the expression of cellular communication network (CCN) 2 and cadherin-11 important for fibrosis. CONCLUSION We demonstrated the therapeutic effect of CDKI on dermal fibrosis in monotherapy or in combination with TGFβRI. CDKI should be a novel agent for the treatment of SSc, which may be used with TGFβRI to increase the efficacy.
Collapse
Affiliation(s)
- Akio Yamamoto
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuya Saito
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tadashi Hosoya
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kimito Kawahata
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fumitaka Mizoguchi
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hitoshi Kohsaka
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
21
|
Ferrara B, Pignatelli C, Cossutta M, Citro A, Courty J, Piemonti L. The Extracellular Matrix in Pancreatic Cancer: Description of a Complex Network and Promising Therapeutic Options. Cancers (Basel) 2021; 13:cancers13174442. [PMID: 34503252 PMCID: PMC8430646 DOI: 10.3390/cancers13174442] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
The stroma is a relevant player in driving and supporting the progression of pancreatic ductal adenocarcinoma (PDAC), and a large body of evidence highlights its role in hindering the efficacy of current therapies. In fact, the dense extracellular matrix (ECM) characterizing this tumor acts as a natural physical barrier, impairing drug penetration. Consequently, all of the approaches combining stroma-targeting and anticancer therapy constitute an appealing option for improving drug penetration. Several strategies have been adopted in order to target the PDAC stroma, such as the depletion of ECM components and the targeting of cancer-associated fibroblasts (CAFs), which are responsible for the increased matrix deposition in cancer. Additionally, the leaky and collapsing blood vessels characterizing the tumor might be normalized, thus restoring blood perfusion and allowing drug penetration. Even though many stroma-targeting strategies have reported disappointing results in clinical trials, the ECM offers a wide range of potential therapeutic targets that are now being investigated. The dense ECM might be bypassed by implementing nanoparticle-based systems or by using mesenchymal stem cells as drug carriers. The present review aims to provide an overview of the principal mechanisms involved in the ECM remodeling and of new promising therapeutic strategies for PDAC.
Collapse
Affiliation(s)
- Benedetta Ferrara
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - Cataldo Pignatelli
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - Mélissande Cossutta
- INSERM U955, Immunorégulation et Biothérapie, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil, 94010 Créteil, France; (M.C.); (J.C.)
- AP-HP, Centre d’Investigation Clinique Biothérapie, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France
| | - Antonio Citro
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - José Courty
- INSERM U955, Immunorégulation et Biothérapie, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil, 94010 Créteil, France; (M.C.); (J.C.)
- AP-HP, Centre d’Investigation Clinique Biothérapie, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France
| | - Lorenzo Piemonti
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
- Correspondence:
| |
Collapse
|
22
|
Mouse Models of Skin Fibrosis. Methods Mol Biol 2021; 2299:371-383. [PMID: 34028755 DOI: 10.1007/978-1-0716-1382-5_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Systemic sclerosis (SSc) is a rare systemic autoimmune disease associated with a high mortality. The first histopathological hallmarks are vasculopathy and inflammation, followed by fibrosis of the skin and internal organs. The molecular and cellular mechanisms are incompletely understood. Rodent models provide important insights into the pathogenesis of SSc and are a mainstay for the development of novel targeted therapies. Here we describe the mechanistic insights of inducible and genetic models, and also discuss in detail the limitations and pitfalls of the most frequently used SSc mouse models. We also describe protocols for running the established bleomycin-induced scleroderma skin fibrosis model.
Collapse
|
23
|
Bayarri MA, Milara J, Estornut C, Cortijo J. Nitric Oxide System and Bronchial Epithelium: More Than a Barrier. Front Physiol 2021; 12:687381. [PMID: 34276407 PMCID: PMC8279772 DOI: 10.3389/fphys.2021.687381] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Airway epithelium forms a physical barrier that protects the lung from the entrance of inhaled allergens, irritants, or microorganisms. This epithelial structure is maintained by tight junctions, adherens junctions and desmosomes that prevent the diffusion of soluble mediators or proteins between apical and basolateral cell surfaces. This apical junctional complex also participates in several signaling pathways involved in gene expression, cell proliferation and cell differentiation. In addition, the airway epithelium can produce chemokines and cytokines that trigger the activation of the immune response. Disruption of this complex by some inflammatory, profibrotic, and carcinogens agents can provoke epithelial barrier dysfunction that not only contributes to an increase of viral and bacterial infection, but also alters the normal function of epithelial cells provoking several lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF) or lung cancer, among others. While nitric oxide (NO) molecular pathway has been linked with endothelial function, less is known about the role of the NO system on the bronchial epithelium and airway epithelial cells function in physiological and different pathologic scenarios. Several data indicate that the fraction of exhaled nitric oxide (FENO) is altered in lung diseases such as asthma, COPD, lung fibrosis, and cancer among others, and that reactive oxygen species mediate uncoupling NO to promote the increase of peroxynitrite levels, thus inducing bronchial epithelial barrier dysfunction. Furthermore, iNOS and the intracellular pathway sGC-cGMP-PKG are dysregulated in bronchial epithelial cells from patients with lung inflammation, fibrosis, and malignancies which represents an attractive drug molecular target. In this review we describe in detail current knowledge of the effect of NOS-NO-GC-cGMP-PKG pathway activation and disruption in bronchial epithelial cells barrier integrity and its contribution in different lung diseases, focusing on bronchial epithelial cell permeability, inflammation, transformation, migration, apoptosis/necrosis, and proliferation, as well as the specific NO molecular pathways involved.
Collapse
Affiliation(s)
- María Amparo Bayarri
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Pharmacy Unit, University General Hospital Consortium of Valencia, Valencia, Spain
| | - Cristina Estornut
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Research and Teaching Unit, University General Hospital Consortium of Valencia, Valencia, Spain
| |
Collapse
|
24
|
Abstract
Systemic sclerosis (SSc) is a rare and complex disease, involving multiple organs, with high morbidity and mortality. Fibrosis is the hallmark of SSc, although vascular and inflammatory mechanisms are also implicated in its pathogenesis. Disease management is challenging, due to its heterogeneous presentation, and to the limited number of controlled clinical trials to guide treating clinicians. Immunosuppressive agents have been used to prevent progression, especially in the lung, before irreversible injury occurs, with some, although modest, benefit. Nintedanib, a tyrosine kinase inhibitor, has recently demonstrated safety and efficacy in interstitial lung disease (ILD) associated with SSc, and many other antifibrotics are being assessed as possible beneficial therapies, with promising results. An important unmet need remains, to clarify to which patients, when, and with which agent therapy should be initiated, to achieve optimal outcomes. This review summarizes available evidence for current and emerging antifibrotic therapies in SSc patients.
Collapse
Affiliation(s)
- Maria Martin-Lopez
- Rheumatology Department, Hospital Universitario 12 de Octubre, Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Patricia E Carreira
- Rheumatology Department, Hospital Universitario 12 de Octubre, Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
25
|
Nathan SD, Cottin V, Behr J, Hoeper MM, Martinez FJ, Corte TJ, Keogh AM, Leuchte H, Mogulkoc N, Ulrich S, Wuyts WA, Yao Z, Ley-Zaporozhan J, Müller-Lisse UG, Scholle FD, Brüggenwerth G, Busse D, Nikkho S, Wells AU. Impact of lung morphology on clinical outcomes with riociguat in patients with pulmonary hypertension and idiopathic interstitial pneumonia: A post hoc subgroup analysis of the RISE-IIP study. J Heart Lung Transplant 2021; 40:494-503. [PMID: 33744088 DOI: 10.1016/j.healun.2021.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Riociguat in Patients with Symptomatic Pulmonary Hypertension associated with Idiopathic Interstitial Pneumonias (RISE-IIP), a randomized, controlled, phase 2b trial of riociguat for pulmonary hypertension associated with idiopathic interstitial pneumonia, was terminated early due to increased mortality in riociguat-treated patients. Baseline characteristics of enrolled patients demonstrated a low diffusing capacity of the lung for carbon monoxide (DLCO) with preserved lung volumes at baseline, suggesting the presence of combined pulmonary fibrosis and emphysema (CPFE) in some patients. This post hoc analysis of RISE-IIP was undertaken to explore lung morphology, assessed by high-resolution computed tomography, and associated clinical outcomes. METHODS Available baseline/pre-baseline high-resolution computed tomography scans were reviewed centrally by 2 radiologists. The extent of emphysema and fibrosis was retrospectively scored and combined to provide the total CPFE score. RESULTS Data were available for 65/147 patients (44%), including 15/27 fatal cases (56%). Of these, 41/65 patients (63%) had CPFE. Mortality was higher in patients with CPFE (12/41; 29%) than those without (3/24; 13%). Fourteen patients with CPFE had emphysema > fibrosis (4 died). No relationship was observed between CPFE score, survival status, and treatment assignment. A low DLCO, short 6-min walking distance, and high forced vital capacity:DLCO ratio at baseline also appeared to be risk factors for mortality. CONCLUSIONS High parenchymal lung disease burden and the presence of more emphysema than fibrosis might have predisposed patients with pulmonary hypertension associated with idiopathic interstitial pneumonia to poor outcomes in RISE-IIP. Future studies of therapy for group 3 pulmonary hypertension should include centrally adjudicated imaging for morphologic phenotyping and disease burden evaluation during screening.
Collapse
Affiliation(s)
- Steven D Nathan
- Advanced Lung Disease and Transplant Program, Inova Heart and Vascular Institute, Falls Church, Virginia.
| | - Vincent Cottin
- National Reference Centre for Rare Pulmonary Diseases, Department of Respiratory Medicine, Louis Pradel Hospital, Lyon, France; Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Juergen Behr
- Department of Internal Medicine V, Ludwig Maximilian University of Munich, Comprehensive Pneumology Center, Helmholtz Zentrum, Munich, Germany
| | - Marius M Hoeper
- Clinic for Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Fernando J Martinez
- Department of Medicine, Weill Cornell Medical College, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York
| | - Tamera J Corte
- Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia
| | - Anne M Keogh
- Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia; St Vincent's Hospital, Sydney, Australia
| | - Hanno Leuchte
- Department of Internal Medicine II, Neuwittelsbach Academic Hospital, Ludwig Maximilian University, Munich, Germany
| | - Nesrin Mogulkoc
- Department of Pulmonology, Ege University Hospital, Izmir, Turkey
| | - Silvia Ulrich
- Clinic of Pulmonology, University Hospital Zürich, Zürich, Switzerland
| | - Wim A Wuyts
- Unit for Interstitial Lung Diseases, University Hospitals of Leuven, Leuven, Belgium
| | - Zhen Yao
- Bayer Healthcare Company Ltd., Beijing, China
| | | | | | | | | | | | | | - Athol U Wells
- Interstitial Lung Disease Unit, Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
26
|
Wang W, Zhu Y, Sun Z, Jin C, Wang X. Positive feedback regulation between USP15 and ERK2 inhibits osteoarthritis progression through TGF-β/SMAD2 signaling. Arthritis Res Ther 2021; 23:84. [PMID: 33726807 PMCID: PMC7962367 DOI: 10.1186/s13075-021-02456-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/18/2021] [Indexed: 01/14/2023] Open
Abstract
Background The transforming growth factor-β (TGF-β) signaling pathway plays an essential role in maintaining homeostasis in joints affected by osteoarthritis (OA). However, the specific mechanism of non-SMAD and classical SMAD signaling interactions is still unclear, which needs to be further explored. Methods In ATDC5 cells, USP15 overexpression and knockout were performed using the transfected lentivirus USP15 and Crispr/Cas9. Western blotting and immunofluorescence staining were used to test p-SMAD2 and cartilage phenotype-related molecular markers. In rat OA models, immunohistochemistry, hematoxylin and eosin (HE)/Safranin-O fast green staining, and histology were used to examine the regulatory activity of USP15 in TGF-β/SMAD2 signaling and the cartilage phenotype. Then, ERK2 overexpression and knockout were performed. The expressions of USP15, p-SMAD2, and the cartilage phenotype were evaluated in vitro and in vivo. To address whether USP15 is required for ERK2 and TGF-β/SMAD2 signaling, we performed rescue experiments in vitro and in vivo. Immunoprecipitation and deubiquitination assays were used to examine whether USP15 could bind to ERK2 and affect the deubiquitination of ERK2. Finally, whether USP15 regulates the level of p-ERK1/2 was evaluated by western blotting, immunofluorescence staining, and immunohistochemistry in vitro and in vivo. Results Our results indicated that USP15 stimulated TGF-β/SMAD2 signaling and the cartilage phenotype. Moreover, ERK2 required USP15 to influence TGF-β/SMAD2 signaling for regulating the cartilage phenotype in vivo and in vitro. And USP15 can form a complex with ERK2 to regulate ubiquitination of ERK2. Interestingly, USP15 did not regulate the stability of ERK2 but increased the level of p-ERK1/2 to further enhance the TGF-β/SMAD2 signaling pathway. Conclusions Taken together, our study revealed positive feedback regulation between USP15 and ERK2, which played a critical role in TGF-β/SMAD2 signaling to inhibit OA progression. Therefore, this specific mechanism can guide the clinical treatment of OA.
Collapse
Affiliation(s)
- Wenjuan Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhui Zhu
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyu Sun
- Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Jin
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiang Wang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Fleischmann D, Harloff M, Maslanka Figueroa S, Schlossmann J, Goepferich A. Targeted Delivery of Soluble Guanylate Cyclase (sGC) Activator Cinaciguat to Renal Mesangial Cells via Virus-Mimetic Nanoparticles Potentiates Anti-Fibrotic Effects by cGMP-Mediated Suppression of the TGF-β Pathway. Int J Mol Sci 2021; 22:ijms22052557. [PMID: 33806499 PMCID: PMC7961750 DOI: 10.3390/ijms22052557] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 01/01/2023] Open
Abstract
Diabetic nephropathy (DN) ranks among the most detrimental long-term effects of diabetes, affecting more than 30% of all patients. Within the diseased kidney, intraglomerular mesangial cells play a key role in facilitating the pro-fibrotic turnover of extracellular matrix components and a progredient glomerular hyperproliferation. These pathological effects are in part caused by an impaired functionality of soluble guanylate cyclase (sGC) and a consequentially reduced synthesis of anti-fibrotic messenger 3′,5′-cyclic guanosine monophosphate (cGMP). Bay 58-2667 (cinaciguat) is able to re-activate defective sGC; however, the drug suffers from poor bioavailability and its systemic administration is linked to adverse events such as severe hypotension, which can hamper the therapeutic effect. In this study, cinaciguat was therefore efficiently encapsulated into virus-mimetic nanoparticles (NPs) that are able to specifically target renal mesangial cells and therefore increase the intracellular drug accumulation. NP-assisted drug delivery thereby increased in vitro potency of cinaciguat-induced sGC stabilization and activation, as well as the related downstream signaling 4- to 5-fold. Additionally, administration of drug-loaded NPs provided a considerable suppression of the non-canonical transforming growth factor β (TGF-β) signaling pathway and the resulting pro-fibrotic remodeling by 50–100%, making the system a promising tool for a more refined therapy of DN and other related kidney pathologies.
Collapse
Affiliation(s)
- Daniel Fleischmann
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany; (D.F.); (S.M.F.)
| | - Manuela Harloff
- Department of Pharmacology and Toxicology, University of Regensburg, 93053 Regensburg, Germany; (M.H.); (J.S.)
| | - Sara Maslanka Figueroa
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany; (D.F.); (S.M.F.)
| | - Jens Schlossmann
- Department of Pharmacology and Toxicology, University of Regensburg, 93053 Regensburg, Germany; (M.H.); (J.S.)
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany; (D.F.); (S.M.F.)
- Correspondence:
| |
Collapse
|
28
|
Sandner P, Zimmer DP, Milne GT, Follmann M, Hobbs A, Stasch JP. Soluble Guanylate Cyclase Stimulators and Activators. Handb Exp Pharmacol 2021; 264:355-394. [PMID: 30689085 DOI: 10.1007/164_2018_197] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
When Furchgott, Murad, and Ignarro were honored with the Nobel prize for the identification of nitric oxide (NO) in 1998, the therapeutic implications of this discovery could not be fully anticipated. This was due to the fact that available therapeutics like NO donors did not allow a constant and long-lasting cyclic guanylyl monophosphate (cGMP) stimulation and had a narrow therapeutic window. Now, 20 years later, the stimulator of soluble guanylate cyclase (sGC), riociguat, is on the market and is the only drug approved for the treatment of two forms of pulmonary hypertension (PAH/CTEPH), and a variety of other sGC stimulators and sGC activators are in preclinical and clinical development for additional indications. The discovery of sGC stimulators and sGC activators is a milestone in the field of NO/sGC/cGMP pharmacology. The sGC stimulators and sGC activators bind directly to reduced, heme-containing and oxidized, heme-free sGC, respectively, which results in an increase in cGMP production. The action of sGC stimulators at the heme-containing enzyme is independent of NO but is enhanced in the presence of NO whereas the sGC activators interact with the heme-free form of sGC. These highly innovative pharmacological principles of sGC stimulation and activation seem to have a very broad therapeutic potential. Therefore, in both academia and industry, intensive research and development efforts have been undertaken to fully exploit the therapeutic benefit of these new compound classes. Here we summarize the discovery of sGC stimulators and sGC activators and the current developments in both compound classes, including the mode of action, the chemical structures, and the genesis of the terminology and nomenclature. In addition, preclinical studies exploring multiple aspects of their in vitro, ex vivo, and in vivo pharmacology are reviewed, providing an overview of multiple potential applications. Finally, the clinical developments, investigating the treatment potential of these compounds in various diseases like heart failure, diabetic kidney disease, fibrotic diseases, and hypertension, are reported. In summary, sGC stimulators and sGC activators have a unique mode of action with a broad treatment potential in cardiovascular diseases and beyond.
Collapse
Affiliation(s)
- Peter Sandner
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany. .,Department of Pharmacology, Hannover Medical School, Hannover, Germany.
| | | | | | - Markus Follmann
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany
| | - Adrian Hobbs
- Barts and the London School of Medicine and Dentistry QMUL, London, UK
| | - Johannes-Peter Stasch
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany.,Institute of Pharmacy, University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
29
|
Dees C, Pötter S, Zhang Y, Bergmann C, Zhou X, Luber M, Wohlfahrt T, Karouzakis E, Ramming A, Gelse K, Yoshimura A, Jaenisch R, Distler O, Schett G, Distler JH. TGF-β-induced epigenetic deregulation of SOCS3 facilitates STAT3 signaling to promote fibrosis. J Clin Invest 2021; 130:2347-2363. [PMID: 31990678 DOI: 10.1172/jci122462] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/17/2020] [Indexed: 12/28/2022] Open
Abstract
Fibroblasts are key effector cells in tissue remodeling. They remain persistently activated in fibrotic diseases, resulting in progressive deposition of extracellular matrix. Although fibroblast activation may be initiated by external factors, prolonged activation can induce an "autonomous," self-maintaining profibrotic phenotype in fibroblasts. Accumulating evidence suggests that epigenetic alterations play a central role in establishing this persistently activated pathologic phenotype of fibroblasts. We demonstrated that in fibrotic skin of patients with systemic sclerosis (SSc), a prototypical idiopathic fibrotic disease, TGF-β induced the expression of DNA methyltransferase 3A (DNMT3A) and DNMT1 in fibroblasts in a SMAD-dependent manner to silence the expression of suppressor of cytokine signaling 3 (SOCS3) by promoter hypermethylation. Downregulation of SOCS3 facilitated activation of STAT3 to promote fibroblast-to-myofibroblast transition, collagen release, and fibrosis in vitro and in vivo. Reestablishment of the epigenetic control of STAT3 signaling by genetic or pharmacological inactivation of DNMT3A reversed the activated phenotype of SSc fibroblasts in tissue culture, inhibited TGF-β-dependent fibroblast activation, and ameliorated experimental fibrosis in murine models. These findings identify a pathway of epigenetic imprinting of fibroblasts in fibrotic disease with translational implications for the development of targeted therapies in fibrotic diseases.
Collapse
Affiliation(s)
- Clara Dees
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sebastian Pötter
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yun Zhang
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Xiang Zhou
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Markus Luber
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Thomas Wohlfahrt
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Emmanuel Karouzakis
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, Zurich, Switzerland
| | - Andreas Ramming
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kolja Gelse
- Department of Trauma Surgery - Orthopedic Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jörg Hw Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
30
|
Dees C, Chakraborty D, Distler JHW. Cellular and molecular mechanisms in fibrosis. Exp Dermatol 2021; 30:121-131. [PMID: 32931037 DOI: 10.1111/exd.14193] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
The activation of fibroblasts is required for physiological tissue remodelling such as wound healing. However, when the regulatory mechanisms are disrupted and fibroblasts remain persistently activated, the progressive deposition of extracellular matrix proteins leads to tissue fibrosis, which results in dysfunction or even loss of function of the affected organ. Although fibrosis has been recognized as a major cause of morbidity and mortality in modern societies, there are only few treatment options available that directly disrupt the release of extracellular matrix from fibroblasts. Intensive research in recent years, however, identified several pathways as core fibrotic mechanisms that are shared across different fibrotic diseases and organs. We discuss herein selection of those core pathways, especially downstream of the profibrotic TGF-β pathway, which are druggable and which may be transferable from bench to bedside.
Collapse
Affiliation(s)
- Clara Dees
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Debomita Chakraborty
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
31
|
Dual Pharmacological Targeting of HDACs and PDE5 Inhibits Liver Disease Progression in a Mouse Model of Biliary Inflammation and Fibrosis. Cancers (Basel) 2020; 12:cancers12123748. [PMID: 33322158 PMCID: PMC7763137 DOI: 10.3390/cancers12123748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Chronic liver injury and inflammation leads to excessive deposition of extracellular matrix, known as liver fibrosis, and the distortion of the hepatic parenchyma. Liver fibrosis may progress to cirrhosis, a condition in which hepatic function is impaired and most cases of liver tumors occur. Currently, there are no effective therapies to inhibit and reverse the progression of liver fibrosis, and therefore, chronic liver disease remains a global health problem. In this study we have tested the efficacy of a new class of molecules that simultaneously target two molecular pathways known to be involved in the pathogenesis of hepatic fibrosis. In a clinically relevant mouse model of liver injury and inflammation we show that the combined inhibition of histones deacetylases and the cyclic guanosine monophosphate (cGMP) phosphodiesterase phosphodiesterase 5 (PDE5) results in potent anti-inflammatory and anti-fibrotic effects. Our findings open new avenues for the treatment of liver fibrosis and therefore, the prevention of hepatic carcinogenesis. Abstract Liver fibrosis, a common hallmark of chronic liver disease (CLD), is characterized by the accumulation of extracellular matrix secreted by activated hepatic fibroblasts and stellate cells (HSC). Fibrogenesis involves multiple cellular and molecular processes and is intimately linked to chronic hepatic inflammation. Importantly, it has been shown to promote the loss of liver function and liver carcinogenesis. No effective therapies for liver fibrosis are currently available. We examined the anti-fibrogenic potential of a new drug (CM414) that simultaneously inhibits histone deacetylases (HDACs), more precisely HDAC1, 2, and 3 (Class I) and HDAC6 (Class II) and stimulates the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway activity through phosphodiesterase 5 (PDE5) inhibition, two mechanisms independently involved in liver fibrosis. To this end, we treated Mdr2-KO mice, a clinically relevant model of liver inflammation and fibrosis, with our dual HDAC/PDE5 inhibitor CM414. We observed a decrease in the expression of fibrogenic markers and collagen deposition, together with a marked reduction in inflammation. No signs of hepatic or systemic toxicity were recorded. Mechanistic studies in cultured human HSC and cholangiocytes (LX2 and H69 cell lines, respectively) demonstrated that CM414 inhibited pro-fibrogenic and inflammatory responses, including those triggered by transforming growth factor β (TGFβ). Our study supports the notion that simultaneous targeting of pro-inflammatory and fibrogenic mechanisms controlled by HDACs and PDE5 with a single molecule, such as CM414, can be a new disease-modifying strategy.
Collapse
|
32
|
Roofeh D, Lescoat A, Khanna D. Emerging drugs for the treatment of scleroderma: a review of recent phase 2 and 3 trials. Expert Opin Emerg Drugs 2020; 25:455-466. [PMID: 33054463 PMCID: PMC7770026 DOI: 10.1080/14728214.2020.1836156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Systemic sclerosis (SSc) has the highest case-specific mortality of all connective tissue diseases. Its underlying disease mechanism affects several organs and remains incompletely understood. Ongoing work clarifying its etiopathogenesis is helping to develop targeted therapy. AREAS COVERED Several clinical trials have evaluated the safety and efficacy of agents targeting different mechanisms of this disease. This review article reviews those mechanisms and surveys four key recent phase II or III clinical trials that are contributing to the landscape of SSc therapy. The reported trials primarily focus on patients with systemic sclerosis in the early phase of disease. EXPERT OPINION Traditional therapies for SSc center on immunosuppressive and cytotoxic agents. A new cadre of therapies is borne from improved understandings of SSc pathobiology and target the inflammatory-fibrotic pathways. Scleroderma trials have entered the initial phase of personalized medicine, recognizing molecular subsets that will improve upon cohort enrichment and maximize the measurable benefit of future therapies.
Collapse
Affiliation(s)
| | - Alain Lescoat
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
| | | |
Collapse
|
33
|
Brusilovskaya K, Königshofer P, Lampach D, Szodl A, Supper P, Bauer D, Beer A, Stift J, Timelthaler G, Oberhuber G, Podesser BK, Seif M, Zinober K, Rohr-Udilova N, Trauner M, Reiberger T, Schwabl P. Soluble guanylyl cyclase stimulation and phosphodiesterase-5 inhibition improve portal hypertension and reduce liver fibrosis in bile duct-ligated rats. United European Gastroenterol J 2020; 8:1174-1185. [PMID: 32878579 PMCID: PMC7724531 DOI: 10.1177/2050640620944140] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In cirrhosis, the nitric oxide-soluble guanylyl cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway is impaired, which contributes to increased intrahepatic vascular resistance (IHVR) and fibrogenesis. We investigated if sGC stimulation (riociguat (RIO)), sGC activation (cinaciguat (CINA)) or phosphodiesterase (PDE)-5 inhibition (tadalafil (TADA)) improves portal hypertension (PHT) and liver fibrosis. METHODS Fifty male Sprague-Dawley rats underwent bile-duct ligation (BDL) or sham operation. RIO (0.5 mg/kg), CINA (1 mg/kg), TADA (1.5 mg/kg) or vehicle (VEH) was administered from weeks 2 to 4 after BDL. At week 4, invasive haemodynamic measurements were performed, and liver fibrosis was assessed by histology (chromotrope-aniline blue (CAB), Picro-Sirius red (PSR)) and hepatic hydroxyproline content. RESULTS Cirrhotic bile duct-ligated rats presented with PHT (13.1 ± 1.0 mmHg) and increased IHVR (4.9 ± 0.5 mmHg⋅min/mL). Both RIO (10.0 ± 0.7 mmHg, p = 0.021) and TADA (10.3 ± 0.9 mmHg, p = 0.050) decreased portal pressure by reducing IHVR (RIO: -41%, p = 0.005; TADA: -21%, p = 0.199) while not impacting heart rate, mean arterial pressure and portosystemic shunting. Hepatic cGMP levels increased upon RIO (+239%, p = 0.006) and TADA (+32%, p = 0.073) therapy. In contrast, CINA dosed at 1 mg/kg caused weight loss, arterial hypotension and hyperlactataemia in bile duct-ligated rats. Liver fibrosis area was significantly decreased by RIO (CAB: -48%, p = 0.011; PSR: -27%, p = 0.121) and TADA (CAB: -21%, p = 0.342; PSR: -52%, p = 0.013) compared to VEH-treated bile duct-ligated rats. Hepatic hydroxyproline content was reduced by RIO (from 503 ± 20 to 350 ± 30 µg/g, p = 0.003) and TADA (282 ± 50 µg/g, p = 0.003), in line with a reduction of the hepatic stellate cell activation markers smooth-muscle actin and phosphorylated moesin. Liver transaminases decreased under RIO (AST: -36%; ALT: -32%) and TADA (AST: -24%; ALT: -27%) treatment. Hepatic interleukin 6 gene expression was reduced in the RIO group (-56%, p = 0.053). CONCLUSION In a rodent model of biliary cirrhosis, the sGC stimulator RIO and the PDE-5 inhibitor TADA improved PHT. The decrease of sinusoidal vascular resistance was paralleled by a reduction in liver fibrosis and hepatic inflammation, while systemic haemodynamics were not affected.
Collapse
Affiliation(s)
- Ksenia Brusilovskaya
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Haemodynamic Lab (HEPEX), Medical University of
Vienna, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver
Fibrosis, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases,
Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian
Academy of Sciences, Vienna, Austria
| | - Philipp Königshofer
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Haemodynamic Lab (HEPEX), Medical University of
Vienna, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver
Fibrosis, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases,
Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian
Academy of Sciences, Vienna, Austria
| | - Daniel Lampach
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Haemodynamic Lab (HEPEX), Medical University of
Vienna, Vienna, Austria
| | - Adrian Szodl
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Haemodynamic Lab (HEPEX), Medical University of
Vienna, Vienna, Austria
| | - Paul Supper
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Haemodynamic Lab (HEPEX), Medical University of
Vienna, Vienna, Austria
| | - David Bauer
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Haemodynamic Lab (HEPEX), Medical University of
Vienna, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver
Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Andrea Beer
- Department of Pathology, Medical University of Vienna, Vienna,
Austria
| | - Judith Stift
- Department of Pathology, Medical University of Vienna, Vienna,
Austria
| | - Gerald Timelthaler
- The Institute of Cancer Research, Department of Medicine I,
Medical University of Vienna, Vienna, Austria
| | | | - Bruno Karl Podesser
- Center for Biomedical Research, Medical University of Vienna,
Vienna, Austria
| | - Martha Seif
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Haemodynamic Lab (HEPEX), Medical University of
Vienna, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver
Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Kerstin Zinober
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Haemodynamic Lab (HEPEX), Medical University of
Vienna, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver
Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Nataliya Rohr-Udilova
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Haemodynamic Lab (HEPEX), Medical University of
Vienna, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver
Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Haemodynamic Lab (HEPEX), Medical University of
Vienna, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver
Fibrosis, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases,
Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian
Academy of Sciences, Vienna, Austria
| | - Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of
Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Haemodynamic Lab (HEPEX), Medical University of
Vienna, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver
Fibrosis, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases,
Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian
Academy of Sciences, Vienna, Austria
| |
Collapse
|
34
|
Fallet B, Walker UA. Current immunosuppressive and antifibrotic therapies of systemic sclerosis and emerging therapeutic strategies. Expert Rev Clin Pharmacol 2020; 13:1203-1218. [PMID: 33008265 DOI: 10.1080/17512433.2020.1832466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is a rare, difficult to treat disease with profound effects on quality of life and high mortality. Complex and incompletely understood pathophysiologic processes and greatly heterogeneous clinical presentations and outcomes have hampered drug development. AREAS COVERED This review summarizes the currently available immunosuppressive and antifibrotic therapies and discusses novel approaches for the treatment of SSc. We reviewed the literature using the MEDLINE and ClinicalTrial.gov databases between May and September 2020. EXPERT OPINION Available immunosuppressive and antifibrotic drugs only modestly impact the course of the disease. Most drugs are currently only investigated in the subset of patients with early diffuse cutaneous SSc. In this patient population, hematopoietic stem-cell transplantation is currently the only treatment that has demonstrated reversal of lung involvement, enhanced quality of life and reduced long-term mortality, but carries the risk of short-term treatment-related mortality. A great need to provide better therapeutic options to patients exists also for those patients who have limited cutaneous skin involvement. A better understanding of SSc pathophysiology has enabled the identification of numerous new therapeutic targets. The progress made in the design of clinical trials and outcome parameters will likely result in the improvement of effective management options.
Collapse
Affiliation(s)
- Bénédict Fallet
- Department of Rheumatology, University Hospital Basel , Basel, Switzerland
| | - Ulrich A Walker
- Department of Rheumatology, University Hospital Basel , Basel, Switzerland
| |
Collapse
|
35
|
BAY 41-2272 Attenuates CTGF Expression via sGC/cGMP-Independent Pathway in TGFβ1-Activated Hepatic Stellate Cells. Biomedicines 2020; 8:biomedicines8090330. [PMID: 32899801 DOI: 10.3390/biomedicines8090330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Activation of hepatic stellate cells (HSCs) is a critical pathogenic feature of liver fibrosis and cirrhosis. BAY 41-2272 is a canonical non-nitric oxide (NO)-based soluble guanylyl cyclase (sGC) stimulator that triggers cyclic guanosine monophosphate (cGMP) signaling for attenuation of fibrotic disorders; however, the impact of BAY 41-2272 on HSC activation remains ill-defined. Transforming growth factor (TGF)β and its downstream connective tissue growth factor (CTGF or cellular communication network factor 2, CCN2) are critical fibrogenic cytokines for accelerating HSC activation. Here, we identified that BAY 41-2272 significantly inhibited the TGFβ1-induced mRNA and protein expression of CTGF in mouse primary HSCs. Indeed, BAY 41-2272 increased the sGC activity and cGMP levels that were potentiated by two NO donors and inhibited by a specific sGC inhibitor, ODQ. Surprisingly, the inhibitory effects of BAY 41-2272 on CTGF expression were independent of the sGC/cGMP pathway in TGFβ1-activated primary HSCs. BAY 41-2272 selectively restricted the TGFβ1-induced phosphorylation of Akt but not canonical Smad2/3 in primary HSCs. Together, we illustrate a unique framework of BAY 41-2272 for inhibiting TGFβ1-induced CTGF upregulation and HSC activation via a noncanonical Akt-dependent but sGC/cGMP-independent pathway.
Collapse
|
36
|
Liu G, Shea CM, Jones JE, Price GM, Warren W, Lonie E, Yan S, Currie MG, Profy AT, Masferrer JL, Zimmer DP. Praliciguat inhibits progression of diabetic nephropathy in ZSF1 rats and suppresses inflammation and apoptosis in human renal proximal tubular cells. Am J Physiol Renal Physiol 2020; 319:F697-F711. [PMID: 32865013 DOI: 10.1152/ajprenal.00003.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Praliciguat, a clinical-stage soluble guanylate cyclase (sGC) stimulator, increases cGMP via the nitric oxide-sGC pathway. Praliciguat has been shown to be renoprotective in rodent models of hypertensive nephropathy and renal fibrosis. In the present study, praliciguat alone and in combination with enalapril attenuated proteinuria in the obese ZSF1 rat model of diabetic nephropathy. Praliciguat monotherapy did not affect hemodynamics. In contrast, enalapril monotherapy lowered blood pressure but did not attenuate proteinuria. Renal expression of genes in pathways involved in inflammation, fibrosis, oxidative stress, and kidney injury was lower in praliciguat-treated obese ZSF1 rats than in obese control rats; fasting glucose and cholesterol were also lower with praliciguat treatment. To gain insight into how tubular mechanisms might contribute to its pharmacological effects on the kidneys, we studied the effects of praliciguat on pathological processes and signaling pathways in cultured human primary renal proximal tubular epithelial cells (RPTCs). Praliciguat inhibited the expression of proinflammatory cytokines and secretion of monocyte chemoattractant protein-1 in tumor necrosis factor-α-challenged RPTCs. Praliciguat treatment also attenuated transforming growth factor-β-mediated apoptosis, changes to a mesenchyme-like cellular phenotype, and phosphorylation of SMAD3 in RPTCs. In conclusion, praliciguat improved proteinuria in the ZSF1 rat model of diabetic nephropathy, and its actions in human RPTCs suggest that tubular effects may contribute to its renal benefits, building upon strong evidence for the role of cGMP signaling in renal health.
Collapse
Affiliation(s)
- Guang Liu
- Department of Pharmacology, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Courtney M Shea
- Department of Pharmacology, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Juli E Jones
- Department of Pharmacology, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Gavrielle M Price
- Department of Medical Writing, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - William Warren
- Department of Analytical Pharmacology, Ironwood Pharmaceuticals, Cambridge, Massachusetts
| | - Elisabeth Lonie
- Department of Analytical Pharmacology, Ironwood Pharmaceuticals, Cambridge, Massachusetts
| | - Shu Yan
- Department of Discovery Informatics, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Mark G Currie
- Department of Research Management, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Albert T Profy
- Department of Development Management, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Jaime L Masferrer
- Department of Pharmacology, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Daniel P Zimmer
- Department of Pharmacology, Cyclerion Therapeutics, Cambridge, Massachusetts
| |
Collapse
|
37
|
Riociguat ameliorates kidney injury and fibrosis in an animal model. Biochem Biophys Res Commun 2020; 530:706-712. [PMID: 32768189 DOI: 10.1016/j.bbrc.2020.07.128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
Abstract
Chronic kidney disease (CKD) is one of the greatest health burdens with an increasing global prevalence. Renal fibrosis (RF) is the hallmark of all forms of CKD which shows a strong positive correlation with severity of the disease. However, there are no therapeutic options available for treatment of RF. In the present study, we used an animal model based on unilateral ureteral obstruction (UUO), for renal injury and fibrosis. The UUO animals were treated with soluble guanylyl cyclase (sGC) stimulator, riociguat (RIO) (1, 3 and 10 mg/kg) to investigate its possible renoprotective effects. Kidneys of animals treated with RIO were found to show less abnormalities as compared to UUO control. Further, the levels of proinflammatory cytokines were reduced in RIO treated group. Furthermore, administration of RIO reduced expression of collagen-1, TGF-β, CTGF, α-SMA, vimentin along with transcription factors including Snail and Slug. The results of the present study provided strong evidence to support the antifibrotic activity of RIO.
Collapse
|
38
|
Khanna D, Allanore Y, Denton CP, Kuwana M, Matucci-Cerinic M, Pope JE, Atsumi T, Bečvář R, Czirják L, Hachulla E, Ishii T, Ishikawa O, Johnson SR, De Langhe E, Stagnaro C, Riccieri V, Schiopu E, Silver RM, Smith V, Steen V, Stevens W, Szücs G, Truchetet ME, Wosnitza M, Laapas K, de Oliveira Pena J, Yao Z, Kramer F, Distler O. Riociguat in patients with early diffuse cutaneous systemic sclerosis (RISE-SSc): randomised, double-blind, placebo-controlled multicentre trial. Ann Rheum Dis 2020; 79:618-625. [PMID: 32299845 PMCID: PMC7213318 DOI: 10.1136/annrheumdis-2019-216823] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Riociguat is approved for pulmonary arterial hypertension and has antiproliferative, anti-inflammatory and antifibrotic effects in animal models of tissue fibrosis. We evaluated the efficacy and safety of riociguat in patients with early diffuse cutaneous systemic sclerosis (dcSSc) at high risk of skin fibrosis progression. METHODS In this randomised, double-blind, placebo-controlled, phase IIb trial, adults with dcSSc of <18 months' duration and a modified Rodnan skin score (mRSS) 10-22 units received riociguat 0.5 mg to 2.5 mg orally three times daily (n=60) or placebo (n=61). The primary endpoint was change in mRSS from baseline to week 52. RESULTS At week 52, change from baseline in mRSS units was -2.09±5.66 (n=57) with riociguat and -0.77±8.24 (n=52) with placebo (difference of least squares means -2.34 (95% CI -4.99 to 0.30; p=0.08)). In patients with interstitial lung disease, forced vital capacity declined by 2.7% with riociguat and 7.6% with placebo. At week 14, average Raynaud's condition score had improved ≥50% in 19 (41.3%)/46 patients with riociguat and 13 (26.0%)/50 patients with placebo. Safety assessments showed no new signals with riociguat and no treatment-related deaths. CONCLUSIONS Riociguat did not significantly benefit mRSS versus placebo at the predefined p<0.05. Secondary and exploratory analyses showed potential efficacy signals that should be tested in further trials. Riociguat was well tolerated.
Collapse
Affiliation(s)
- Dinesh Khanna
- Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yannick Allanore
- Rheumatology A department, Cochin Hospital, APHP, Paris Descartes University, Paris, France
| | - Christopher P Denton
- Division of Medicine, Centre for Rheumatology, University College London, London, UK
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Janet E Pope
- Schulich School of Medicine, Division of Rheumatology, The University of Western Ontario, London, Ontario, Canada
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Radim Bečvář
- Institute of Rheumatology, Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - László Czirják
- Department of Rheumatology and Immunology, University of Pécs, Pécs, Hungary
| | - Eric Hachulla
- Department of Internal Medicine and Clinical Immunology, Claude Huriez Hospital, Lille University School of Medicine, Lille, France
| | - Tomonori Ishii
- Clinical Research, Innovation and Education Center, Tohoku University Hospital, Sendai, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Postgraduate School of Medicine, Maebashi, Japan
| | - Sindhu R Johnson
- Division of Rheumatology, Department of Medicine, Toronto Western Hospital, University Health Network, Mount Sinai Hospital, University of Toronto, Toronto Scleroderma Research Program, Toronto, Ontario, Canada
| | - Ellen De Langhe
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Chiara Stagnaro
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Valeria Riccieri
- Department of Clinical Medicine and Therapy, University of Rome La Sapienza, Rome, Italy
| | - Elena Schiopu
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine University Hospitals, Ann Arbor, Michigan, USA
| | - Richard M Silver
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Vanessa Smith
- Department of Rheumatology and Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Virginia Steen
- Division of Rheumatology, Georgetown University Medical Center, Washington, DC, USA
| | - Wendy Stevens
- Department of Rheumatology, St. Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Gabriella Szücs
- Division of Rheumatology, Department of Internal Medicine, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | - Zhen Yao
- Bayer Healthcare, Beijing, China
| | - Frank Kramer
- Research & Development, Bayer AG, Wuppertal, Germany
| | - Oliver Distler
- Department of Rheumatology, University Hospital, Zurich, Switzerland
| |
Collapse
|
39
|
Zhong Y, Bry K, Roberts JD. IL-1β dysregulates cGMP signaling in the newborn lung. Am J Physiol Lung Cell Mol Physiol 2020; 319:L21-L34. [PMID: 32374672 DOI: 10.1152/ajplung.00382.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cyclic guanosine monophosphate (cGMP) signaling is an important regulator of newborn lung function and development. Although cGMP signaling is decreased in many models of newborn lung injury, the mechanisms are poorly understood. We determined how IL-1β regulates the expression of the α1-subunit of soluble guanylate cyclase (sGCα1), a prime effector of pulmonary cGMP signaling. Physiologic levels of IL-1β were discovered to rapidly decrease sGCα1 mRNA expression in a human fetal lung fibroblast cell line (IMR-90 cells) and protein levels in primary mouse pup lung fibroblasts. This sGCα1 expression inhibition appeared to be at a transcriptional level; IL-1β treatment did not alter sGCα1 mRNA stability although it reduced sGCα1 promoter activity. TGFβ-activated kinase 1 (TAK1) was determined to be required for IL-1β's regulation of sGCα1 expression; TAK1 knockdown protected sGCα1 mRNA expression in IL-1β-treated IMR-90 cells. Moreover, heterologously expressed TAK1 was sufficient to decrease sGCα1 mRNA levels in those cells. Nuclear factor-kappaB (NF-κB) signaling played a critical role in the IL-1β-TAK1-sGCα1 regulatory pathway; chromatin immunoprecipitation studies demonstrated enhanced activated NF-kB subunit (RelA) binding to the sGCα1 promoter after IL-1β treatment unless were treated with an IκB kinase2 inhibitor. Also, this NF-kB signaling inhibition protected sGCα1 expression in IL-1β-treated fibroblasts. Lastly, using transgenic mice in which active IL-1β was conditionally expressed in lung epithelial cells, we established that IL-1β expression is sufficient to stimulate TAK1 and decrease sGCα1 protein expression in the newborn lung. Together these results detail the role and mechanisms by which IL-1β inhibits cGMP signaling in the newborn lung.
Collapse
Affiliation(s)
- Ying Zhong
- Cardiovascular Research Center, Massachusetts General Hospital
| | - Kristina Bry
- Department of Pediatrics, University of Gothenburg and Divison of Neonatology, Sahlgrenska University Hospital, Sweden
| | - Jesse D Roberts
- CVRC - MGH East, Massachusetts General Hospital, United States
| |
Collapse
|
40
|
Chen X, Jia F, Li Y, Deng Y, Huang Y, Liu W, Jin Q, Ji J. Nitric oxide-induced stromal depletion for improved nanoparticle penetration in pancreatic cancer treatment. Biomaterials 2020; 246:119999. [PMID: 32247201 DOI: 10.1016/j.biomaterials.2020.119999] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/12/2020] [Accepted: 03/21/2020] [Indexed: 02/07/2023]
Abstract
Abundant desmoplastic stroma, which typically exists in pancreatic ductal adenocarcinoma (PDAC), can act as a natural protective physical barrier rendering insufficient drug delivery and penetration. To address this issue, we herein report a two-step sequential delivery strategy for enhanced pancreatic cancer therapy. In this sequential strategy, the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP) loaded liposomes (Lip-SNAP) were firstly delivered to pancreatic stellate cells (PSCs) in tumor tissue to inhibit the production of dense stroma, by inhibiting the expression of TGF-β1 and its downstream profibrotic signal transduction. Therefore, the PSC-mediated desmoplastic reaction could be suppressed by inhibiting the expression of fibronectin, α-SMA and collagen. The gemcitabine (GEM) loaded liposomes (Lip-GEM) were administrated subsequently. The enhanced intratumoral penetration of Lip-GEM was then achieved due to the stromal disruption in consequence of NO treatment, thus significantly improving the drug delivery efficiency. The tumor growth inhibition of the two-step sequential delivery of Lip-SNAP and Lip-GEM was investigated on both subcutaneous and orthotopic tumor mouse models, to show the remarkably improved therapeutic efficacy of GEM. Such NO-induced stromal depletion provides a general strategy to overcome the blockage of desmoplastic stroma on other therapeutic agents.
Collapse
Affiliation(s)
- Xiaohui Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, PR China
| | - Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, PR China
| | - Yongzhou Li
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China
| | - Yongyan Deng
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, PR China
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, PR China
| | - Weifeng Liu
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China.
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, PR China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, PR China
| |
Collapse
|
41
|
Kania G, Rudnik M, Distler O. Involvement of the myeloid cell compartment in fibrogenesis and systemic sclerosis. Nat Rev Rheumatol 2020; 15:288-302. [PMID: 30953037 DOI: 10.1038/s41584-019-0212-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune fibrotic disease of unknown aetiology that is characterized by vascular changes in the skin and visceral organs. Autologous haematopoietic stem cell transplantation can improve skin and organ fibrosis in patients with progressive disease and a high risk of organ failure, indicating that cells originating in the bone marrow are important contributors to the pathogenesis of SSc. Animal studies also indicate a pivotal function of myeloid cells in the development of fibrosis leading to changes in the tissue architecture and dysfunction in multiple organs such as the heart, lungs, liver and kidney. In this Review, we summarize current knowledge about the function of myeloid cells in fibrogenesis that occurs in patients with SSc. Targeted therapies currently in clinical studies for SSc might affect myeloid cell-related pathways. Therefore, myeloid cells might be used as cellular biomarkers of disease through the application of high-dimensional techniques such as mass cytometry and single-cell RNA sequencing.
Collapse
Affiliation(s)
- Gabriela Kania
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Michal Rudnik
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
42
|
Non-canonical (non-SMAD2/3) TGF-β signaling in fibrosis: Mechanisms and targets. Semin Cell Dev Biol 2019; 101:115-122. [PMID: 31883994 DOI: 10.1016/j.semcdb.2019.11.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023]
Abstract
Transforming growth factor (TGF)-β uses several intracellular signaling pathways besides canonical ALK5-Smad2/3 signaling to regulate a diverse array of cellular functions. Several of these so-called non-canonical (non-Smad2/3) pathways have been implicated in the pathogenesis of fibrosis and may therefore represent targets for therapeutic intervention. This review summarizes our current knowledge on the mechanisms of non-canonical TGF-β signaling in fibrosis, the potential molecular targets and the use of agonists/antagonists for therapeutic intervention.
Collapse
|
43
|
Lee MH, Bull TM. The role of pulmonary arterial hypertension-targeted therapy in systemic sclerosis. F1000Res 2019; 8:F1000 Faculty Rev-2124. [PMID: 32025283 PMCID: PMC6971837 DOI: 10.12688/f1000research.20313.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension, categorized as group 1 pulmonary hypertension by the World Health Organization classification system, represents a major complication of systemic sclerosis resulting from pulmonary vascular involvement of the disease. The high mortality seen in systemic sclerosis-associated pulmonary arterial hypertension is likely due to the impairment of right ventricular systolic function and the coexistence of other non-group-1 pulmonary hypertension phenotypes that may negatively impact clinical response to pulmonary arterial hypertension-targeted therapy. This review highlights two areas of recent advances regarding the management of systemic sclerosis patients with pulmonary hypertension: the tolerability of pulmonary arterial hypertension-targeted therapy in the presence of mild to moderate interstitial lung disease and the potential clinical significance of the antifibrotic effect of soluble guanylate cyclase stimulators demonstrated in preclinical studies.
Collapse
Affiliation(s)
- Michael H Lee
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Colorado, USA
| | - Todd M Bull
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Colorado, USA
| |
Collapse
|
44
|
Distler JHW, Györfi AH, Ramanujam M, Whitfield ML, Königshoff M, Lafyatis R. Shared and distinct mechanisms of fibrosis. Nat Rev Rheumatol 2019; 15:705-730. [PMID: 31712723 DOI: 10.1038/s41584-019-0322-7] [Citation(s) in RCA: 372] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
|
45
|
Nagaraja V, Spino C, Bush E, Tsou PS, Domsic RT, Lafyatis R, Frech T, Gordon JK, Steen VD, Khanna D. A multicenter randomized, double-blind, placebo-controlled pilot study to assess the efficacy and safety of riociguat in systemic sclerosis-associated digital ulcers. Arthritis Res Ther 2019; 21:202. [PMID: 31481106 PMCID: PMC6724329 DOI: 10.1186/s13075-019-1979-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/16/2019] [Indexed: 11/10/2022] Open
Abstract
Background To determine the effect of riociguat, an oral, selective soluble guanylate cyclase stimulator, on the net digital ulcer (DU) burden in systemic sclerosis (SSc). Methods Participants with SSc-related active or painful indeterminate DUs were recruited in a multicenter, double-blind, randomized, placebo-controlled, proof-of-concept trial. Eligible participants were required to have at least one visible, active ischemic DU or painful indeterminate DU at screening, located at or distal to the proximal interphalangeal joint and that developed or worsened within 8 weeks prior to screening. Participants were randomized 1:1 to placebo or riociguat in individualized doses (maximum of 2.5 mg three times daily) during an 8-week titration period, followed by an 8-week stable dosing period. This was followed by an optional 16-week open-label extension phase for participants with active DU/reoccurrence of DUs within 1 month of the end of the main treatment phase. The primary endpoint was the change from baseline to week 16 in net ulcer burden (NUB), analyzed using ANCOVA. Other endpoints included plasma biomarkers and proportion of participants with treatment-emergent adverse events (AEs). Results Seventeen participants (eight placebo, nine riociguat) were randomized at five centers. Six participants in each group transitioned to the open-label extension. Baseline characteristics were comparable between the treatment groups, except participants randomized to placebo were older and had longer disease duration (p < 0.05). At baseline, the mean (SD) NUB was 2.5 (2.0) in the placebo and 2.4 (1.4) in the riociguat. No significant treatment difference was observed in the change from baseline to 16 weeks in NUB (adjusted mean treatment difference − 0.24, 95% CI (− 1.46, 0.99), p = 0.70). Four participants experienced five serious AE (four in riociguat and one in placebo); none was considered related to study medication. Statistically significant elevation of cGMP was observed at 16 weeks in the riociguat group (p = 0.05); no other biomarkers showed significant changes. In the open-label extension, participants in the riociguat-riociguat arm had complete healing of their DUs. Conclusion In participants with SSc-DU, treatment with riociguat did not reduce the number of DU net burden compared with placebo at 16 weeks. Open-label extension suggests that longer duration is needed to promote DU healing, which needs to be confirmed in a new trial. Trial registration ClinicalTrials.gov, NCT02915835. Registered on September 27, 2016. Electronic supplementary material The online version of this article (10.1186/s13075-019-1979-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vivek Nagaraja
- Division of Rheumatology/Department of Internal Medicine, University of Michigan Scleroderma Program, Suite 7C27, 300 North Ingalls Street, SPC 5422, Ann Arbor, MI, 48109, USA
| | - Cathie Spino
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Erica Bush
- Division of Rheumatology/Department of Internal Medicine, University of Michigan Scleroderma Program, Suite 7C27, 300 North Ingalls Street, SPC 5422, Ann Arbor, MI, 48109, USA
| | - Pei-Suen Tsou
- Division of Rheumatology/Department of Internal Medicine, University of Michigan Scleroderma Program, Suite 7C27, 300 North Ingalls Street, SPC 5422, Ann Arbor, MI, 48109, USA
| | - Robyn T Domsic
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Tracy Frech
- Division of Rheumatology, University of Utah, Salt Lake City, UT, USA
| | - Jessica K Gordon
- Division of Rheumatology, Hospital of Special Surgery, New York, NY, USA
| | - Virginia D Steen
- Division of Rheumatology, Georgetown University Medical Center, Washington, DC, USA
| | - Dinesh Khanna
- Division of Rheumatology/Department of Internal Medicine, University of Michigan Scleroderma Program, Suite 7C27, 300 North Ingalls Street, SPC 5422, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
46
|
Zhang Y, Yang J, Zhuan L, Zang G, Wang T, Liu J. Transplantation of adipose-derived stem cells overexpressing inducible nitric oxide synthase ameliorates diabetes mellitus-induced erectile dysfunction in rats. PeerJ 2019; 7:e7507. [PMID: 31423366 PMCID: PMC6694783 DOI: 10.7717/peerj.7507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022] Open
Abstract
Background Erectile dysfunction is a major complication of diabetes mellitus. Adipose-derived stem cells (ADSCs) have attracted much attention as a promising tool for the treatment of diabetes mellitus-induced erectile dysfunction (DMED). Inducible nitric oxide synthase (iNOS) plays an important role in protecting penile tissues from fibrosis. The aim of this study was to determine the efficacy of ADSCs overexpressing iNOS on DMED in rats. Methods ADSCs were isolated and infected with adenovirus overexpressing iNOS (named as ADSCs-iNOS). The expression of iNOS was detected using western blot analysis and real-time PCR. Rats were randomly assigned into five groups: control group, DMED group, ADSCs group, ADSCs-EGFP group and ADSCs-iNOS group. 5 × 105 cells were given once via the intracorporal route. Two weeks after treatment, erectile function was assessed by electrical stimulation of the cavernous nerve. Penile tissues were obtained and evaluated at histology level. Results We found that ADSCs-iNOS had significantly higher expression of iNOS at mRNA and protein levels and generated more nitric oxide (NO). ADSCs-iNOS reduced collagen I and collagen IV expression of corpus cavernosum smooth muscle cells (CCSMCs) in cell co-culture model. Transforming growth factor-β1 expression in CCSMCs reduced following co-culture with ADSCs-iNOS. Injection of ADSCs-iNOS significantly ameliorated DMED in rats and decreased collagen/smooth muscle cell ratio of penile tissues. Moreover, elevated NO and cyclic guanosine monophosphate concentrations were detected in penile tissues of ADSCs-iNOS group. Conclusion Taken together, ADSCs-iNOS significantly improved erectile function of DMED rats. The therapeutic effect may be achieved by increased NO generation and the suppression of collagen I and collagen IV expression in the CCSMCs to decrease penile fibrosis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Zhuan
- Department of Reproductive Medicine, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Guanghui Zang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
47
|
Riociguat for idiopathic interstitial pneumonia-associated pulmonary hypertension (RISE-IIP): a randomised, placebo-controlled phase 2b study. THE LANCET RESPIRATORY MEDICINE 2019; 7:780-790. [PMID: 31416769 DOI: 10.1016/s2213-2600(19)30250-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Idiopathic interstitial pneumonias are often complicated by pulmonary hypertension, increasing morbidity and mortality. There are no approved treatments for pulmonary hypertension associated with idiopathic interstitial pneumonia (PH-IIP). We aimed to evaluate the efficacy and safety of riociguat in patients with PH-IIP. METHODS RISE-IIP was a double-blind, randomised, placebo-controlled study done at 65 pulmonary hypertension and interstitial lung disease centres in 19 countries to evaluate the efficacy and safety of riociguat in patients with PH-IIP. Eligible patients were adults (aged 18-80 years) diagnosed with idiopathic interstitial pneumonia (as per American Thoracic Society/European Respiratory Society/Japanese Respiratory Society/Latin American Thoracic Association guidelines), forced vital capacity (FVC) of at least 45%, 6MWD of 150-450 m, WHO functional classes II-IV, precapillary pulmonary hypertension confirmed by right heart catheterisation, systolic blood pressure of at least 95 mm Hg, and no signs or symptoms of hypotension. Patients were randomly allocated (1:1) using an interactive voice and web response system to riociguat (0·5-2·5 mg three times daily) or placebo for 26 weeks (main study), after which they could enter an open-label extension in which all patients received riociguat. The primary endpoint was change in 6-min walking distance (6MWD) in the intention-to-treat population. Prespecified safety variables included adverse events and serious adverse events, laboratory parameters, and adverse events of special interest (haemoptysis and symptomatic hypotension), assessed in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, number NCT02138825. FINDINGS Between June 4, 2014, and May 5, 2016, we enrolled 229 participants. After the exclusion of 82 participants, 147 were randomly allocated to treatment (73 to riociguat, 74 to placebo). The study was terminated early (median treatment duration 157 days [range 6-203]) at the request of the data monitoring committee owing to increased serious adverse events (main study: 27 [37%] of 73 participants in the riociguat group vs 17 [23%] of 74 in the placebo group) and mortality in patients receiving riociguat, and the absence of efficacy signals in the riociguat group. 11 patients died in the main study (eight in the riociguat group, three in the placebo group), and nine died in the extension phase (one in the riociguat group, eight in the former placebo group; all received riociguat). In the main study, the most common adverse events were peripheral oedema (16 [22%] of 73 in the riociguat group vs seven [9%] of 74 in the placebo group) and diarrhoea (11 [15%] vs seven [9%]). The most common serious adverse events were worsening of interstitial lung disease (main study: six [8%] of 73 in the riociguat group vs five [7%] of 74 in the placebo group) and pneumonia (four [5%] vs one [1%]). Riociguat did not improve 6MWD versus placebo at 26 weeks (least-squares mean difference 21 m; 95% CI -9 to 52). INTERPRETATION In patients with PH-IIP, riociguat was associated with increased serious adverse events and mortality, and an unfavourable risk-benefit profile. Riociguat should not be used in patients with PH-IIP. FUNDING Bayer AG and Merck & Co.
Collapse
|
48
|
Zigrino P, Sengle G. Fibrillin microfibrils and proteases, key integrators of fibrotic pathways. Adv Drug Deliv Rev 2019; 146:3-16. [PMID: 29709492 DOI: 10.1016/j.addr.2018.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/12/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023]
Abstract
Supramolecular networks composed of multi-domain ECM proteins represent intricate cellular microenvironments which are required to balance tissue homeostasis and direct remodeling. Structural deficiency in ECM proteins results in imbalances in ECM-cell communication resulting often times in fibrotic reactions. To understand how individual components of the ECM integrate communication with the cell surface by presenting growth factors or providing fine-tuned biomechanical properties is mandatory for gaining a better understanding of disease mechanisms in the quest for new therapeutic approaches. Here we provide an overview about what we can learn from inherited connective tissue disorders caused primarily by mutations in fibrillin-1 and binding partners as well as by altered ECM processing leading to defined structural changes and similar functional knock-in mouse models. We will utilize this knowledge to propose new molecular hypotheses which should be tested in future studies.
Collapse
|
49
|
sGC stimulator praliciguat suppresses stellate cell fibrotic transformation and inhibits fibrosis and inflammation in models of NASH. Proc Natl Acad Sci U S A 2019; 116:11057-11062. [PMID: 31085647 PMCID: PMC6561202 DOI: 10.1073/pnas.1821045116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is an increasingly common disease characterized by liver steatosis and inflammation—with fibrosis being an important indicator of disease progression and severity—and is associated with reduced endothelial function and NO–soluble guanylate cyclase (sGC) signaling. Signaling downstream of NO can be restored using praliciguat, an sGC stimulator. Within the liver, stellate cells and myofibroblasts express sGC (unlike hepatocytes) and thus can be stimulated by praliciguat. Increased sGC activity inhibits fibrotic transformation and inflammatory responses in stellate cells potentially through AMPK and SMAD7. The effects on isolated stellate cells translate to human microtissues and in vivo models where treatment with praliciguat reduces inflammation, fibrosis, and steatosis. These preclinical results support further investigation of praliciguat as a potential therapy for NASH/fibrosis. Endothelial dysfunction and reduced nitric oxide (NO) signaling are a key element of the pathophysiology of nonalcoholic steatohepatitis (NASH). Stimulators of soluble guanylate cyclase (sGC) enhance NO signaling; have been shown preclinically to reduce inflammation, fibrosis, and steatosis; and thus have been proposed as potential therapies for NASH and fibrotic liver diseases. Praliciguat, an oral sGC stimulator with extensive distribution to the liver, was used to explore the role of this signaling pathway in NASH. We found that sGC is expressed in hepatic stellate cells and stellate-derived myofibroblasts, but not in hepatocytes. Praliciguat acted directly on isolated hepatic stellate cells to inhibit fibrotic and inflammatory signaling potentially through regulation of AMPK and SMAD7. Using in vivo microdialysis, we demonstrated stimulation of the NO–sGC pathway by praliciguat in both healthy and fibrotic livers. In preclinical models of NASH, praliciguat treatment was associated with lower levels of liver fibrosis and lower expression of fibrotic and inflammatory biomarkers. Praliciguat treatment lowered hepatic steatosis and plasma cholesterol levels. The antiinflammatory and antifibrotic effects of praliciguat were recapitulated in human microtissues in vitro. These data provide a plausible cellular basis for the mechanism of action of sGC stimulators and suggest the potential therapeutic utility of praliciguat in the treatment of NASH.
Collapse
|
50
|
Distler JHW, Feghali-Bostwick C, Soare A, Asano Y, Distler O, Abraham DJ. Review: Frontiers of Antifibrotic Therapy in Systemic Sclerosis. Arthritis Rheumatol 2019; 69:257-267. [PMID: 27636741 DOI: 10.1002/art.39865] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/30/2016] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Alina Soare
- University of Erlangen-Nuremberg, Erlangen, Germany
| | - Yoshihide Asano
- University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|