1
|
Xu L, Zhang R, Zhang X, Liu B, Huang D, Liu Y, Shang X. Plasma Proteomes and Genome-Wide Association Data for Causal Protein Identification in Stroke. Mol Neurobiol 2025; 62:2450-2458. [PMID: 39115672 PMCID: PMC11772457 DOI: 10.1007/s12035-024-04411-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/30/2024] [Indexed: 01/28/2025]
Abstract
Plasma proteins are promising biomarkers and potential drug targets for stroke. This study aimed to explore whether there is a causal relationship between plasma proteins and subtypes of stroke using a Mendelian randomization (MR) approach. A two-sample bidirectional Mendelian randomization approach was employed to investigate the causal link between plasma proteins and stroke. Data on plasma proteins were obtained from three studies, including INTERVAL, and pooled stroke information was sourced from the MEGASTROKE consortium and the UK Biobank dataset, covering four subtypes of stroke. MR analyses were primarily conducted using inverse variance weighting, and sensitivity analyses were also performed. Finally, potential reverse causality was assessed using bidirectional MR. We identified two proteins causally associated with stroke: one as a potential therapeutic target and another as a protective factor. CXCL8 was found to be positively associated with the risk of developing large-artery atherosclerotic (LAA) stroke (OR, 1.005; 95% CI 1.001 to 1.010; p = 0.022), whereas TNFRSF11b was negatively correlated with the risk of developing LAA stroke (OR, 0.937; 95% CI 0.892 to 0.984; p = 0.010), independently of other stroke subtypes. Reverse bivariate analysis did not indicate that ischemic stroke was causally associated with CXCL8 and TNFRSF11b. There is a causal relationship between CXCL8 and TNFRSF11b with LAA stroke, independent of other subtypes. This study offers a new perspective on the genetics of stroke.
Collapse
Affiliation(s)
- Lisi Xu
- Department of The Second Cadre Ward, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, China
- Department of Neurology, The First Affiliated Hospital of China Medical University, Number 155Heping District, Nanjing Street, Shenyang, China
| | - Ruonan Zhang
- Department of The Second Cadre Ward, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, China
| | - Xiaolin Zhang
- Department of The Second Cadre Ward, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, China
| | - Bing Liu
- Department of The Second Cadre Ward, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, China
| | - Daifa Huang
- Department of The Second Cadre Ward, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, China
| | - Yanxia Liu
- Department of The Second Cadre Ward, General Hospital of Northern Theater Command, 83 Wen Hua Road, Shenyang, China.
| | - Xiuli Shang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Number 155Heping District, Nanjing Street, Shenyang, China.
| |
Collapse
|
2
|
Sirotti S, Scanu A, Pascart T, Niessink T, Maroni P, Lombardi G, Filippou G. Calcium Pyrophosphate Crystal Formation and Deposition: Where Do we Stand and What Does the Future hold? Curr Rheumatol Rep 2024; 26:354-365. [PMID: 39088093 PMCID: PMC11377473 DOI: 10.1007/s11926-024-01161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
PURPOSE OF THE REVIEW Although calcium pyrophosphate deposition (CPPD) has been known since the 1960s, our understanding of its pathogenesis remains rudimentary. This review aims to illustrate the known mechanisms underlying calcium pyrophosphate (CPP) crystal formation and deposition and explore future directions in research. By examining various perspectives, from basic research to clinical and imaging assessments, as well as new emerging methodologies, we can establish a starting point for a deeper understanding of CPPD pathogenesis. RECENT FINDINGS Recent years have seen significant advances in CPPD research, particularly in the clinical field with the development of the 2023 ACR/EULAR classification criteria for CPPD disease, and in imaging with the introduction of the OMERACT ultrasonographic definitions and scoring system. However, progress in basic research has been slower. New laboratory approaches, such as Raman spectroscopy and omics sciences, offer promising insights that may help piece together the puzzle of CPPD. CPPD is a common yet understudied condition. As the population ages and CPPD becomes more prevalent, there is an urgent need to better understand the disease and the mechanisms involved in crystal formation and deposition, in order to improve diagnosis and therapeutic approaches.
Collapse
Affiliation(s)
- Silvia Sirotti
- Rheumatology Department, IRCCS Galeazzi - Sant'Ambrogio Hospital, Milan, Italy
| | - Anna Scanu
- Department of Women's and Children's Health, University of Padova, Padua, Italy
- Department of Neuroscience, University of Padova, Padua, Italy
| | - Tristan Pascart
- Department of Rheumatology, ETHICS Laboratory, Saint-Philibert Hospital, Lille Catholic University, Lille, France
| | - Tom Niessink
- Personalized Diagnostics and Therapeutics, Technical Medicine Centre, University of Twente, Enschede, the Netherlands
- Department of Rheumatology, VieCuri Medical Centre, Venlo, the Netherlands
| | - Paola Maroni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Galeazzi - Sant'Ambrogio Hospital, Milan, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Galeazzi - Sant'Ambrogio Hospital, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Georgios Filippou
- Rheumatology Department, IRCCS Galeazzi - Sant'Ambrogio Hospital, Milan, Italy.
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
3
|
Jurynec MJ, Nosyreva E, Thompson D, Munoz C, Novak KA, Matheson DJ, Kazmers NH, Syeda R. PIEZO1 variants that reduce open channel probability are associated with familial osteoarthritis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.03.24312969. [PMID: 39281748 PMCID: PMC11398433 DOI: 10.1101/2024.09.03.24312969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The synovial joints senses and responds to a multitude of physical forces to maintain joint homeostasis. Disruption of joint homeostasis results in development of osteoarthritis (OA), a disease characterized by loss of joint space, degeneration of articular cartilage, remodeling of bone and other joint tissues, low-grade inflammation, and pain. How changes in mechanosensing in the joint contribute to OA susceptibility remains elusive. PIEZO1 is a major mechanosensitive cation channel in the joint directly regulated by mechanical stimulus. To test whether altered PIEZO1 channel activity causes increased OA susceptibility, we determined whether variants affecting PIEZO1 are associated with dominant inheritance of age-associated familial OA. We identified four rare coding variants affecting PIEZO1 that are associated with familial hand OA. Single channel analyses demonstrated that all four PIEZO1 mutant channels act in a dominant-negative manner to reduce the open probability of the channel in response to pressure. Furthermore, we show that a GWAS mutation in PIEZO1 associated with reduced joint replacement results in increased channel activity when compared with WT and the mutants. Our data support the hypothesis that reduced PIEZO1 activity confers susceptibility to age-associated OA whereas increased PIEZO1 activity may be associated with reduced OA susceptibility.
Collapse
Affiliation(s)
- Michael J Jurynec
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, 84108
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112
| | - Elena Nosyreva
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390
| | - David Thompson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390
| | - Crystal Munoz
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390
| | - Kendra A Novak
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, 84108
| | - Derek J Matheson
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, 84108
| | - Nikolas H Kazmers
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, 84108
| | - Ruhma Syeda
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390
| |
Collapse
|
4
|
Fan J, Li X, Yang J, Zhang S, Qu HQ, Ji D, Glessner JT, Hao J, Ding Z, Wang N, Meng X, Xia Q, Hakonarson H, Wei W, Li J. Revealing novel genomic insights and therapeutic targets for juvenile idiopathic arthritis through omics. Rheumatology (Oxford) 2024; 63:SI249-SI259. [PMID: 38317060 DOI: 10.1093/rheumatology/keae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The genetic architecture of JIA remains only partially comprehended. There is a clear imperative for continued endeavours to uncover insights into the underlying causes of JIA. METHODS This study encompassed a comprehensive spectrum of endeavours, including conducting a JIA genome-wide association study (GWAS) meta-analysis that incorporated data from 4550 JIA cases and 18 446 controls. We employed in silico and genome-editing approaches to prioritizing target genes. To investigate pleiotropic effects, we conducted phenome-wide association studies. Cell-type enrichment analyses were performed by integrating bulk and single-cell sequencing data. Finally, we delved into potential druggable targets for JIA. RESULTS Fourteen genome-wide significant non-HLA loci were identified, including four novel loci, each exhibiting pleiotropic associations with other autoimmune diseases or musculoskeletal traits. We uncovered strong genetic correlation between JIA and BMD traits at 52 genomic regions, including three GWAS loci for JIA. Candidate genes with immune functions were captured by in silico analyses at each novel locus, with additional findings identified through our experimental approach. Cell-type enrichment analysis revealed 21 specific immune cell types crucial for the affected organs in JIA, indicating their potential contribution to the disease. Finally, 24 known or candidate druggable target genes were prioritized. CONCLUSIONS Our identification of four novel JIA-associated genes, CD247, RHOH, COLEC10 and IRF8, broadens the novel potential drug repositioning opportunities. We established a new genetic link between COLEC10, TNFRSF11B and JIA/BMD. Additionally, the identification of RHOH underscores its role in positive thymocyte selection, thereby illuminating a critical facet of JIA's underlying biological mechanisms.
Collapse
Affiliation(s)
- Jingxian Fan
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiumei Li
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Sipeng Zhang
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hui-Qi Qu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dandan Ji
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Joseph T Glessner
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jian Hao
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhiyong Ding
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Jinan, China
| | - Nan Wang
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Jinan, China
| | - Xinyi Meng
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qianghua Xia
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Wei
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jin Li
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Molin A. Human genetic diseases of phosphate and pyrophosphate metabolism. Arch Pediatr 2024; 31:4S13-4S20. [PMID: 39343468 DOI: 10.1016/s0929-693x(24)00152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
In humans, physiological bone and tooth mineralization is a complex cell-mediated process. Prerequisites for proper mineralization include sufficient amounts of minerals (calcium and phosphate [Pi]) to initiate the formation and the growth of apatite crystals and adequate amounts of mineralization inhibitors, such as pyrophosphate (PPi), to prevent uncontrolled extraskeletal mineralization. In this review, we provide an overview of the genetics of human disorders of mineralization, focusing on Pi and PPi metabolism and transport diseases, as the Pi/PPi ratio is an important determinant of crystal production in vivo. Variants in genes implicated in the homeostasis of this ratio may lead to a systemic or local increased Pi/PPi ratio, either by increasing the Pi concentration or by decreasing the PPi concentration, resulting in ectopic calcifications; conversely, variants may lead to a decreased Pi/PPi ratio, resulting in defective mineralization. Owing to the implication of common pathways and, occasionally, to some extent of clinical overlap, an accurate diagnosis and understanding of the pathophysiology of these disorders may be challenging. However, precise molecular characterization of these conditions not only facilitates their diagnosis, but also helps to gather evidence regarding the pathophysiology and phenotype-genotype correlation to improve medical care and develop innovative therapeutics.
Collapse
Affiliation(s)
- Arnaud Molin
- Université de Caen Normandie, UFR Santé, CHU Caen Normandie, BIOTARGEN UR 7450, Centre de Référence Maladies rares du métabolisme du calcium et du phosphate, Service de Génétique, F-14000, Caen, France.
| |
Collapse
|
6
|
Kulm S, Kaidi AC, Kolin D, Langhans MT, Bostrom MP, Elemento O, Shen TS. Genetic Risk Factors for End-Stage Hip Osteoarthritis Treated With Total Hip Arthroplasty: A Genome-wide Association Study. J Arthroplasty 2023; 38:2149-2153.e1. [PMID: 37179025 DOI: 10.1016/j.arth.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Although a genetic component to hip osteoarthritis (OA) has been described, focused evaluation of the genetic components of end-stage disease is limited. We present a genomewide association study for patients undergoing total hip arthroplasty (THA) to characterize the genetic risk factors associated with end-stage hip osteoarthritis (ESHO), defined as utilization of the procedure. METHODS Patients who underwent primary THA for hip OA were identified in a national patient data repository using administrative codes. Fifteen thousand three hundred and fifty-five patients with ESHO and 374,193 control patients were identified. Whole genome regression of genotypic data for patients who underwent primary THA for hip OA corrected for age, sex, and body mass index (BMI) was performed. Multivariate logistic regression models were used to evaluate the composite genetic risk from the identified genetic variants. RESULTS There were 13 significant genes identified. Composite genetic factors resulted in an odds ratio 1.04 for ESHO (P < .001). The effect of genetics was lower than that of age (Odds Ratio (OR): 2.38; P < .001) and BMI (1.81; P < .001). CONCLUSION Multiple genetic variants, including 5 novel loci, were associated with end-stage hip OA treated with primary THA. Age and BMI were associated with greater odds of developing end-stage disease when compared to genetic factors.
Collapse
Affiliation(s)
- Scott Kulm
- Weill Cornell Medicine, New York, New York; Englander Institute for Precision Medicine, New York, New York
| | - Austin C Kaidi
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, New York
| | - David Kolin
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, New York
| | - Mark T Langhans
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, New York
| | - Mathias P Bostrom
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, New York
| | - Olivier Elemento
- Weill Cornell Medicine, New York, New York; Englander Institute for Precision Medicine, New York, New York
| | - Tony S Shen
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, New York
| |
Collapse
|
7
|
Couto AR, Parreira B, Power DM, Pinheiro L, Madruga Dias J, Novofastovski I, Eshed I, Sarzi-Puttini P, Pappone N, Atzeni F, Verlaan JJ, Kuperus J, Bieber A, Ambrosino P, Kiefer D, Khan MA, Mader R, Baraliakos X, Bruges-Armas J. Evidence for a genetic contribution to the ossification of spinal ligaments in Ossification of Posterior Longitudinal Ligament and Diffuse idiopathic skeletal hyperostosis: A narrative review. Front Genet 2022; 13:987867. [PMID: 36276944 PMCID: PMC9586552 DOI: 10.3389/fgene.2022.987867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Diffuse Idiopathic Skeletal Hyperostosis (DISH) and Ossification of the Posterior Longitudinal Ligament (OPLL) are common disorders characterized by the ossification of spinal ligaments. The cause for this ossification is currently unknown but a genetic contribution has been hypothesized. Over the last decade, many studies on the genetics of ectopic calcification disorders have been performed, mainly on OPLL. Most of these studies were based on linkage analysis and case control association studies. Animal models have provided some clues but so far, the involvement of the identified genes has not been confirmed in human cases. In the last few years, many common variants in several genes have been associated with OPLL. However, these associations have not been at definitive levels of significance and evidence of functional significance is generally modest. The current evidence suggests a multifactorial aetiopathogenesis for DISH and OPLL with a subset of cases showing a stronger genetic component.
Collapse
Affiliation(s)
- Ana Rita Couto
- Hospital de Santo Espirito da Ilha Terceira EPER, SEEBMO, Angra do Heroísmo, Portugal
- Comprehensive Health Research Centre, Hospital de Santo Espírito da Ilha Terceira, Lisbon, Portugal
| | - Bruna Parreira
- Hospital de Santo Espirito da Ilha Terceira EPER, SEEBMO, Angra do Heroísmo, Portugal
- Comprehensive Health Research Centre, Hospital de Santo Espírito da Ilha Terceira, Lisbon, Portugal
| | - Deborah M. Power
- University of Algarve, Center of Marine Science (CCMAR), Faro, Portugal
| | - Luís Pinheiro
- Hospital de Santo Espirito da Ilha Terceira EPER, Orthopedics Service, Angra do Heroísmo, Portugal
| | - João Madruga Dias
- Centro Hospitalar Do Medio Tejo EPE Unidade de Torres Novas, Rheumatology Department, Santarém, Portugal
- CHRC Campus Nova Medical School, EpiDoc Research Unit, CEDOC, Lisboa, Portugal
| | | | | | | | - Nicola Pappone
- Istituti Clinici Scientifici Maugeri IRCCS, Neuromotor Rehabilitation Unit of Telese Terme Institute, Pavia, Italy
| | - Fabiola Atzeni
- Universita Degli Studi di Messina, Rheumatology Unit, Clinical and Experimental Medicine, Messina, Italy
| | - Jorrit-Jan Verlaan
- University Medical Centre, Department of Orthopedics, Utrecht, Netherlands
| | | | - Amir Bieber
- Emek Medical Center, Rheumatology Unit, Afula, Israel
| | - Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, Pavia, Italy
| | - David Kiefer
- Ruhr-Universitat Bochum, Rheumazentrum Ruhrgebiet, Bochum, Germany
| | | | - Reuven Mader
- Emek Medical Center, Rheumatology Unit, Afula, Israel
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
- Ruhr University Bochum, Rheumazentrum Ruhrgebiet, Herne, Germany
| | | | - Jácome Bruges-Armas
- Hospital de Santo Espirito da Ilha Terceira EPER, SEEBMO, Angra do Heroísmo, Portugal
- Comprehensive Health Research Centre, Hospital de Santo Espírito da Ilha Terceira, Lisbon, Portugal
| |
Collapse
|
8
|
Gavile CM, Kazmers NH, Novak KA, Meeks HD, Yu Z, Thomas JL, Hansen C, Barker T, Jurynec MJ. Familial Clustering and Genetic Analysis of Severe Thumb Carpometacarpal Joint Osteoarthritis in a Large Statewide Cohort. J Hand Surg Am 2022; 47:923-933. [PMID: 36184273 PMCID: PMC9547951 DOI: 10.1016/j.jhsa.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE Our goals were to identify individuals who required surgery for thumb carpometacarpal (CMC) joint osteoarthritis (OA), determine if CMC joint OA clusters in families, define the magnitude of familial risk of CMC joint OA, identify risk factors associated with CMC joint OA, and identify rare genetic variants that segregate with familial CMC joint OA. METHODS We searched the Utah Population Database to identify a cohort of CMC joint OA patients who required surgery. Affected individuals were mapped to pedigrees to identify high-risk families with excess clustering of CMC joint OA. Cox regression models were used to calculate familial risk of CMC joint OA in related individuals. Risk factors were evaluated using logistic regression models. Whole exome sequencing was used to identify rare coding variants associated with familial CMC joint OA. RESULTS We identified 550 pedigrees with excess clustering of severe CMC joint OA. The relative risk of CMC joint OA requiring surgical treatment was elevated significantly in first- and third-degree relatives of affected individuals, and significant associations with advanced age, female sex, obesity, and tobacco use were observed. We discovered candidate genes that dominantly segregate with severe CMC joint OA in 4 independent families, including a rare variant in Chondroitin Sulfate Synthase 3 (CHSY3). CONCLUSIONS Familial clustering of severe CMC joint OA was observed in a statewide population. Our data indicate that genetic and environmental factors contribute to the disease process, further highlighting the multifactorial nature of the disease. Genomic analyses suggest distinct biological processes are involved in CMC joint OA pathogenesis. CLINICAL RELEVANCE Awareness of associated comorbidities may guide the diagnosis of CMC joint OA in at-risk populations and help identify individuals who may not do well with nonoperative treatment. Further pursuit of the genes associated with severe CMC joint OA may lead to assays for detection of early stages of disease and have therapeutic potential.
Collapse
Affiliation(s)
| | | | - Kendra A Novak
- Department of Orthopaedics, University of Utah, Salt Lake City, UT
| | - Huong D Meeks
- Huntsman Cancer Institute, Utah Population Database, University of Utah, Salt Lake City, UT
| | - Zhe Yu
- Huntsman Cancer Institute, Utah Population Database, University of Utah, Salt Lake City, UT
| | - Joy L Thomas
- Intermountain Healthcare, Precision Genomics, St. George, UT
| | - Channing Hansen
- Intermountain Healthcare, Biorepository, South Salt Lake City, UT
| | - Tyler Barker
- Department of Orthopaedics, University of Utah, Salt Lake City, UT; Intermountain Healthcare, Precision Genomics, Murray, UT; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Michael J Jurynec
- Department of Orthopaedics, University of Utah, Salt Lake City, UT; Department of Human Genetics, University of Utah, Salt Lake City, UT.
| |
Collapse
|
9
|
Jurynec MJ, Gavile CM, Honeggar M, Ma Y, Veerabhadraiah SR, Novak KA, Hoshijima K, Kazmers NH, Grunwald DJ. NOD/RIPK2 signalling pathway contributes to osteoarthritis susceptibility. Ann Rheum Dis 2022; 81:1465-1473. [PMID: 35732460 PMCID: PMC9474725 DOI: 10.1136/annrheumdis-2022-222497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/07/2022] [Indexed: 12/21/2022]
Abstract
OBJECTIVES How inflammatory signalling contributes to osteoarthritis (OA) susceptibility is undetermined. An allele encoding a hyperactive form of the Receptor Interacting Protein Kinase 2 (RIPK2) proinflammatory signalling intermediate has been associated with familial OA. To test whether altered nucleotide-binding oligomerisation domain (NOD)/RIPK2 pathway activity causes heightened OA susceptibility, we investigated whether variants affecting additional pathway components are associated with familial OA. To determine whether the Ripk2104Asp disease allele is sufficient to account for the familial phenotype, we determined the effect of the allele on mice. METHODS Genomic analysis of 150 independent families with dominant inheritance of OA affecting diverse joints was used to identify coding variants that segregated strictly with occurrence of OA. Genome editing was used to introduce the OA-associated RIPK2 (p.Asn104Asp) allele into the genome of inbred mice. The consequences of the Ripk2104Asp disease allele on physiology and OA susceptibility in mice were measured by histology, immunohistochemistry, serum cytokine levels and gene expression. RESULTS We identified six novel variants affecting components of the NOD/RIPK2 inflammatory signalling pathway that are associated with familial OA affecting the hand, shoulder or foot. The Ripk2104Asp allele acts dominantly to alter basal physiology and response to trauma in the mouse knee. Whereas the knees of uninjured Ripk2Asp104 mice appear normal histologically, the joints exhibit a set of marked gene expression changes reminiscent of overt OA. Although the Ripk2104Asp mice lack evidence of chronically elevated systemic inflammation, they do exhibit significantly increased susceptibility to post-traumatic OA (PTOA). CONCLUSIONS Two types of data support the hypothesis that altered NOD/RIPK2 signalling confers susceptibility to OA.
Collapse
Affiliation(s)
- Michael J Jurynec
- Department of Orthopaedics, University of Utah Health, Salt Lake City, Utah, USA
- Department of Human Genetics, University of Utah Health, Salt Lake City, Utah, USA
| | - Catherine M Gavile
- Department of Orthopaedics, University of Utah Health, Salt Lake City, Utah, USA
| | - Matthew Honeggar
- Department of Orthopaedics, University of Utah Health, Salt Lake City, Utah, USA
| | - Ying Ma
- Department of Orthopaedics, University of Utah Health, Salt Lake City, Utah, USA
| | | | - Kendra A Novak
- Department of Orthopaedics, University of Utah Health, Salt Lake City, Utah, USA
| | - Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah Health, Salt Lake City, Utah, USA
| | - Nikolas H Kazmers
- Department of Orthopaedics, University of Utah Health, Salt Lake City, Utah, USA
| | - David J Grunwald
- Department of Human Genetics, University of Utah Health, Salt Lake City, Utah, USA
| |
Collapse
|
10
|
Cao F, Jiang X, Xiong A, Yang M, Shi J, Chang Y, Gao T, Yang S, Tan J, Xia P, Xu J. Identification of the OA-related metabolism-related genes, corresponding transcription factors, relevant pathways, and specific bioactive small molecules. Int Immunopharmacol 2022; 112:109096. [PMID: 36152536 DOI: 10.1016/j.intimp.2022.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/10/2022] [Accepted: 07/24/2022] [Indexed: 11/19/2022]
Abstract
Metabolic alteration of articular cartilage is associated with the pathogenesis of Osteoarthritis (OA). This study aims to identify the metabolism-related genes, corresponding transcription factors (TFs), and relevant pathways. Overall, RNA sequencing profiles of articular cartilage were collected from the GEO database. Metabolism-related genes and OA-related hallmarks were collected from the MSigDB v7.1. Differential expression analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and Gene Set Variation Analysis (GSVA) were conducted to identify pathways or hallmarks that were related to the pathogenesis of OA. The Pearson correlation analysis was used to establish the regulatory network among transcription factors, metabolism-related genes, and hallmarks. To further confirm the regulation of the identified transcription factors, Chromatin Immunoprecipitation-sequencing (ChIP-seq) was conducted, and single-cell sequencing was used to locate the cell clusters. Connectivity Map (CM) analysis were also conducted to identify the potential specific bioactive small molecules targeting the metabolic alteration of osteoarthritis. scTPA database was used to detect activated signaling pathways. Collectively, a total of 74 and 38 differentially expressed metabolism-related genes and TFs were retrieved. Skeletal system development, extracellular matrix, and cell adhesion molecule binding were important pathways in GO analysis. Human papillomavirus infection, PI3K-Akt signaling pathway, and Human T-cell leukemia virus 1 infection were the top 3 pathways in KEGG. 7 and 12 hallmarks were down- and up-regulated in GSVA, respectively. Ten bioactive small molecules may be potential treatments of OA by regulating the metabolism of articular cartilage. ChIP-seq analysis showed high relativity between transcription factors and their target genes. Furthermore, single-cell sequencing confirms the high expression of identified transcription factors in chondrocytes. To conclude, we established a comprehensive network integrated with transcription factors, metabolism-related genes, and hallmarks.
Collapse
Affiliation(s)
- Fuyang Cao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Xu Jiang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Ao Xiong
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Meng Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Jianming Shi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Yingjian Chang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Tianhao Gao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Shangliang Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Jun Tan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Peige Xia
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Jianzhong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China.
| |
Collapse
|
11
|
Luo Y, Li M, Xu D. Biochemical characterization of a disease-causing human osteoprotegerin variant. Sci Rep 2022; 12:15279. [PMID: 36088403 PMCID: PMC9464236 DOI: 10.1038/s41598-022-19522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, a human mutation of OPG was identified to be associated with familial forms of osteoarthritis. This missense mutation (c.1205A = > T; p.Stop402Leu) occurs on the stop codon of OPG, which results in a 19-residue appendage to the C-terminus (OPG+19). The biochemical consequence of this unusual sequence alteration remains unknown. Here we expressed OPG+19 in 293 cells and the mutant OPG was purified to homogeneity by heparin affinity chromatography and size exclusion chromatography. We found that in sharp contrast to wildtype OPG, which mainly exists in dimeric form, OPG+19 had a strong tendency to form higher-order oligomers. To our surprise, the hyper-oligomerization of OPG+19 had no impact on how it binds cell surface heparan sulfate, how it inhibits RANKL-induced osteoclastogenesis and TRAIL-induced chondrocytes apoptosis. Our data suggest that in biological contexts where OPG is known to play a role, OPG+19 functions equivalently as wildtype OPG. The disease-causing mechanism of OPG+19 likely involves an unknown function of OPG in cartilage homeostasis and mineralization. By demonstrating the biochemical nature of this disease-causing OPG mutant, our study will likely help elucidating the biological roles of OPG in cartilage biology.
Collapse
Affiliation(s)
- Yin Luo
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, SUNY, Buffalo, NY 14214, USA
| | - Miaomiao Li
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, SUNY, Buffalo, NY 14214, USA
| | - Ding Xu
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, SUNY, Buffalo, NY 14214, USA.
| |
Collapse
|
12
|
Rodríguez Ruiz A, van Hoolwerff M, Sprangers S, Suchiman E, Schoenmaker T, Dibbets-Schneider P, Bloem JL, Nelissen RGHH, Freund C, Mummery C, Everts V, de Vries TJ, Ramos YFM, Meulenbelt I. Mutation in the CCAL1 locus accounts for bidirectional process of human subchondral bone turnover and cartilage mineralization. Rheumatology (Oxford) 2022; 62:360-372. [PMID: 35412619 PMCID: PMC9788812 DOI: 10.1093/rheumatology/keac232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES To study the mechanism by which the readthrough mutation in TNFRSF11B, encoding osteoprotegerin (OPG) with additional 19 amino acids at its C-terminus (OPG-XL), causes the characteristic bidirectional phenotype of subchondral bone turnover accompanied by cartilage mineralization in chondrocalcinosis patients. METHODS OPG-XL was studied by human induced pluripotent stem cells expressing OPG-XL and two isogenic CRISPR/Cas9-corrected controls in cartilage and bone organoids. Osteoclastogenesis was studied with monocytes from OPG-XL carriers and matched healthy controls followed by gene expression characterization. Dual energy X-ray absorptiometry scans and MRI analyses were used to characterize the phenotype of carriers and non-carriers of the mutation. RESULTS Human OPG-XL carriers relative to sex- and age-matched controls showed, after an initial delay, large active osteoclasts with high number of nuclei. By employing hiPSCs expressing OPG-XL and isogenic CRISPR/Cas9-corrected controls to established cartilage and bone organoids, we demonstrated that expression of OPG-XL resulted in excessive fibrosis in cartilage and high mineralization in bone accompanied by marked downregulation of MGP, encoding matrix Gla protein, and upregulation of DIO2, encoding type 2 deiodinase, gene expression, respectively. CONCLUSIONS The readthrough mutation at CCAL1 locus in TNFRSF11B identifies an unknown role for OPG-XL in subchondral bone turnover and cartilage mineralization in humans via DIO2 and MGP functions. Previously, OPG-XL was shown to affect binding between RANKL and heparan sulphate (HS) resulting in loss of immobilized OPG-XL. Therefore, effects may be triggered by deficiency in the immobilization of OPG-XL Since the characteristic bidirectional pathophysiology of articular cartilage calcification accompanied by low subchondral bone mineralization is also a hallmark of OA pathophysiology, our results are likely extrapolated to common arthropathies.
Collapse
Affiliation(s)
| | | | | | - Eka Suchiman
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden
| | - Ton Schoenmaker
- Department of Oral Cell Biology,Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit , Amsterdam
| | | | | | - Rob G H H Nelissen
- Department of Orthopedics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | - Teun J de Vries
- Department of Oral Cell Biology,Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit , Amsterdam
| | - Yolande F M Ramos
- Correspondence to: Department of Molecular Epidemiology, Leiden University Medical Center, LUMC Postzone S-05-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands. E-mail:
| | | |
Collapse
|
13
|
Garg B, Tomar N, Biswas A, Mehta N, Malhotra R. Understanding Musculoskeletal Disorders Through Next-Generation Sequencing. JBJS Rev 2022; 10:01874474-202204000-00001. [PMID: 35383688 DOI: 10.2106/jbjs.rvw.21.00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
» An insight into musculoskeletal disorders through advancements in next-generation sequencing (NGS) promises to maximize benefits and improve outcomes through improved genetic diagnosis. » The primary use of whole exome sequencing (WES) for musculoskeletal disorders is to identify functionally relevant variants. » The current evidence has shown the superiority of NGS over conventional genotyping for identifying novel and rare genetic variants in patients with musculoskeletal disorders, due to its high throughput and low cost. » Genes identified in patients with scoliosis, osteoporosis, osteoarthritis, and osteogenesis imperfecta using NGS technologies are listed for further reference.
Collapse
Affiliation(s)
- Bhavuk Garg
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | |
Collapse
|
14
|
Ho JSY, Zhou AK, Tran C, Jou E, Girish M, Thahir A, Chabra S, Hussain HA. Management of a Hot Swollen Joint in the Acute Setting. Curr Rheumatol Rev 2022; 18:173-177. [PMID: 35049435 DOI: 10.2174/1573397118666220113114104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/28/2021] [Accepted: 11/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The presentation of a hot swollen joint is common in the emergency department, general practice, rheumatology and orthopedic clinics. There is a wide set of differential diagnoses for a hot swollen joint, thus making it difficult to diagnose and manage, especially for junior doctors. Initially, it is pertinent to exclude/diagnose medical and surgical emergencies. OBJECTIVE This paper aims to summarize the key indications within the history, examination and investigations in order to quickly and effectively diagnose a hot swollen joint based on the original 2006 management guidelines and the papers discussing other possible indications and management strategies published since. RESULTS Currently, the management of crystal and non-infectious arthropathies are well recognized with little disparity. However, the treatment of infectious arthritis is not concrete and there are discrepancies in management between doctors. CONCLUSION We have summarized the key indications and provided a diagnostic flow chart to aid with the management.
Collapse
Affiliation(s)
| | - Andrew Kailin Zhou
- Department of Trauma And Orthopaedics, Addenbrookes Major Trauma Unit, Cambridge University Hospitals, United Kingdom
| | | | - Eric Jou
- School Of Clinical Medicine, University Of Cambridge, Cambridge, United Kingdom
| | - Milind Girish
- Department of Trauma And Orthopaedics, Addenbrookes Major Trauma Unit, Cambridge University Hospitals, United Kingdom
| | - Azeem Thahir
- Department of Trauma And Orthopaedics, Addenbrookes Major Trauma Unit, Cambridge University Hospitals, United Kingdom
| | - Shirom Chabra
- School Of Clinical Medicine, University Of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
15
|
van Hoolwerff M, Rodríguez Ruiz A, Bouma M, Suchiman HED, Koning RI, Jost CR, Mulder AA, Freund C, Guilak F, Ramos YFM, Meulenbelt I. High-impact FN1 mutation decreases chondrogenic potential and affects cartilage deposition via decreased binding to collagen type II. SCIENCE ADVANCES 2021; 7:eabg8583. [PMID: 34739320 PMCID: PMC8570604 DOI: 10.1126/sciadv.abg8583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Osteoarthritis is the most prevalent joint disease worldwide, yet progress in development of effective disease-modifying treatments is slow because of lack of insight into the underlying disease pathways. Therefore, we aimed to identify the causal pathogenic mutation in an early-onset osteoarthritis family, followed by functional studies in human induced pluripotent stem cells (hiPSCs) in an in vitro organoid cartilage model. We demonstrated that the identified causal missense mutation in the gelatin-binding domain of the extracellular matrix protein fibronectin resulted in significant decreased binding capacity to collagen type II. Further analyses of formed hiPSC-derived neo-cartilage tissue highlighted that mutated fibronectin affected chondrogenic capacity and propensity to a procatabolic osteoarthritic state. Together, we demonstrate that binding of fibronectin to collagen type II is crucial for fibronectin downstream gene expression of chondrocytes. We advocate that effective treatment development should focus on restoring or maintaining proper binding between fibronectin and collagen type II.
Collapse
Affiliation(s)
- Marcella van Hoolwerff
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Alejandro Rodríguez Ruiz
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Marga Bouma
- LUMC hiPSC Hotel, Leiden University Medical Center, Leiden, Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - H. Eka D. Suchiman
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Roman I. Koning
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Carolina R. Jost
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Aat A. Mulder
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Christian Freund
- LUMC hiPSC Hotel, Leiden University Medical Center, Leiden, Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University and Shriners Hospitals for Children, St. Louis, MO, USA
| | - Yolande F. M. Ramos
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
16
|
Williams CJ, Rosenthal AK. Pathogenesis of calcium pyrophosphate deposition disease. Best Pract Res Clin Rheumatol 2021; 35:101718. [PMID: 34696986 DOI: 10.1016/j.berh.2021.101718] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Calcium pyrophosphate deposition disease is defined by the presence of calcium pyrophosphate (CPP) crystals in articular cartilage and is the fourth most common type of arthritis in adults. Despite its high prevalence, the etiology of CPPD disease remains unclear and no specific therapies currently exist. It has been known for several decades that abnormalities of cartilage pyrophosphate metabolism are common in patients with CPPD disease, and this classic work will be reviewed here. Recent studies of rare familial forms of CPPD disease have provided additional novel information about its pathophysiology. This work suggests that CPPD disease occurs through at least two unique and potentially intertwined biomolecular pathways. We are hopeful that a detailed understanding of the components and regulation of these pathways will lead to improved therapies for this common disease.
Collapse
Affiliation(s)
- Charlene J Williams
- Cooper Medical School of Rowan University, 401 S. Broadway, Camden, NJ 08103, USA.
| | - Ann K Rosenthal
- Clement J Zablocki Veterans Hospital, Medical College of Wisconsin, 5000 W. National Ave., Milwaukee, WI, USA.
| |
Collapse
|
17
|
Shepherd RF, Kerns JG, Ranganath LR, Gallagher JA, Taylor AM. "Lessons from Rare Forms of Osteoarthritis". Calcif Tissue Int 2021; 109:291-302. [PMID: 34417863 PMCID: PMC8403118 DOI: 10.1007/s00223-021-00896-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) is one of the most prevalent conditions in the world, particularly in the developed world with a significant increase in cases and their predicted impact as we move through the twenty-first century and this will be exacerbated by the covid pandemic. The degeneration of cartilage and bone as part of this condition is becoming better understood but there are still significant challenges in painting a complete picture to recognise all aspects of the condition and what treatment(s) are most appropriate in individual causes. OA encompasses many different types and this causes some of the challenges in fully understanding the condition. There have been examples through history where much has been learnt about common disease(s) from the study of rare or extreme phenotypes, particularly where Mendelian disorders are involved. The often early onset of symptoms combined with the rapid and aggressive pathogenesis of these diseases and their predictable outcomes give an often-under-explored resource. It is these "rarer forms of disease" that William Harvey referred to that offer novel insights into more common conditions through their more extreme presentations. In the case of OA, GWAS analyses demonstrate the multiple genes that are implicated in OA in the general population. In some of these rarer forms, single defective genes are responsible. The extreme phenotypes seen in conditions such as Camptodactyly Arthropathy-Coxa Vara-pericarditis Syndrome, Chondrodysplasias and Alkaptonuria all present potential opportunities for greater understanding of disease pathogenesis, novel therapeutic interventions and diagnostic imaging. This review examines some of the rarer presenting forms of OA and linked conditions, some of the novel discoveries made whilst studying them, and findings on imaging and treatment strategies.
Collapse
Affiliation(s)
- Rebecca F Shepherd
- Lancaster Medical School, Faculty of Health & Medicine, Lancaster University, Lancaster, UK
| | - Jemma G Kerns
- Lancaster Medical School, Faculty of Health & Medicine, Lancaster University, Lancaster, UK
| | - Lakshminarayan R Ranganath
- Departments of Clinical Biochemistry and Metabolic Medicine, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
| | - James A Gallagher
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8T, UK
| | - Adam M Taylor
- Lancaster Medical School, Faculty of Health & Medicine, Lancaster University, Lancaster, UK.
| |
Collapse
|
18
|
Ruiz AR, Tuerlings M, Das A, de Almeida RC, Eka Suchiman H, Nelissen RGHH, Ramos YFM, Meulenbelt I. The role of TNFRSF11B in development of osteoarthritic cartilage. Rheumatology (Oxford) 2021; 61:856-864. [PMID: 33989379 PMCID: PMC8824428 DOI: 10.1093/rheumatology/keab440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Osteoarthritis (OA) is a complex genetic disease with different risk factors contributing to its development. One of the genes, TNFRSF11B, previously identified with gain-of-function mutation in a family with early-onset OA with chondrocalcinosis, is among the highest upregulated genes in lesioned OA cartilage (RAAK-study). Here, we determined the role of TNFRSF11B overexpression in development of OA. METHODS Human primary articular chondrocytes (9 donors RAAK study) were transduced using lentiviral particles with or without TNFRSF11B. Cells were cultured for 1 week in a 3D in-vitro chondrogenic model . TNFRSF11B overexpression was confirmed by RT-qPCR, immunohistochemistry and ELISA. Effects of TNFRSF11B overexpression on cartilage matrix deposition, matrix mineralization, and genes highly correlated to TNFRSF11B in RNA-sequencing dataset (r>|0.75|) were determined by RT-qPCR. Additionally, glycosaminoglycans and collagen deposition were visualized with Alcian blue staining and immunohistochemistry (COL1 and COL2). RESULTS Overexpression of TNFRSF11B resulted in strong upregulation of MMP13, COL2A1 and COL1A1. Likewise, mineralization and osteoblast characteristic markers RUNX2, ASPN and OGN showed a consistent increase. Among 30 genes highly correlated to TNFRSF11B, expression of only 8 changed significantly, with BMP6 showing highest increase (9-fold) while expression of RANK and RANKL remained unchanged indicating previously unknown downstream pathways of TNFRSF11B in cartilage. CONCLUSION Results of our 3D in vitro chondrogenesis model indicate that upregulation of TNFRSF11B in lesioned OA cartilage may act as a direct driving factor for chondrocyte to osteoblast transition observed in OA pathophysiology. This transition does not appear to act via the OPG/RANK/RANKL triad common in bone remodeling. ETHICS APPROVAL AND CONSENT TO PARTICIPATE The Medical Ethics Committee of the LUMC gave approval for the RAAK study (P08.239). Written informed consent was obtained from all donors.
Collapse
Affiliation(s)
- Alejandro Rodríguez Ruiz
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands; Dept. Orthopaedics, LUMC
| | - Margo Tuerlings
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands; Dept. Orthopaedics, LUMC
| | - Ankita Das
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands; Dept. Orthopaedics, LUMC
| | - Rodrigo Coutinho de Almeida
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands; Dept. Orthopaedics, LUMC
| | - H Eka Suchiman
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands; Dept. Orthopaedics, LUMC
| | - Rob G H H Nelissen
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands; Dept. Orthopaedics, LUMC
| | - Yolande F M Ramos
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands; Dept. Orthopaedics, LUMC
| | - Ingrid Meulenbelt
- Dept. of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands; Dept. Orthopaedics, LUMC
| |
Collapse
|
19
|
Kazmers NH, Meeks HD, Novak KA, Yu Z, Fulde GL, Thomas JL, Barker T, Jurynec MJ. Familial Clustering of Erosive Hand Osteoarthritis in a Large Statewide Cohort. Arthritis Rheumatol 2021; 73:440-447. [PMID: 32940959 PMCID: PMC7914133 DOI: 10.1002/art.41520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/04/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Erosive hand osteoarthritis (OA) is a severe and rapidly progressing subset of hand OA. Its etiology remains largely unknown, which has hindered development of successful treatments. This study was undertaken to test the hypothesis that erosive hand OA demonstrates familial clustering in a large statewide population linked to genealogical records, and to determine the association of potential risk factors with erosive hand OA. METHODS Patients diagnosed as having erosive hand OA were identified by searching 4,741,840 unique medical records from a comprehensive statewide database, the Utah Population Database (UPDB). Affected individuals were mapped to pedigrees to identify high-risk families with excess clustering of erosive hand OA as defined by a familial standardized incidence ratio (FSIR) of ≥2.0. The magnitude of familial risk of erosive hand OA in related individuals was calculated using Cox regression models. Association of potential erosive hand OA risk factors was analyzed using multivariate conditional logistic regression and logistic regression models. RESULTS We identified 703 affected individuals linked to 240 unrelated high-risk pedigrees with excess clustering of erosive hand OA (FSIR ≥2.0, P < 0.05). The relative risk of developing erosive hand OA was significantly elevated in first-degree relatives (P < 0.001). There were significant associations between a diagnosis of erosive hand OA and age, sex, diabetes, and obesity (all P < 0.05). CONCLUSION Familial clustering of erosive hand OA observed in a statewide database indicates a potential genetic contribution to the etiology of the disease. Age, sex, diabetes, and obesity are risk factors for erosive hand OA. Identification of causal gene variants in these high-risk families may provide insight into the genes and pathways that contribute to erosive hand OA onset and progression.
Collapse
Affiliation(s)
- Nikolas H. Kazmers
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108
| | - Huong D. Meeks
- Population Science, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, UT 84112
| | - Kendra A. Novak
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108
| | - Zhe Yu
- Population Science, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, UT 84112
| | - Gail L. Fulde
- Intermountain Healthcare, Precision Genomics, St. George, UT 84790
| | - Joy L. Thomas
- Intermountain Healthcare, Precision Genomics, St. George, UT 84790
| | - Tyler Barker
- Intermountain Healthcare, Precision Genomics, Murray, UT 84107
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112
| | - Michael J. Jurynec
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108
| |
Collapse
|
20
|
Mitton-Fitzgerald E, Gohr CM, Williams CJ, Ortiz A, Mbalaviele G, Rosenthal AK. Effects of the TNFRSF11B Mutation Associated With Calcium Pyrophosphate Deposition Disease in Osteoclastogenesis in a Murine Model. Arthritis Rheumatol 2021; 73:1543-1549. [PMID: 33559312 DOI: 10.1002/art.41678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/02/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The gene TNFRSF11B encodes for osteoprotegerin (OPG) and was recently identified as the CCAL1 locus associated with familial calcium pyrophosphate deposition disease (CPDD). While the CCAL1 OPG mutation (OPG-XL) was originally believed to be a gain-of-function mutation, loss of OPG activity causes arthritis-associated osteolysis in mice, which is likely related to excess subchondral osteoclast formation and/or activity. The purpose of the present study was to further explore the effect of OPG-XL in osteoclastogenesis. METHODS The effects of recombinant OPG-XL and wild-type (WT) OPG were determined in monoculture and coculture models of RANKL-induced osteoclastogenesis. The effects of OPG-XL on osteoclast survival as well as on TRAIL-induced apoptosis were determined using standard in vitro assays and compared to WT OPG. The ability of OPG-XL and WT OPG to bind to osteoblasts was measured with enzyme-linked immunosorbent assay and flow cytometry using the osteoblastic MC3T3-E1 cell line. RESULTS OPG-XL was less effective than WT OPG at blocking RANKL-induced osteoclastogenesis in monoculture and coculture models. Osteoclast survival and inhibition of TRAIL-induced apoptosis were similar in the presence of OPG-XL and WT OPG. Compared to WT OPG, considerably less OPG-XL bound to cells. CONCLUSION These findings indicate that OPG-XL is a loss-of-function mutation as it relates to RANKL-mediated osteoclastogenesis, and thus may permit increased osteoclast numbers and heightened bone turnover. Further studies are necessary to demonstrate how this mutation contributes to arthritis in individuals carrying this mutation.
Collapse
Affiliation(s)
| | - Claudia M Gohr
- Medical College of Wisconsin and Milwaukee VA Medical Center, Milwaukee
| | | | - Amaryllis Ortiz
- Cooper Medical School of Rowan University, Camden, New Jersey
| | | | - Ann K Rosenthal
- Medical College of Wisconsin and Milwaukee VA Medical Center, Milwaukee
| |
Collapse
|
21
|
Zhu H, Yan H, Ma J, Zhang H, Zhang J, Hu Z, Guo Y. CCAL1 enhances osteoarthritis through the NF-κB/AMPK signaling pathway. FEBS Open Bio 2020; 10:2553-2563. [PMID: 32986917 PMCID: PMC7714067 DOI: 10.1002/2211-5463.12989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/24/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by articular cartilage degeneration and secondary osteogenesis. It has been previously demonstrated that the CCAL1 locus is the gene encoding tumor necrosis factor receptor superfamily member 11B (TNFRSF11B). The purpose of this study was to demonstrate the role of CCAL1 in OA progression and to elucidate its molecular mechanisms. We report that CCAL1 is highly expressed in the cartilage of OA patients and its expression level is positively correlated with the severity of OA. We found that CCAL1 causes a switch to the fibrosis‐prone phenotype of Human Chondrocyte‐Osteoarthritis (HC‐OA) cells. In addition, CCAL1 enhances cell viability and promotes the proliferation of HC‐OA cells. Finally, the detection of proteins associated with the NF‐κB/AMPK signaling pathway by western blot suggested that CCAL1 exerts its role on HC‐OA cells by activating the NF‐κB signaling pathway and inhibiting the AMPK signaling pathway, which was verified through the addition of NF‐κB inhibitor caffeic acid phenethyl ester (CAPE) and AMPK activator 5‐aminoimidazole‐4‐carboxamide riboside (AICAR). In summary, we report that CCAL1 may promote OA through the NF‐κB and AMPK signaling pathways.
Collapse
Affiliation(s)
- Hanzhong Zhu
- Department of Orthopaedic Surgery, Chengwu People's Hospital, Heze, China
| | - Hongyu Yan
- Department of Orthopaedic Surgery, Chengwu People's Hospital, Heze, China
| | - Junan Ma
- Department of Orthopaedic Surgery, Chengwu People's Hospital, Heze, China
| | - Hua Zhang
- Department of Orthopaedic Surgery, Chengwu People's Hospital, Heze, China
| | - Jidong Zhang
- Department of Orthopaedic Surgery, Chengwu People's Hospital, Heze, China
| | - Zhiheng Hu
- Department of Orthopaedic Surgery, Chengwu People's Hospital, Heze, China
| | - Yunliang Guo
- Department of Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
22
|
Ruault V, Yauy K, Fabre A, Fradin M, Van-Gils J, Angelini C, Baujat G, Blanchet P, Cuinat S, Isidor B, Jorgensen C, Lacombe D, Moutton S, Odent S, Sanchez E, Sigaudy S, Touitou I, Willems M, Apparailly F, Geneviève D, Barat-Houari M. Clinical and Molecular Spectrum of Nonsyndromic Early-Onset Osteoarthritis. Arthritis Rheumatol 2020; 72:1689-1693. [PMID: 32510848 DOI: 10.1002/art.41387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) is the most common joint disease worldwide. The etiology of OA is varied, ranging from multifactorial to environmental to monogenic. In a condition called early-onset OA, OA occurs at an earlier age than is typical in the general population. To our knowledge, there have been no large-scale genetic studies of individuals with early-onset OA. The present study was undertaken to investigate causes of monogenic OA in individuals with nonsyndromic early-onset OA. METHODS The study probands were 45 patients with nonsyndromic early-onset OA who were referred to our skeletal disease center by skeletal dysplasia experts between 2013 and 2019. Criteria for early-onset OA included radiographic evidence, body mass index ≤30 kg/m2 , age at onset ≤50 years, and involvement of ≥1 joint site. Molecular analysis was performed with a next-generation sequencing panel. RESULTS We identified a genetic variant in 13 probands (29%); the affected gene was COL2A1 in 11, ACAN in 1, and SLC26A2 in 1. After familial segregation analysis, 20 additional individuals were identified. The mean ± SD age at onset of joint pain was 19.5 ± 3.9 years (95% confidence interval 3-47). Eighteen of 33 subjects (55%) with nonsyndromic early-onset OA and a genetic variant had had at least 1 joint replacement (mean ± SD age at first joint replacement 41 ± 4.2 years; mean number of joint replacements 2.6 per individual), and 21 (45%) of the joint replacement surgeries were performed when the patient was <45 years old. Of the 20 patients age >40 years, 17 (85%) had had at least 1 joint replacement. CONCLUSION We confirmed that COL2A1 is the main monogenic cause of nonsyndromic early-onset OA. However, on the basis of genetic heterogeneity of early-onset OA, we recommend next-generation sequencing for all individuals who undergo joint replacement prior to the age of 45 years. Lifestyle recommendations for prevention should be implemented.
Collapse
Affiliation(s)
- Valentin Ruault
- Université de Montpellier, Centre Hospitalier Universitaire Montpellier, CLAD Sud Languedoc-Roussillon, Montpellier, France
| | - Kevin Yauy
- Université de Montpellier, Centre Hospitalier Universitaire Montpellier, CLAD Sud Languedoc-Roussillon and SeqOne, Montpellier, France, and Institute of Advanced Biosciences, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Grenoble, France
| | - Aurélie Fabre
- Université de Montpellier, Centre Hospitalier Universitaire Montpellier, CLAD Sud Languedoc-Roussillon, Montpellier, France
| | - Mélanie Fradin
- Centre Hospitalier Universitaire Hôpital Sud, CLAD Ouest, CNRS UMR 6290, Université de Rennes, Rennes, France
| | | | | | | | - Patricia Blanchet
- Université de Montpellier, Centre Hospitalier Universitaire Montpellier, CLAD Sud Languedoc-Roussillon, Montpellier, France
| | - Silvestre Cuinat
- Centre Hospitalier Universitaire Nantes, CLAD Ouest, Nantes, France
| | - Bertrand Isidor
- Centre Hospitalier Universitaire Nantes, CLAD Ouest, Nantes, France
| | - Christian Jorgensen
- Université de Montpellier, Centre Hospitalier Universitaire Montpellier, INSERM, Montpellier, France
| | | | - Sébastien Moutton
- Centre Pluridisciplinaire de Diagnostic Prénatal, Pôle Mère-Enfant, Maison de Santé Protestante de Bordeaux-Bagatelle, Talence, France
| | - Sylvie Odent
- Centre Hospitalier Universitaire Hôpital Sud, CLAD Ouest, CNRS UMR 6290, Université de Rennes, Rennes, France
| | - Elodie Sanchez
- Université de Montpellier, Centre Hospitalier Universitaire Montpellier, CLAD Sud Languedoc-Roussillon, INSERM, Montpellier, France
| | - Sabine Sigaudy
- Centre Hospitalier Universitaire de Marseille, Hôpital de la Timone, Marseille, France
| | - Isabelle Touitou
- Université de Montpellier, Centre Hospitalier Universitaire Montpellier, CLAD Sud Languedoc-Roussillon, INSERM, Montpellier, France
| | - Marjolaine Willems
- Université de Montpellier, Centre Hospitalier Universitaire Montpellier, CLAD Sud Languedoc-Roussillon, Montpellier, France
| | - Florence Apparailly
- Université de Montpellier, Centre Hospitalier Universitaire Montpellier, CLAD Sud Languedoc-Roussillon, INSERM, Montpellier, France
| | - David Geneviève
- Université de Montpellier, Centre Hospitalier Universitaire Montpellier, CLAD Sud Languedoc-Roussillon, INSERM, Montpellier, France
| | - Mouna Barat-Houari
- Université de Montpellier, Centre Hospitalier Universitaire Montpellier, CLAD Sud Languedoc-Roussillon, Montpellier, France
| |
Collapse
|
23
|
Hameed M, Turkiewicz A, Englund M, Jacobsson L, Kapetanovic MC. Prevalence and incidence of non-gout crystal arthropathy in southern Sweden. Arthritis Res Ther 2019; 21:291. [PMID: 31847885 PMCID: PMC6918617 DOI: 10.1186/s13075-019-2077-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/29/2019] [Indexed: 01/30/2023] Open
Abstract
Objective To estimate the prevalence and incidence of non-gout crystal arthropathy in relation to socioeconomic factors in southern Sweden. Methods All patients (age ≥ 18 years) with at least one visit to a physician with the diagnosis of interest in the Skåne region (population of 1.3 million) in 1998–2014 were identified. Non-gout crystal arthropathy (ICD-10 codes M11.0–M11.9) was subclassified in four different groups: calcium pyrophosphate crystal deposition related arthropathy (CPPD), unspecified non-gout arthropathies, chondrocalcinosis, and hydroxyapatite crystal deposition disease. The crude and age-adjusted point prevalence on December 31, 2014, and the cumulative incidence during 2014 were calculated for all non-gout crystal arthropathies, CPPD, and other unspecified non-gout arthropathies overall and in relation to occupation, income, and level of education. Results The crude 2014 point prevalence (95% CI) and 2014 cumulative incidence (95% CI) of all non-gout crystal arthropathies were 0.23% (0.23–0.24) and 21.5 (19–25) cases/100,000 persons. Mean age (range) among all prevalent cases in 2014 was 71 (20–102) years and 56% were males. The point prevalence and cumulative incidence of CPPD were 0.09% (0.08–0.09) and 8 (7–10)/100,000 persons, respectively. The corresponding data for unspecified non-gout crystal deposition disease was 0.16% (0.16–0.17) and 15.6 (13–18)/100,000 persons, respectively. The prevalence and incidence of CPPD and unspecified non-gout crystal arthropathies were slightly higher in men and increased with age irrespective of gender. Unspecified non-gout crystal arthropathy but not CPPD was less prevalent in persons with ≥ 15 years of education, whereas there were no clear associations with occupation and income. Conclusion The prevalence of all diagnosed non-gout crystal arthropathies was 0.23%, thus considerably less prevalent than gout in southern Sweden. CPPD and other unspecified non-gout crystal arthropathies are the predominant diagnoses, increasing with age and in men. With the exception for unspecified non-gout crystal arthropathies being inversely correlated to a higher level of education, no convincing association with the socioeconomic factors was found.
Collapse
Affiliation(s)
- Mohaned Hameed
- Department of Clinical Sciences, Lund, Section for Rheumatology, Lund University, Lund and Skåne University Hospital, Lund, Sweden. .,Department of Clinical Sciences, Lund, Section for Rheumatology, Lund University, Lund and Skåne University Hospital, Gothenburg, Sweden.
| | - Aleksandra Turkiewicz
- Clinical Epidemiology Unit, Orthopaedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Martin Englund
- Clinical Epidemiology Unit, Orthopaedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Clinical Epidemiology Research and Training Unit, Boston University School of Medicine, Boston, MA, USA
| | - Lennart Jacobsson
- Department of Rheumatology & Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Meliha C Kapetanovic
- Department of Clinical Sciences, Lund, Section for Rheumatology, Lund University, Lund and Skåne University Hospital, Lund, Sweden.,Department of Clinical Sciences, Lund, Section for Rheumatology, Lund University, Lund and Skåne University Hospital, Gothenburg, Sweden
| |
Collapse
|
24
|
Răduț R, Crăciun AM, Silaghi CN. BONE MARKERS IN ARTHROPATHIES. Acta Clin Croat 2019; 58:716-725. [PMID: 32595257 PMCID: PMC7314293 DOI: 10.20471/acc.2019.58.04.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bone endures a lifelong course of construction and destruction, with bone marker (BM) molecules released during this cycle. The field of measuring BM levels in synovial fluid and peripheral blood is a cardinal part of bone research within modern clinical medicine and has developed extensively in the last years. The purpose of our work was to convey an up-to-date overview on synovial fluid and serum BMs in the most common arthropathies.
Collapse
Affiliation(s)
| | - Alexandra M Crăciun
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ciprian N Silaghi
- Department of Medical Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
25
|
Knitza J, Kleyer A, Schett G, Manger B. [Chondrocalcinosis: idiopathic or manifestation of rare metabolic diseases?]. DER ORTHOPADE 2019; 48:949-956. [PMID: 31515589 DOI: 10.1007/s00132-019-03805-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Calcification in hyaline and fibrocartilage is caused by the deposition of calcium pyrophosphate dehydrate, commonly referred to as chondrocalcinosis. Clinically, this can lead to arthritis symptoms similar to a gout attack -"pseudogout". Nonetheless, also chronic or asymptomatic disease courses are possible. The prevalence of chondrocalcinosis increases with age. The diagnostic workup of degenerative joint disease, therefore, often reveals calcifications of articular cartilage as harmless incidental findings. However, particularly in patients younger than 60 years of age, chondrocalcinosis can be the symptom of an underlying metabolic disease. This review article highlights these rare diseases and presents unusual manifestations of chondrocalcinosis.
Collapse
Affiliation(s)
- J Knitza
- Medizinische Klinik 3 - Rheumatologie und Immunologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054, Erlangen, Deutschland.
| | - A Kleyer
- Medizinische Klinik 3 - Rheumatologie und Immunologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054, Erlangen, Deutschland
| | - G Schett
- Medizinische Klinik 3 - Rheumatologie und Immunologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054, Erlangen, Deutschland
| | - B Manger
- Medizinische Klinik 3 - Rheumatologie und Immunologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054, Erlangen, Deutschland
| |
Collapse
|
26
|
Abstract
The most common types of calcium-containing crystals that are associated with joint and periarticular disorders are calcium pyrophosphate dihydrate (CPP) and basic calcium phosphate (BCP) crystals. Several diverse but difficult-to-treat acute and chronic arthropathies and other clinical syndromes are associated with the deposition of these crystals. Although the pathogenic mechanism of calcium crystal deposition is partially understood, much remains to be investigated, as no drug is available to prevent crystal deposition, permit crystal dissolution or specifically target the pathogenic effects that result in the clinical manifestations. In this Review, the main clinical manifestations of CPP and BCP crystal deposition are discussed, along with the biological effects of these crystals, current therapeutic approaches and future directions in therapy.
Collapse
Affiliation(s)
- Geraldine M McCarthy
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland. .,Mater Misericordiae University Hospital, Dublin, Ireland.
| | - Aisling Dunne
- School of Biochemistry and Immunology and School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Coutinho de Almeida R, Ramos YFM, Mahfouz A, den Hollander W, Lakenberg N, Houtman E, van Hoolwerff M, Suchiman HED, Rodríguez Ruiz A, Slagboom PE, Mei H, Kiełbasa SM, Nelissen RGHH, Reinders M, Meulenbelt I. RNA sequencing data integration reveals an miRNA interactome of osteoarthritis cartilage. Ann Rheum Dis 2019; 78:270-277. [PMID: 30504444 PMCID: PMC6352405 DOI: 10.1136/annrheumdis-2018-213882] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To uncover the microRNA (miRNA) interactome of the osteoarthritis (OA) pathophysiological process in the cartilage. METHODS We performed RNA sequencing in 130 samples (n=35 and n=30 pairs for messenger RNA (mRNA) and miRNA, respectively) on macroscopically preserved and lesioned OA cartilage from the same patient and performed differential expression (DE) analysis of miRNA and mRNAs. To build an OA-specific miRNA interactome, a prioritisation scheme was applied based on inverse Pearson's correlations and inverse DE of miRNAs and mRNAs. Subsequently, these were filtered by those present in predicted (TargetScan/microT-CDS) and/or experimentally validated (miRTarBase/TarBase) public databases. Pathway enrichment analysis was applied to elucidate OA-related pathways likely mediated by miRNA regulatory mechanisms. RESULTS We found 142 miRNAs and 2387 mRNAs to be differentially expressed between lesioned and preserved OA articular cartilage. After applying prioritisation towards likely miRNA-mRNA targets, a regulatory network of 62 miRNAs targeting 238 mRNAs was created. Subsequent pathway enrichment analysis of these mRNAs (or genes) elucidated that genes within the 'nervous system development' are likely mediated by miRNA regulatory mechanisms (familywise error=8.4×10-5). Herein NTF3 encodes neurotrophin-3, which controls survival and differentiation of neurons and which is closely related to the nerve growth factor. CONCLUSIONS By an integrated approach of miRNA and mRNA sequencing data of OA cartilage, an OA miRNA interactome and related pathways were elucidated. Our functional data demonstrated interacting levels at which miRNA affects expression of genes in the cartilage and exemplified the complexity of functionally validating a network of genes that may be targeted by multiple miRNAs.
Collapse
Affiliation(s)
- Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yolande F M Ramos
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ahmed Mahfouz
- The Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter den Hollander
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nico Lakenberg
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Evelyn Houtman
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcella van Hoolwerff
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - H Eka D Suchiman
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alejandro Rodríguez Ruiz
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - P Eline Slagboom
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequence Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Szymon M Kiełbasa
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Sequence Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob G H H Nelissen
- Department of Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel Reinders
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- The Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
28
|
Chinzei N, Rai MF, Hashimoto S, Schmidt EJ, Takebe K, Cheverud JM, Sandell LJ. Evidence for Genetic Contribution to Variation in Posttraumatic Osteoarthritis in Mice. Arthritis Rheumatol 2019; 71:370-381. [PMID: 30225954 DOI: 10.1002/art.40730] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Recombinant inbred mouse strains generated from an LG/J and SM/J intercross offer a unique resource to study complex genetic traits such as osteoarthritis (OA). We undertook this study to determine the susceptibility of 14 strains to various phenotypes characteristic of posttraumatic OA. We hypothesized that phenotypic variability is associated with genetic variability. METHODS Ten-week-old male mice underwent surgical destabilization of the medial meniscus (DMM) to induce posttraumatic OA. Mice were killed 8 weeks after surgery, and knee joints were processed for histology to score cartilage degeneration and synovitis. Micro-computed tomography was used to analyze trabecular bone parameters including subchondral bone plate thickness and synovial ectopic calcifications. Gene expression in the knees was assessed using a QuantiGene Plex assay. RESULTS Broad-sense heritability ranged from 0.18 to 0.58, which suggested that the responses to surgery were moderately heritable. The LGXSM-33, LGXSM-5, LGXSM-46, and SM/J strains were highly susceptible to OA, while the LGXSM-131b, LGXSM-163, LGXSM-35, LGXSM-128a, LGXSM-6, and LG/J strains were relatively OA resistant. This study was the first to accomplish measurement of genetic correlations of phenotypes that are characteristic of posttraumatic OA. Cartilage degeneration was significantly positively associated with synovitis (r = 0.83-0.92), and subchondral bone plate thickness was negatively correlated with ectopic calcifications (r = -0.59). Moreover, we showed that 40 of the 78 genes tested were significantly correlated with various OA phenotypes. However, unlike the OA phenotypes, there was no evidence for genetic variation in differences in gene expression levels between DMM-operated and sham-operated knees. CONCLUSION For these mouse strains, various characteristics of posttraumatic OA varied with genetic composition, which demonstrated a genetic basis for susceptibility to posttraumatic OA. The heritability of posttraumatic OA was established. Phenotypes exhibited various degrees of correlations; cartilage degeneration was positively correlated with synovitis, but not with the formation of ectopic calcifications. Further investigation of the genome regions that contain genes implicated in OA, as well as further investigation of gene expression data, will be useful for studying mechanisms of OA and identifying therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | - Ken Takebe
- Konan Kakogawa Hospital, Kakogawa, Japan
| | | | | |
Collapse
|
29
|
Abhishek A, Neogi T, Choi H, Doherty M, Rosenthal AK, Terkeltaub R. Review: Unmet Needs and the Path Forward in Joint Disease Associated With Calcium Pyrophosphate Crystal Deposition. Arthritis Rheumatol 2018; 70:1182-1191. [PMID: 29609209 DOI: 10.1002/art.40517] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022]
Abstract
Calcium pyrophosphate (CPP) crystal deposition (CPPD) is prevalent and can be associated with synovitis and joint damage. The population of elderly persons predominantly affected by CPPD is growing rapidly. Since shortfalls exist in many aspects of CPPD, we conducted an anonymous survey of CPPD unmet needs, prioritized by experts from the Gout, Hyperuricemia and Crystal-Associated Disease Network. We provide our perspectives on the survey results, and we propose several CPPD basic and clinical translational research pathways. Chondrocyte and cartilage culture systems for generating CPP crystals in vitro and transgenic small animal CPPD models are needed to better define CPPD mechanism paradigms and help guide new therapies. CPPD recognition, clinical research, and care would be improved by international consensus on CPPD nomenclature and disease phenotype classification, better exploitation of advanced imaging, and pragmatic new point-of-care crystal analytic approaches for detecting CPP crystals. Clinical impacts of CPP crystals in osteoarthritis and in asymptomatic joints in elderly persons remain major unanswered questions that are rendered more difficult by current inability to therapeutically limit or dissolve the crystal deposits and assess the consequent clinical outcome. Going forward, CPPD clinical research studies should define clinical settings in which articular CPPD does substantial harm and should include analyses of diverse clinical phenotypes and populations. Clinical trials should identify the best therapeutic targets to limit CPP crystal deposition and associated inflammation and should include assessment of intraarticular agents. Our perspective is that such advances in basic and clinical science in CPPD are now within reach and can lead to better treatments for this disorder.
Collapse
Affiliation(s)
| | - Tuhina Neogi
- Boston University School of Medicine, Boston, Massachusetts
| | - Hyon Choi
- Massachusetts General Hospital, Boston, Massachusetts
| | | | | | - Robert Terkeltaub
- Veterans Affairs, University of California at San Diego, San Diego, California
| |
Collapse
|
30
|
Williams CJ, Qazi U, Bernstein M, Charniak A, Gohr C, Mitton-Fitzgerald E, Ortiz A, Cardinal L, Kaell AT, Rosenthal AK. Mutations in osteoprotegerin account for the CCAL1 locus in calcium pyrophosphate deposition disease. Osteoarthritis Cartilage 2018; 26:797-806. [PMID: 29578045 PMCID: PMC6293976 DOI: 10.1016/j.joca.2018.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Mutations on chromosomes 5p (CCAL2) and 8q (CCAL1) have been linked to familial forms of calcium pyrophosphate deposition disease (CPDD). Mutations in the ANKH gene account for CCAL2, but the identity of CCAL1 has been elusive. Recently, a single Dutch kindred with a mutation in the Tumor Necrosis Factor Receptor Super Family member 11B (TNFRSF11B) gene coding for osteoprotegerin (OPG) was described as a gain-of-function mutation. Affected family members had premature generalized osteoarthritis (PGOA) and CPDD. As the TNFRSF11B gene is on 8q, we sought additional evidence that TNFRSF11B was CCAL1, and investigated potential disease mechanisms. DESIGN DNA from two novel PGOA/CPDD families was screened for sequence variants in the TNFRSF11B gene. Mutations were verified by genotype analysis of affected and unaffected family members. We also investigated effects of normal and mutant OPG on regulators of CPP crystal formation in porcine cartilage. RESULTS The identical TNFRSF11B mutation described in the Dutch family was present in two novel PGOA/CPDD families. ANKH was normal in affected patient fibroblasts. Exogenous OPG did not alter ANKH mRNA or protein levels, affect translocation of ANKH to the membrane, nor increase [pyrophosphate (PPi)] or other key regulators of CPDD. CONCLUSION We have firmly established the identity of CCAL1 as TNFRSF11B (OPG). Our findings suggest that this mutation produces disease in an ANKH-independent manner via novel mechanisms not primarily targeting cartilage. This work rationalizes further investigation of OPG pathway components as potential druggable targets for CPDD.
Collapse
Affiliation(s)
- C J Williams
- Cooper Medical School of Rowan University, Camden, NJ, United States
| | - U Qazi
- John T Mather Memorial Hospital-SUNY Stony Brook, Port Jefferson, NY, United States
| | - M Bernstein
- John T Mather Memorial Hospital-SUNY Stony Brook, Port Jefferson, NY, United States
| | - A Charniak
- John T Mather Memorial Hospital-SUNY Stony Brook, Port Jefferson, NY, United States
| | - C Gohr
- Medical College of Wisconsin and the Zablocki VA Medical Center, Milwaukee, WI, United States
| | - E Mitton-Fitzgerald
- Medical College of Wisconsin and the Zablocki VA Medical Center, Milwaukee, WI, United States
| | - A Ortiz
- Cooper Medical School of Rowan University, Camden, NJ, United States
| | - L Cardinal
- John T Mather Memorial Hospital-SUNY Stony Brook, Port Jefferson, NY, United States
| | - A T Kaell
- John T Mather Memorial Hospital-SUNY Stony Brook, Port Jefferson, NY, United States
| | - A K Rosenthal
- Medical College of Wisconsin and the Zablocki VA Medical Center, Milwaukee, WI, United States.
| |
Collapse
|
31
|
van Meurs JBJ. Osteoarthritis year in review 2016: genetics, genomics and epigenetics. Osteoarthritis Cartilage 2017; 25:181-189. [PMID: 28100422 DOI: 10.1016/j.joca.2016.11.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/20/2016] [Accepted: 11/02/2016] [Indexed: 02/02/2023]
Abstract
The purpose of this narrative review is to provide an overview of last year's publications in the field of genetics, genomics and epigenetics in the osteoarthritis (OA) field. Major themes arising from a Pubmed search on (epi)genetics in OA were identified. In addition, general developments in the fast evolving field of (epi)genetics are reviewed and relevance for the OA field is summarized. In the last 5 years, a number of genome-wide association studies have identified a modest number of genetic loci associated to OA. Continued functional research into these DNA variants is showing putative biological mechanisms underlying these associations. Over the last year, no additional large genome-wide association studies were published, but there clearly remains much to be discovered in the OA genetic field. A lot of research has been done into the epigenetics of OA over the last year. Several genome-wide screens examining the methylome of osteoarthritic cartilage were done. Pathway analysis confirmed deregulation of developmental and extracellular pathways in OA cartilage. Over the last year many microRNAs (miRNAs) have been identified that potentially play important roles in cartilage homeostasis and/or OA process. Continued research will learn whether these identified miRNAs are truly causal and can be used in clinical applications. Many of the epigenetic findings need further confirmation, but they highlight potential novel pathways involved in cartilage biology and OA.
Collapse
Affiliation(s)
- J B J van Meurs
- Department of Internal Medicine, Erasmus MC, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| |
Collapse
|
32
|
Abhishek A. Calcium pyrophosphate deposition disease: a review of epidemiologic findings. Curr Opin Rheumatol 2016; 28:133-9. [PMID: 26626724 DOI: 10.1097/bor.0000000000000246] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the recent advances in the epidemiology of calcium pyrophosphate deposition disease (CPPD), and to discuss their implications. This review is particularly timely as several epidemiological studies that enhance the understanding of CPPD have been published recently. RECENT FINDINGS This article will review recent findings on the prevalence of chondrocalcinosis; discuss new data on the associations between bone mineral density and chondrocalcinosis; and between diuretic use, chronic kidney disease 5 and 'pseudogout' (now termed acute calcium pyrophosphate crystal arthritis). It will summarize findings from a large dataset which reported that chondrocalcinosis results from a systemic predisposition, and that the association between chondrocalcinosis and polymorphisms in ANKH gene is independent of age and osteoarthritis. It will also review recent data which suggest that the association between chondrocalcinosis and osteoarthritis may be joint specific, and that chondrocalcinosis associates with radiographic attrition in knees with osteoarthritis. SUMMARY The studies reviewed suggest that CPPD occurs due to a generalized predisposition, and that it modifies the radiographic phenotype of osteoarthritis. However, further research is required to confirm if CPPD modifies the clinical phenotype of osteoarthritis.
Collapse
Affiliation(s)
- Abhishek Abhishek
- Academic Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
33
|
Affiliation(s)
- Ann K Rosenthal
- From the Division of Rheumatology, Department of Medicine, Medical College of Wisconsin (A.K.R., L.M.R.), and the Department of Medicine, Zablocki Veterans Affairs Medical Center (A.K.R.) - both in Milwaukee
| | - Lawrence M Ryan
- From the Division of Rheumatology, Department of Medicine, Medical College of Wisconsin (A.K.R., L.M.R.), and the Department of Medicine, Zablocki Veterans Affairs Medical Center (A.K.R.) - both in Milwaukee
| |
Collapse
|
34
|
Unique gene expression profile in osteoarthritis synovium compared with cartilage: analysis of publicly accessible microarray datasets. Rheumatol Int 2016; 36:819-27. [PMID: 26942917 DOI: 10.1007/s00296-016-3451-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/22/2016] [Indexed: 01/15/2023]
Abstract
The purpose of this study was to identify a gene expression signature in osteoarthritis (OA) synovium and genomic pathways likely to be involved in the pathogenesis of OA. Four publicly accessible microarray studies from synovium of OA patients were integrated, and a transcriptomic and network-based meta-analysis was performed. Based on pathways according to the Kyoto Encyclopedia of Genes and Genomes, functional enrichment analysis was performed. Meta-analysis results of OA synovium were compared to two previously published studies of OA cartilage to determine the relative number of common and specific DEGs of the cartilage and synovium. According to our meta-analysis, a total of 1350 genes were found to be differentially expressed in the synovium of OA patients as compared to that of healthy controls. Pathway analysis found 41 significant pathways in the total DEGs, and 22 and 16 pathways in the upregulated and downregulated DEGs, respectively. Cell adhesion molecules and cytokine-cytokine receptor interaction were the most significant pathway in the upregulated and downregulated DEGs, respectively. Comparison of meta-analysis results of OA synovium with results of two previous studies of OA cartilage identified 85 common genes and 1632 cartilage-specific DEGs and 1265 synovium-specific DEGs in the first study; and 142 common genes, and 856 cartilage-specific DEGs and 1208 synovium-specific DEGs in the second study. Our results show a small overlap between the DEGs of the synovium compared to DEGs of the cartilage, suggesting different pathogenic mechanisms that are specific to the synovium.
Collapse
|
35
|
|
36
|
Aury-Landas J, Marcelli C, Leclercq S, Boumédiene K, Baugé C. Genetic Determinism of Primary Early-Onset Osteoarthritis. Trends Mol Med 2016; 22:38-52. [DOI: 10.1016/j.molmed.2015.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022]
|
37
|
Exome and Whole Genome Sequencing in Aging and Longevity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 847:127-39. [DOI: 10.1007/978-1-4939-2404-2_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
38
|
Yang M, Zhang L, Stevens J, Gibson G. CRISPR/Cas9 mediated generation of stable chondrocyte cell lines with targeted gene knockouts; analysis of an aggrecan knockout cell line. Bone 2014; 69:118-25. [PMID: 25260929 DOI: 10.1016/j.bone.2014.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/05/2014] [Accepted: 09/07/2014] [Indexed: 01/08/2023]
Abstract
The Swarm rat chondrosarcoma (RCS) cell lines derived from a spontaneous neoplasm in a rat spine several decades ago have provided excellent models of chondrosarcoma tumor development. In addition the robust chondrocyte phenotype (expression of a large panel of genes identical to that seen in normal rat cartilage) and the ability to generate cell clones have facilitated their extensive use in the identification of chondrocyte proteins and genes. The clustered regularly interspersed short palindromic repeat (CRISPR) technology employing the RNA-guided nuclease Cas9 has rapidly dominated the genome engineering field as a unique and powerful gene editing tool. We have generated a stable RCS cell line (RCS Cas9) expressing the nuclease Cas9 that enables the editing of any target gene or non-coding RNA by simple transfection with a guide RNA. As proof of principle, stable cell lines with targeted ablation of aggrecan expression (Acan KO) were generated and characterized. The studies show that stable chondrocyte cell lines with targeted genome editing can be quickly generated from RCS Cas9 cells using this system. The Acan KO cell lines also provided a tool for characterizing the response of chondrocytes to aggrecan loss and the role of aggrecan in chondrosarcoma development. Loss of aggrecan expression while not affecting the chondrocyte phenotype resulted in a much firmer attachment of cells to their substrate in culture. Large changes in the expression of several genes were observed in response to the absence of the proteoglycan matrix, including those for several small leucine rich proteoglycans (SLRPs), transcription factors and membrane transporters. Acan KO cells failed to form a substantial chondrosarcoma when injected subcutaneously in nude mice consistent with previous suggestions that the glycosaminoglycan-rich matrix surrounding the chondrosarcoma protects it from destruction by the host immune system. The studies provide new understanding of aggrecan function and the RCS Cas9 cell line is expected to provide a very valuable tool for the study gene function in chondrocytes.
Collapse
Affiliation(s)
- Maozhou Yang
- Bone and Joint Center, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI, USA.
| | - Liang Zhang
- Bone and Joint Center, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI, USA.
| | - Jeff Stevens
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | - Gary Gibson
- Bone and Joint Center, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI, USA.
| |
Collapse
|
39
|
Ramos YFM, den Hollander W, Bovée JVMG, Bomer N, van der Breggen R, Lakenberg N, Keurentjes JC, Goeman JJ, Slagboom PE, Nelissen RGHH, Bos SD, Meulenbelt I. Genes involved in the osteoarthritis process identified through genome wide expression analysis in articular cartilage; the RAAK study. PLoS One 2014; 9:e103056. [PMID: 25054223 PMCID: PMC4108379 DOI: 10.1371/journal.pone.0103056] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/27/2014] [Indexed: 11/19/2022] Open
Abstract
Objective Identify gene expression profiles associated with OA processes in articular cartilage and determine pathways changing during the disease process. Methods Genome wide gene expression was determined in paired samples of OA affected and preserved cartilage of the same joint using microarray analysis for 33 patients of the RAAK study. Results were replicated in independent samples by RT-qPCR and immunohistochemistry. Profiles were analyzed with the online analysis tools DAVID and STRING to identify enrichment for specific pathways and protein-protein interactions. Results Among the 1717 genes that were significantly differently expressed between OA affected and preserved cartilage we found significant enrichment for genes involved in skeletal development (e.g. TNFRSF11B and FRZB). Also several inflammatory genes such as CD55, PTGES and TNFAIP6, previously identified in within-joint analyses as well as in analyses comparing preserved cartilage from OA affected joints versus healthy cartilage were among the top genes. Of note was the high up-regulation of NGF in OA cartilage. RT-qPCR confirmed differential expression for 18 out of 19 genes with expression changes of 2-fold or higher, and immunohistochemistry of selected genes showed a concordant change in protein expression. Most of these changes associated with OA severity (Mankin score) but were independent of joint-site or sex. Conclusion We provide further insights into the ongoing OA pathophysiological processes in cartilage, in particular into differences in macroscopically intact cartilage compared to OA affected cartilage, which seem relatively consistent and independent of sex or joint. We advocate that development of treatment could benefit by focusing on these similarities in gene expression changes and/or pathways.
Collapse
Affiliation(s)
- Yolande F. M. Ramos
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- The Netherlands Genomics Initiative, sponsored by the NCHA, Leiden-Rotterdam, The Netherlands
- * E-mail:
| | - Wouter den Hollander
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Nils Bomer
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ruud van der Breggen
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nico Lakenberg
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jelle J. Goeman
- Department of Biostatistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - P. Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- The Netherlands Genomics Initiative, sponsored by the NCHA, Leiden-Rotterdam, The Netherlands
| | - Rob G. H. H. Nelissen
- Department of Orthopeadics, Leiden University Medical Center, Leiden, The Netherlands
| | - Steffan D. Bos
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- The Netherlands Genomics Initiative, sponsored by the NCHA, Leiden-Rotterdam, The Netherlands
| | - Ingrid Meulenbelt
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- The Netherlands Genomics Initiative, sponsored by the NCHA, Leiden-Rotterdam, The Netherlands
| |
Collapse
|