1
|
Nazari K, Hosseindoost S, Dehpour AR, Kheirandish Y, Shafaroodi H. Evaluating the protective effect of dapsone on experimental osteoarthritis models induced by MIA in male rats. J Pharm Pharmacol 2024; 76:1497-1507. [PMID: 39096531 DOI: 10.1093/jpp/rgae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 08/05/2024]
Abstract
OBJECTIVES Osteoarthritis, a degenerative condition that results in significant morbidity, is typically managed with treatments aimed at symptom relief rather than addressing the underlying degeneration. Dapsone, recognized for its anti-inflammatory, antioxidant, antiexcitotoxic, and antiapoptotic properties, has demonstrated promising effects in various neurodegenerative diseases. This study explores the potential of dapsone to mitigate articular destruction, inflammation, and pain in rat models of osteoarthritis. METHODS Osteoarthritis was induced in rats by injecting MIA into the right knee joint. Dapsone was then administered intraperitoneally at 5, 10, or 20 mg/kg every 2 days for 2 weeks. Behavioural tests were done on days 0, 7, and 14. On day 14, the articular cartilage was histologically analysed using H&E staining. Serum levels of NF-kB, IL-1β, and TNF-α were evaluated by ELISA. RESULTS Dapsone effectively reduces pain, inflammation, and articular cartilage damage in osteoarthritis. Specifically, it improves mechanical allodynia and thermal hyperalgesia, reduces inflammatory markers (TNF-α, IL-1β, and NF-κB), and protects against cartilage destruction and chondrocyte loss, with the most significant effects at 20 mg/kg. CONCLUSIONS Dapsone effectively prevents pain, inflammation, and cartilage damage in osteoarthritis rats, suggesting its potential as a therapeutic option for managing osteoarthritis.
Collapse
Affiliation(s)
- Kimia Nazari
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Kheirandish
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Shafaroodi
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Guo H, Lv Z, Wang M, Li W, Xie Y, Liu Z, Chen F, Jiang R, Liu Y, Wu R, Li J, Sun Z, Tan G, Shi D. CD73 alleviates osteoarthritis by maintaining anabolism and suppressing catabolism of chondrocytes extracellular matrix. J Orthop Translat 2024; 49:96-106. [PMID: 39430133 PMCID: PMC11490838 DOI: 10.1016/j.jot.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/04/2024] [Accepted: 08/23/2024] [Indexed: 10/22/2024] Open
Abstract
Background Osteoarthritis (OA) is the most common degenerative joint disease, with articular cartilage degeneration as primary manifestation. Intra-articular injection of exogenous liposomal adenosine in mice knee has been shown to alleviate OA progression. However, the role of CD73, the rate-limiting enzyme of extracellular adenosine synthesis, in OA is still unknown. Methods In this work, we explored the expression changes of adenosine-related molecules via bioinformatic analysis. In addition, the expression level of these molecules was detected in OA cartilage. We also conducted a case-control study to investigate the genetic variants of selected SNPs on genes encoded adenosine-related molecules. To further explore the function of CD73 in chondrocytes, we knocked down the expression of CD73 with small interfering RNA and overexpressed CD73 with the use of lentivirus, and detected the expression of markers for anabolism and catabolism in mouse primary chondrocytes with or without IL-1β treatment. We also conducted in vivo experiments to explore the role of CD73 in OA. Results We found that the expression of CD73 was upregulated in OA, and the variants of SNP rs2229523 (base A to G) on NT5E (the encoding gene of CD73) were significantly higher in OA population, which might cause the amino acid encoded by this SNP change from threonine to alanine. The original helix structure in the adjacent region of amino acid encoded by SNP rs2229523 would be deconstructed after its mutation. Furthermore, we found that CD73 promoting the expression of Col2a1 but suppressing the expression of Mmp13 expression in mouse primary chondrocytes under inflammatory environment. The overexpression of CD73 attenuated bone remodeling and alleviated cartilage degeneration in DMM mice. Moreover, the physical activities were also improved in DMM mice overexpressed CD73 with the use of adeno-associated virus. Conclusions The variants of SNP rs2229523 (base A to G) on NT5E were significantly higher in OA population, and CD73 could alleviate OA by maintaining anabolism and suppressing catabolism of chondrocytes extracellular matrix. The Translational Potential of this Article This work showed that CD73 might be one of the biological therapeutic targets of OA, which would provide a reference for future novel treatment strategy of OA.
Collapse
Affiliation(s)
- Hu Guo
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhongyang Lv
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Maochun Wang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Weitong Li
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ya Xie
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zizheng Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Fufei Chen
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ruiyang Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Xuzhou Medical University, Nanjing, China
| | - Yuan Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Rui Wu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiawei Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ziying Sun
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Guihua Tan
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Lu X, Xu Y, Li X, Wang J, Wang L, Hu X, Fan H, Pang F, Li X, Pan X, He W, Li J, Dai Z. Selective STAT3 inhibitor STX-0119 alleviates osteoarthritis progression by modulating the STAT3/PPARγ signaling pathway. Biochem Pharmacol 2024; 227:116420. [PMID: 38996934 DOI: 10.1016/j.bcp.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Osteoarthritis (OA), characterized by chronic pain, significantly affects the quality of life of affected individuals. Key factors in OA pathogenesis include cartilage degradation and inflammation. Signal transducer and activator of transcription 3 (STAT3), a member of the STAT protein family, plays a pivotal role in mediating inflammation. STX-0119 has been verified as a small molecular compound that can specifically inhibit STAT3. However, the efficacy of STX-0119 in the treatment of OA remains to be evaluated. Therefore, the aim of this study was to explore the therapeutic effects and molecular mechanisms of STX-0119 in the treatment of OA. We found that the expression of phosphorylated STAT3 is upregulated in human OA cartilage as well as in the cartilage of a mouse model of OA. In vivo, joint injection of STX-0119 into OA mice alleviated cartilage degeneration without affecting the subchondral bone. Additionally, STX-0119 could inhibit the phosphorylation of STAT3 in the cartilage. In vitro, STX-0119 suppressed inflammatory responses in chondrocytes and promoted anabolic metabolism in an interleukin-1β-induced chondrocyte inflammation model. Additionally, the results of transcriptome sequencing and lentiviral infection assays demonstrated that in chondrocytes, STX-0119 induces the upregulation of peroxisome proliferators-activated receptor gamma (PPARγ) expression by inhibiting STAT3 phosphorylation. Finally, in ex vivo cultures of human cartilage samples, STX-0119 was reaffirmed to inhibit cartilage degeneration via the STAT3/PPARγ signaling pathway. Together, our findings support the potential of STX-0119 for development as a therapeutic agent targeting STAT3 for the treatment of OA.
Collapse
Affiliation(s)
- Xuanyuan Lu
- Department of Orthopedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China; Department of Orthopedic, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang, China
| | - Yangjun Xu
- Department of Orthopedic, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang, China
| | - Xinhuo Li
- Department of Orthopedic, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang, China
| | - Jing Wang
- Department of Pediatric, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang, China
| | - Lei Wang
- Department of Orthopedic, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang, China
| | - Xujun Hu
- Department of Orthopedic, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang, China
| | - Honghui Fan
- Department of Orthopedic, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang, China
| | - Fei Pang
- Department of Orthopedic, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang, China
| | - Xin Li
- Department of Orthopedic, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang, China
| | - Xiaoyu Pan
- Department of Orthopedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Wei He
- Department of Orthopedic, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang, China
| | - Jianlei Li
- Department of Orthopedic, Shaoxing People's Hospital, Shaoxing 312000, Zhejiang, China
| | - Zhangsheng Dai
- Department of Orthopedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China.
| |
Collapse
|
4
|
Fu K, Si S, Jin X, Zhang Y, Duong V, Cai Q, Li G, Oo WM, Zheng X, Boer CG, Zhang Y, Wei X, Zhang C, Gao Y, Hunter DJ. Exploring antidiabetic drug targets as potential disease-modifying agents in osteoarthritis. EBioMedicine 2024; 107:105285. [PMID: 39153411 PMCID: PMC11378937 DOI: 10.1016/j.ebiom.2024.105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Osteoarthritis is a leading cause of disability, and disease-modifying osteoarthritis drugs (DMOADs) could represent a pivotal advancement in treatment. Identifying the potential of antidiabetic medications as DMOADs could impact patient care significantly. METHODS We designed a comprehensive analysis pipeline involving two-sample Mendelian Randomization (MR) (genetic proxies for antidiabetic drug targets), summary-based MR (SMR) (for mRNA), and colocalisation (for drug-target genes) to assess their causal relationship with 12 osteoarthritis phenotypes. Summary statistics from the largest genome-wide association meta-analysis (GWAS) of osteoarthritis and gene expression data from the eQTLGen consortium were utilised. FINDINGS Seven out of eight major types of clinical antidiabetic medications were identified, resulting in fourteen potential drug targets. Sulfonylurea targets ABCC8/KCNJ11 were associated with increased osteoarthritis risk at any site (odds ratio (OR): 2.07, 95% confidence interval (CI): 1.50-2.84, P < 3 × 10-4), while PPARG, influenced by thiazolidinediones (TZDs), was associated with decreased risk of hand (OR: 0.61, 95% CI: 0.48-0.76, P < 3 × 10-4), finger (OR: 0.50, 95% CI: 0.35-0.73, P < 3 × 10-4), and thumb (OR: 0.49, 95% CI: 0.34-0.71, P < 3 × 10-4) osteoarthritis. Metformin and GLP1-RA, targeting GPD1 and GLP1R respectively, were associated with reduced risk of knee and finger osteoarthritis. In the SMR analyses, gene expression of KCNJ11, GANAB, ABCA1, and GSTP1, targeted by antidiabetic drugs, was significantly linked to at least one osteoarthritis phenotype and was replicated across at least two gene expression datasets. Additionally, increased KCNJ11 expression was related to decreased osteoarthritis risk and co-localised with at least one osteoarthritis phenotype. INTERPRETATION Our findings suggest a potential therapeutic role for antidiabetic drugs in treating osteoarthritis. The results indicate that certain antidiabetic drug targets may modify disease progression, with implications for developing targeted DMOADs. FUNDING This study was funded by the Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant (2022), the Shanghai Municipal Health Commission Health Industry Clinical Research Project (Grant No. 20224Y0139), Beijing Natural Science Foundation (Grant No. 7244458), and the Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation (Grant No. GZC20230130).
Collapse
Affiliation(s)
- Kai Fu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Kolling Institute, Sydney Musculoskeletal Health, The University of Sydney, Sydney, Australia
| | - Shucheng Si
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Xinzhong Jin
- Centre for Big Data Research in Health, University of New South Wales, Sydney, Australia
| | - Yan Zhang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Vicky Duong
- Kolling Institute, Sydney Musculoskeletal Health, The University of Sydney, Sydney, Australia
| | - Qianying Cai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangyi Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Win Min Oo
- Kolling Institute, Sydney Musculoskeletal Health, The University of Sydney, Sydney, Australia; Department of Physical Medicine and Rehabilitation, Mandalay General Hospital, University of Medicine Mandalay, Mandalay, Myanmar
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cindy G Boer
- Department of Internal Medicine, Erasmus MC, Medical Center, Rotterdam, the Netherlands
| | - Yuqing Zhang
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Xiaojuan Wei
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - David J Hunter
- Kolling Institute, Sydney Musculoskeletal Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
5
|
Hines MR, Gomez-Contreras PC, Liman S, Wilson AM, Lu KJ, O'Neill JA, Fisher JS, Fredericks DC, Wagner BA, Buettner GR, Van Remmen H, Coleman MC. A reciprocal relationship between mitochondria and lipid peroxidation determines the chondrocyte intracellular redox environment. Redox Biol 2024; 75:103306. [PMID: 39133964 PMCID: PMC11366903 DOI: 10.1016/j.redox.2024.103306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
In orthopedic research, many studies have applied vitamin E as a protective antioxidant or used tert-butyl hydroperoxide to induce oxidative injury to chondrocytes. These studies often support the hypothesis that joint pathology causes oxidative stress and increased lipid peroxidation that might be prevented with lipid antioxidants to improve cell survival or function and joint health; however, lipid antioxidant supplementation was ineffective against osteoarthritis in clinical trials and animal data have been equivocal. Moreover, increased circulating vitamin E is associated with increased rates of osteoarthritis. This disconnect between benchtop and clinical results led us to hypothesize that oxidative stress-driven paradigms of chondrocyte redox function do not capture the metabolic and physiologic effects of lipid antioxidants and prooxidants on articular chondrocytes. We used ex vivo and in vivo cartilage models to investigate the effect of lipid antioxidants on healthy, primary, articular chondrocytes and applied immuno-spin trapping techniques to provide a broad indicator of high levels of oxidative stress independent of specific reactive oxygen species. Key findings demonstrate lipid antioxidants were pro-mitochondrial while lipid prooxidants decreased mitochondrial measures. In the absence of injury, radical formation was increased by lipid antioxidants; however, in the presence of injury, radical formation was decreased. In unstressed conditions, this relationship between chondrocyte mitochondria and redox regulation was reproduced in vivo with overexpression of glutathione peroxidase 4. In mice aged 18 months or more, overexpression of glutathione peroxidase 4 significantly decreased the presence of pro-mitochondrial peroxisome proliferation activated receptor gamma and deranged the relationship between mitochondria and the redox environment. This complex interaction suggests strategies targeting articular cartilage may benefit from adopting more nuanced paradigms of articular chondrocyte redox metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Kevin J Lu
- The University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Dong J, Ruan B, Zhang L, Wei A, Li C, Tang N, Zhu L, Jiang Q, Cao W. DNA Methylation-Mediated GPX4 Transcriptional Repression and Osteoblast Ferroptosis Promote Titanium Particle-Induced Osteolysis. RESEARCH (WASHINGTON, D.C.) 2024; 7:0457. [PMID: 39161535 PMCID: PMC11331012 DOI: 10.34133/research.0457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/27/2024] [Indexed: 08/21/2024]
Abstract
Metal wear particles generated by the movement of joint prostheses inevitably lead to aseptic osteolytic damage and ultimately prosthesis loosening, which are aggravated by various types of regulated cell death of bone. Nevertheless, the exact cellular nature and regulatory network underlying osteoferroptosis are poorly understood. Here, we report that titanium particles (TP) induced severe peri-implant osteolysis and ferroptotic changes with concomitant transcriptional repression of a key anti-ferroptosis factor, GPX4, in a mouse model of calvarial osteolysis. GPX4 repression was accompanied by an increase in DNA methyltransferases (DNMTs) 1/3a/3b and hypermethylation of the Gpx4 promoter, which were partly mediated by the transcriptional regulator/co-repressor KLF5 and NCoR. Conversely, treatment with SGI-1027, a DNMT-specific inhibitor, resulted in marked reversal of Gpx4 promoter hypermethylation and GPX4 repression, as well as improvement in ferroptotic osteolysis to a similar extent as with a ferroptosis inhibitor, liproxstatin-1. This suggests that epigenetic GPX4 repression and ferroptosis caused by the increase of DNMT1/3a/3b have a causal influence on TP-induced osteolysis. In cultured primary osteoblasts and osteoclasts, GPX4 repression and ferroptotic changes were observed primarily in osteoblasts that were alleviated by SGI-1027 in a GPX4 inactivation-sensitive manner. Furthermore, we developed a mouse strain with Gpx4 haplodeficiency in osteoblasts (Gpx4 Ob+/-) that exhibited worsened ferroptotic osteolysis in control and TP-treated calvaria and largely abolished the anti-ferroptosis and osteoprotective effects of SGI-1027. Taken together, our results demonstrate that DNMT1/3a/3b elevation, resulting GPX4 repression, and osteoblastic ferroptosis form a critical epigenetic pathway that significantly contributes to TP-induced osteolysis, and that targeting DNMT aberration and the associated osteoferroptosis could be a potential strategy to prevent or slow down prosthesis-related osteolytic complications.
Collapse
Affiliation(s)
- Jian Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital,
Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Binjia Ruan
- Nanjing University Medical School, JiangsuKey Lab of Molecular Medicine, Nanjing, China
| | - Lijun Zhang
- Nanjing University Medical School, JiangsuKey Lab of Molecular Medicine, Nanjing, China
| | - Ai Wei
- Nanjing University Medical School, JiangsuKey Lab of Molecular Medicine, Nanjing, China
| | - Chuling Li
- Nanjing University Medical School, JiangsuKey Lab of Molecular Medicine, Nanjing, China
| | - Neng Tang
- Nanjing University Medical School, JiangsuKey Lab of Molecular Medicine, Nanjing, China
| | - Linxi Zhu
- Nanjing University Medical School, JiangsuKey Lab of Molecular Medicine, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital,
Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wangsen Cao
- Nanjing University Medical School, JiangsuKey Lab of Molecular Medicine, Nanjing, China
- Yancheng Medical Research Center, Yancheng First People’s Hospital,
Affiliated Hospital of Nanjing University Medical School, Yancheng, China
- Yangzhou Precision Research Institute of Kidney Disease, Department of Nephrology, Northern Jiangsu People’s Hospital, Yangzhou, China
| |
Collapse
|
7
|
Lee H, Choe J, Son MH, Lee IH, Lim MJ, Jeon J, Yang S. A Novel BD2-Selective Inhibitor of BRDs Mitigates ROS Production and OA Pathogenesis. Antioxidants (Basel) 2024; 13:943. [PMID: 39199189 PMCID: PMC11352053 DOI: 10.3390/antiox13080943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Bromodomain and extra-terminal domain (BET) family proteins regulate transcription and recognize lysine residues in histones. Selective BET inhibitors targeting one domain have attracted attention because they maintain normal physiological activities, whereas pan (nonselective) BET inhibitors do not. Osteoarthritis (OA) is a joint disorder characterized by cartilage degeneration for which no treatment currently exists. Here, we investigated whether the selective inhibition of BET proteins is an appropriate therapeutic strategy for OA. We focused on the development and characterization of 2-(4-(2-(dimethylamino)ethoxy)-3,5-dimethylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one (BBC0906), a novel bromodomain 2 (BD2)-specific inhibitor designed to suppress OA progression. Using a DNA-encoded chemical library (DEL) screening approach, BBC0906 was identified because of its high affinity with the BD2 domain of BET proteins. BBC0906 effectively reduced reactive oxygen species (ROS) production and suppressed catabolic factor expression in chondrocytes in vitro. Moreover, in an OA mouse model induced by the destabilization of the medial meniscus (DMM), BBC0906 intra-articular injection attenuated cartilage degradation and alleviated OA. Importantly, BBC0906 selectively inhibits the BD2 domain, thus minimizing its potential side effects. We highlighted the therapeutic potential of targeting BET proteins to modulate oxidative stress and suppress cartilage degradation in OA. BBC0906 is a promising candidate for OA treatment, offering improved safety and efficacy.
Collapse
Affiliation(s)
- Hyemi Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jihye Choe
- Benobio Co., Ltd., Seongnam-si 13494, Republic of Korea; (J.C.); (M.-H.S.); (I.-H.L.)
| | - Min-Hee Son
- Benobio Co., Ltd., Seongnam-si 13494, Republic of Korea; (J.C.); (M.-H.S.); (I.-H.L.)
| | - In-Hyun Lee
- Benobio Co., Ltd., Seongnam-si 13494, Republic of Korea; (J.C.); (M.-H.S.); (I.-H.L.)
| | - Min Ju Lim
- Department of Biomedical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea;
| | - Jimin Jeon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
8
|
Xiong HY, Wyns A, Campenhout JV, Hendrix J, De Bruyne E, Godderis L, Schabrun S, Nijs J, Polli A. Epigenetic Landscapes of Pain: DNA Methylation Dynamics in Chronic Pain. Int J Mol Sci 2024; 25:8324. [PMID: 39125894 PMCID: PMC11312850 DOI: 10.3390/ijms25158324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic pain is a prevalent condition with a multifaceted pathogenesis, where epigenetic modifications, particularly DNA methylation, might play an important role. This review delves into the intricate mechanisms by which DNA methylation and demethylation regulate genes associated with nociception and pain perception in nociceptive pathways. We explore the dynamic nature of these epigenetic processes, mediated by DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) enzymes, which modulate the expression of pro- and anti-nociceptive genes. Aberrant DNA methylation profiles have been observed in patients with various chronic pain syndromes, correlating with hypersensitivity to painful stimuli, neuronal hyperexcitability, and inflammatory responses. Genome-wide analyses shed light on differentially methylated regions and genes that could serve as potential biomarkers for chronic pain in the epigenetic landscape. The transition from acute to chronic pain is marked by rapid DNA methylation reprogramming, suggesting its potential role in pain chronicity. This review highlights the importance of understanding the temporal dynamics of DNA methylation during this transition to develop targeted therapeutic interventions. Reversing pathological DNA methylation patterns through epigenetic therapies emerges as a promising strategy for pain management.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Arne Wyns
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Jente Van Campenhout
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Jolien Hendrix
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| | - Elke De Bruyne
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel, 1090 Brussels, Belgium;
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
| | - Siobhan Schabrun
- The School of Physical Therapy, University of Western Ontario, London, ON N6A 3K7, Canada;
- The Gray Centre for Mobility and Activity, Parkwood Institute, St. Joseph’s Healthcare, London, ON N6A 4V2, Canada
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41390 Göterbog, Sweden
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
9
|
Shakeri M, Aminian A, Mokhtari K, Bahaeddini M, Tabrizian P, Farahani N, Nabavi N, Hashemi M. Unraveling the molecular landscape of osteoarthritis: A comprehensive review focused on the role of non-coding RNAs. Pathol Res Pract 2024; 260:155446. [PMID: 39004001 DOI: 10.1016/j.prp.2024.155446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Osteoarthritis (OA) poses a significant global health challenge, with its prevalence anticipated to increase in the coming years. This review delves into the emerging molecular biomarkers in OA pathology, focusing on the roles of various molecules such as metabolites, noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Advances in omics technologies have transformed biomarker identification, enabling comprehensive analyses of the complex pathways involved in OA pathogenesis. Notably, ncRNAs, especially miRNAs and lncRNAs, exhibit dysregulated expression patterns in OA, presenting promising opportunities for diagnosis and therapy. Additionally, the intricate interplay between epigenetic modifications and OA progression highlights the regulatory role of epigenetics in gene expression dynamics. Genome-wide association studies have pinpointed key genes undergoing epigenetic changes, providing insights into the inflammatory processes and chondrocyte hypertrophy typical of OA. Understanding the molecular landscape of OA, including biomarkers and epigenetic mechanisms, holds significant potential for developing innovative diagnostic tools and therapeutic strategies for OA management.
Collapse
Affiliation(s)
- Mohammadreza Shakeri
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Aminian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammadreza Bahaeddini
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Pouria Tabrizian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
10
|
Kawarai Y, Nakamura J, Hagiwara S, Suzuki-Narita M, Inage K, Ohtori S. Alterations in DNA methylation machinery in a rat model of osteoarthritis of the hip. J Orthop Surg Res 2024; 19:357. [PMID: 38880910 PMCID: PMC11181635 DOI: 10.1186/s13018-024-04847-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND This study aimed to validate alterations in the gene expression of DNA methylation-related enzymes and global methylation in the peripheral blood mononuclear cell (PBMC) and synovial tissues of animal hip osteoarthritis (OA) models. METHODS Animals were assigned to the control (no treatment), sham (25 µL of sterile saline), and OA (25 µL of sterile saline and 2 mg of monoiodoacetate) groups. Microcomputed tomography scan, histopathological assessment and pain threshold measurement were performed after induction. The mRNA expression of the DNA methylation machinery genes and global DNA methylation in the PBMC and hip synovial tissue were evaluated. RESULTS The OA group presented with hip joint OA histopathologically and radiologically and decreased pain threshold. The mRNA expression of DNA methyltransferase (Dnmt 3a), ten-eleven translocation (Tet) 1 and Tet 3 in the synovial tissue of the OA group was significantly upregulated. Global DNA methylation in the synovial tissue of the OA group was significantly higher than that of the control and sham groups. CONCLUSIONS The intra-articular administration of monoiodoacetate induced hip joint OA and decreased pain threshold. The DNA methylation machinery in the synovial tissues of hip OA was altered.
Collapse
Affiliation(s)
- Yuya Kawarai
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1- 8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8677, Japan.
| | - Junichi Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1- 8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8677, Japan
| | - Shigeo Hagiwara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1- 8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8677, Japan
| | - Miyako Suzuki-Narita
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1- 8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8677, Japan
| | - Kazuhide Inage
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1- 8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8677, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1- 8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8677, Japan
| |
Collapse
|
11
|
Geng Q, Xu J, Cao X, Wang Z, Jiao Y, Diao W, Wang X, Wang Z, Zhang M, Zhao L, Yang L, Deng T, Fan B, Xu Y, Jia L, Xiao C. PPARG-mediated autophagy activation alleviates inflammation in rheumatoid arthritis. J Autoimmun 2024; 146:103214. [PMID: 38648706 DOI: 10.1016/j.jaut.2024.103214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease characterized by joint inflammation and bone damage, that not only restricts patient activity but also tends to be accompanied by a series of complications, seriously affecting patient prognosis. Peroxisome proliferator-activated receptor gamma (PPARG), a receptor that controls cellular metabolism, regulates the function of immune cells and stromal cells. Previous studies have shown that PPARG is closely related to the regulation of inflammation. However, the role of PPARG in regulating the pathological processes of RA is poorly understood. MATERIALS AND METHODS PPARG expression was examined in the synovial tissues and peripheral blood mononuclear cells (PBMCs) from RA patients and the paw of collagen-induced arthritis (CIA) model rats. Molecular biology experiments were designed to examine the effect of PPARG and cannabidiol (CBD) on RAW264.7 cells and CIA rats. RESULTS The results reveal that PPARG accelerates reactive oxygen species (ROS) clearance by promoting autophagy, thereby inhibiting ROS-mediated macrophage polarization and NLRP3 inflammasome activation. Notably, CBD may be a promising candidate for understanding the mechanism by which PPARG regulates autophagy-mediated inflammation. CONCLUSIONS Taken together, these findings indicate that PPARG may have a role for distinguishing between RA patients and healthy control, and for distinguishing RA activity; moreover, PPARG could be a novel pharmacological target for alleviating RA through the mediation of autophagy. CBD can act as a PPARG agonist that alleviates the inflammatory progression of RA.
Collapse
Affiliation(s)
- Qishun Geng
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jiahe Xu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
| | - Xiaoxue Cao
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zhaoran Wang
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yi Jiao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China; Beijing University of Chinese Medicine, China-Japan Friendship Hospital Clinical Medicine, Beijing, 100029, China
| | - Wenya Diao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China; Beijing University of Chinese Medicine, China-Japan Friendship Hospital Clinical Medicine, Beijing, 100029, China
| | - Xing Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China; Beijing University of Chinese Medicine, China-Japan Friendship Hospital Clinical Medicine, Beijing, 100029, China
| | - Zihan Wang
- Beijing University of Chinese Medicine, China-Japan Friendship Hospital Clinical Medicine, Beijing, 100029, China; Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Mengxiao Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Lu Zhao
- China-Japan Friendship Hospital, Capital Medical University, Beijing, 100029, China
| | - Lei Yang
- Department of Pathology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Tingting Deng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Bifa Fan
- Department of Pain Management, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yuan Xu
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Lansi Jia
- Department of Anorectal, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Cheng Xiao
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China; Department of Emergency, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
12
|
Chen J, Zeng Q, Wang X, Xu R, Wang W, Huang Y, Sun Q, Yuan W, Wang P, Chen D, Tong P, Jin H. Aberrant methylation and expression of TNXB promote chondrocyte apoptosis and extracullar matrix degradation in hemophilic arthropathy via AKT signaling. eLife 2024; 13:RP93087. [PMID: 38819423 PMCID: PMC11142640 DOI: 10.7554/elife.93087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Recurrent joint bleeding in hemophilia patients frequently causes hemophilic arthropathy (HA). Drastic degradation of cartilage is a major characteristic of HA, but its pathological mechanisms has not yet been clarified. In HA cartilages, we found server matrix degradation and increased expression of DNA methyltransferase proteins. We thus performed genome-wide DNA methylation analysis on human HA (N=5) and osteoarthritis (OA) (N=5) articular cartilages, and identified 1228 differentially methylated regions (DMRs) associated with HA. Functional enrichment analyses revealed the association between DMR genes (DMGs) and extracellular matrix (ECM) organization. Among these DMGs, Tenascin XB (TNXB) expression was down-regulated in human and mouse HA cartilages. The loss of Tnxb in F8-/- mouse cartilage provided a disease-promoting role in HA by augmenting cartilage degeneration and subchondral bone loss. Tnxb knockdown also promoted chondrocyte apoptosis and inhibited phosphorylation of AKT. Importantly, AKT agonist showed chondroprotective effects following Tnxb knockdown. Together, our findings indicate that exposure of cartilage to blood leads to alterations in DNA methylation, which is functionally related to ECM homeostasis, and further demonstrate a critical role of TNXB in HA cartilage degeneration by activating AKT signaling. These mechanistic insights allow development of potentially new strategies for HA cartilage protection.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qinghe Zeng
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xu Wang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Rui Xu
- Department of Orthopaedics, Affiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchangChina
| | - Weidong Wang
- Department of Osteology, The Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yuliang Huang
- Department of Osteology, The Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qi Sun
- Department of Orthopaedic Surgery, Fuyang Orthopaedics and Traumatology Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Wenhua Yuan
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Pinger Wang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Peijian Tong
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| |
Collapse
|
13
|
Yuan H, Yi N, Li D, Xu C, Yin GR, Zhuang C, Wang YJ, Ni S. PPARγ regulates osteoarthritis chondrocytes apoptosis through caspase-3 dependent mitochondrial pathway. Sci Rep 2024; 14:11237. [PMID: 38755283 PMCID: PMC11099036 DOI: 10.1038/s41598-024-62116-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent form of arthritis, characterized by a complex pathogenesis. One of the key factors contributing to its development is the apoptosis of chondrocytes triggered by oxidative stress. Involvement of peroxisome proliferator-activated receptor gamma (PPARγ) has been reported in the regulation of oxidative stress. However, there remains unclear mechanisms that through which PPARγ influences the pathogenesis of OA. The present study aims to delve into the role of PPARγ in chondrocytes apoptosis induced by oxidative stress in the context of OA. Primary human chondrocytes, both relatively normal and OA, were isolated and cultured for the following study. Various assessments were performed, including measurements of cell proliferation, viability and cytotoxicity. Additionally, we examined cell apoptosis, levels of reactive oxygen species (ROS), nitric oxide (NO), mitochondrial membrane potential (MMP) and cytochrome C release. We also evaluated the expression of related genes and proteins, such as collagen type II (Col2a1), aggrecan, inducible nitric oxide synthase (iNOS), caspase-9, caspase-3 and PPARγ. Compared with relatively normal cartilage, the expression of PPARγ in OA cartilage was down-regulated. The proliferation of OA chondrocytes decreased, accompanied by an increase in the apoptosis rate. Down-regulation of PPARγ expression in OA chondrocytes coincided with an up-regulation of iNOS expression, leading to increased secretion of NO, endogenous ROS production, and decrease of MMP levels. Furthermore, we observed the release of cytochrome C, elevated caspase-9 and caspase-3 activities, and reduction of the components of extracellular matrix (ECM) Col2a1 and aggrecan. Accordingly, utilization of GW1929 (PPARγ Agonists) or Z-DEVD-FMK (caspase-3 inhibitor) can protect chondrocytes from mitochondrial-related apoptosis and alleviate the progression of OA. During the progression of OA, excessive oxidative stress in chondrocytes leads to apoptosis and ECM degradation. Activation of PPARγ can postpone OA by down-regulating caspase-3-dependent mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Hang Yuan
- Graduate School of Bengbu Medical College, Bengbu, China
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Ning Yi
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Graduate School of Dalian Medical University, Dalian, China
| | - Dong Li
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Chao Xu
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Guang-Rong Yin
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Chao Zhuang
- Graduate School of Bengbu Medical College, Bengbu, China.
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
| | - Yu-Ji Wang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
| | - Su Ni
- Bone Disease Research and Clinical Rehabilitation Center, Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
| |
Collapse
|
14
|
Ao Y, Yan W, Wu Y. Sport medicine among the past three decades in China. Chin Med J (Engl) 2024; 137:757-761. [PMID: 38533586 PMCID: PMC10997221 DOI: 10.1097/cm9.0000000000003039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Indexed: 03/28/2024] Open
Affiliation(s)
- Yingfang Ao
- Institute of Sports Medicine of Peking University, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
| | - Wenqiang Yan
- Institute of Sports Medicine of Peking University, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
| | - Yue Wu
- Institute of Sports Medicine of Peking University, Beijing 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
| |
Collapse
|
15
|
Liu J, Zhou J, Huang X, Yin L, Zhou L, Liao Y, Sun G, Zhong P, Peng X, Sun Z. Protective effects of pulsed electromagnetic field therapy attenuates autophagy and apoptosis in osteoporotic osteoarthritis model rats by activating PPARγ. Electromagn Biol Med 2024; 43:61-70. [PMID: 38347683 DOI: 10.1080/15368378.2024.2314108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/25/2023] [Indexed: 05/01/2024]
Abstract
Osteoporotic osteoarthritis (OPOA) is a specific phenotype of OA with high incidence and severe cartilage damage. This study aimed to explore the protective efficacy of PEMF on the progression of OPOA and observed the effects of PEMF on PPARγ, autophagy- and apoptosis-related proteins in OPOA rats. Rats were randomly divided into three groups: control group, OPOA group, and PEMF group (n = 6). One week after surgery, the rats in PEMF group were subjected to PEMF (3.82 mT, 8 Hz, 40 min/day and 5 day/week) for 12 weeks. Results showed that PEMF retarded cartilage degeneration and bone loss, as evidenced by pathological staining image, decreased MMP-13 expression and increased bone mineral density. PEMF inhibited the serum levels of inflammatory cytokines, and the expressions of caspase-3 and caspase-8, while upregulated the expression of PPARγ. Moreover, PEMF significantly improved the autophagy disorders, represented by decrease expressions of Beclin-1, P62, and LC3B. The research demonstrates that PEMF can effectively prevent cartilage and subchondral bone destruction in OPOA rats. The potential mechanism may be related to upregulation of PPARγ, inhibition of chondrocyte apoptosis and inflammation, and improvement of autophagy disorder. PEMF therapy thus shows promising application prospects in the treatment of postmenopausal OA.
Collapse
Affiliation(s)
- Jing Liu
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jun Zhou
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiarong Huang
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linwei Yin
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Long Zhou
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yang Liao
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guanghua Sun
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Peirui Zhong
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xinke Peng
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhilu Sun
- The First Affiliated Hospital, Department of Emergency, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
16
|
Kong X, Ning C, Liang Z, Yang C, Wu Y, Li Y, Wu A, Wang Y, Wang S, Fan H, Xiao W, Wu J, Sun Z, Yuan Z. Koumine inhibits IL-1β-induced chondrocyte inflammation and ameliorates extracellular matrix degradation in osteoarthritic cartilage through activation of PINK1/Parkin-mediated mitochondrial autophagy. Biomed Pharmacother 2024; 173:116273. [PMID: 38412715 DOI: 10.1016/j.biopha.2024.116273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease, Increasingly, mitochondrial autophagy has been found to play an important regulatory role in the prevention and treatment of osteoarthritis. Koumine is a bioactive alkaloid extracted from the plant Gelsemium elegans. In previous research, Koumine was found to have potential in improving the progression of OA in rats. However, the specific mechanism of its action has not been fully explained. Therefore, the aim of this study was to investigate whether Koumine can alleviate OA in rats by influencing mitochondrial autophagy. In the in vitro study, rat chondrocytes (RCCS-1) were induced with IL-1β (10 ng/mL) to induce inflammation, and Koumine (50 μg/mL) was co-treated. In the in vivo study, a rat OA model was established by intra-articular injection of 2% papain, and Koumine was administered orally (1 mg/kg, once daily for two weeks). It was found that Koumine effectively reduced cartilage erosion in rats with osteoarthritis. Additionally, it decreased the levels of inflammatory factors such as IL-1β, IL-6, and extracellular matrix (ECM) components MMP13 and ADAMTS5 in chondrocytes and articular cartilage tissue, while increasing the level of Collagen II.Koumine inhibited the production of reactive oxygen species (ROS) in cartilage tissue and increased the number of autophagosomes in chondrocytes and articular cartilage tissue. Additionally, it upregulated the expression of mitochondrial autophagy proteins LC3Ⅱ/Ⅰ, PINK1, Parkin, and Drp1. The administration of Mdivi-1 (50 μM) reversed the enhanced effect of Koumine on mitochondrial autophagy, as well as its anti-inflammatory and anti-ECM degradation effects in rats with OA. These findings suggest that Koumine can alleviate chondrocyte inflammation and improve the progression of OA in rats by activating PINK1/Parkin-mediated mitochondrial autophagy.
Collapse
Affiliation(s)
- Xiangyi Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Can Ning
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Zengenni Liang
- Department of Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, PR China
| | - Chenglin Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Yuanyuan Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Aoao Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Yongkang Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Siqi Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Hui Fan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Wenguang Xiao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Zhiliang Sun
- Hunan Engineering Research Center of Veterinary Drugs, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China.
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
17
|
Lv Z, Wang P, Li W, Xie Y, Sun W, Jin X, Jiang R, Fei Y, Liu Y, Shi T, Guo H, Sun Z, Lin J, Wang X, Tan G, Wu Y, Bao N, Shi D. Bifunctional TRPV1 Targeted Magnetothermal Switch to Attenuate Osteoarthritis Progression. RESEARCH (WASHINGTON, D.C.) 2024; 7:0316. [PMID: 38371274 PMCID: PMC10871150 DOI: 10.34133/research.0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/20/2024] [Indexed: 02/20/2024]
Abstract
Transient receptor potential vanilloid family member 1 (TRPV1) has been revealed as a therapeutic target of osteoarthritis (OA), the most common deteriorating whole joint disease, by impeding macrophagic inflammation and chondrocytes ferroptosis. However, the clinical application for capsaicin as the TRPV1 agonist is largely limited by its chronic toxicity. To address this issue, we developed a bifunctional controllable magnetothermal switch targeting TRPV1 for the alleviation of OA progression by coupling of magnetic nanoparticles (MNPs) to TRPV1 monoclonal antibodies (MNPs-TRPV1). Under the alternating magnetic field (AMF) stimulation, MNPs-TRPV1 locally dissipated heat, which was sufficient to trigger the opening and activation of TRPV1, and effectively impeded macrophagic inflammation and chondrocyte ferroptosis. This magnetothermal modulation of TRPV1 simultaneously attenuated synovitis and cartilage degeneration in mice incurred by destabilization of medial meniscus surgery, indicating the delayed OA progression. Furthermore, MNPs-TRPV1 with AMF exposure remarkably reduced knee pain sensitivity, alleviated the crippled gait, and improved spontaneous ambulatory activity performance in the mice OA model. Overall, this work provides a potential pathogenesis-based precise OA therapy with temporally and spatially magnetothermal modulation of TRPV1 in a controllable manner.
Collapse
Affiliation(s)
- Zhongyang Lv
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Peng Wang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
| | - Weitong Li
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery,
Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Ya Xie
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery,
Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Wei Sun
- Department of orthopedic,
The Jiangyin Clinical College of Xuzhou Medical University, Jiangyin 214400, China
| | - Xiaoyu Jin
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery,
Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Ruiyang Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery,
Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Yuxiang Fei
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
| | - Yuan Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
| | - Tianshu Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
| | - Hu Guo
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
| | - Ziying Sun
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Jintao Lin
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Xucai Wang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering,
Nanjing Forestry University, Nanjing, 210037, China
| | - Guihua Tan
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
| | - Yizhang Wu
- Department of Applied Physical Sciences,
The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nirong Bao
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210008, China
| |
Collapse
|
18
|
Liu Z, Lu T, Ma L, Zhang Y, Li D. DNA demethylation of promoter region orchestrates SPI-1-induced ADAMTS-5 expression in articular cartilage of osteoarthritis mice. J Cell Physiol 2024; 239:e31170. [PMID: 38149721 DOI: 10.1002/jcp.31170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023]
Abstract
Osteoarthritis (OA) is one of the most prevalent joint diseases in aged people and characterized by articular cartilage degeneration, synovial inflammation, and abnormal bone remodeling. Recent advances in OA research have clearly shown that OA development is associated with aberrant DNA methylation status of many OA-related genes. As one of most important cartilage degrading proteases in OA, a disintegrin and metalloproteinase with thrombospondin motifs subtype 5 (ADAMTS-5) is activated to mediate cartilage degradation in human OA and experimental murine OA models. The pathological factors and signaling pathways mediating ADAMTS-5 activation during OA development are not well defined and have been a focus of intense research. ADAMTS-5 promoter is featured by CpG islands. So far there have been no reports concerning the DNA methylation status in ADAMTS-5 promoter during OA development. In this study, we sought to investigate DNA methylation status in ADAMTS-5 promoter, the role of DNA methylation in ADAMTS-5 activation in OA, and the underlying mechanisms. The potential for anti-OA intervention therapy which is based on modulating DNA methylation is also explored. Our results showed that DNA methyltransferases 1 (Dnmt1) downregulation-associated ADAMTS-5 promoter demethylation played an important role in ADAMTS-5 activation in OA, which facilitated SPI-1 binding on ADAMTS-5 promoter to activate ADAMTS-5 expression. More importantly, OA pathological phenotype of mice was alleviated in response to Dnmt1-induced DNA methylation of ADAMTS-5 promoter. Our study will benefit not only for deeper insights into the functional role and regulation mechanisms of ADAMTS-5 in OA, but also for the discovery of disease-modifying OA drugs on the basis of ADAMTS-5 via modulating DNA methylation status.
Collapse
Affiliation(s)
- Zhixin Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Tongxin Lu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Liang Ma
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Yuankai Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Deqiang Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
19
|
Cheng P, Wei H, Chen H, Wang Z, Mao P, Zhang H. DNMT3a-mediated methylation of PPARγ promote intervertebral disc degeneration by regulating the NF-κB pathway. J Cell Mol Med 2024; 28:e18048. [PMID: 37986543 PMCID: PMC10826446 DOI: 10.1111/jcmm.18048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a common chronic musculoskeletal disease that causes chronic low back pain and imposes an immense financial strain on patients. The pathological mechanisms underlying IVDD have not been fully elucidated. The development of IVDD is closely associated with abnormal epigenetic changes, suggesting that IVDD progression may be controlled by epigenetic mechanisms. Consequently, this study aimed to investigate the role of epigenetic regulation, including DNA methyltransferase 3a (DNMT3a)-mediated methylation and peroxisome proliferator-activated receptor γ (PPARγ) inhibition, in IVDD development. The expression of DNMT3a and PPARγ in early and late IVDD of nucleus pulposus (NP) tissues was detected using immunohistochemistry and western blotting analyses. Cellularly, DNMT3a inhibition significantly inhibited IL-1β-induced apoptosis and extracellular matrix (ECM) degradation in rat NP cells. Pretreatment with T0070907, a specific inhibitor of PPARγ, significantly reversed the anti-apoptotic and ECM degradation effects of DNMT3a inhibition. Mechanistically, DNMT3a modified PPARγ promoter hypermethylation to activate the nuclear factor-κB (NF-κB) pathway. DNMT3a inhibition alleviated IVDD progression. Conclusively, the results of this study show that DNMT3a activates the NF-κB pathway by modifying PPARγ promoter hypermethylation to promote apoptosis and ECM degradation. Therefore, we believe that the ability of DNMT3a to mediate the PPARγ/NF-κB axis may provide new ideas for the potential pathogenesis of IVDD and may become an attractive target for the treatment of IVDD.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Emergency MedicineLanzhou University Second HospitalLanzhouGansuPR China
- Department of OrthopedicsLanzhou University Second HospitalLanzhouGansu ProvincePR China
| | - Hang‐Zhi Wei
- Department of Department of General SurgeryLanzhou University Second HospitalLanzhouGansuPR China
| | - Hai‐Wei Chen
- Department of Emergency MedicineLanzhou University Second HospitalLanzhouGansuPR China
| | - Zhi‐Qiang Wang
- Department of Emergency MedicineLanzhou University Second HospitalLanzhouGansuPR China
| | - Peng Mao
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPR China
| | - Hai‐Hong Zhang
- Department of OrthopedicsLanzhou University Second HospitalLanzhouGansu ProvincePR China
| |
Collapse
|
20
|
Lai B, Jiang H, Liao T, Gao Y, Zhou X. Bioinformatics and system biology analysis revealed the crosstalk between COVID-19 and osteoarthritis. Immun Inflamm Dis 2023; 11:e1123. [PMID: 38156385 PMCID: PMC10739374 DOI: 10.1002/iid3.1123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/12/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND The global coronavirus disease 2019 (COVID-19) outbreak has significantly impacted public health. Moreover, there has been an association between the incidence and severity of osteoarthritis (OA) and the onset of COVID-19. However, the optimal diagnosis and treatment strategies for patients with both diseases remain uncertain. Bioinformatics is a novel approach that may help find the common pathology between COVID-19 and OA. METHODS Differentially expressed genes (DEGs) were screened by R package "limma." Functional enrichment analyses were performed to find key biological functions. Protein-protein interaction (PPI) network was constructed by STRING database and then Cytoscape was used to select hub genes. External data sets and OA mouse model validated and identified the hub genes in both mRNA and protein levels. Related transcriptional factors (TF) and microRNAs (miRNAs) were predicted with miRTarBase and JASPR database. Candidate drugs were obtained from Drug Signatures database. The immune infiltration levels of COVID-19 and OA were evaluated by CIBERSORT and scRNA-seq. RESULTS A total of 74 common DEGs were identified between COVID-19 and OA. Receiver operating characteristic curves validated the effective diagnostic values (area under curve > 0.7) of four hub genes (matrix metalloproteinases 9, ATF3, CCL4, and RELA) in both the training and validation data sets of COVID-19 and OA. Quantitative polymerase chain reaction and Western Blot showed significantly higher hub gene expression in OA mice than in healthy controls. A total of 84 miRNAs and 28 TFs were identified to regulate the process of hub gene expression. The top 10 potential drugs were screened including "Simvastatin," "Hydrocortisone," and "Troglitazone" which have been proven by Food and Drug Administration. Correlated with hub gene expression, Macrophage M0 was highly expressed while Natural killer cells and Mast cells were low in both COVID-19 and OA. CONCLUSION Four hub genes, disease-related miRNAs, TFs, drugs, and immune infiltration help to understand the pathogenesis and perform further studies, providing a potential therapy target for COVID-19 and OA.
Collapse
Affiliation(s)
- Bowen Lai
- Department of OrthopedicsChangzheng Hospital, Second Military Medical UniversityShanghaiChina
| | - Heng Jiang
- Department of OrthopedicsChangzheng Hospital, Second Military Medical UniversityShanghaiChina
| | - Taotao Liao
- Department of OrthopedicsChangzheng Hospital, Second Military Medical UniversityShanghaiChina
| | - Yuan Gao
- Department of OrthopedicsChangzheng Hospital, Second Military Medical UniversityShanghaiChina
| | - Xuhui Zhou
- Department of OrthopedicsChangzheng Hospital, Second Military Medical UniversityShanghaiChina
| |
Collapse
|
21
|
Najar M, Alsabri SG, Guedi GG, Merimi M, Lavoie F, Grabs D, Pelletier JP, Martel-Pelletier J, Benderdour M, Fahmi H. Role of epigenetics and the transcription factor Sp1 in the expression of the D prostanoid receptor 1 in human cartilage. Front Cell Dev Biol 2023; 11:1256998. [PMID: 38099292 PMCID: PMC10720455 DOI: 10.3389/fcell.2023.1256998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
D prostanoid receptor 1 (DP1), a prostaglandin D2 receptor, plays a central role in the modulation of inflammation and cartilage metabolism. We have previously shown that activation of DP1 signaling downregulated catabolic responses in cultured chondrocytes and was protective in mouse osteoarthritis (OA). However, the mechanisms underlying its transcriptional regulation in cartilage remained poorly understood. In the present study, we aimed to characterize the human DP1 promoter and the role of DNA methylation in DP1 expression in chondrocytes. In addition, we analyzed the expression level and methylation status of the DP1 gene promoter in normal and OA cartilage. Deletion and site-directed mutagenesis analyses identified a minimal promoter region (-250/-120) containing three binding sites for specificity protein 1 (Sp1). Binding of Sp1 to the DP1 promoter was confirmed using electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays. Treatment with the Sp1 inhibitor mithramycin A reduced DP1 promoter activity and DP1 mRNA expression. Inhibition of DNA methylation by 5-Aza-2'-deoxycytidine upregulated DP1 expression, and in vitro methylation reduced the DP1 promoter activity. Neither the methylation status of the DP1 promoter nor the DP1 expression level were different between normal and OA cartilage. In conclusion, our results suggest that the transcription factor Sp1 and DNA methylation are important determinants of DP1 transcription regulation. They also suggest that the methylation status and expression level of DP1 are not altered in OA cartilage. These findings will improve our understanding of the regulatory mechanisms of DP1 transcription and may facilitate the development of intervention strategies involving DP1.
Collapse
Affiliation(s)
- Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Sami G. Alsabri
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Gadid G. Guedi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Makram Merimi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Frédéric Lavoie
- Departement of Orthopedic Surgery, University of Montreal Hospital Center (CHUM), Montréal, QC, Canada
| | - Detlev Grabs
- Research Unit in Clinical and Functional Anatomy, Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Mohamed Benderdour
- Orthopedics Research Laboratory, Research Center, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, QC, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
22
|
Hua B, Qiu J, Ye X, Kuang Y, Liu X. Epigenetic PPARγ preservation attenuates temporomandibular joint osteoarthritis. Int Immunopharmacol 2023; 124:111014. [PMID: 37832237 DOI: 10.1016/j.intimp.2023.111014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
OBJECTIVE Previous studies have demonstrated that PPARγ deficiency is associated with osteoarthritis in the knee joint. However, whether epigenetic PPARγ dysregulation has any effect on temporomandibular joint osteoarthritis (TMJOA) is unknown. This study aims to determine the role and mechanism of epigenetic PPARγ dysregulation in TMJOA. METHODS Partial TMJ discectomy was performed to induce TMJOA in rat. Primary condylar chondrocytes were isolated, and TNF-α-induced inflammatory condition was created in vitro. The expressions of PPARγ and DNA methyltransferase were investigated in vivo and in vitro. The association of PPARγ and DNA methylation was further studied by treating chondrocytes with DNA demethylation agent 5-Aza-2'-deoxycytidine (5Aza) and transfecting with siRNA of DNA methyltransferase (DNMT)1 and DNMT3a, and the methylation level of PPARγ promoter was evaluated by Bisulfite-sequencing PCR. The chondroprotective effects of 5Aza were explored in vitro and in vivo. RESULTS PPARγ suppression and upregulated DNMT1/DNMT3a expression exist in TMJOA cartilage in vivo and primary condylar chondrocytes under TNF-α-induced inflammatory conditions in vitro. DNMT1 and DNMT3a elevation contributes to PPARγ-promoter hypermethylation in TMJ chondrocytes under TNF-α-induced inflammation conditions. DNA demethylation intervention by 5Aza protects chondrocytes from inflammation response in vitro. Mechanistically, 5Aza reversed the hypermethylation of the PPARγ promoter and subsequently resulted in PPARγ restoration and decreased expression of cartilage-catabolic factors in chondrocytes. Rat TMJOA model revealed that 5Aza, by reversing PPARγ suppression, effectively attenuated cartilage degeneration and stabilized cartilage homeostasis by balancing anabolic factor and catabolic factor expression. CONCLUSION Epigenetic PPARγ suppression may play a causal role in TMJOA pathogenesis, which can be alleviated by DNA demethylation with 5Aza treatment. This study provides new insights into the pathogenic mechanism and therapeutic strategy of TMJOA.
Collapse
Affiliation(s)
- Bingqiang Hua
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jin Qiu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoping Ye
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yiwen Kuang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xianwen Liu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
23
|
Ni S, Yi N, Yuan H, Li D, Chen X, Zhuang C. Angelica sinensis polysaccharide improves mitochondrial metabolism of osteoarthritis chondrocytes through PPARγ/SOD2/ROS pathways. Phytother Res 2023; 37:5394-5406. [PMID: 37632225 DOI: 10.1002/ptr.7979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
Osteoarthritis (OA) is a common degenerative joint disease, which is characterized by wear of articular cartilage and narrow joint space, resulting in joint movement disorder. At present, accurate molecular mechanisms and effective interventions are still being explored. Here, we propose that angelica sinensis polysaccharide (ASP) alleviates OA progression by activating peroxisome proliferator-activated receptor gamma (PPARγ). Therapeutic effect of ASP improving mitochondrial metabolism of OA chondrocytes was evaluated in vitro and in vivo, respectively. During cell experiments, the concentration and time response of tert butyl hydroperoxide (TBHP) and ASP were determined by cell viability. Apoptosis was detected by flow cytometry. Mitochondrial metabolism was detected by reactive oxygen species (ROS), mitochondrial membrane potential (MMP), release of cytochrome C, adenosine triphosphate (ATP) production, and superoxide dismutase 2 (SOD2) activity. Expressions of Aggrecan, collagen type II (Col2a1), PPARγ, and SOD2 were detected by qRT-PCR and western blot. In animal experiments, we detected cell apoptosis and target protein expression separately through terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) staining and immunohistochemistry. Pretreatment of ASP significantly activated PPARγ and SOD2 in rat chondrocytes incubated with TBHP, cleared ROS, improved mitochondrial metabolism, increased chondrocytes viability, and alleviated chondrocytes apoptosis. In vivo, the administration of ASP could effectively ameliorate cartilage degeneration in OA rats, promote extracellular matrix synthesis, and decelerate the progress of OA. Our research identifies the role of ASP in mitochondrial metabolism of OA chondrocytes through PPARγ/SOD2/ROS pathways, which provides a new idea for the treatment of OA.
Collapse
Affiliation(s)
- Su Ni
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Bone Disease Research and Clinical Rehabilitation Center, Changzhou Medical Center, NanjingMedicalUniversity, Changzhou, China
| | - Ning Yi
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Graduate School of Dalian Medical University, Dalian, China
| | - Hang Yuan
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Graduate School of Bengbu Medical College, Bengbu, China
| | - Dong Li
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xu Chen
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Chao Zhuang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
24
|
Wu S, Zhang H, Wang S, Sun J, Hu Y, Liu H, Liu J, Chen X, Zhou F, Bai L, Wang X, Su J. Ultrasound-triggered in situ gelation with ROS-controlled drug release for cartilage repair. MATERIALS HORIZONS 2023; 10:3507-3522. [PMID: 37255101 DOI: 10.1039/d3mh00042g] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cartilage defects are usually caused by acute trauma and chronic degeneration. However, it is still a great challenge to improve the repair of articular cartilage defects due to the limited self-regeneration capacity of such defects. Herein, a novel ROS-responsive in situ nanocomposite hydrogel loaded with kartogenin (KGN) and bone marrow-derived stem cells (BMSCs) was designed and constructed via the enzymatic reaction of fibrinogen and thrombin. Meanwhile, a ROS-responsive thioketal (TK)-based liposome was synthesized to load the chondrogenesis-inducing factor KGN, the bioenzyme thrombin and an ultrasound-sensitive agent PpIX. Under ultrasound stimulation, the TK-based liposome was destroyed, followed by in situ gelation of fibrinogen and thrombin. Moreover, sustained release of KGN was realized by regulating the ultrasound conditions. Importantly, ROS generation and KGN release within the microenvironment of the in situ fibrin hydrogel significantly promoted chondrogenic differentiation of BMSCs via the Smad5/mTOR signalling pathway and effectively improved cartilage regeneration in a rat articular cartilage defect model. Overall, the novel in situ nanocomposite hydrogel with ROS-controlled drug release has great potential for efficient cartilage repair.
Collapse
Affiliation(s)
- Shunli Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai 200444, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Jinru Sun
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Shaoxing Institute of Technology at Shanghai University, Shaoxing, 312000, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jinlong Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an 710000, China.
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Xiuhui Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
25
|
Sheng W, Wang Q, Qin H, Cao S, Wei Y, Weng J, Yu F, Zeng H. Osteoarthritis: Role of Peroxisome Proliferator-Activated Receptors. Int J Mol Sci 2023; 24:13137. [PMID: 37685944 PMCID: PMC10487662 DOI: 10.3390/ijms241713137] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Osteoarthritis (OA) represents the foremost degenerative joint disease observed in a clinical context. The escalating issue of population aging significantly exacerbates the prevalence of OA, thereby imposing an immense annual economic burden on societies worldwide. The current therapeutic landscape falls short in offering reliable pharmaceutical interventions and efficient treatment methodologies to tackle this growing problem. However, the scientific community continues to dedicate significant efforts towards advancing OA treatment research. Contemporary studies have discovered that the progression of OA may be slowed through the strategic influence on peroxisome proliferator-activated receptors (PPARs). PPARs are ligand-activated receptors within the nuclear hormone receptor family. The three distinctive subtypes-PPARα, PPARβ/δ, and PPARγ-find expression across a broad range of cellular terminals, thus managing a multitude of intracellular metabolic operations. The activation of PPARγ and PPARα has been shown to efficaciously modulate the NF-κB signaling pathway, AP-1, and other oxidative stress-responsive signaling conduits, leading to the inhibition of inflammatory responses. Furthermore, the activation of PPARγ and PPARα may confer protection to chondrocytes by exerting control over its autophagic behavior. In summation, both PPARγ and PPARα have emerged as promising potential targets for the development of effective OA treatments.
Collapse
Affiliation(s)
- Weibei Sheng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Qichang Wang
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Haotian Qin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Siyang Cao
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yihao Wei
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jian Weng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Fei Yu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
26
|
Xue X, Dai T, Chen J, Xu Y, Yang Z, Huang J, Xu W, Li S, Meng Q. PPARγ activation suppresses chondrocyte ferroptosis through mitophagy in osteoarthritis. J Orthop Surg Res 2023; 18:620. [PMID: 37620972 PMCID: PMC10463860 DOI: 10.1186/s13018-023-04092-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent disease plaguing the elderly. Recently, chondrocyte ferroptosis has been demonstrated to promote the progression of OA. Peroxisome proliferator-activated receptor-γ (PPARγ) is an important factor in maintaining cartilage health. However, the relationship between PPARγ and chondrocyte ferroptosis in OA and its mechanism is completely unclear. METHODS We established a surgically induced knee OA rat model to investigate PPARγ and chondrocyte ferroptosis in OA. Rat knee specimens were collected for Safranin O/Fast Green staining and immunohistochemical staining after administered orally placebo or pioglitazone (PPARγ agonist) for 4 weeks. We used RSL3 to establish a chondrocyte ferroptosis model cultured in vitro to study the role of PPARγ activation toward ferroptosis, mitochondrial function, and PTEN-induced putative kinase 1 (Pink1)/Parkin-dependent mitophagy. GW9662 (PPARγ antagonist), Mdivi-1 (mitophagy inhibitor), and chloroquine (mitophagy inhibitor) were employed to investigate the mechanism of PPARγ-Pink1/Parkin-dependent mitophagy in the inhibition of ferroptosis. RESULTS We found that PPARγ activation by pioglitazone attenuated not only OA but also inhibited the expression of the ferroptosis marker acyl-CoA synthetase long-chain family member 4 (ACSL4) at the same time in rats. Furthermore, in vivo and in vitro data indicated that PPARγ activation restored Pink1/Parkin-dependent mitophagy, improved mitochondrial function, inhibited chondrocyte ferroptosis, and delayed the progression of OA. CONCLUSIONS The present study demonstrated that PPARγ activation attenuates OA by inhibiting chondrocyte ferroptosis, and this chondroprotective effect was achieved by promoting the Pink1/Parkin-dependent mitophagy pathway.
Collapse
Affiliation(s)
- Xiang Xue
- Department of Orthopedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Tianming Dai
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | | | | | - Zhenyu Yang
- Department of Orthopedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Jian Huang
- Department of Traumatic Orthopedics, The Central Hospital of Xiaogan, Xiaogan, China
| | - Wuyan Xu
- Department of Orthopedics, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Siming Li
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China.
| | - Qingqi Meng
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
27
|
Kamenaga T, Shen J, Wu M, Brophy RH, Clohisy JC, O’Keefe RJ, Pascual-Garrido C. Epigenetic dysregulation of articular cartilage during progression of hip femoroacetabular impingement disease. J Orthop Res 2023; 41:1678-1686. [PMID: 36606425 PMCID: PMC10323039 DOI: 10.1002/jor.25513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Femoroacetabular impingement (FAI) is an important trigger of hip osteoarthritis (OA). Epigenetic changes in DNA methyltransferase 3B (DNMT3B) attenuate catabolic gene expression in cartilage hemostasis. This study aimed to examine the articular chondrocyte catabolic state and DNMT3B and 4-aminobutyrate aminotransferase promoter (ABAT) expression during OA progression in FAI. Cartilage samples were collected from the impingement zone of 12 patients with cam FAI (early-FAI) and 12 patients with advanced OA secondary to cam FAI (late-FAI-OA). Five healthy samples were procured from cadavers (ND: nondiseased). Explants were cultured under unstimulated conditions, catabolic stimulus (IL1β), or anabolic stimulus (TGFβ). Histology was performed with safranin-O/fast-green staining. Gene expression was analyzed via qPCR for GAPDH, DNMT3B, ABAT, MMP-13, COL10A1. Methylation specific PCR assessed methylation status at the ABAT promoter. Cartilage samples in early-FAI and late-FAI-OA showed a histological OA phenotype and increased catabolic marker expression (MMP13/COL10A1, ND vs. early-FAI, p = 0.004/p < 0.001, ND vs. late-FAI-OA, p < 0.001/p < 0.001). RT-PCR confirmed DNMT3B underexpression (ND vs. early-FAI, p < 0.001, early-FAI vs. late-FAI-OA, p = 0.016) and ABAT overexpression (ND vs. early-FAI, p < 0.001, early vs. late-FAI-OA, p = 0.035) with advanced disease. End-stage disease showed ABAT promoter hypomethylation. IL1β stimulus accentuated ABAT promoter hypomethylation and led to further ABAT and catabolic marker overexpression in early-FAI and late-FAI-OA while TGFβ normalized these alterations in gene expression. Catabolic and epigenetic molecule expression suggested less catabolism in early-stage disease. Sustained inflammation induced ABAT promoter hypo-methylation causing a catabolic phenotype. Suppression of ABAT by methylation control could be a new target for therapeutic intervention to prevent OA progression in hip FAI.
Collapse
Affiliation(s)
| | - Jie Shen
- Washington University School of Medicine, St. Louis, MO, USA
| | - May Wu
- Washington University School of Medicine, St. Louis, MO, USA
| | | | - John C. Clohisy
- Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
28
|
Tang Y, Hong F, Ding S, Yang J, Zhang M, Ma Y, Zheng Q, Yang D, Jin Y, Ma C. METTL3-mediated m 6A modification of IGFBP7-OT promotes osteoarthritis progression by regulating the DNMT1/DNMT3a-IGFBP7 axis. Cell Rep 2023; 42:112589. [PMID: 37270777 DOI: 10.1016/j.celrep.2023.112589] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/15/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Osteoarthritis (OA) is the most common degenerative disorder, affecting approximately half of the elderly population. In this study, we find that the expressions of long noncoding RNA (lncRNA) IGFBP7-OT and its maternal gene, IGFBP7, are upregulated and positively correlated in osteoarthritic cartilage. Overexpression of IGFBP7-OT significantly inhibits chondrocyte viability, promotes chondrocyte apoptosis, and reduces extracellular matrix components, whereas IGFBP7-OT knockdown has the opposite effects. IGFBP7-OT overexpression promotes cartilage degeneration and markedly aggravates the monosodium iodoacetate-induced OA phenotype in vivo. Further mechanistic research reveals that IGFBP7-OT promotes OA progression by upregulating IGFBP7 expression. Specifically, IGFBP7-OT suppresses the occupancy of DNMT1 and DNMT3a on the IGFBP7 promoter, thereby inhibiting methylation of the IGFBP7 promoter. The upregulation of IGFBP7-OT in OA is partially controlled by METTL3-mediated N6-methyladenosine (m6A) modification. Collectively, our findings reveal that m6A modification of IGFBP7-OT promotes OA progression by regulating the DNMT1/DNMT3a-IGFBP7 axis and provide a potential therapeutical target for OA treatment.
Collapse
Affiliation(s)
- Yuting Tang
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing 211166, P.R. China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Longmian Road 101, Nanjing 211166, P.R. China
| | - Fangling Hong
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing 211166, P.R. China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Longmian Road 101, Nanjing 211166, P.R. China
| | - Siyang Ding
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing 211166, P.R. China
| | - Jiashu Yang
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing 211166, P.R. China
| | - Ming Zhang
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing 211166, P.R. China
| | - Yunfei Ma
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing 211166, P.R. China
| | - Que Zheng
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing 211166, P.R. China
| | - Dawei Yang
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing, P.R. China
| | - Yucui Jin
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing 211166, P.R. China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Longmian Road 101, Nanjing 211166, P.R. China.
| | - Changyan Ma
- Department of Medical Genetics, Nanjing Medical University, Longmian Road 101, Nanjing 211166, P.R. China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Longmian Road 101, Nanjing 211166, P.R. China.
| |
Collapse
|
29
|
Suo J, Shao R, Yang R, Wang J, Zhang Z, Wang D, Niu N, Zheng X, Zou W. Accelerated aging in articular cartilage by ZMPSTE24 deficiency leads to osteoarthritis with impaired metabolic signaling and epigenetic regulation. Cell Death Dis 2023; 14:336. [PMID: 37217512 DOI: 10.1038/s41419-023-05856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
Osteoarthritis (OA) is an age-related degenerative disease without disease-modifying therapy. The lack of aging-induced osteoarthritis models makes the discovery of therapeutic drugs more challenging. The deficiency of ZMPSTE24 could induce Hutchinson-Gilford progeria syndrome (HGPS), a genetic disorder of rapid aging. However, the relationship between HGPS and OA remains unclear. Our results found that the expression of Zmpste24 was decreased in the articular cartilage during the aging process. Zmpste24 knockout mice, Prx1-Cre; Zmpste24fl/fl mice and Col2-CreERT2; Zmpste24fl/fl mice displayed OA phenotype. Loss of Zmpste24 in articular cartilage could exacerbate the occurrence and development of osteoarthritis. Transcriptome sequencing revealed that deletion of Zmpste24 or accumulation of progerin affects chondrocyte metabolism, inhibits cell proliferation and promotes cell senescence. Using this animal model, we elucidate the upregulation of H3K27me3 during chondrocyte senescence and discover the molecular mechanism by which lamin A mutant stabilizes EZH2 expression. The construction of aging-induced osteoarthritis models and the elucidation of the signaling pathways and molecular mechanisms of articular chondrocyte senescence would benefit the discovery and development of new drugs for OA.
Collapse
Affiliation(s)
- Jinlong Suo
- Institute of Microsurgery on Extremities and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| | - Rui Shao
- Institute of Microsurgery on Extremities and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Jinghui Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Zhong Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Duo Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Ningning Niu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Xianyou Zheng
- Institute of Microsurgery on Extremities and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| | - Weiguo Zou
- Institute of Microsurgery on Extremities and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
30
|
Li X, Liu D, Dai Z, You Y, Chen Y, Lei C, Lv Y, Wang Y. Intraperitoneal 5-Azacytidine Alleviates Nerve Injury-Induced Pain in Rats by Modulating DNA Methylation. Mol Neurobiol 2023; 60:2186-2199. [PMID: 36627549 DOI: 10.1007/s12035-022-03196-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023]
Abstract
To investigate the role of DNA methylation in modulating chronic neuropathic pain (NPP), identify possible target genes of DNA methylation involved in this process, and preliminarily confirm the medicinal value of the DNA methyltransferases (DNMTs) inhibitor 5-azacytidine (5-AZA) in NPP by targeting gene methylation. Two rat NPP models, chronic constriction injury (CCI) and spinal nerve ligation (SNL), were used. The DNA methylation profiles in the lumbar spinal cord were assayed using an Arraystar Rat RefSeq Promoter Array. The underlying genes with differential methylation were then identified and submitted to Gene Ontology and pathway analysis. Methyl-DNA immunoprecipitation quantitative PCR (MeDIP-qPCR) and quantitative reverse transcription-PCR (RT-qPCR) were used to confirm gene methylation and expression. The protective function of 5-AZA in NPP and gene expression were evaluated via behavioral assays and RT-qPCR, respectively. Analysis of the DNA methylation patterns in the lumbar spinal cord indicated that 1205 differentially methylated fragments in CCI rats were located within DNA promoter regions, including 638 hypermethylated fragments and 567 hypomethylated fragments. The methylation levels of Grm4, Htr4, Adrb2, Kcnf1, Gad2, and Pparg, which are associated with long-term potentiation (LTP) and glutamatergic synapse pathways, were increased with a corresponding decrease in their mRNA expression, in the spinal cords of CCI rats. Moreover, we found that the intraperitoneal injection of 5-AZA (4 mg/kg) attenuated CCI- or SNL-induced mechanical allodynia and thermal hyperalgesia. Finally, the mRNA expression of hypermethylated genes such as Grm4, Htr4, Adrb2, Kcnf1, and Gad2 was reversed after 5-AZA treatment. CCI induced widespread methylation changes in the DNA promoter regions in the lumbar spinal cord. Intraperitoneal 5-AZA alleviated hyperalgesia in CCI and SNL rats, an effect accompanied by the reversed expression of hypermethylated genes. Thus, DNA methylation inhibition represents a promising epigenetic strategy for protection against chronic NPP following nerve injury. Our study lays a theoretical foundation for 5-AZA to become a clinical targeted drug.
Collapse
Affiliation(s)
- Xuan Li
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - DeZhao Liu
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - ZhiSen Dai
- Department of Anesthesiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - YiSheng You
- Department of Anesthesiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yan Chen
- Department of Anesthesiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - ChenXing Lei
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - YouYou Lv
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Ying Wang
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China. .,Department of Anesthesiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
31
|
Zhang Y, Liu Y, Hou M, Xia X, Liu J, Xu Y, Shi Q, Zhang Z, Wang L, Shen Y, Yang H, He F, Zhu X. Reprogramming of Mitochondrial Respiratory Chain Complex by Targeting SIRT3-COX4I2 Axis Attenuates Osteoarthritis Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206144. [PMID: 36683245 PMCID: PMC10074136 DOI: 10.1002/advs.202206144] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Mitochondrial homeostasis is of great importance for cartilage integrity and associated with the progression of osteoarthritis (OA); however, the underlying mechanisms are unknown. This study aims to investigate the role of mitochondrial deacetylation reaction and investigate the mechanistic relationship OA development. Silent mating type information regulation 2 homolog 3 (SIRT3) expression has a negative correlation with the severity of OA in both human arthritic cartilage and mice inflammatory chondrocytes. Global SIRT3 deletion accelerates pathological phenotype in post-traumatic OA mice, as evidenced by cartilage extracellular matrix collapse, osteophyte formation, and synovial macrophage M1 polarization. Mechanistically, SIRT3 prevents OA progression by targeting and deacetylating cytochrome c oxidase subunit 4 isoform 2 (COX4I2) to maintain mitochondrial homeostasis at the post-translational level. The activation of SIRT3 by honokiol restores cartilage metabolic equilibrium and protects mice from the development of post-traumatic OA. Collectively, the loss of mitochondrial SIRT3 is essential for the development of OA, whereas SIRT3-mediated proteins deacetylation of COX4I2 rescues OA-impaired mitochondrial respiratory chain functions to improve the OA phenotype. Herein, the induction of SIRT3 provides a novel therapeutic candidate for OA treatment.
Collapse
Affiliation(s)
- Yijian Zhang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhou215006China
- Orthopaedic InstituteMedical CollegeSoochow UniversitySuzhou215007China
| | - Yang Liu
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhou215006China
- Orthopaedic InstituteMedical CollegeSoochow UniversitySuzhou215007China
| | - Mingzhuang Hou
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhou215006China
- Orthopaedic InstituteMedical CollegeSoochow UniversitySuzhou215007China
| | - Xiaowei Xia
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhou215006China
- Orthopaedic InstituteMedical CollegeSoochow UniversitySuzhou215007China
| | - Junlin Liu
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhou215006China
- Orthopaedic InstituteMedical CollegeSoochow UniversitySuzhou215007China
| | - Yong Xu
- Orthopaedic InstituteMedical CollegeSoochow UniversitySuzhou215007China
| | - Qin Shi
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhou215006China
- Orthopaedic InstituteMedical CollegeSoochow UniversitySuzhou215007China
| | - Zhongmin Zhang
- Department of OrthopedicsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Liang Wang
- Department of OrthopedicsThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| | - Yifan Shen
- Department of Orthopedic SurgeryZhejiang University School of MedicineHangzhou310003China
| | - Huilin Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhou215006China
- Orthopaedic InstituteMedical CollegeSoochow UniversitySuzhou215007China
| | - Fan He
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhou215006China
- Orthopaedic InstituteMedical CollegeSoochow UniversitySuzhou215007China
| | - Xuesong Zhu
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhou215006China
- Orthopaedic InstituteMedical CollegeSoochow UniversitySuzhou215007China
| |
Collapse
|
32
|
Li XF, Yin SQ, Li H, Yang YL, Chen X, Song B, Wu S, Wu YY, Wang H, Li J. PPAR-γ alleviates the inflammatory response in TNF-α-induced fibroblast-like synoviocytes by binding to p53 in rheumatoid arthritis. Acta Pharmacol Sin 2023; 44:454-464. [PMID: 35918412 PMCID: PMC9889328 DOI: 10.1038/s41401-022-00957-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/10/2022] [Indexed: 02/04/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by synovial inflammation, synoviocyte expansion and damage to cartilage and bone. We recently reported that peroxisome proliferator-activated receptor (PPAR)-γ inhibited the proliferation and activation of fibroblast-like synoviocytes (FLS), and was downregulated in RA synovial. In this study we investigated the role of PPAR-γ in RA and the underlying mechanisms. Adjuvant-induced arthritis (AIA) was induced in rats; from D15, AIA rats were orally administered pioglitazone (30 mg·kg-1·d-1) or rosiglitazone (4 mg·kg-1·d-1) for 14 days. Collagen-induced arthritis (CIA) was induced in wild-type and Ppar-γ+/- mice. We showed that the expression of PPAR-γ was significantly reduced, whereas that of TNF-α was markedly increased in human RA FLS. In CIA mice, knockdown of PPAR-γ expression (Ppar-γ+/-) aggravated the ankle inflammation. Similarly, T0070907 (a PPAR-γ antagonist) or si-PPAR-γ promoted the activation and inflammation of TNF-α-induced FLS in vitro. On the contrary, administration of PPAR-γ agonist pioglitazone or rosiglitazone, or injection of ad-Ppar-γ into the ankle of AIA rat in vivo induced overexpression of PPAR-γ, reduced the paw swelling and inflammation, and downregulated activation and inflammation of FLS in RA. Interesting, injection of ad-Ppar-γ into the ankle also reversed the ankle inflammation in Ppar-γ+/- CIA mice. We conducted RNA-sequencing and KEGG pathway analysis, and revealed that PPAR-γ overexpression was closely related to p53 signaling pathway in TNF-α-induced FLS. Co-IP study confirmed that p53 protein was bound to PPAR-γ in RA FLS. Taken together, PPAR-γ alleviates the inflammatory response of TNF-α-induced FLS by binding p53 in RA.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Shu-Qin Yin
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
- Pharmacy Department, Chizhou People's Hospital, Chizhou, 247000, China
| | - Hao Li
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Ying-Li Yang
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xin Chen
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Biao Song
- Pharmacy Department, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Sha Wu
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yuan-Yuan Wu
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Jun Li
- Inflammation and Immune Mediated Disease Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
33
|
Hu Y, Li K, Swahn H, Ordoukhanian P, Head SR, Natarajan P, Woods AK, Joseph SB, Johnson KA, Lotz MK. Transcriptomic analyses of joint tissues during osteoarthritis development in a rat model reveal dysregulated mechanotransduction and extracellular matrix pathways. Osteoarthritis Cartilage 2023; 31:199-212. [PMID: 36354073 PMCID: PMC9892293 DOI: 10.1016/j.joca.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/20/2022] [Accepted: 10/03/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Transcriptomic changes in joint tissues during the development of osteoarthritis (OA) are of interest for the discovery of biomarkers and mechanisms of disease. The objective of this study was to use the rat medial meniscus transection (MMT) model to discover stage and tissue-specific transcriptomic changes. DESIGN Sham or MMT surgeries were performed in mature rats. Cartilage, menisci and synovium were scored for histopathological changes at 2, 4 and 6 weeks post-surgery and processed for RNA-sequencing. Differentially expressed genes (DEG) were used to identify pathways and mechanisms. Published transcriptomic datasets from animal models and human OA were used to confirm and extend present findings. RESULTS The total number of DEGs was already high at 2 weeks (723 in meniscus), followed by cartilage (259) and synovium (42) and declined to varying degrees in meniscus and synovium but increased in cartilage at 6 weeks. The most upregulated genes included tenascins. The 'response to mechanical stimulus' and extracellular matrix-related pathways were enriched in both cartilage and meniscus. Pathways that were enriched in synovium at 4 weeks indicate processes related to synovial hyperplasia and fibrosis. Synovium also showed upregulation of IL-11 and several MMPs. The mechanical stimulus pathway included upregulation of the mechanoreceptors PIEZO1, PIEZO2 and TRPV4 and nerve growth factor. Analysis of data from prior RNA-sequencing studies of animal models and human OA support these findings. CONCLUSION These results indicate several shared pathways that are affected during OA in cartilage and meniscus and support the role of mechanotransduction and other pathways in OA pathogenesis.
Collapse
Affiliation(s)
- Y Hu
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, 92037, USA; Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - K Li
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, 92037, USA
| | - H Swahn
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, 92037, USA
| | - P Ordoukhanian
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, CA, 92037, USA
| | - S R Head
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, CA, 92037, USA
| | - P Natarajan
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, CA, 92037, USA
| | - A K Woods
- Calibr, a Division of Scripps Research, La Jolla, CA, 92037, USA
| | - S B Joseph
- Calibr, a Division of Scripps Research, La Jolla, CA, 92037, USA
| | - K A Johnson
- Calibr, a Division of Scripps Research, La Jolla, CA, 92037, USA
| | - M K Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, 92037, USA.
| |
Collapse
|
34
|
Núñez-Carro C, Blanco-Blanco M, Villagrán-Andrade KM, Blanco FJ, de Andrés MC. Epigenetics as a Therapeutic Target in Osteoarthritis. Pharmaceuticals (Basel) 2023; 16:156. [PMID: 37259307 PMCID: PMC9964205 DOI: 10.3390/ph16020156] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 08/15/2023] Open
Abstract
Osteoarthritis (OA) is a heterogenous, complex disease affecting the integrity of diarthrodial joints that, despite its high prevalence worldwide, lacks effective treatment. In recent years it has been discovered that epigenetics may play an important role in OA. Our objective is to review the current knowledge of the three classical epigenetic mechanisms-DNA methylation, histone post-translational modifications (PTMs), and non-coding RNA (ncRNA) modifications, including microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs)-in relation to the pathogenesis of OA and focusing on articular cartilage. The search for updated literature was carried out in the PubMed database. Evidence shows that dysregulation of numerous essential cartilage molecules is caused by aberrant epigenetic regulatory mechanisms, and it contributes to the development and progression of OA. This offers the opportunity to consider new candidates as therapeutic targets with the potential to attenuate OA or to be used as novel biomarkers of the disease.
Collapse
Affiliation(s)
- Carmen Núñez-Carro
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Margarita Blanco-Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Karla Mariuxi Villagrán-Andrade
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Francisco J. Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación en Reumatología y Salud, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña (UDC), 15008 A Coruña, Spain
| | - María C. de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| |
Collapse
|
35
|
Iijima H, Gilmer G, Wang K, Bean AC, He Y, Lin H, Tang WY, Lamont D, Tai C, Ito A, Jones JJ, Evans C, Ambrosio F. Age-related matrix stiffening epigenetically regulates α-Klotho expression and compromises chondrocyte integrity. Nat Commun 2023; 14:18. [PMID: 36627269 PMCID: PMC9832042 DOI: 10.1038/s41467-022-35359-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/29/2022] [Indexed: 01/12/2023] Open
Abstract
Extracellular matrix stiffening is a quintessential feature of cartilage aging, a leading cause of knee osteoarthritis. Yet, the downstream molecular and cellular consequences of age-related biophysical alterations are poorly understood. Here, we show that epigenetic regulation of α-Klotho represents a novel mechanosensitive mechanism by which the aged extracellular matrix influences chondrocyte physiology. Using mass spectrometry proteomics followed by a series of genetic and pharmacological manipulations, we discovered that increased matrix stiffness drove Klotho promoter methylation, downregulated Klotho gene expression, and accelerated chondrocyte senescence in vitro. In contrast, exposing aged chondrocytes to a soft matrix restored a more youthful phenotype in vitro and enhanced cartilage integrity in vivo. Our findings demonstrate that age-related alterations in extracellular matrix biophysical properties initiate pathogenic mechanotransductive signaling that promotes Klotho promoter methylation and compromises cellular health. These findings are likely to have broad implications even beyond cartilage for the field of aging research.
Collapse
Affiliation(s)
- Hirotaka Iijima
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
- Japan Society for the Promotion of Science, Tokyo, Japan.
- Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| | - Gabrielle Gilmer
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Cellular and Molecular Pathology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Kai Wang
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Allison C Bean
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuchen He
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hang Lin
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wan-Yee Tang
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Daniel Lamont
- Petersen Institute of Nanoscience and Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chia Tai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jeffrey J Jones
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Christopher Evans
- Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Fabrisia Ambrosio
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, MA, USA.
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA.
| |
Collapse
|
36
|
Wang P, Xu J, Sun Q, Ge Q, Qiu M, Zou K, Ying J, Yuan W, Chen J, Zeng Q, Cui Q, Jin H, Zhang C, Li F. Chondroprotective Mechanism of Eucommia ulmoides Oliv.- Glycyrrhiza uralensis Fisch. Couplet Medicines in Knee Osteoarthritis via Experimental Study and Network Pharmacology Analysis. Drug Des Devel Ther 2023; 17:633-646. [PMID: 36875721 PMCID: PMC9983602 DOI: 10.2147/dddt.s397185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Background Knee osteoarthritis (KOA) is the primary prevalent disabling joint disorder among osteoarthritis (OA), and there is no particularly effective treatment at the clinic. Traditional Chinese medicine (TCM) herbs, such as Eucommia ulmoides Oliv. and Glycyrrhiza uralensis Fisch. (E.G.) couplet medicines, have been reported to exhibit beneficial health effects on KOA, exact mechanism of E.G. nevertheless is not fully elucidated. Purpose We assess the therapeutic effects of E.G. on KOA and explore its underlying molecular mechanism. Methods UPLC-Q-TOF/MS technique was used to analyze the active chemical constituents of E.G. The destabilization of the medial meniscus model (DMM) was employed to evaluate the chondroprotective action of E.G. in KOA mice using histomorphometry, μCT, behavioral testing and immunohistochemical staining. Additionally, network pharmacology and molecular docking were used to predict potential targets for anti-KOA activities of E.G., which was further verified through in vitro experiments. Results In vivo studies have shown that E.G. could significantly ameliorate DMM-induced KOA phenotypes including subchondral bone sclerosis, cartilage degradation, gait abnormality and thermal pain reaction sensibility. E.G. treatment could also promote extracellular matrix synthesis to protect articular chondrocytes, which was indicated by Col2 and Aggrecan expressions, as well as reducing matrix degradation by inhibiting MMP13 expression. Interestingly, network pharmacologic analysis showed that PPARG might be a therapeutic center. Further study proved that E.G.-containing serum (EGS) could up-regulate PPARG mRNA level in IL-1β-induced chondrocytes. Notably, significant effects of EGS on the increment of anabolic gene expressions (Col2, Aggrecan) and the decrement of catabolic gene expressions (MMP13, Adamts5) in KOA chondrocytes were abolished due to the silence of PPARG. Conclusion E.G. played a chondroprotective role in anti-KOA by inhibiting extracellular matrix degradation, which might be related to PPARG.
Collapse
Affiliation(s)
- Pinger Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jianbo Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qi Sun
- Department of Orthopedic Joint Surgery, Hangzhou Fuyang Hospital of TCM Orthopaedics and Traumatology, Hangzhou, People's Republic of China
| | - Qinwen Ge
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Min Qiu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Kaiao Zou
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jun Ying
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,Department of Orthopedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Wenhua Yuan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jiali Chen
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qinghe Zeng
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qi Cui
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Chunchun Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Fanzhu Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| |
Collapse
|
37
|
Turosz N, Chęcińska K, Chęciński M, Kamińska M, Nowak Z, Sikora M, Chlubek D. A Scoping Review of the Use of Pioglitazone in the Treatment of Temporo-Mandibular Joint Arthritis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192416518. [PMID: 36554400 PMCID: PMC9779153 DOI: 10.3390/ijerph192416518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 05/27/2023]
Abstract
Thiazolidinediones (TZDs) are a group of diabetes medications currently being investigated for anti-arthritis effectiveness, one of which is pioglitazone. The purpose of this scoping review is to evaluate the potential use of pioglitazone in the treatment of temporomandibular joint (TMJ) arthritis. The criteria of eligibility were studies with the diagnosis of arthritis and pioglitazone treatment with a change in any inflammation index as an outcome. Of the 1169 records initially identified following the selection process, two animal studies and four clinical studies were included in the review. Improvements from the baseline were observed in each treatment group for each inflammation indicator. The results of the animal studies on the temporomandibular joints and on patients with rheumatoid and psoriatic arthritis indicate that the drug in question may have potential to treat arthritis, including within the temporomandibular joint.
Collapse
Affiliation(s)
- Natalia Turosz
- Ortomania, Bartosza Głowackiego 6/1, 30-085 Kraków, Poland
| | - Kamila Chęcińska
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
| | - Maciej Chęciński
- Department of Oral Surgery, Preventive Medicine Center, Komorowskiego 12, 30-106 Kraków, Poland
| | - Monika Kamińska
- Collegium Medicum, Jan Kochanowski University, aleja IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Zuzanna Nowak
- Department of Temporomandibular Disorders, Medical University of Silesia in Katowice, Traugutta sq.2, 41-800 Zabrze, Poland
| | - Maciej Sikora
- Department of Maxillofacial Surgery, Hospital of the Ministry of Interior, Wojska Polskiego 51, 25-375 Kielce, Poland
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
38
|
Qiu L, Zhang M, Li C, Hou Y, Liu H, Lin J, Yao J, Duan DZ, Zhang YX, Li M, Li YL, Wang P, Li JT, Jin XJ, Liu YQ. Deciphering the active constituents of Dabushen decoction of ameliorating osteoarthritis via PPARγ preservation by targeting DNMT1. Front Pharmacol 2022; 13:993498. [PMID: 36506533 PMCID: PMC9727303 DOI: 10.3389/fphar.2022.993498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Osteoarthritis (OA) is a multifactorial and chronic degenerative joint disease. Due to the adverse effects of currently used drugs, a safer and more effective therapy for treating OA is needed. Peroxisome proliferator-activated receptor-γ (PPARγ) is a key protein protecting cartilage. DNMT1-mediated hypermethylation of PPARγ promoter leads to its suppression. Therefore, DNMT1 might be an effective target for exerting cartilage protective effects by regulating the epigenetic expression of PPARγ. Dabushen decoction (DD) is a representative prescription of Dunhuang ancient medical prescription, which has a potential therapeutic effect on OA. So far, the research of the efficacy and material basis of DD in the treatment of OA remains unclear. In this study, Micro-CT, HE staining, S-O staining, and immunohistochemistry analysis were used to demonstrate that DD increased the expression of PPARγ and collagen synthesis in an OA rat model. Next, the structure of DNMT1 was used to screen the active constituents of DD by molecular docking method for treatment OA. Seven potential active constituents, including isoliquiritigenin, emodin, taxifolin, catalpol, alisol A, zingerone, and schisandrin C were hited. The protective effect of the potential active constituents to chondrocytes were evaluated by protein capillary electrophoresis, immunofluorescence assays, and ex vivo culture of rat knee cartilage. The five constituents, such as alisol A, emodin, taxifolin, isoliquiritigenin, and schisandrin C could promote the expression of PPARγ and ameliorate IL-1β-induced downregulation of collagen II and the production of MMP-13. Alisol A and Emodin could effectively mitigate cartilage damage. At last, molecular dynamics simulations with MM-GBSA method was applied to investigate the interaction pattern of the active constituents and DNMT1 complexes. The five constituents, such as alisol A, emodin, taxifolin, isoliquiritigenin, and schisandrin C achieved a stable binding pattern with DNMT1, in which alisol A has a relatively high binding free energy. In conclusion, this study elucidates that the active constituents of DD (alisol A, emodin, taxifolin, isoliquiritigenin, and schisandrin C) could ameliorate osteoarthritis via PPARγ preservation by targeting DNMT1.These findings facilitated clinical use of DD and provided a valuable strategy for developing natural epigenetic modulators from Chinese herbal formula.
Collapse
Affiliation(s)
- Lu Qiu
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, China
| | - Min Zhang
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chenghao Li
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yehu Hou
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, China
| | - Hao Liu
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jia Lin
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Juan Yao
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Dong Zhu Duan
- Shaanxi Key Laboratory of Phytochemistry and College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, China
| | - Yi Xi Zhang
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Mi Li
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ya Ling Li
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, China
| | - Peng Wang
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jin Tian Li
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiao Jie Jin
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, China,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China,*Correspondence: Xiao Jie Jin, ; Yong Qi Liu,
| | - Yong Qi Liu
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, China,*Correspondence: Xiao Jie Jin, ; Yong Qi Liu,
| |
Collapse
|
39
|
Wu Z, Yuan K, Zhang Q, Guo JJ, Yang H, Zhou F. Antioxidant PDA-PEG nanoparticles alleviate early osteoarthritis by inhibiting osteoclastogenesis and angiogenesis in subchondral bone. J Nanobiotechnology 2022; 20:479. [DOI: 10.1186/s12951-022-01697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractAccumulating evidence suggests that osteoclastogenesis and angiogenesis in subchondral bone are critical destructive factors in the initiation and progression of osteoarthritis (OA). Herein, methoxypolyethylene glycol amine (mPEG-NH2) modified polydopamine nanoparticles (PDA-PEG NPs) were synthesized for treating early OA. The cytotoxicity and reactive oxygen species (ROS) scavenging ability of PDA-PEG NPs were evaluated. The effects of PDA-PEG NPs on osteoclast differentiation and vessel formation were then evaluated. Further, PDA-PEG NPs were administrated to anterior cruciate ligament transection (ACLT)-induced OA mice. Results demonstrated that PDA-PEG NPs had low toxicity both in vitro and in vivo. PDA-PEG NPs could inhibit osteoclastogenesis via regulating nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, PDA-PEG NPs suppressed osteoclast-related angiogenesis via down-regulating platelet-derived growth factor-BB (PDGF-BB). In vivo, PDA-PEG NPs inhibited subchondral bone resorption and angiogenesis, further rescuing cartilage degradation in OA mice. In conclusion, we demonstrated that PDA-PEG NPs deployment could be a potential therapy for OA.
Graphical Abstract
Collapse
|
40
|
Wang R, Shiu HT, Lee WYW. Emerging role of lncRNAs in osteoarthritis: An updated review. Front Immunol 2022; 13:982773. [PMID: 36304464 PMCID: PMC9593085 DOI: 10.3389/fimmu.2022.982773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disease, which is associated with progressive articular cartilage loss, synovial inflammation, subchondral sclerosis and meniscus injury. The molecular mechanism underlying OA pathogenesis is multifactorial. Long non-coding RNAs (lncRNAs) are non-protein coding RNAs with length more than 200 nucleotides. They have various functions such as modulating transcription and protein activity, as well as forming endogenous small interfering RNAs (siRNAs) and microRNA (miRNA) sponges. Emerging evidence suggests that lncRNAs might be involved in the pathogenesis of OA which opens up a new avenue for the development of new biomarkers and therapeutic strategies. The purpose of this review is to summarize the current clinical and basic experiments related to lncRNAs and OA with a focus on the extensively studied H19, GAS5, MALAT1, XIST and HOTAIR. The potential translational value of these lncRNAs as therapeutic targets for OA is also discussed.
Collapse
Affiliation(s)
- Rongliang Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Hoi Ting Shiu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wayne Yuk Wai Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Wayne Yuk Wai Lee,
| |
Collapse
|
41
|
Liu X, Zhao J, Jiang H, Guo H, Li Y, Li H, Feng Y, Ke J, Long X. ALPK1 Accelerates the Pathogenesis of Osteoarthritis by Activating NLRP3 Signaling. J Bone Miner Res 2022; 37:1973-1985. [PMID: 36053817 DOI: 10.1002/jbmr.4669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 07/14/2022] [Accepted: 07/31/2022] [Indexed: 11/08/2022]
Abstract
Alpha-kinase 1 (ALPK1), a member of the alpha-kinase family, has been shown to be involved in mediating inflammatory responses and is strongly associated with gout; however, its modulatory role in osteoarthritis (OA) remains unclear. Here, we uncovered elevation of ALPK1 in degraded cartilage of destabilized medial meniscus (DMM) and collagenase-induced osteoarthritis (CIOA), two different mouse OA models induced by mechanical stress or synovitis. Intraarticular administration of recombinant human ALPK1 (rhALPK1) in vivo exacerbated OA pathogenesis in both DMM and CIOA mice, whereas ALPK1 knockout reversed this process. In vitro study demonstrated that ALPK1 aggravates metabolic disturbances in chondrocytes by enhancing the production of NOD-like receptor protein 3 (NLRP3), an inflammasome sensors driving interlukin-1β (IL-1β)-mediated inflammatory conditions. Furthermore, the selective inhibition of nuclear factor-κB (NF-κB) or NLRP3 indicates that NLRP3 is a downstream signaling governed by NF-κB in ALPK1-activated chondrocytes. Collectively, these results establish ALPK1 as a novel catabolic regulator of OA pathogenesis, and targeting this signaling may be a promising treatment strategy for OA. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Xin Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jie Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Henghua Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huilin Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yingjie Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huimin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaping Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jin Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xing Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
42
|
Single cell RNA-seq analysis identifies ferroptotic chondrocyte cluster and reveals TRPV1 as an anti-ferroptotic target in osteoarthritis. EBioMedicine 2022; 84:104258. [PMID: 36137413 PMCID: PMC9494174 DOI: 10.1016/j.ebiom.2022.104258] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 12/29/2022] Open
|
43
|
Tong L, Yu H, Huang X, Shen J, Xiao G, Chen L, Wang H, Xing L, Chen D. Current understanding of osteoarthritis pathogenesis and relevant new approaches. Bone Res 2022; 10:60. [PMID: 36127328 PMCID: PMC9489702 DOI: 10.1038/s41413-022-00226-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 06/19/2022] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease that causes painful swelling and permanent damage to the joints in the body. The molecular mechanisms of OA are currently unknown. OA is a heterogeneous disease that affects the entire joint, and multiple tissues are altered during OA development. To better understand the pathological mechanisms of OA, new approaches, methods, and techniques need to be used to understand OA pathogenesis. In this review, we first focus on the epigenetic regulation of OA, with a particular focus on DNA methylation, histone modification, and microRNA regulation, followed by a summary of several key mediators in OA-associated pain. We then introduce several innovative techniques that have been and will continue to be used in the fields of OA and OA-associated pain, such as CRISPR, scRNA sequencing, and lineage tracing. Next, we discuss the timely updates concerning cell death regulation in OA pathology, including pyroptosis, ferroptosis, and autophagy, as well as their individual roles in OA and potential molecular targets in treating OA. Finally, our review highlights new directions on the role of the synovial lymphatic system in OA. An improved understanding of OA pathogenesis will aid in the development of more specific and effective therapeutic interventions for OA.
Collapse
Affiliation(s)
- Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China
| | - Huan Yu
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xingyun Huang
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jie Shen
- Department of Orthopedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Guozhi Xiao
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Huaiyu Wang
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lianping Xing
- Department of Pathology and Laboratory of Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China.
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
44
|
Hosokawa H, Akagi R, Watanabe S, Horii M, Shinohara M, Mikami Y, Toguchi K, Kimura S, Yamaguchi S, Ohtori S, Sasho T. Nuclear receptor subfamily 1 group D member 1 in the pathology of obesity-induced osteoarthritis progression. J Orthop Res 2022; 41:930-941. [PMID: 36102152 DOI: 10.1002/jor.25440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/28/2022] [Accepted: 09/02/2022] [Indexed: 02/04/2023]
Abstract
Mechanical overload and chemical factors are both related to obesity-induced progression of knee osteoarthritis. The circadian rhythm is related to the development of metabolic syndrome and the progression of osteoarthritis, and the core clock genes nuclear receptor subfamily 1 group D member 1 (NR1D1) and brain and muscle arnt-like protein 1 (BMAL1) are dysregulated in cartilage from patients with osteoarthritis. Here, we focused on NR1D1 and investigated osteoarthritis-related changes and gene expression in a mouse model of diet-induced obesity. A high-fat diet was provided to C57BL6/J mice, and changes in body weight, blood lipids, and gene expression were investigated. Destabilization of the medial meniscus or sham surgery was performed on mice fed a high-fat diet or normal diet, and histological osteoarthritis-related changes and NR1D1 expression were investigated. The effects of the NR1D1 agonist SR9009 were also assessed. Mice fed a high-fat diet developed significant obesity and dyslipidemia. Nr1d1 and Bmal1 gene expression levels decreased in the liver and knee joints. Moreover, increased osteoarthritis progression and decreased NR1D1 protein expression were observed in high-fat diet-fed mice after surgical osteoarthritis induction. SR9009 decreased the progression of obesity, dyslipidemia, and osteoarthritis. Overall, obesity and dyslipidemia induced by the high-fat diet led to osteoarthritis progression and decreased NR1D1 expression. Thus, NR1D1 may play an important role in obesity-induced osteoarthritis.
Collapse
Affiliation(s)
- Hiroaki Hosokawa
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan.,Center for Preventive Medicine, Musculoskeletal Disease and Pain, Chiba University, Chiba, Japan
| | - Ryuichiro Akagi
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan
| | - Shotaro Watanabe
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan.,Center for Preventive Medicine, Musculoskeletal Disease and Pain, Chiba University, Chiba, Japan
| | - Manato Horii
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan
| | - Masashi Shinohara
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan
| | - Yukio Mikami
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan
| | - Kaoru Toguchi
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan
| | - Seiji Kimura
- Department of Orthopaedic Surgery, Center for Advanced Joint Function and Reconstructive Spine Surgery Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Yamaguchi
- Graduate School of Global and Transdisciplinary Studies, Chiba University, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan
| | - Takahisa Sasho
- Center for Preventive Medicine, Musculoskeletal Disease and Pain, Chiba University, Chiba, Japan
| |
Collapse
|
45
|
Bu Y, Wu H, Deng R, Wang Y. Geniposide restricts angiogenesis in experimentary arthritis via inhibiting Dnmt1-mediated PTEN hypermethylation. Int Immunopharmacol 2022; 111:109087. [PMID: 35908504 DOI: 10.1016/j.intimp.2022.109087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/01/2022]
Abstract
Neovascularization in rheumatoid arthritis (RA) is a key bridge between malignant proliferative synovial tissue and pannus. In view of previous studies on the efficacy of Geniposide (GE) in experimentary arthritis, the purpose of this study was to investigate the possible mechanism of GE inhibiting angiogenesis by regulating the gene of phosphate and tension homology deleted on chromosome ten (PTEN). In this study, human umbilical vein endothelial cells (HUVEC) and adjuvant arthritis (AA) rat models were performed to research in vitro and in vivo. The results showed that GE treatment significantly reduced synovitis and angiogenesis in AA rats, which may be associated with the increased expression of PTEN with GE treatment. Meanwhile, the hypermethylation of PTEN accompanied by the over-expression of DNA methyltransferases (Dnmts) was demonstrated in TNF-α-induced HUVEC and AA rats. Knockdown of Dnmt1 by Dnmt1- siRNA significantly inhibited the tube formation of HUVEC in vitro. GE significantly restricted the angiogenesis of HUVEC by inhibiting DNA methylation, which was attributed to the down-regulation of Dnmt1 rather than Dnmt3a and Dnmt3b. The anti-angiogenesis effect of GE was further verified in AA model by the inhibition of Dnmt1. These results indicate that GE exhibited anti-angiogenesis effects in experimentary arthritis by inhibiting Dnmt1-mediated PTEN gene hypermethylation, which may brings new insights for the prevention and research of RA.
Collapse
Affiliation(s)
- Yanhong Bu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China.
| | - Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
46
|
Pascual-Garrido C, Kamenaga T, Brophy RH, Shen J, O'Keefe RJ, Clohisy JC. Otto Aufranc Award: Identification of Key Molecular Players in the Progression of Hip Osteoarthritis Through Transcriptomes and Epigenetics. J Arthroplasty 2022; 37:S391-S399. [PMID: 35288246 PMCID: PMC9208365 DOI: 10.1016/j.arth.2022.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND This study aimed: (1) to compare the transcriptome profile of articular cartilage in cam-FAI (early stage) to advanced OA secondary to cam-FAI (late stage) and (2) to investigate epigenetic changes through the expression of DNA methylation enzymes DNMT3B, DNMT1, and DNMT3A and peroxisome proliferator-activated receptor gamma (PPARγ) in human cartilage samples during the progression of hip OA. METHODS Full-thickness cartilage samples were collected from the anterolateral head-neck junction (impingement zone) of 22 patients (9 early-FAI and 13 late-FAI). RNA sequencing and in vitro cartilage cultures with histological analysis and immunohistochemistry staining for PPARγ and DNMT3B were performed. Target gene validation was confirmed with RT-PCR. RESULTS Fifty genes and 42 pathways were identified differentially between early and late-FAI (fold change <-1.5 or >1.5, P < .01). PPARγ and DNMT3B were gradually suppressed with disease progression. Contrarily, disease progression induced expression of DNMT1/3A. CONCLUSION By comparing comprehensive gene expression in early and late stage hip degeneration at the whole-genome level, distinct transcriptome profiles for early and late stage disease were identified along with key molecular contributors to the progression of hip OA. Preservation of endogenous PPARγ may have therapeutic potential to delay or prevent hip OA.
Collapse
Affiliation(s)
- Cecilia Pascual-Garrido
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Tomoyuki Kamenaga
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Robert H Brophy
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Jie Shen
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Regis J O'Keefe
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - John C Clohisy
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
47
|
CDDO-Im ameliorates osteoarthritis and inhibits chondrocyte apoptosis in mice via enhancing Nrf2-dependent autophagy. Acta Pharmacol Sin 2022; 43:1793-1802. [PMID: 34754093 PMCID: PMC9253092 DOI: 10.1038/s41401-021-00782-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent chronic degenerative joint disease with few treatment options. The pathogenesis of OA is characterized by sustained inflammation, oxidative stress and chondrocyte apoptosis that eventually lead to cartilage degradation and joint dysfunction. In the present study, we identified a synthetic triterpenoid CDDO-Im(1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole) as an activator of Nrf2 (nuclear factor erythroid 2-related factor 2) that displayed strong anti-OA effects. We showed that CDDO-Im (20 nM) significantly alleviated TNF-α-induced apoptosis of primary human chondrocytes and extracellular matrix degradation. In a mouse OA model incurred by DMM (destabilization of medial meniscus), administration of CDDO-Im (2.5 mg/kg, ip, every other day for 8 weeks) effectively reduced knee joint cartilage erosion and serum levels of inflammatory cytokines IL-1β and IL-6. We revealed that CDDO-Im (20 nM) significantly enhanced autophagy activities in chondrocytes, whereas the autophagy inhibition by chloroquine (CQ, 50 μM) or 3-methyladenine (3-MA, 5 mM) abrogated the anti-apoptosis and chondroprotective effects of CDDO-Im in TNF-α-treated chondrocytes. Moreover, we confirmed that CDDO-Im (1-20 nM) dose-dependently activated Nrf2 pathway in TNF-α-treated chondrocytes, and its chondroprotective and autophagy-enhancing effects were significantly diminished when Nrf2 signaling was blocked by Nrf2 inhibitor ML385 (20 μM) or siRNA-mediated Nrf2 knockdown. Together, our results demonstrate that CDDO-Im exhibits prominent chondroprotective and anti-OA activities owing to its Nrf2 activation and autophagy-enhancing properties, which might provide new insights into the strategies of OA clinical prevention and treatment.
Collapse
|
48
|
Zhang L, Chen X, Cai P, Sun H, Shen S, Guo B, Jiang Q. Reprogramming Mitochondrial Metabolism in Synovial Macrophages of Early Osteoarthritis by a Camouflaged Meta-Defensome. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202715. [PMID: 35671349 DOI: 10.1002/adma.202202715] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Osteoarthritis (OA) is a low-grade inflammatory and progressive joint disease, and its progression is closely associated with an imbalance in M1/M2 synovial macrophages. Repolarizing pro-inflammatory M1 macrophages into the anti-inflammatory M2 phenotype is emerging as a strategy to alleviate OA progression but is compromised by unsatisfactory efficiency. In this study, the reprogramming of mitochondrial dysfunction is pioneered with a camouflaged meta-Defensome, which can transform M1 synovial macrophages into the M2 phenotype with a high efficiency of 82.3%. The meta-Defensome recognizes activated macrophages via receptor-ligand interactions and accumulates in the mitochondria through electrostatic attractions. These meta-Defensomes are macrophage-membrane-coated polymeric nanoparticles decorated with dual ligands and co-loaded with S-methylisothiourea and MnO2 . Meta-Defensomes are demonstrated to successfully reprogram the mitochondrial metabolism of M1 macrophages by scavenging mitochondrial reactive oxygen species and inhibiting mitochondrial NO synthase, thereby increasing mitochondrial transcription factor A expression and restoring aerobic respiration. Furthermore, meta-Defensomes are intravenously injected into collagenase-induced osteoarthritis mice and effectively suppress synovial inflammation and progression of early OA, as evident from the Osteoarthritis Research Society International score. Therefore, reprogramming the mitochondrial metabolism can serve as a novel and practical approach to repolarize M1 synovial macrophages. The camouflaged meta-Defensomes are a promising therapeutic agent for impeding OA progression in tclinic.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Xiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Pingqiang Cai
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, P. R. China
| | - Han Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Siyu Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Baosheng Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| |
Collapse
|
49
|
Chen X, Zhu X, Dong J, Chen F, Gao Q, Zhang L, Cai D, Dong H, Ruan B, Wang Y, Jiang Q, Cao W. Reversal of Epigenetic Peroxisome Proliferator-Activated Receptor-γ Suppression by Diacerein Alleviates Oxidative Stress and Osteoarthritis in Mice. Antioxid Redox Signal 2022; 37:40-53. [PMID: 35196878 DOI: 10.1089/ars.2021.0219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aims: The pathogenesis of osteoarthritis (OA) is characterized by oxidative stress (OS) and sustained inflammation that are substantially associated with epigenetic DNA methylation alterations of osteogenic gene expression. Diacerein as an anthraquinone anti-OA drug exhibits multiple chondroprotective properties, but less clarified pharmacological actions. Since anthraquinone contain an epigenetic modulating property, in this study we investigate whether the anti-OA functions of diacerein involve DNA methylation modulation and antioxidant signaling. Results: The OA mice incurred by destabilization of medial meniscus exhibited marked suppression of peroxisome proliferator-activated receptor-gamma (PPARγ), a chondroprotective transcription factor with anti-inflammation and OS-balancing properties, aberrant upregulations of DNA methyltransferase (DNMT)1/3a, and PPARγ promoter hypermethylation in knee joint cartilage. Diacerein treatment mitigated the cartilage damage and significantly inhibited the DNMT1/3a upregulation, the PPARγ promoter hypermethylation, and the PPARγ loss, and it effectively corrected the adverse expression of antioxidant enzymes and inflammatory cytokines. In cultured chondrocytes, diacerein reduced the interleukin-1β-induced PPARγ suppression and the abnormal expression of its downstream antioxidant enzymes in a gain of DNMT and PPARγ inhibition-sensitive manner, and in PPARγ knockout mice, the anti-OA effects of diacerein were significantly reduced. Innovation: Our work reveals a novel anti-OA pharmacological property of diacerein and identifies the aberrant DNMT elevation and the resultant PPARγ suppression as an important epigenetic pathway that mediates diacerein's anti-OA activities. Conclusion: DNA methylation aberration and the resultant PPARγ suppression contribute significantly to epigenetic OA pathogenesis, and targeting PPARγ suppression via DNA demethylation is an important component of diacerein's anti-OA functions. Antioxid. Redox Signal. 37, 40-53.
Collapse
Affiliation(s)
- Xingren Chen
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedics, State Key Lab of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Xiaobo Zhu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedics, State Key Lab of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Jian Dong
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedics, State Key Lab of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Fang Chen
- Nanjing University School of Medicine, Department of Basic Medical Science, Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Qi Gao
- Nanjing University School of Medicine, Department of Basic Medical Science, Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Lijun Zhang
- Nanjing University School of Medicine, Department of Basic Medical Science, Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Dawei Cai
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedics, State Key Lab of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Hui Dong
- Department of Orthopedics, Northern Jiangsu People's Hospital, The Affiliated Hospital of Nanjing University Medical School, Yangzhou, China
| | - Binjia Ruan
- Department of Orthopedics, Northern Jiangsu People's Hospital, The Affiliated Hospital of Nanjing University Medical School, Yangzhou, China
| | - Yongxiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital, The Affiliated Hospital of Nanjing University Medical School, Yangzhou, China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedics, State Key Lab of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Wangsen Cao
- Nanjing University School of Medicine, Department of Basic Medical Science, Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| |
Collapse
|
50
|
Li Y, Xie W, Xiao W, Dou D. Progress in osteoarthritis research by the National Natural Science Foundation of China. Bone Res 2022; 10:41. [PMID: 35610209 PMCID: PMC9130253 DOI: 10.1038/s41413-022-00207-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/24/2021] [Accepted: 02/17/2022] [Indexed: 01/10/2023] Open
Abstract
Osteoarthritis (OA) in China is gradually becoming an important scientific research area that has had a significant impact on research and development (R&D) activities in the OA field worldwide. This article summarizes the R&D progress related to OA in China in recent years. The National Natural Science Foundation of China (NSFC) is a national funding institution for basic research and plays a critical role in promoting and supporting Chinese scholars' R&D activities. We collected and analyzed information on NSFC funding in the field of OA from 2010 to 2019, including the amount, the level and the program categories of the funded projects. The data fully demonstrate the important and positive role of the NSFC in supporting free exploration, cultivating research teams and young talent, and boosting OA R&D. In this article, we outline and discuss hot topics in focused areas, key advances in this field and the prospects for progress in OA research in China.
Collapse
Affiliation(s)
- Yusheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wenqing Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wenfeng Xiao
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Dou Dou
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China.
| |
Collapse
|