1
|
Criner GJ, Lang FM, Gottlieb RL, Mathews KS, Wang TS, Rice TW, Madduri D, Bellam S, Jeanfreau R, Case AH, Glassberg MK, Lyon GM, Ahmad K, Mendelson R, DiMaio JM, Tran MP, Spak CW, Abbasi JA, Davis SG, Ghamande S, Shen S, Sherman L, Lowry S. Anti-Granulocyte-Macrophage Colony-Stimulating Factor Monoclonal Antibody Gimsilumab for COVID-19 Pneumonia: A Randomized, Double-Blind, Placebo-controlled Trial. Am J Respir Crit Care Med 2022; 205:1290-1299. [PMID: 35290169 PMCID: PMC9873114 DOI: 10.1164/rccm.202108-1859oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Rationale: GM-CSF (granulocyte-macrophage colony-stimulating factor) has emerged as a promising target against the hyperactive host immune response associated with coronavirus disease (COVID-19). Objectives: We sought to investigate the efficacy and safety of gimsilumab, an anti-GM-CSF monoclonal antibody, for the treatment of hospitalized patients with elevated inflammatory markers and hypoxemia secondary to COVID-19. Methods: We conducted a 24-week randomized, double-blind, placebo-controlled trial, BREATHE (Better Respiratory Education and Treatment Help Empower), at 21 locations in the United States. Patients were randomized 1:1 to receive two doses of intravenous gimsilumab or placebo 1 week apart. The primary endpoint was all-cause mortality rate at Day 43. Key secondary outcomes were ventilator-free survival rate, ventilator-free days, and time to hospital discharge. Enrollment was halted early for futility based on an interim analysis. Measurements and Main Results: Of the planned 270 patients, 225 were randomized and dosed; 44.9% of patients were Hispanic or Latino. The gimsilumab and placebo groups experienced an all-cause mortality rate at Day 43 of 28.3% and 23.2%, respectively (adjusted difference = 5% vs. placebo; 95% confidence interval [-6 to 17]; P = 0.377). Overall mortality rates at 24 weeks were similar across the treatment arms. The key secondary endpoints demonstrated no significant differences between groups. Despite the high background use of corticosteroids and anticoagulants, adverse events were generally balanced between treatment groups. Conclusions: Gimsilumab did not improve mortality or other key clinical outcomes in patients with COVID-19 pneumonia and evidence of systemic inflammation. The utility of anti-GM-CSF therapy for COVID-19 remains unclear. Clinical trial registered with www.clinicaltrials.gov (NCT04351243).
Collapse
Affiliation(s)
- Gerard J. Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Frederick M. Lang
- Roivant Sciences, New York, New York
- Kinevant Sciences, a wholly-owned subsidiary of Roivant Sciences, New York, New York
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Robert L. Gottlieb
- Baylor University Medical Center, Dallas, Texas
- Baylor Scott & White The Heart Hospital–Plano, Plano, Texas
- Baylor Scott & White Heart and Vascular Hospital, Dallas, Texas
| | | | - Tisha S. Wang
- University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
| | - Todd W. Rice
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Deepu Madduri
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Shashi Bellam
- NorthShore University HealthSystem, Evanston, Illinois
| | | | | | - Marilyn K. Glassberg
- University of Arizona College of Medicine/Banner University Medical Center, Phoenix, Arizona
| | | | | | | | | | - MaryAnn P. Tran
- Baylor Scott & White Medical Center–Round Rock, Round Rock, Texas
| | - Cedric W. Spak
- Baylor University Medical Center, Dallas, Texas
- Texas Centers for Infectious Disease Associates, Dallas, Texas
| | - Jamil A. Abbasi
- Baylor Scott & White All Saints Medical Center, Fort Worth, Texas
| | | | | | - Steven Shen
- Roivant Sciences, New York, New York
- Kinevant Sciences, a wholly-owned subsidiary of Roivant Sciences, New York, New York
- Sumitovant Biopharma, New York, New York
| | - Lisa Sherman
- Roivant Sciences, New York, New York
- Kinevant Sciences, a wholly-owned subsidiary of Roivant Sciences, New York, New York
| | - Simon Lowry
- Roivant Sciences, New York, New York
- Kinevant Sciences, a wholly-owned subsidiary of Roivant Sciences, New York, New York
| |
Collapse
|
2
|
Fisher BA, Veenith T, Slade D, Gaskell C, Rowland M, Whitehouse T, Scriven J, Parekh D, Balasubramaniam MS, Cooke G, Morley N, Gabriel Z, Wise MP, Porter J, McShane H, Ho LP, Newsome PN, Rowe A, Sharpe R, Thickett DR, Bion J, Gates S, Richards D, Kearns P, Turner R, Libri V, Mussai F, Middleton G, Bowden S, Bangash M, Gao-Smith F, Patel J, Sapey E, Thomas M, Coles M, Watkinson P, Rahman N, Angus B, Mentzer AJ, Novak A, Feldman M, Richter A, Faustini S, Bathurst C, Van de Wiel J, Mee S, James K, Rahman B, Turner K, Hill A, Gordon A, Yap C, Matthay M, McAuley D, Hall A, Dark P, McMichael A. Namilumab or infliximab compared with standard of care in hospitalised patients with COVID-19 (CATALYST): a randomised, multicentre, multi-arm, multistage, open-label, adaptive, phase 2, proof-of-concept trial. THE LANCET. RESPIRATORY MEDICINE 2022; 10:255-266. [PMID: 34922649 PMCID: PMC8676420 DOI: 10.1016/s2213-2600(21)00460-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Dysregulated inflammation is associated with poor outcomes in COVID-19. We aimed to assess the efficacy of namilumab (a granulocyte-macrophage colony stimulating factor inhibitor) and infliximab (a tumour necrosis factor inhibitor) in hospitalised patients with COVID-19, to prioritise agents for phase 3 trials. METHODS In this randomised, multicentre, multi-arm, multistage, parallel-group, open-label, adaptive, phase 2, proof-of-concept trial (CATALYST), we recruited patients (aged ≥16 years) admitted to hospital with COVID-19 pneumonia and C-reactive protein (CRP) concentrations of 40 mg/L or greater, at nine hospitals in the UK. Participants were randomly assigned with equal probability to usual care or usual care plus a single intravenous dose of namilumab (150 mg) or infliximab (5 mg/kg). Randomisation was stratified by care location within the hospital (ward vs intensive care unit [ICU]). Patients and investigators were not masked to treatment allocation. The primary endpoint was improvement in inflammation, measured by CRP concentration over time, analysed using Bayesian multilevel models. This trial is now complete and is registered with ISRCTN, 40580903. FINDINGS Between June 15, 2020, and Feb 18, 2021, we screened 299 patients and 146 were enrolled and randomly assigned to usual care (n=54), namilumab (n=57), or infliximab (n=35). For the primary outcome, 45 patients in the usual care group were compared with 52 in the namilumab group, and 29 in the usual care group were compared with 28 in the infliximab group. The probabilities that the interventions were superior to usual care alone in reducing CRP concentration over time were 97% for namilumab and 15% for infliximab; the point estimates for treatment-time interactions were -0·09 (95% CI -0·19 to 0·00) for namilumab and 0·06 (-0·05 to 0·17) for infliximab. 134 adverse events occurred in 30 (55%) of 55 patients in the namilumab group compared with 145 in 29 (54%) of 54 in the usual care group. 102 adverse events occurred in 20 (69%) of 29 patients in the infliximab group compared with 112 in 17 (50%) of 34 in the usual care group. Death occurred in six (11%) patients in the namilumab group compared with ten (19%) in the usual care group, and in four (14%) in the infliximab group compared with five (15%) in the usual care group. INTERPRETATION Namilumab, but not infliximab, showed proof-of-concept evidence for reduction in inflammation-as measured by CRP concentration-in hospitalised patients with COVID-19 pneumonia. Namilumab should be prioritised for further investigation in COVID-19. FUNDING Medical Research Council.
Collapse
Affiliation(s)
- Benjamin A Fisher
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK,Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK,National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK,Correspondence to: Dr Benjamin A Fisher, Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Tonny Veenith
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK,Department of Critical Care Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Daniel Slade
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Charlotte Gaskell
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Matthew Rowland
- Kadoorie Centre for Critical Care Research, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Tony Whitehouse
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK,Department of Critical Care Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - James Scriven
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK,Department of Infectious Diseases, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK,Department of Critical Care Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK,Department of Respiratory Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - Graham Cooke
- Department of Infectious Disease, Imperial College London, London, UK
| | - Nick Morley
- Department of Haematology, Royal Hallamshire Hospital, Sheffield, UK
| | - Zoe Gabriel
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Matthew P Wise
- Department of Critical Care Medicine, University Hospital of Wales, Cardiff, UK
| | - Joanna Porter
- Department of Respiratory Medicine, University College Hospital, London, UK
| | | | - Ling-Pei Ho
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK,Oxford Interstitial Lung Disease Service, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Philip N Newsome
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK,National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Anna Rowe
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK,National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Rowena Sharpe
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - David R Thickett
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK,Department of Respiratory Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Julian Bion
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK,Department of Critical Care Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Simon Gates
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Duncan Richards
- Oxford Clinical Trials Research Unit, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Pamela Kearns
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK,National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Temesgen Z, Burger CD, Baker J, Polk C, Libertin CR, Kelley CF, Marconi VC, Orenstein R, Catterson VM, Aronstein WS, Durrant C, Chappell D, Ahmed O, Chappell G, Badley AD. Lenzilumab in hospitalised patients with COVID-19 pneumonia (LIVE-AIR): a phase 3, randomised, placebo-controlled trial. THE LANCET RESPIRATORY MEDICINE 2022; 10:237-246. [PMID: 34863332 PMCID: PMC8635458 DOI: 10.1016/s2213-2600(21)00494-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022]
Abstract
Background The pathophysiology of COVID-19 includes immune-mediated hyperinflammation, which could potentially lead to respiratory failure and death. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is among cytokines that contribute to the inflammatory processes. Lenzilumab, a GM-CSF neutralising monoclonal antibody, was investigated in the LIVE-AIR trial to assess its efficacy and safety in treating COVID-19 beyond available treatments. Methods In LIVE-AIR, a phase 3, randomised, double-blind, placebo-controlled trial, hospitalised adult patients with COVID-19 pneumonia not requiring invasive mechanical ventilation were recruited from 29 sites in the USA and Brazil and were randomly assigned (1:1) to receive three intravenous doses of lenzilumab (600 mg per dose) or placebo delivered 8 h apart. All patients received standard supportive care, including the use of remdesivir and corticosteroids. Patients were stratified at randomisation by age and disease severity. The primary endpoint was survival without invasive mechanical ventilation to day 28 in the modified intention-to-treat population (mITT), comprising all randomised participants who received at least one dose of study drug under the documented supervision of the principal investigator or sub-investigator. Adverse events were assessed in all patients who received at least one dose of study drug. This trial is registered with ClinicalTrials.gov, NCT04351152, and is completed. Findings Patients were enrolled from May 5, 2020, until Jan 27, 2021. 528 patients were screened, of whom 520 were randomly assigned and included in the intention-to-treat population. 479 of these patients (n=236, lenzilumab; n=243, placebo) were included in the mITT analysis for the primary outcome. Baseline demographics were similar between groups. 311 (65%) participants were males, mean age was 61 (SD 14) years at baseline, and median C-reactive protein concentration was 79 (IQR 41–137) mg/L. Steroids were administered to 449 (94%) patients and remdesivir to 347 (72%) patients; 331 (69%) patients received both treatments. Survival without invasive mechanical ventilation to day 28 was achieved in 198 (84%; 95% CI 79–89) participants in the lenzilumab group and in 190 (78%; 72–83) patients in the placebo group, and the likelihood of survival was greater with lenzilumab than placebo (hazard ratio 1·54; 95% CI 1·02–2·32; p=0·040). 68 (27%) of 255 patients in the lenzilumab group and 84 (33%) of 257 patients in the placebo group experienced at least one adverse event that was at least grade 3 in severity based on CTCAE criteria. The most common treatment-emergent adverse events of grade 3 or higher were related to respiratory disorders (26%) and cardiac disorders (6%) and none led to death. Interpretation Lenzilumab significantly improved survival without invasive mechanical ventilation in hospitalised patients with COVID-19, with a safety profile similar to that of placebo. The added value of lenzilumab beyond other immunomodulators used to treat COVID-19 alongside steroids remains unknown. Funding Humanigen.
Collapse
Affiliation(s)
- Zelalem Temesgen
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA.
| | - Charles D Burger
- Mayo Clinic, Division of Pulmonary, Allergy and Sleep Medicine, Jacksonville, FL, USA
| | - Jason Baker
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | | | | | - Colleen F Kelley
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA; Grady Memorial Hospital, Atlanta, GA, USA
| | - Vincent C Marconi
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA; Rollins School of Public Health and Emory Vaccine Center, Atlanta, GA, USA
| | - Robert Orenstein
- Mayo Clinic Arizona, Division of Infectious Diseases, Phoenix, AZ, USA
| | | | | | | | | | | | | | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA; Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|