1
|
Chan NH, Hawkins CC, Rodrigues BV, Cornet MC, Gonzalez FF, Wu YW. Neuroprotection for neonatal hypoxic-ischemic encephalopathy: A review of novel therapies evaluated in clinical studies. Dev Med Child Neurol 2024. [PMID: 39563426 DOI: 10.1111/dmcn.16184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Therapeutic hypothermia is an effective therapy for moderate-to-severe hypoxic-ischemic encephalopathy (HIE) in infants born at term or near-term in high-resource settings. Yet there remains a substantial proportion of infants who do not benefit or who will have significant disability despite therapeutic hypothermia. Novel investigational therapies that may confer additional neuroprotection by targeting known pathogenic mechanisms of hypoxic-ischemic brain injury are under development. This review focuses on putative neuroprotective agents that have shown promise in animal models of HIE, and that have been translated to clinical studies in neonates with HIE. We include agents that have been studied both with and without concurrent therapeutic hypothermia. Our review therefore addresses not just neonatal HIE in high-resource countries where therapeutic hypothermia is the standard of care, but also neonatal HIE in low- and middle-income countries where therapeutic hypothermia has been shown to be ineffective, and where the greatest burden of HIE-related morbidity and mortality exists.
Collapse
Affiliation(s)
- Natalie H Chan
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - Cheryl C Hawkins
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - Benjamin V Rodrigues
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - Marie-Coralie Cornet
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - Fernando F Gonzalez
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - Yvonne W Wu
- Department of Neurology, University of California, San Francisco, California, USA
| |
Collapse
|
2
|
Notarbartolo V, Badiane BA, Angileri VM, Piro E, Giuffrè M. Antioxidant Therapy in Neonatal Hypoxic Ischemic Encephalopathy: Adjuvant or Future Alternative to Therapeutic Hypothermia? Metabolites 2024; 14:630. [PMID: 39590867 PMCID: PMC11596076 DOI: 10.3390/metabo14110630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Oxidative stress-related diseases in newborns arise from pro-oxidant/antioxidant imbalance in both term and preterm neonates. Pro-oxidant/antioxidant imbalance has shown to be present in different pathological conditions such as hypoxic ischemic encephalopathy (HIE), retinopathy of prematurity (ROP), bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), and patent ductus arteriosus (PDA). METHODS AND RESULTS We performed a narrative review according to the most recent available literature (2012-2024), using Scopus and PubMed as electronic databases. Many observational and experimental studies in vitro and in vivo have evaluated the effectiveness of antioxidant therapies such as melatonin, erythropoietin (EPO), allopurinol, N-acetylcisteine (NAS), and nitric oxide synthase (NOS) inhibitors in these diseases. Perinatal asphyxia is one of the most important causes of mortality and morbidity in term and near-term newborns. Therapeutic hypothermia (TH) is the gold standard treatment for neonates with moderate-severe perinatal asphyxia, resulting in a reduction in the mortality and neurodevelopmental disability rates. CONCLUSIONS According to the most recent literature and clinical trials, melatonin, allopurinol, NAS, NOS inhibitors, magnesium sulfate, and stem cells stand out as promising as both adjuvants and future probable alternatives to TH in the treatment of HIE.
Collapse
Affiliation(s)
- Veronica Notarbartolo
- Neonatology and Neonatal Intensive Care Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy
| | - Bintu Ayla Badiane
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (B.A.B.); (E.P.); (M.G.)
| | - Vita Maria Angileri
- Neonatal Intensive Care Unit with Neonatology, “G.F. Ingrassia” Hospital Unit, 90131 Palermo, Italy;
| | - Ettore Piro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (B.A.B.); (E.P.); (M.G.)
| | - Mario Giuffrè
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (B.A.B.); (E.P.); (M.G.)
| |
Collapse
|
3
|
Quirke F, Biesty L, Battin M, Bloomfield FH, Daly M, Finucane E, Healy P, Hurley T, Kirkham JJ, Molloy E, Haas DM, Meher S, Ní Bhraonáin E, Walker K, Webbe J, Devane D. Neonatal encephalopathy: a systematic review of reported treatment outcomes. BMJ Paediatr Open 2024; 8:e002510. [PMID: 39322607 PMCID: PMC11425948 DOI: 10.1136/bmjpo-2024-002510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/04/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Neonatal encephalopathy (NE) is a multi-organ condition potentially leading to death or long-term neurodisability. Therapeutic hypothermia is the standard treatment for NE; however, long-term impairments remain common. Studies of new treatments for NE often measure and report different outcomes. Core outcome sets (COSs), a minimum set of outcomes to be measured and reported in all studies for a condition, address this problem. This paper aimed to identify outcomes reported (primary, secondary, adverse events and other reported outcomes) in (1) randomised trials and (2) systematic reviews of randomised trials of interventions for the treatment of NE in the process of developing a COS for interventions for the treatment of NE. METHODS We completed a systematic search for outcomes used to evaluate treatments for NE using MEDLINE, Embase, Cochrane CENTRAL, the Cochrane Database of Systematic Reviews and the WHO International Clinical Trials Registry Platform. Two reviewers screened all included articles independently. Outcomes were extracted verbatim, similar outcomes were grouped and outcome domains were developed. RESULTS 386 outcomes were reported in 116 papers, from 85 studies. Outcomes were categorised into 18 domains. No outcome was reported by all studies, a single study reported 11 outcomes and it was not explicitly stated that outcomes had input from parents. DISCUSSION Heterogeneity in reported outcomes means that synthesis of studies evaluating new treatments for NE remains difficult. A COS, that includes parental/family input, is needed to ensure consistency in measuring and reporting outcomes, and to enable comparison of randomised trials.
Collapse
Affiliation(s)
- Fiona Quirke
- Neonatal Encephalopathy PhD Training Network, Health Research Board, Dublin, Ireland
- Health Research Board -Trials Methodology Research Network (HRB-TMRN), University of Galway, Galway, Ireland
| | - Linda Biesty
- School of Nursing & Midwifery, University of Galway, Galway, Ireland
- Evidence Synthesis Ireland, University of Galway, Galway, Ireland
| | | | | | - Mandy Daly
- Advocacy and Policymaking Irish Neonatal Health Alliance, Wicklow, Ireland
| | - Elaine Finucane
- Evidence Synthesis Ireland, University of Galway, Galway, Ireland
| | - Patricia Healy
- School of Nursing & Midwifery, University of Galway, Galway, Ireland
| | - Tim Hurley
- Neonatal Encephalopathy PhD Training Network, Health Research Board, Dublin, Ireland
| | - Jamie J Kirkham
- Centre for Biostatistics, Manchester Academic Health Science Centre, Manchester University, Manchester, UK
| | - Eleanor Molloy
- Paediatrics, Trinity College Dublin, Dublin, Ireland
- Paediatrics, Tallaght Hospital, Dublin, Ireland
| | - David M Haas
- Department of Obstetrics and Gynecology, Indiana University, Bloomington, Indiana, USA
| | - Shireen Meher
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | | | - Karen Walker
- Grace Centre for Newborn Care, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - James Webbe
- Academic Neonatal Medicine, Imperial College London, London, UK
| | - Declan Devane
- Health Research Board -Trials Methodology Research Network (HRB-TMRN), University of Galway, Galway, Ireland
- Evidence Synthesis Ireland, University of Galway, Galway, Ireland
| |
Collapse
|
4
|
Zhou J, Gao T, Tang W, Qian T, Wang Z, Xu P, Wang L. Progress in the treatment of neonatal hypoxic-ischemic encephalopathy with umbilical cord blood mononuclear cells. Brain Dev 2023; 45:533-546. [PMID: 37806836 DOI: 10.1016/j.braindev.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a common disease among newborns, which is a leading cause of neonatal death and permanent neurological sequelae. Therapeutic hypothermia (TH) is the only method for the treatment of HIE that has been recognized effective clinically at home and abroad, but the efficacy is limited. Recent research suggests that the cord blood-derived mononuclear cells (CB-MNCs), which the refer to blood cells containing one nucleus in the cord blood, exert anti-oxidative, anti-inflammatory, anti-apoptotic effects and play a neuroprotective role in HIE. This review focuses on safety and efficacy, the route of administration, dose, timing and combination treatment of CB-MNCs in HIE.
Collapse
Affiliation(s)
- Jiayu Zhou
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Ting Gao
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Wan Tang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Tianyang Qian
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Ziming Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Pu Xu
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Laishuan Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China.
| |
Collapse
|
5
|
Pedroza-García KA, Calderón-Vallejo D, Quintanar JL. Neonatal Hypoxic-Ischemic Encephalopathy: Perspectives of Neuroprotective and Neuroregenerative Treatments. Neuropediatrics 2022; 53:402-417. [PMID: 36030792 DOI: 10.1055/s-0042-1755235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a serious condition that could have deleterious neurological outcomes, such as cerebral palsy, neuromotor disability, developmental disability, epilepsy, and sensitive or cognitive problems, and increase the risk of death in severe cases. Once HIE occurs, molecular cascades are triggered favoring the oxidative stress, excitotoxicity, and inflammation damage that promote cell death via apoptosis or necrosis. Currently, the therapeutic hypothermia is the standard of care in HIE; however, it has a small window of action and only can be used in children of more than 36 gestational weeks; for this reason, it is very important to develop new therapies to prevent the progression of the hypoxic-ischemic injury or to develop neuroregenerative therapies in severe HIE cases. The objective of this revision is to describe the emerging treatments for HIE, either preventing cell death for oxidative stress, excitotoxicity, or exacerbated inflammation, as well as describing a new therapeutic approach for neuroregeneration, such as mesenchymal stem cells, brain-derived neurotrophic factor, and gonadotropin realizing hormone agonists.
Collapse
Affiliation(s)
- Karina A Pedroza-García
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Denisse Calderón-Vallejo
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.,Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - J Luis Quintanar
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| |
Collapse
|
6
|
Baucom MR, Wallen TE, Singer KE, Youngs J, Schuster RM, Blakeman TC, McGuire JL, Strilka R, Goodman MD. Postinjury Treatment to Mitigate the Effects of Aeromedical Evacuation After TBI in a Porcine Model. J Surg Res 2022; 279:352-360. [PMID: 35810552 DOI: 10.1016/j.jss.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/14/2022] [Accepted: 05/21/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Early aeromedical evacuation after traumatic brain injury (TBI) has been associated with worse neurologic outcomes in murine studies and military populations. The goal of this study was to determine if commonly utilized medications, including allopurinol, propranolol, or tranexamic acid (TXA), could mitigate the secondary traumatic brain injury experienced during the hypobaric and hypoxic environment of aeromedical evacuation. METHODS Porcine TBI was induced via controlled cortical injury. Twenty nonsurvival pigs were separated into four groups (n = 5 each): TBI+25 mL normal saline (NS), TBI+4 mg propranolol, TBI+100 mg allopurinol, and TBI+1g TXA. The pigs then underwent simulated AE to an altitude of 8000 ft for 4 h with an SpO2 of 82-85% and were sacrificed 4 h later. Hemodynamics, serum cytokines, and hippocampal p-tau accumulation were assessed. An additional survival cohort was partially completed with TBI/NS (n = 5), TBI/propranolol (n = 2) and TBI/allopurinol groups (n = 2) survived to postinjury day 7. RESULTS There were no significant differences in hemodynamics, tissue oxygenation, cerebral blood flow, or physiologic markers between treatment groups and saline controls. Transient differences in IL-1b and IL-6 were noted but did not persist. Neurological Severity Score (NSS) was significantly lower in the TBI + allopurinol group on POD one compared to NS and propranolol groups. P-tau accumulation was decreased in the nonsurvival animals treated with allopurinol and TXA compared to the TBI/NS group. CONCLUSIONS Allopurinol, propranolol, and TXA, following TBI, do not induce adverse changes in systemic or cerebral hemodynamics during or after a simulated postinjury flight. While transient changes were noted in systemic cytokines and p-tau accumulation, further investigation will be needed to determine any persistent neurological effects of injury, flight, and pharmacologic treatment.
Collapse
Affiliation(s)
- Matthew R Baucom
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Taylor E Wallen
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | | - Jackie Youngs
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | | | | | | - Richard Strilka
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | |
Collapse
|
7
|
Siahanidou T, Spiliopoulou C. Pharmacological Neuroprotection of the Preterm Brain: Current Evidence and Perspectives. Am J Perinatol 2022; 39:479-491. [PMID: 32961562 DOI: 10.1055/s-0040-1716710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite improvements in viability, the long-term neurodevelopmental outcomes of preterm babies remain serious concern as a significant percentage of these infants develop neurological and/or intellectual impairment, and they are also at increased risk of psychiatric illnesses later in life. The current challenge is to develop neuroprotective approaches to improve adverse outcomes in preterm survivors. The purpose of this review was to provide an overview of the current evidence on pharmacological agents targeting the neuroprotection of the preterm brain. Among them, magnesium sulfate, given antenatally to pregnant women with imminent preterm birth before 30 to 34 weeks of gestation, as well as caffeine administered to preterm infants after birth, exhibited neuroprotective effects for human preterm brain. Erythropoietin treatment of preterm infants did not result in neuroprotection at 2 years of age in two out of three published large randomized controlled trials; however, long-term follow-up of these infants is needed to come to definite conclusions. Further studies are also required to assess whether melatonin, neurosteroids, inhaled nitric oxide, allopurinol, or dietary supplements (omega-3 fatty acids, choline, curcumin, etc.) could be implemented as neuroprotectants in clinical practice. Furthermore, other pharmacological agents showing promising signs of neuroprotective efficacy in preclinical studies (growth factors, hyaluronidase inhibitors or treatment, antidiabetic drugs, cannabidiol, histamine-H3 receptor antagonists, etc.), as well as stem cell- or exosomal-based therapies and nanomedicine, may prove useful in the future as potential neuroprotective approaches for human preterm brain. KEY POINTS: · Magnesium and caffeine have neuroprotective effects for the preterm brain.. · Follow-up of infants treated with erythropoietin is needed.. · Neuroprotective efficacy of several drugs in animals needs to be shown in humans..
Collapse
Affiliation(s)
- Tania Siahanidou
- Neonatal Unit of the First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
8
|
Stegeman R, Nijman M, Breur JMPJ, Groenendaal F, Haas F, Derks JB, Nijman J, van Beynum IM, Taverne YJHJ, Bogers AJJC, Helbing WA, de Boode WP, Bos AF, Berger RMF, Accord RE, Roes KCB, de Wit GA, Jansen NJG, Benders MJNL. CeRebrUm and CardIac Protection with ALlopurinol in Neonates with Critical Congenital Heart Disease Requiring Cardiac Surgery with Cardiopulmonary Bypass (CRUCIAL): study protocol of a phase III, randomized, quadruple-blinded, placebo-controlled, Dutch multicenter trial. Trials 2022; 23:174. [PMID: 35197082 PMCID: PMC8867620 DOI: 10.1186/s13063-022-06098-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/10/2022] [Indexed: 10/20/2024] Open
Abstract
Background Neonates with critical congenital heart disease (CCHD) undergoing cardiac surgery with cardiopulmonary bypass (CPB) are at risk of brain injury that may result in adverse neurodevelopment. To date, no therapy is available to improve long-term neurodevelopmental outcomes of CCHD neonates. Allopurinol, a xanthine oxidase inhibitor, prevents the formation of reactive oxygen and nitrogen species, thereby limiting cell damage during reperfusion and reoxygenation to the brain and heart. Animal and neonatal studies suggest that allopurinol reduces hypoxic-ischemic brain injury and is cardioprotective and safe. This trial aims to test the hypothesis that allopurinol administration in CCHD neonates will result in a 20% reduction in moderate to severe ischemic and hemorrhagic brain injury. Methods This is a phase III, randomized, quadruple-blinded, placebo-controlled, multicenter trial. Neonates with a prenatal or postnatal CCHD diagnosis requiring cardiac surgery with CPB in the first 4 weeks after birth are eligible to participate. Allopurinol or mannitol-placebo will be administered intravenously in 2 doses early postnatally in neonates diagnosed antenatally and 3 doses perioperatively of 20 mg/kg each in all neonates. The primary outcome is a composite endpoint of moderate/severe ischemic or hemorrhagic brain injury on early postoperative MRI, being too unstable for postoperative MRI, or mortality within 1 month following CPB. A total of 236 patients (n = 188 with prenatal diagnosis) is required to demonstrate a reduction of the primary outcome incidence by 20% in the prenatal group and by 9% in the postnatal group (power 80%; overall type 1 error controlled at 5%, two-sided), including 1 interim analysis at n = 118 (n = 94 with prenatal diagnosis) with the option to stop early for efficacy. Secondary outcomes include preoperative and postoperative brain injury severity, white matter injury volume (MRI), and cardiac function (echocardiography); postnatal and postoperative seizure activity (aEEG) and regional cerebral oxygen saturation (NIRS); neurodevelopment at 3 months (general movements); motor, cognitive, and language development and quality of life at 24 months; and safety and cost-effectiveness of allopurinol. Discussion This trial will investigate whether allopurinol administered directly after birth and around cardiac surgery reduces moderate/severe ischemic and hemorrhagic brain injury and improves cardiac function and neurodevelopmental outcome in CCHD neonates. Trial registration EudraCT 2017-004596-31. Registered on November 14, 2017. ClinicalTrials.gov NCT04217421. Registered on January 3, 2020 Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06098-y.
Collapse
Affiliation(s)
- Raymond Stegeman
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center (UMC) Utrecht, Utrecht University, KE 04.123.1, PO Box 85909, 3508, AB, Utrecht, The Netherlands.,Department of Pediatric Cardiology, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht University, Utrecht, The Netherlands.,Congenital Cardiothoracic Surgery, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht University, Utrecht, The Netherlands.,Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maaike Nijman
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center (UMC) Utrecht, Utrecht University, KE 04.123.1, PO Box 85909, 3508, AB, Utrecht, The Netherlands.,Department of Pediatric Cardiology, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht University, Utrecht, The Netherlands.,Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Johannes M P J Breur
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center (UMC) Utrecht, Utrecht University, KE 04.123.1, PO Box 85909, 3508, AB, Utrecht, The Netherlands.,Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Felix Haas
- Congenital Cardiothoracic Surgery, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jan B Derks
- Department of Obstetrics, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Joppe Nijman
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ingrid M van Beynum
- Department of Pediatrics, Division of Pediatric Cardiology, Academic Center for Congenital Heart Disease, Erasmus Medical Center (MC) - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Ad J J C Bogers
- Department of Cardiothoracic Surgery, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Willem A Helbing
- Department of Pediatrics, Division of Pediatric Cardiology, Academic Center for Congenital Heart Disease, Erasmus Medical Center (MC) - Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Pediatrics, Division of Pediatric Cardiology, Academic Center for Congenital Heart Disease, Radboudumc - Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Willem P de Boode
- Department of Neonatology, Radboudumc, Radboud Institute for Health Sciences, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Arend F Bos
- Division of Neonatology, Beatrix Children's Hospital, UMC Groningen, University of Groningen, Groningen, The Netherlands
| | - Rolf M F Berger
- Center for Congenital Heart Diseases, Pediatric Cardiology, Beatrix Children's Hospital, UMC Groningen, University of Groningen, Groningen, The Netherlands
| | - Ryan E Accord
- Center for Congenital Heart Diseases, Department of Cardiothoracic Surgery, UMC Groningen, University of Groningen, Groningen, The Netherlands
| | - Kit C B Roes
- Department of Health Evidence, Section Biostatistics, Radboudumc, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - G Ardine de Wit
- Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nicolaas J G Jansen
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Pediatrics, Beatrix Children's Hospital, UMC Groningen, University of Groningen, Groningen, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center (UMC) Utrecht, Utrecht University, KE 04.123.1, PO Box 85909, 3508, AB, Utrecht, The Netherlands.
| | | |
Collapse
|
9
|
Martini S, Castellini L, Parladori R, Paoletti V, Aceti A, Corvaglia L. Free Radicals and Neonatal Brain Injury: From Underlying Pathophysiology to Antioxidant Treatment Perspectives. Antioxidants (Basel) 2021; 10:2012. [PMID: 34943115 PMCID: PMC8698308 DOI: 10.3390/antiox10122012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 01/23/2023] Open
Abstract
Free radicals play a role of paramount importance in the development of neonatal brain injury. Depending on the pathophysiological mechanisms underlying free radical overproduction and upon specific neonatal characteristics, such as the GA-dependent maturation of antioxidant defenses and of cerebrovascular autoregulation, different profiles of injury have been identified. The growing evidence on the detrimental effects of free radicals on the brain tissue has led to discover not only potential biomarkers for oxidative damage, but also possible neuroprotective therapeutic approaches targeting oxidative stress. While a more extensive validation of free radical biomarkers is required before considering their use in routine neonatal practice, two important treatments endowed with antioxidant properties, such as therapeutic hypothermia and magnesium sulfate, have become part of the standard of care to reduce the risk of neonatal brain injury, and other promising therapeutic strategies are being tested in clinical trials. The implementation of currently available evidence is crucial to optimize neonatal neuroprotection and to develop individualized diagnostic and therapeutic approaches addressing oxidative brain injury, with the final aim of improving the neurological outcome of this population.
Collapse
Affiliation(s)
- Silvia Martini
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Laura Castellini
- School of Medicine and Surgery, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Roberta Parladori
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Vittoria Paoletti
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Arianna Aceti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Luigi Corvaglia
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
10
|
Kobayashi K, Liu C, Jonas RA, Ishibashi N. The Current Status of Neuroprotection in Congenital Heart Disease. CHILDREN 2021; 8:children8121116. [PMID: 34943311 PMCID: PMC8700367 DOI: 10.3390/children8121116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022]
Abstract
Neurological deficits are a serious and common sequelae of congenital heart disease (CHD). While their underlying mechanisms have not been fully characterized, their manifestations are well-known and understood to persist through adulthood. Development of therapies to address or prevent these deficits are critical to attenuate future morbidity and improve quality of life. In this review, we aim to summarize the current status of neuroprotective therapy in CHD. Through an exploration of present research in the pre-operative, intra-operative, and post-operative phases of patient management, we will describe existing clinical and bench efforts as well as current endeavors underway within this research area.
Collapse
Affiliation(s)
- Kei Kobayashi
- Center for Neuroscience Research, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (K.K.); (C.L.); (R.A.J.)
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Christopher Liu
- Center for Neuroscience Research, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (K.K.); (C.L.); (R.A.J.)
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Richard A. Jonas
- Center for Neuroscience Research, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (K.K.); (C.L.); (R.A.J.)
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC 20010, USA
- School of Medicine and Health Science, George Washington University, Washington, DC 20052, USA
| | - Nobuyuki Ishibashi
- Center for Neuroscience Research, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (K.K.); (C.L.); (R.A.J.)
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC 20010, USA
- School of Medicine and Health Science, George Washington University, Washington, DC 20052, USA
- Correspondence:
| |
Collapse
|
11
|
Metallinou D, Lazarou E, Lykeridou A. Pharmacological and Non-Pharmacological Brain-Focused Clinical Practices for Premature Neonates at High Risk of Neuronal Injury. MÆDICA 2021; 16:281-290. [PMID: 34621352 DOI: 10.26574/maedica.2020.16.2.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective:Disruption of smooth intrauterine brain development is a significant consequence of premature birth that may lead to adverse neurological outcomes. Although noteworthy progress has been made in the management of prematurity, the rates of neonatal morbidity and neurodevelopmental disorders remain high, underlining the need to find clinical practices that particularly protect the central nervous system. Aim:To identify recent articles regarding pharmacological and non-pharmacological brain-focused clinical practices (BFCP) for premature neonates at high risk of neuronal injury. Material and methods:We did an extensive search of PubMed and Google Scholar for relevant research published between 2000 and 2020. Results:Nineteen full-length original research papers fulfilled the inclusion criteria and were selected for the purpose of the present review. Non-pharmacological BFCP intend to improve the neonate's experience in the NICU environment and can be applied by a multidisciplinary team, while pharmacological ones are related to novel molecules that aim to quell apoptosis and inflammation or promote neurogenesis. Conclusion:In the future, a combination of pharmacological and non-pharmacological BFCP might be considered as the most promising protection and/or treatment provided in clinical practice to premature neonates at high risk of neuronal injury.
Collapse
Affiliation(s)
- Dimitra Metallinou
- Department of Midwifery, Faculty of Health and Caring Sciences, University of West Attica, Greece
| | | | - Aikaterini Lykeridou
- Department of Midwifery, Faculty of Health and Caring Sciences, University of West Attica, Greece
| |
Collapse
|
12
|
Tetorou K, Sisa C, Iqbal A, Dhillon K, Hristova M. Current Therapies for Neonatal Hypoxic-Ischaemic and Infection-Sensitised Hypoxic-Ischaemic Brain Damage. Front Synaptic Neurosci 2021; 13:709301. [PMID: 34504417 PMCID: PMC8421799 DOI: 10.3389/fnsyn.2021.709301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal hypoxic-ischaemic brain damage is a leading cause of child mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The majority of neonatal hypoxic-ischaemic cases arise as a result of impaired cerebral perfusion to the foetus attributed to uterine, placental, or umbilical cord compromise prior to or during delivery. Bacterial infection is a factor contributing to the damage and is recorded in more than half of preterm births. Exposure to infection exacerbates neuronal hypoxic-ischaemic damage thus leading to a phenomenon called infection-sensitised hypoxic-ischaemic brain injury. Models of neonatal hypoxia-ischaemia (HI) have been developed in different animals. Both human and animal studies show that the developmental stage and the severity of the HI insult affect the selective regional vulnerability of the brain to damage, as well as the subsequent clinical manifestations. Therapeutic hypothermia (TH) is the only clinically approved treatment for neonatal HI. However, the number of HI infants needed to treat with TH for one to be saved from death or disability at age of 18-22 months, is approximately 6-7, which highlights the need for additional or alternative treatments to replace TH or increase its efficiency. In this review we discuss the mechanisms of HI injury to the immature brain and the new experimental treatments studied for neonatal HI and infection-sensitised neonatal HI.
Collapse
Affiliation(s)
| | | | | | | | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Maternal and Fetal Medicine, UCL Institute for Women’s Health, London, United Kingdom
| |
Collapse
|
13
|
McAdams RM, Berube MW. Emerging therapies and management for neonatal encephalopathy-controversies and current approaches. J Perinatol 2021; 41:661-674. [PMID: 33712717 DOI: 10.1038/s41372-021-01022-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 01/31/2023]
Abstract
Neonatal encephalopathy (NE) continues to have a major impact on newborn survival and neurodevelopmental outcomes worldwide. In high-income settings, therapeutic hypothermia is the only established standard treatment for neonates with moderate-to-severe NE, with compelling evidence that cooling reduces mortality and major neurodevelopmental impairment in survivors. Despite therapeutic hypothermia, a significant proportion of cooled infants continue to suffer long-term disability from brain injury. Innovative therapies offer the possibility of further improving neurodevelopmental outcomes by working synergistically with therapeutic hypothermia to decrease hypoxia-ischemia-induced excitotoxicity, prevent progression to secondary energy failure, and in some cases, promote neuroregeneration in the developing neonatal brain. This review discusses emerging NE therapies currently under investigation, offers insight into controversies surrounding various approaches to clinical care during therapeutic hypothermia, and identifies ongoing knowledge deficits that hinder attainment of optimal outcomes for neonates with NE.
Collapse
Affiliation(s)
- Ryan M McAdams
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Megan W Berube
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
14
|
Frajewicki A, Laštůvka Z, Borbélyová V, Khan S, Jandová K, Janišová K, Otáhal J, Mysliveček J, Riljak V. Perinatal hypoxic-ischemic damage: review of the current treatment possibilities. Physiol Res 2020; 69:S379-S401. [PMID: 33464921 DOI: 10.33549/physiolres.934595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy is a disorder with heterogeneous manifestation due to asphyxia during perinatal period. It affects approximately 3-12 children per 1000 live births and cause death of 1 million neonates worldwide per year. Besides, motor disabilities, seizures, impaired muscle tone and epilepsy are few of the consequences of hypoxic-ischemic encephalopathy. Despite an extensive research effort regarding various treatment strategies, therapeutic hypothermia with intensive care unit supportive treatment remains the only approved method for neonates who have suffered from moderate to severe hypoxic-ischemic encephalopathy. However, these protocols are only partially effective given that many infants still suffer from severe brain damage. Thus, further research to systematically test promising neuroprotective treatments in combination with hypothermia is essential. In this review, we discussed the pathophysiology of hypoxic-ischemic encephalopathy and delved into different promising treatment modalities, such as melatonin and erythropoietin. However, preclinical studies and clinical trials are still needed to further elucidate the mechanisms of action of these modalities.
Collapse
Affiliation(s)
- A Frajewicki
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pisani F, Fusco C, Nagarajan L, Spagnoli C. Acute symptomatic neonatal seizures, brain injury, and long-term outcome: The role of neuroprotective strategies. Expert Rev Neurother 2020; 21:189-203. [PMID: 33176104 DOI: 10.1080/14737175.2021.1848547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Neonatal seizures are frequent but underdiagnosed manifestations of acute brain dysfunction and an important contributor to unfavorable outcomes. Etiology and severity of brain injury are the single strongest outcome determinants. AREAS COVERED The authors will discuss the prognostic role of acute symptomatic seizures versus brain injury and the main neuroprotective and neurorestorative strategies for full-term and preterm infants. EXPERT OPINION Prolonged acute symptomatic seizures likely contribute to long-term outcomes by independently adding further brain injury to initial insults. Correct timing and dosing of therapeutic interventions, depending on etiology and gestational ages, need careful evaluation. Although promising strategies are under study, the only standard of care is whole-body therapeutic hypothermia in full-term newborns with hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Francesco Pisani
- Child Neuropsychiatric Unit, Medicine and Surgery Department, University of Parma , Parma, Italy
| | - Carlo Fusco
- Child Neurology Unit, Department of Paediatrics, Azienda USL-IRCCS Di Reggio Emilia , Reggio Emilia, Italy
| | - Lakshmi Nagarajan
- Department of Neurology, Perth Children's Hospital, University of Western Australia , Perth, Australia
| | - Carlotta Spagnoli
- Child Neurology Unit, Department of Paediatrics, Azienda USL-IRCCS Di Reggio Emilia , Reggio Emilia, Italy
| |
Collapse
|
16
|
Adjunctive Neuroprotective Therapies for Treatment of Hypoxic-Ischemic Encephalopathy (HIE). CURRENT PEDIATRICS REPORTS 2020. [DOI: 10.1007/s40124-020-00231-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Bruschettini M, Romantsik O, Moreira A, Ley D, Thébaud B. Stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants. Cochrane Database Syst Rev 2020; 8:CD013202. [PMID: 32813884 PMCID: PMC7438027 DOI: 10.1002/14651858.cd013202.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hypoxic-ischaemic encephalopathy (HIE) is a leading cause of mortality and long-term neurological sequelae, affecting thousands of children worldwide. Current therapies to treat HIE are limited to cooling. Stem cell-based therapies offer a potential therapeutic approach to repair or regenerate injured brain tissue. These preclinical findings have now culminated in ongoing human neonatal trials. OBJECTIVES To determine the efficacy and safety of stem cell-based interventions for the treatment of hypoxic-ischaemic encephalopathy (HIE) in newborn infants. SEARCH METHODS We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2020, Issue 5), MEDLINE via PubMed (1966 to 8 June 2020), Embase (1980 to 8 June 2020), and CINAHL (1982 to 8 June 2020). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. SELECTION CRITERIA Randomised controlled trials, quasi-randomised controlled trials and cluster trials comparing 1) stem cell-based interventions (any type) compared to control (placebo or no treatment); 2) use of mesenchymal stem/stromal cells (MSCs) of type (e.g. number of doses or passages) or source (e.g. autologous versus allogeneic, or bone marrow versus cord) versus MSCs of other type or source; 3) use of stem cell-based interventions other than MSCs of type (e.g. mononuclear cells, oligodendrocyte progenitor cells, neural stem cells, hematopoietic stem cells, and inducible pluripotent stem cells) or source (e.g. autologous versus allogeneic, or bone marrow versus cord) versus stem cell-based interventions other than MSCs of other type or source; or 4) MSCs versus stem cell-based interventions other than MSCs. DATA COLLECTION AND ANALYSIS For each of the included trials, two authors independently planned to extract data (e.g. number of participants, birth weight, gestational age, type and source of MSCs or other stem cell-based interventions) and assess the risk of bias (e.g. adequacy of randomisation, blinding, completeness of follow-up). The primary outcomes considered in this review are all-cause neonatal mortality, major neurodevelopmental disability, death or major neurodevelopmental disability assessed at 18 to 24 months of age. We planned to use the GRADE approach to assess the quality of evidence. MAIN RESULTS Our search strategy yielded 616 references. Two review authors independently assessed all references for inclusion. We did not find any completed studies for inclusion. Fifteen RCTs are currently registered and ongoing. We describe the three studies we excluded. AUTHORS' CONCLUSIONS There is currently no evidence from randomised trials that assesses the benefit or harms of stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants.
Collapse
Affiliation(s)
- Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Lund University, Skåne University Hospital, Lund, Sweden
| | - Olga Romantsik
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Alvaro Moreira
- Pediatrics, Division of Neonatology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - David Ley
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Bernard Thébaud
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
18
|
Kim SW, Oh JS, Park J, Jeong HH, Oh YM, Choi S, Choi KH. Neuroprotective effect of paricalcitol in a rat model of transient global cerebral ischemia. Int J Emerg Med 2020; 13:30. [PMID: 32522270 PMCID: PMC7288434 DOI: 10.1186/s12245-020-00289-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/26/2020] [Indexed: 12/04/2022] Open
Abstract
Background Paricalcitol is known to attenuate ischemic-reperfusion injury of various organs. However, it is not known whether paricalcitol prevents neuronal injury after global cerebral ischemia. The purpose of this study is to investigate the neuroprotective effect of paricalcitol in a rat model of transient global cerebral ischemia. Methods This is a prospective, randomized experimental study. Male Sprague-Dawley rats that survived 10 min of four-vessel occlusion were randomly assigned to two treatment groups: one group was treated with paricalcitol 1 μg/kg IP, and the other was given an equivalent volume of normal saline IP. Drugs were administered at 5 min, 1 day, 2 days, and 3 days after ischemia. Neurologic function was assessed at 2 h, 1 day, 2 days, 3 days, and 4 days after ischemia. We tested motor function 3 days after ischemia using the rotarod test. Also, we tested memory function 4 days after ischemia using the passive avoidance test. We assessed neuronal degeneration in the hippocampus of surviving rats 4 days after ischemia. Results Eight rats were allocated to each group. No significant differences were found between the groups in terms of survival rate, motor coordination, or memory function. The neurological function score 2-h post-ischemia was significantly higher in the paricalcitol group (p = 0.04). Neuronal degeneration was significantly less in the paricalcitol group compared with the control group (p = 0.01). Conclusions Paricalcitol significantly attenuated neuronal injury in the hippocampus. Although motor coordination, memory function, and survival rate were not significantly improved by paricalcitol treatment in this study, paricalcitol remains a potential neuroprotective drug after global cerebral ischemia.
Collapse
Affiliation(s)
- Sung Wook Kim
- Department of Emergency Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 1021 Tongil-Ro, Eunpyeong-gu, Seoul, 03312, Republic of Korea
| | - Joo Suk Oh
- Department of Emergency Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-Ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea.
| | - Jungtaek Park
- Department of Emergency Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-Ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea
| | - Hyun Ho Jeong
- Department of Emergency Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-Ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea
| | - Young Min Oh
- Department of Emergency Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-Ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea
| | - Semin Choi
- Department of Emergency Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-Ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea
| | - Kyoung Ho Choi
- Department of Emergency Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-Ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea
| |
Collapse
|
19
|
Martini S, Austin T, Aceti A, Faldella G, Corvaglia L. Free radicals and neonatal encephalopathy: mechanisms of injury, biomarkers, and antioxidant treatment perspectives. Pediatr Res 2020; 87:823-833. [PMID: 31655487 DOI: 10.1038/s41390-019-0639-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Neonatal encephalopathy (NE), most commonly a result of the disruption of cerebral oxygen delivery, is the leading cause of neurologic disability in term neonates. Given the key role of free radicals in brain injury development following hypoxia-ischemia-reperfusion, several oxidative biomarkers have been explored in preclinical and clinical models of NE. Among these, antioxidant enzyme activity, uric acid excretion, nitric oxide, malondialdehyde, and non-protein-bound iron have shown promising results as possible predictors of NE severity and outcome. Owing to high costs and technical complexity, however, their routine use in clinical practice is still limited. Several strategies aimed at reducing free radical production or upregulating physiological scavengers have been proposed for NE. Room-air resuscitation has proved to reduce oxidative stress following perinatal asphyxia and is now universally adopted. A number of medications endowed with antioxidant properties, such as melatonin, erythropoietin, allopurinol, or N-acetylcysteine, have also shown potential neuroprotective effects in perinatal asphyxia; nevertheless, further evidence is needed before these antioxidant approaches could be implemented as standard care.
Collapse
Affiliation(s)
- Silvia Martini
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Arianna Aceti
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giacomo Faldella
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luigi Corvaglia
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Abstract
Brain injury in the full-term and near-term neonates is a significant cause of mortality and long-term morbidity, resulting in injury patterns distinct from that seen in premature infants and older patients. Therapeutic hypothermia improves long-term outcomes for many of these infants, but there is a continued search for therapies to enhance the plasticity of the newborn brain, resulting in long-term repair. It is likely that a combination strategy utilizing both early and late interventions may have the most benefit, capitalizing on endogenous mechanisms triggered by hypoxia or ischemia. Optimizing care of these critically ill newborns in the acute setting is also vital for improving both short- and long-term outcomes.
Collapse
|
21
|
Abstract
Perinatal brain injury is a major cause of neurological disability in both premature and term infants. In this review, we summarize the evidence behind some established neuroprotective practices such as administration of antenatal steroids, intrapartum magnesium for preterm delivery, and therapeutic hypothermia. In addition, we examine emerging practices such as delayed cord clamping, postnatal magnesium administration, recombinant erythropoietin, and non-steroidal anti-inflammatory agents and finally inform the reader about novel interventions, some of which are currently in trials, such as xenon, melatonin, topiramate, allopurinol, creatine, and autologous cord cell therapy.
Collapse
Affiliation(s)
- Samata Singhi
- Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland, 21205, USA
- Department of Pediatric Neurology, Johns Hopkins Medicine, Baltimore, MD, 21287, USA
| | - Michael Johnston
- Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland, 21205, USA
| |
Collapse
|
22
|
Ji P, B Nonnecke E, Doan N, Lönnerdal B, Tan B. Excess Iron Enhances Purine Catabolism Through Activation of Xanthine Oxidase and Impairs Myelination in the Hippocampus of Nursing Piglets. J Nutr 2019; 149:1911-1919. [PMID: 31373370 DOI: 10.1093/jn/nxz166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Few studies have addressed the risk of nutritional iron overexposure in infancy. We previously found that excess dietary iron in nursing piglets resulted in iron overload in the liver and hippocampus and diminished socialization with novel conspecifics in a test for social novelty preference. OBJECTIVES This experiment aimed to identify metabolites and metabolic pathways affected by iron overload in the liver and hippocampus of nursing piglets. METHODS Liver and hippocampal tissues collected from 22-d-old piglets (Hampshire × Yorkshire crossbreed; 5.28 ± 0.53 kg body weight; 50% male) that received orally 0 (NI group) or 50 mg iron/(d · kg body weight) (HI group) from postnatal day (PD) 2 to PD21 were analyzed for mRNA and protein expression and enzyme activity of xanthine oxidase (XO). Untargeted metabolomics was performed using GC-MS. Expression of myelin basic protein (MBP) in the hippocampus was determined using western blot. RESULTS There were 108 and 126 metabolites identified in the hippocampus and liver, respectively. Compared with NI, HI altered 15 metabolites (P < 0.05, q < 0.2) in the hippocampus, including a reduction in myo-inositol (0.86-fold) and N-acetylaspartic acid (0.84-fold), 2 metabolites important for neuronal function and myelination. Seven metabolites involved in purine and pyrimidine metabolism (e.g., hypoxanthine, xanthine, and β-alanine) were coordinately changed in the hippocampus (P < 0.05, q < 0.2), suggesting that iron excess enhanced purine catabolism. The mRNA expression (2.3-fold) (P < 0.05) and activity of XO, a rate-limiting enzyme in purine degradation, was increased. Excess iron increased hippocampal lipid peroxidation by 74% (P < 0.05) and decreased MBP by 44% (P = 0.053). The hepatic metabolome was unaffected. CONCLUSIONS In nursing piglets, excess iron enhances hippocampal purine degradation through activation of XO, which may induce oxidative stress and alter energy metabolism in the developing brain.
Collapse
Affiliation(s)
- Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Eric B Nonnecke
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Nicole Doan
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
23
|
Solevåg AL, Schmölzer GM, Cheung PY. Novel interventions to reduce oxidative-stress related brain injury in neonatal asphyxia. Free Radic Biol Med 2019; 142:113-122. [PMID: 31039399 DOI: 10.1016/j.freeradbiomed.2019.04.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 01/10/2023]
Abstract
Perinatal asphyxia-induced brain injury may present as hypoxic-ischemic encephalopathy in the neonatal period, and disability including cerebral palsy in the long term. The brain injury is secondary to both the hypoxic-ischemic event and the reoxygenation-reperfusion following resuscitation. Early events in the cascade of brain injury can be classified as either inflammation or oxidative stress through the generation of free radicals. The objective of this paper is to present efforts that have been made to limit the oxidative stress associated with hypoxic-ischemic encephalopathy. In the acute phase of ischemia/hypoxia and reperfusion/reoxygenation, the outcomes of asphyxiated infants can be improved by optimizing the initial delivery room stabilization. Interventions include limiting oxygen exposure, and shortening the time to return of spontaneous circulation through improved methods for supporting hemodynamics and ventilation. Allopurinol, melatonin, noble gases such as xenon and argon, and magnesium administration also target the acute injury phase. Therapeutic hypothermia, N-acetylcysteine2-iminobiotin, remote ischemic postconditioning, cannabinoids and doxycycline target the subacute phase. Erythropoietin, mesenchymal stem cells, topiramate and memantine could potentially limit injury in the repair phase after asphyxia. To limit the injurious biochemical processes during the different stages of brain injury, determination of the stage of injury in any particular infant remains essential. Currently, therapeutic hypothermia is the only established treatment in the subacute phase of asphyxia-induced brain injury. The effects and side effects of oxidative stress reducing/limiting medications may however be difficult to predict in infants during therapeutic hypothermia. Future neuroprotection in asphyxiated infants may indeed include a combination of therapies. Challenges include timing, dosing and administration route for each neuroprotectant.
Collapse
Affiliation(s)
- A L Solevåg
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway
| | - G M Schmölzer
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - P-Y Cheung
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
24
|
Albrecht M, Zitta K, Groenendaal F, van Bel F, Peeters-Scholte C. Neuroprotective strategies following perinatal hypoxia-ischemia: Taking aim at NOS. Free Radic Biol Med 2019; 142:123-131. [PMID: 30818057 DOI: 10.1016/j.freeradbiomed.2019.02.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/07/2019] [Accepted: 02/19/2019] [Indexed: 12/13/2022]
Abstract
Perinatal asphyxia is characterized by oxygen deprivation and lack of perfusion in the perinatal period, leading to hypoxic-ischemic encephalopathy and sequelae such as cerebral palsy, mental retardation, cerebral visual impairment, epilepsy and learning disabilities. On cellular level PA is associated with a decrease in oxygen and glucose leading to ATP depletion and a compromised mitochondrial function. Upon reoxygenation and reperfusion, the renewed availability of oxygen gives rise to not only restoration of cell function, but also to the activation of multiple detrimental biochemical pathways, leading to secondary energy failure and ultimately, cell death. The formation of reactive oxygen species, nitric oxide and peroxynitrite plays a central role in the development of subsequent neurological damage. In this review we give insight into the pathophysiology of perinatal asphyxia, discuss its clinical relevance and summarize current neuroprotective strategies related to therapeutic hypothermia, ischemic postconditioning and pharmacological interventions. The review will also focus on the possible neuroprotective actions and molecular mechanisms of the selective neuronal and inducible nitric oxide synthase inhibitor 2-iminobiotin that may represent a novel therapeutic agent for the treatment of hypoxic-ischemic encephalopathy, both in combination with therapeutic hypothermia in middle- and high-income countries, as well as stand-alone treatment in low-income countries.
Collapse
Affiliation(s)
- Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Frank van Bel
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cacha Peeters-Scholte
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands; Neurophyxia BV, 's Hertogenbosch, the Netherlands.
| |
Collapse
|
25
|
Maiwald CA, Annink KV, Rüdiger M, Benders MJNL, van Bel F, Allegaert K, Naulaers G, Bassler D, Klebermaß-Schrehof K, Vento M, Guimarães H, Stiris T, Cattarossi L, Metsäranta M, Vanhatalo S, Mazela J, Metsvaht T, Jacobs Y, Franz AR. Effect of allopurinol in addition to hypothermia treatment in neonates for hypoxic-ischemic brain injury on neurocognitive outcome (ALBINO): study protocol of a blinded randomized placebo-controlled parallel group multicenter trial for superiority (phase III). BMC Pediatr 2019; 19:210. [PMID: 31248390 PMCID: PMC6595623 DOI: 10.1186/s12887-019-1566-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
Background Perinatal asphyxia and resulting hypoxic-ischemic encephalopathy is a major cause of death and long-term disability in term born neonates. Up to 20,000 infants each year are affected by HIE in Europe and even more in regions with lower level of perinatal care. The only established therapy to improve outcome in these infants is therapeutic hypothermia. Allopurinol is a xanthine oxidase inhibitor that reduces the production of oxygen radicals as superoxide, which contributes to secondary energy failure and apoptosis in neurons and glial cells after reperfusion of hypoxic brain tissue and may further improve outcome if administered in addition to therapeutic hypothermia. Methods This study on the effects of ALlopurinol in addition to hypothermia treatment for hypoxic-ischemic Brain Injury on Neurocognitive Outcome (ALBINO), is a European double-blinded randomized placebo-controlled parallel group multicenter trial (Phase III) to evaluate the effect of postnatal allopurinol administered in addition to standard of care (including therapeutic hypothermia if indicated) on the incidence of death and severe neurodevelopmental impairment at 24 months of age in newborns with perinatal hypoxic-ischemic insult and signs of potentially evolving encephalopathy. Allopurinol or placebo will be given in addition to therapeutic hypothermia (where indicated) to infants with a gestational age ≥ 36 weeks and a birth weight ≥ 2500 g, with severe perinatal asphyxia and potentially evolving encephalopathy. The primary endpoint of this study will be death or severe neurodevelopmental impairment versus survival without severe neurodevelopmental impairment at the age of two years. Effects on brain injury by magnetic resonance imaging and cerebral ultrasound, electric brain activity, concentrations of peroxidation products and S100B, will also be studied along with effects on heart function and pharmacokinetics of allopurinol after iv-infusion. Discussion This trial will provide data to assess the efficacy and safety of early postnatal allopurinol in term infants with evolving hypoxic-ischemic encephalopathy. If proven efficacious and safe, allopurinol could become part of a neuroprotective pharmacological treatment strategy in addition to therapeutic hypothermia in children with perinatal asphyxia. Trial registration NCT03162653, www.ClinicalTrials.gov, May 22, 2017.
Collapse
Affiliation(s)
- Christian A Maiwald
- University Hospital Tuebingen, Calwerstr. 7, 72076, Tuebingen, Germany.,Center for Pediatric Clinical Studies (CPCS), University Hospital Tuebingen, Tuebingen, Germany
| | - Kim V Annink
- Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Mario Rüdiger
- Universitätsklinikum C. G. Carus - Medizinische Fakultät der TU Dresden, Dresden, Germany
| | | | - Frank van Bel
- Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | | | | | - Dirk Bassler
- UniversitaetsSpital Zuerich, Zuerich, Switzerland
| | | | - Maximo Vento
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Tom Stiris
- Oslo Universitetssykehus HF, Oslo, Norway
| | - Luigi Cattarossi
- Azienda sanitaria universitaria integrata di Udine, Udine, Italy
| | | | | | - Jan Mazela
- Poznan University of Medical Sciences - Department of Neonatology, Poznan, Poland
| | | | | | - Axel R Franz
- University Hospital Tuebingen, Calwerstr. 7, 72076, Tuebingen, Germany. .,Center for Pediatric Clinical Studies (CPCS), University Hospital Tuebingen, Tuebingen, Germany.
| | | |
Collapse
|
26
|
Abstract
Neonatal brain injury (NBI) remains a major contributor to neonatal mortality and long-term neurodevelopmental morbidity. Although therapeutic hypothermia is the only proven treatment to minimize brain injury caused by neonatal encephalopathy in term neonates, it provides incomplete neuroprotection. There are no specific drugs yet proven to prevent NBI in preterm neonates. This review discusses the scientific and emerging clinical trial data for several neuroprotective drugs in development, examining potential efficacy and safety concerns. Drugs with the highest likelihood of success and closest to clinical application include erythropoietin for term and preterm neonates and antenatal magnesium for preterm neonates.
Collapse
Affiliation(s)
- Melanie A McNally
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Janet S Soul
- Fetal-Neonatal Neurology Program, Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Wu Y, Song J, Wang Y, Wang X, Culmsee C, Zhu C. The Potential Role of Ferroptosis in Neonatal Brain Injury. Front Neurosci 2019; 13:115. [PMID: 30837832 PMCID: PMC6382670 DOI: 10.3389/fnins.2019.00115] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/30/2019] [Indexed: 01/08/2023] Open
Abstract
Ferroptosis is an iron-dependent form of cell death that is characterized by early lipid peroxidation and different from other forms of regulated cell death in terms of its genetic components, specific morphological features, and biochemical mechanisms. Different initiation pathways of ferroptosis have been reported, including inhibition of system Xc -, inactivation of glutathione-dependent peroxidase 4, and reduced glutathione levels, all of which ultimately promote the production of reactive oxygen species, particularly through enhanced lipid peroxidation. Although ferroptosis was first described in cancer cells, emerging evidence now links mechanisms of ferroptosis to many different diseases, including cerebral ischemia and brain hemorrhage. For example, neonatal brain injury is an important cause of developmental impairment and of permanent neurological deficits, and several types of cell death, including iron-dependent pathways, have been detected in the process of neonatal brain damage. Iron chelators and erythropoietin have both shown neuroprotective effects against neonatal brain injury. Here, we have summarized the potential relation between ferroptosis and neonatal brain injury, and according therapeutic intervention strategies.
Collapse
Affiliation(s)
- Yanan Wu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yafeng Wang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carsten Culmsee
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Kasdorf E, Perlman JM. General Supportive Management of the Term Infant With Neonatal Encephalopathy Following Intrapartum Hypoxia-Ischemia. Neurology 2019. [DOI: 10.1016/b978-0-323-54392-7.00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
29
|
Bruschettini M, Romantsik O, Moreira A, Ley D, Thébaud B. Stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants. Hippokratia 2018. [DOI: 10.1002/14651858.cd013202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Matteo Bruschettini
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
- Skåne University Hospital; Cochrane Sweden; Wigerthuset, Remissgatan 4, first floor room 11-221 Lund Sweden 22185
| | - Olga Romantsik
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| | - Alvaro Moreira
- University of Texas Health Science Center at San Antonio; Pediatrics, Division of Neonatology; San Antonio Texas USA
| | - David Ley
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| | - Bernard Thébaud
- Children's Hospital of Eastern Ontario; Department of Pediatrics; Ottawa ON Canada
- Ottawa Hospital Research Institute, Sprott Center for Stem Cell Research; Ottawa Canada
- University of Ottawa; Department of Cellular and Molecular Medicine; Ottawa Canada
| |
Collapse
|
30
|
|
31
|
Klumper J, Kaandorp JJ, Schuit E, Groenendaal F, Koopman-Esseboom C, Mulder EJH, Van Bel F, Benders MJNL, Mol BWJ, van Elburg RM, Bos AF, Derks JB. Behavioral and neurodevelopmental outcome of children after maternal allopurinol administration during suspected fetal hypoxia: 5-year follow up of the ALLO-trial. PLoS One 2018; 13:e0201063. [PMID: 30138355 PMCID: PMC6107129 DOI: 10.1371/journal.pone.0201063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To evaluate the long-term neurodevelopmental and behavioral outcome of antenatal allopurinol treatment during suspected fetal hypoxia. STUDY DESIGN We studied children born from women who participated in a randomized double-blind placebo controlled multicenter study (ALLO-trial). Labouring women in whom the fetus was suspected to have fetal hypoxia were randomly allocated to receive allopurinol or placebo. At 5 years of age, the children were assessed with 2 parent reported questionnaires, the Ages and Stages Questionnaire (ASQ) and the Child Behavior Checklist (CBCL). A child was marked abnormal for ASQ if it scored below 2 standard deviation under the normative mean of a reference population in at least one domain. For CBCL, a score above the cut-off value (95th percentile for narrowband scale, 85th percentile for broadband scale) in at least one scale was marked as abnormal. RESULTS We obtained data from 138 out of the original 222 mildly asphyxiated children included in the ALLO-trial (response rate 62%, allopurinol n = 73, placebo n = 65). At 5 years of age, the number of children that scored abnormal on the ASQ were 11 (15.1%) in the allopurinol group versus 11 (9.2%) in the placebo group (relative risk (RR) 1.64, 95% confidence interval (CI): 0.64 to 4.17, p = 0.30). On CBCL 21 children (30.4%) scored abnormal in de allopurinol group versus 12 children (20.0%) in the placebo group (RR 1.52, 95% CI: 0.82 to 2.83, p = 0.18). CONCLUSION We found no proof that allopurinol administered to labouring women with suspected fetal hypoxia improved long-term developmental and behavioral outcome. These findings are limited due to the fact that the study was potentially underpowered. TRIAL REGISTRATION NCT00189007 Dutch Trial Register NTR1383.
Collapse
Affiliation(s)
- Job Klumper
- Department of Perinatology, University Medical Center, Utrecht, The Netherlands
| | - Joepe J Kaandorp
- Department of Perinatology, University Medical Center, Utrecht, The Netherlands
| | - Ewoud Schuit
- Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, The Netherlands
| | - Floris Groenendaal
- Department of Perinatology, University Medical Center, Utrecht, The Netherlands
| | | | - Eduard J H Mulder
- Department of Perinatology, University Medical Center, Utrecht, The Netherlands
| | - Frank Van Bel
- Department of Perinatology, University Medical Center, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Perinatology, University Medical Center, Utrecht, The Netherlands
| | - Ben W J Mol
- Department of Perinatology, Academic Medical Center, Amsterdam, The Netherlands
| | - Ruurd M van Elburg
- Department of Perinatology, Academic Medical Center, Amsterdam, The Netherlands
| | - Arend F Bos
- Department of Perinatology, University Medical Center, Groningen, The Netherlands
| | - Jan B Derks
- Department of Perinatology, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
32
|
Simsek M, Opperman RCM, Mulder CJJ, Lambalk CB, de Boer NKH. The teratogenicity of allopurinol: A comprehensive review of animal and human studies. Reprod Toxicol 2018; 81:180-187. [PMID: 30125681 DOI: 10.1016/j.reprotox.2018.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 02/09/2023]
Abstract
Allopurinol is widely used in the management of multiple disorders including gout, kidney stones and inflammatory bowel disease. Despite of long-term experience, its safety in pregnancy has been debated due to reports on possible teratogenicity. We aimed to review the literature on the safety of allopurinol in pregnancy and offspring. In animals, allopurinol induced species-specific reproductive toxicity. In humans, a total of 53 allopurinol exposed infants were reported in the literature. Major congenital malformations were reported in two cases with a comparable pattern of multiple abnormalities. Five other infants had minor birth defects. In conclusion, the association between allopurinol and teratogenicity appears to be weak and limited to two reports with uncertain causality. However, the available data are insufficient to make a certain judgement, and as allopurinol treatment evolves, report and prospective follow-up of all exposed infants (i.e. deviant and normal cases) should be encouraged.
Collapse
Affiliation(s)
- Melek Simsek
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Gastroenterology and Hepatology, AG&M Research Institute, Amsterdam, The Netherlands.
| | - Roza C M Opperman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Gastroenterology and Hepatology, AG&M Research Institute, Amsterdam, The Netherlands
| | - Chris J J Mulder
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Gastroenterology and Hepatology, AG&M Research Institute, Amsterdam, The Netherlands
| | - Cornelis B Lambalk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Reproductive Medicine, Obstetrics and Gynecology, Amsterdam, The Netherlands
| | - Nanne K H de Boer
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Gastroenterology and Hepatology, AG&M Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Nair J, Kumar VHS. Current and Emerging Therapies in the Management of Hypoxic Ischemic Encephalopathy in Neonates. CHILDREN (BASEL, SWITZERLAND) 2018; 5:E99. [PMID: 30029531 PMCID: PMC6069156 DOI: 10.3390/children5070099] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 01/01/2023]
Abstract
Neonatal hypoxic ischemic encephalopathy (HIE) presents a significant clinical burden with its high mortality and morbidity rates globally. Therapeutic hypothermia (TH) is now standard of care for infants with moderate to severe HIE, but has not definitively changed outcomes in severe HIE. In this review, we discuss newer promising markers that may help the clinician identify severity of HIE. Therapies that are beneficial and agents that hold promise for neuroprotection are described, both for use either alone or as adjuncts to TH. These include endogenous pathway modifiers such as erythropoietin and analogues, melatonin, and remote ischemic post conditioning. Stem cells have therapeutic potential in this condition, as in many other neonatal conditions. Of the agents listed, only erythropoietin and analogues are currently being evaluated in large randomized controlled trials (RCTs). Exogenous therapies such as argon and xenon, allopurinol, monosialogangliosides, and magnesium sulfate continue to be investigated. The recognition of tertiary mechanisms of brain damage has opened up new research into therapies not only to attenuate brain damage but also to promote cell repair and regeneration in a developmentally disorganized brain long after the perinatal insult. These alternative modalities may be especially important in mild HIE and in areas of the world where there is limited access to expensive hypothermia equipment and services.
Collapse
Affiliation(s)
- Jayasree Nair
- Division of Neonatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA.
| | - Vasantha H S Kumar
- Division of Neonatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
34
|
Stegeman R, Lamur KD, van den Hoogen A, Breur JMPJ, Groenendaal F, Jansen NJG, Benders MJNL. Neuroprotective Drugs in Infants With Severe Congenital Heart Disease: A Systematic Review. Front Neurol 2018; 9:521. [PMID: 30018590 PMCID: PMC6037764 DOI: 10.3389/fneur.2018.00521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Perinatal and perioperative brain injury is a fundamental problem in infants with severe congenital heart disease undergoing neonatal cardiac surgery with cardiopulmonary bypass. An impaired neuromotor and neurocognitive development is encountered and associated with a reduction in quality of life. New neuroprotective drugs during surgery are described to reduce brain injury and improve neurodevelopmental outcome. Therefore, our aim was to provide a systematic review and best-evidence synthesis on the effects of neuroprotective drugs on brain injury and neurodevelopmental outcome in congenital heart disease infants requiring cardiac surgery with cardiopulmonary bypass. Methods: A systematic search was performed in PubMed, Embase and the Cochrane Library (PRISMA statement). Search terms were “infants,” “congenital heart disease,” “cardiac surgery,” “cardiopulmonary bypass,” and “neuroprotective drug.” Data describing the effects on brain injury and neurodevelopmental outcome were extracted. Study quality was assessed with the Cochrane Risk of Bias Tool. Two reviewers independently screened sources, extracted data and scored bias. Disagreements were resolved by involving a third researcher. Results: The search identified 293 studies of which 6 were included. In total 527 patients with various congenital heart diseases participated with an average of 88 infants (13–318) per study. Allopurinol, sodium nitroprusside, erythropoietin, ketamine, dextromethorphan and phentolamine were administered around cardiac surgery with cardiopulmonary bypass. Allopurinol showed less seizures, coma, death and cardiac events in hypoplastic left heart syndrome (HLHS) infants (OR: 0.44; 95%-CI:0.21–0.91). Sodium nitroprusside resulted in lower post cardiopulmonary bypass levels of S100ß in infants with transposition of the great arteries after 24 (p < 0.01) and 48 (p = 0.04) h of treatment. Erytropoietin, ketamine and dextromethorphan showed no neuroprotective effects. Phentolamine led to higher S100ß-levels and cerebrovascular resistance after rewarming and at the end of surgery (both p < 0.01). Risk of bias varied between studies, including low (sodium nitroprusside, phentolamine), moderate (ketamine, dextromethorphan), and high (erytropoietin, allopurinol) quality. Conclusions: Allopurinol seems promising for future trials in congenital heart disease infants to reduce brain injury given the early neuroprotective effects in hypoplastic left heart syndrome infants. Larger well-designed trials are needed to assess the neuroprotective effects of sodium nitroprusside, erytropoietin, ketamine and dextromethorphan. Future neuroprotective studies in congenital heart disease infants should not only focus on the perioperative period, however also on the perinatal period, since significant brain injury already exists before surgery.
Collapse
Affiliation(s)
- Raymond Stegeman
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Wilhelmina Children's Hospital, Utrecht, Netherlands.,Department of Pediatric Cardiology, University Medical Center Utrecht, Utrecht University, Wilhelmina Children's Hospital, Utrecht, Netherlands.,Department of Pediatric Intensive Care, University Medical Center Utrecht, Utrecht University, Wilhelmina Children's Hospital, Utrecht, Netherlands
| | - Kaya D Lamur
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Wilhelmina Children's Hospital, Utrecht, Netherlands.,Department of Pediatric Cardiology, University Medical Center Utrecht, Utrecht University, Wilhelmina Children's Hospital, Utrecht, Netherlands.,Department of Pediatric Intensive Care, University Medical Center Utrecht, Utrecht University, Wilhelmina Children's Hospital, Utrecht, Netherlands
| | - Agnes van den Hoogen
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Wilhelmina Children's Hospital, Utrecht, Netherlands
| | - Johannes M P J Breur
- Department of Pediatric Cardiology, University Medical Center Utrecht, Utrecht University, Wilhelmina Children's Hospital, Utrecht, Netherlands
| | - Floris Groenendaal
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Wilhelmina Children's Hospital, Utrecht, Netherlands
| | - Nicolaas J G Jansen
- Department of Pediatric Intensive Care, University Medical Center Utrecht, Utrecht University, Wilhelmina Children's Hospital, Utrecht, Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Wilhelmina Children's Hospital, Utrecht, Netherlands
| |
Collapse
|
35
|
Nuñez A, Benavente I, Blanco D, Boix H, Cabañas F, Chaffanel M, Fernández-Colomer B, Fernández-Lorenzo JR, Loureiro B, Moral MT, Pavón A, Tofé I, Valverde E, Vento M. Oxidative stress in perinatal asphyxia and hypoxic-ischaemic encephalopathy. An Pediatr (Barc) 2018. [DOI: 10.1016/j.anpede.2017.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
36
|
Martinello KA, Shepherd E, Middleton P, Crowther CA. Allopurinol for women in pregnancy for neuroprotection of the fetus. Cochrane Database Syst Rev 2017. [DOI: 10.1002/14651858.cd012881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kathryn A Martinello
- The University of Adelaide, Women's and Children's Hospital; Department of Neonatal and Perinatal Medicine; 72 King William Road Adelaide South Australia Australia 5006
- Institute for Women's Health, University College London; Department of Neonatology; London UK
| | - Emily Shepherd
- The University of Adelaide; ARCH: Australian Research Centre for Health of Women and Babies, Robinson Research Institute, Discipline of Obstetrics and Gynaecology; Adelaide South Australia Australia 5006
| | - Philippa Middleton
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research Institute; Women's and Children's Hospital 72 King William Road Adelaide South Australia Australia 5006
| | - Caroline A Crowther
- The University of Adelaide; ARCH: Australian Research Centre for Health of Women and Babies, Robinson Research Institute, Discipline of Obstetrics and Gynaecology; Adelaide South Australia Australia 5006
- The University of Auckland; Liggins Institute; Private Bag 92019 85 Park Road Auckland New Zealand
| |
Collapse
|
37
|
Rodríguez-Fanjul J, Durán Fernández-Feijóo C, Lopez-Abad M, Lopez Ramos MG, Balada Caballé R, Alcántara-Horillo S, Camprubí Camprubí M. Neuroprotection with hypothermia and allopurinol in an animal model of hypoxic-ischemic injury: Is it a gender question? PLoS One 2017; 12:e0184643. [PMID: 28931035 PMCID: PMC5606927 DOI: 10.1371/journal.pone.0184643] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/28/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is one of the most important causes of neonatal brain injury. Therapeutic hypothermia (TH) is the standard treatment for term newborns after perinatal hypoxic ischemic injury (HI). Despite this, TH does not provide complete neuroprotection. Allopurinol seems to be a good neuroprotector in several animal studies, but it has never been tested in combination with hypothermia. Clinical findings show that male infants with (HI) fare more poorly than matched females in cognitive outcomes. However, there are few studies about neuroprotection taking gender into account in the results. The aim of the present study was to evaluate the potential additive neuroprotective effect of allopurinol when administrated in association with TH in a rodent model of moderate HI. Gender differences in neuroprotection were also evaluated. METHODS P10 male and female rat pups were subjected to HI (Vannucci model) and randomized into five groups: sham intervention (Control), no treatment (HI), hypothermia (HIH), allopurinol (HIA), and dual therapy (hypothermia and allopurinol) (HIHA). To evaluate a treatment's neuroprotective efficiency, 24 hours after the HI event caspase3 activation was measured. Damaged area and hippocampal volume were also measured 72 hours after the HI event. Negative geotaxis test was performed to evaluate early neurobehavioral reflexes. Learning and spatial memory were assessed via Morris Water Maze (MWM) test at 25 days of life. RESULTS Damaged area and hippocampal volume were different among treatment groups (p = 0.001). The largest tissue lesion was observed in the HI group, followed by HIA. There were no differences between control, HIH, and HIHA. When learning process was analyzed, no differences were found. Females from the HIA group had similar results to the HIH and HIHA groups. Cleaved caspase 3 expression was increased in both HI and HIA. Despite this, in females cleaved caspase-3 was only differently increased in the HI group. All treated animals present an improvement in short-term (Negative geotaxis) and long-term (WMT) functional tests. Despite this, treated females present better long-term outcome. In short-term outcome no sex differences were observed. CONCLUSIONS Our results suggest that dual therapy confers great neuroprotection after an HI event. There were functional, histological, and molecular improvements in all treated groups. These differences were more important in females than in males. No statistically significant differences were found between HIHA and HIH; both of them present a great improvement. Our results support the idea of different regulation mechanisms and pathways of cell death, depending on gender.
Collapse
Affiliation(s)
| | | | - Míriam Lopez-Abad
- Department of Neonatology, BCNatal, Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
| | | | - Rafael Balada Caballé
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Biomedical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | - Soledad Alcántara-Horillo
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Biomedical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
38
|
Nuñez A, Benavente I, Blanco D, Boix H, Cabañas F, Chaffanel M, Fernández-Colomer B, Fernández-Lorenzo JR, Loureiro B, Moral MT, Pavón A, Tofé I, Valverde E, Vento M. [Oxidative stress in perinatal asphyxia and hypoxic-ischaemic encephalopathy]. An Pediatr (Barc) 2017. [PMID: 28648366 DOI: 10.1016/j.anpedi.2017.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Birth asphyxia is one of the principal causes of early neonatal death. In survivors it may evolve to hypoxic-ischaemic encephalopathy and major long-term neurological morbidity. Prolonged and intense asphyxia will lead to energy exhaustion in tissues exclusively dependent on aerobic metabolism, such as the central nervous system. Energy deficit leads to ATP-dependent pumps blockage, with the subsequent loss of neuronal transmembrane potential. The most sensitive areas of the brain will die due to necrosis. In more resistant areas, neuronal hyper-excitability, massive entrance of ionic calcium, activation of NO-synthase, free radical generation, and alteration in mitochondrial metabolism will lead to a secondary energy failure and programmed neuronal death by means of the activation of the caspase pathways. A third phase has recently been described that includes persistent inflammation and epigenetic changes that would lead to a blockage of oligodendrocyte maturation, alteration of neurogenesis, axonal maturation, and synaptogenesis. In this scenario, oxidative stress plays a critical role causing direct damage to the central nervous system and activating metabolic cascades leading to apoptosis and inflammation. Moderate whole body hypothermia to preserve energy stores and to reduce the formation of oxygen reactive species attenuates the mechanisms that lead to the amplification of cerebral damage upon resuscitation. The combination of hypothermia with coadjuvant therapies may contribute to improve the prognosis.
Collapse
Affiliation(s)
- Antonio Nuñez
- Hospital Universitario y Politécnico La Fe, Valencia, España
| | | | | | - Héctor Boix
- Hospital Universitario Vall d'Hebron, Barcelona, España
| | - Fernando Cabañas
- Hospital Universitario Quirónsalud Madrid, Pozuelo de Alarcón, Madrid, España
| | | | | | | | - Begoña Loureiro
- Hospital Universitario de Cruces, Barakaldo, Vizcaya, España
| | | | - Antonio Pavón
- Hospital Universitario Virgen del Rocío, Sevilla, España
| | - Inés Tofé
- Hospital Universitario Reina Sofía, Córdoba, España
| | | | - Máximo Vento
- Hospital Universitario y Politécnico La Fe, Valencia, España.
| |
Collapse
|
39
|
Aghazadeh-Attari J, Sufian N, Fink-Gremmels J, Malekinejad H. Allopurinol attenuated the chemically-induced hypoxia (hypoxia-reoxygenation) injuries via down-regulation of the transcription factor HIF-1α in neuroblastoma cells. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.01.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
40
|
Arteaga O, Álvarez A, Revuelta M, Santaolalla F, Urtasun A, Hilario E. Role of Antioxidants in Neonatal Hypoxic-Ischemic Brain Injury: New Therapeutic Approaches. Int J Mol Sci 2017; 18:E265. [PMID: 28134843 PMCID: PMC5343801 DOI: 10.3390/ijms18020265] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/14/2017] [Accepted: 01/19/2017] [Indexed: 01/08/2023] Open
Abstract
Hypoxic-ischemic brain damage is an alarming health and economic problem in spite of the advances in neonatal care. It can cause mortality or detrimental neurological disorders such as cerebral palsy, motor impairment and cognitive deficits in neonates. When hypoxia-ischemia occurs, a multi-faceted cascade of events starts out, which can eventually cause cell death. Lower levels of oxygen due to reduced blood supply increase the production of reactive oxygen species, which leads to oxidative stress, a higher concentration of free cytosolic calcium and impaired mitochondrial function, triggering the activation of apoptotic pathways, DNA fragmentation and cell death. The high incidence of this type of lesion in newborns can be partly attributed to the fact that the developing brain is particularly vulnerable to oxidative stress. Since antioxidants can safely interact with free radicals and terminate that chain reaction before vital molecules are damaged, exogenous antioxidant therapy may have the potential to diminish cellular damage caused by hypoxia-ischemia. In this review, we focus on the neuroprotective effects of antioxidant treatments against perinatal hypoxic-ischemic brain injury, in the light of the most recent advances.
Collapse
Affiliation(s)
- Olatz Arteaga
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Antonia Álvarez
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Miren Revuelta
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Francisco Santaolalla
- Department of Otorhinolaryngology, Basurto University Hospital, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Andoni Urtasun
- Department of Neuroscience, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
- Neurogenomiks Laboratory, Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 48170 Zamudio, Spain.
| | - Enrique Hilario
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| |
Collapse
|
41
|
Yıldız EP, Ekici B, Tatlı B. Neonatal hypoxic ischemic encephalopathy: an update on disease pathogenesis and treatment. Expert Rev Neurother 2016; 17:449-459. [PMID: 27830959 DOI: 10.1080/14737175.2017.1259567] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Hypoxic ischemic encephalopathy (HIE) is the most important reason for morbidity and mortality in term-born infants. Understanding pathophysiology of the brain damage is essential for the early detection of patients with high risk for HIE and development of strategies for their treatments. Areas covered: This review discusses pathophysiology of the neonatal HIE and its treatment options, including hypothermia, melatonin, allopurinol, topiramate, erythropoietin, N-acetylcyctein, magnesium sulphate and xenon. Expert commentary: Several clinical studies have been performed in order to decrease the risk of brain injury due to difficulties in the early diagnosis and treatment, and to develop strategies for better long-term outcomes. Although currently standard treatment methods include therapeutic hypothermia for neonates with moderate to severe HIE, new supportive options are needed to enhance neuroprotective effects of the hypothermia, which should aim to reduce production of the free radicals and to have anti-inflammatory and anti-apoptotic actions.
Collapse
Affiliation(s)
| | - Barış Ekici
- b Department of Pediatric Neurology , Liv Hospital , Istanbul , Turkey
| | - Burak Tatlı
- a Department of Pediatric Neurology , Istanbul University , Istanbul , Turkey
| |
Collapse
|
42
|
Abstract
An adverse outcome is still encountered in 45% of full-term neonates with perinatal asphyxia who are treated with moderate hypothermia. At present pharmacologic therapies are developed to be added to hypothermia. In the present article, these potential neuroprotective interventions are described based on the molecular pathways set in motion during fetal hypoxia and following reoxygenation and reperfusion after birth. These pathways include excessive production of excitotoxins with subsequent over-stimulation of NMDA receptors and calcium influx in neuronal cells, excessive production of reactive oxygen and nitrogen species, activation of inflammation leading to inappropriate apoptosis, and loss of neurotrophic factors. Possibilities for pharmacologic combination therapy, where each drug will be administered based on the optimal point of time in the cascade of destructive molecular reactions, may further reduce brain damage due to perinatal asphyxia.
Collapse
Affiliation(s)
- Frank van Bel
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands.
| | - Floris Groenendaal
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Hypoxic-ischemic brain injury is a leading cause of mortality and morbidity in neonates. Treating such injury by interrupting the excitotoxic-oxidative cascade is of immense importance. This review will focus on novel techniques of neuroprotection and describe the latest advances in established therapeutic methods. KEY FINDINGS Although the primacy of therapeutic hypothermia in treating hypoxic-ischemic encephalopathy is well established, recent research establishes that the arbitrarily chosen regimen of cooling to 33°C for 72 h may indeed be the most appropriate method. The optimal duration of antenatal magnesium therapy for neuroprotection remains unsettled, though it is reassuring that even 12 h or less of magnesium therapy results in comparable neurological outcomes. Combining adjuvant therapies such as melatonin or erythropoietin with therapeutic hypothermia results in favorable neurological outcomes compared with hypothermia alone. Finally, stem cell-based therapies show considerable potential in preclinical studies. SUMMARY Significant advances have occurred in the management of neonatal brain injury. With establishment of the optimal temperature and duration of hypothermia, combinatory therapies using adjuncts hold the greatest promise. Promising preclinical approaches such as stem cell-based therapy and use of noble gases need to be confirmed with clinical trials.
Collapse
|
44
|
Sartini S, Lattanzi D, Ambrogini P, Di Palma M, Galati C, Savelli D, Polidori E, Calcabrini C, Rocchi MBL, Sestili P, Cuppini R. Maternal creatine supplementation affects the morpho-functional development of hippocampal neurons in rat offspring. Neuroscience 2015; 312:120-9. [PMID: 26592720 DOI: 10.1016/j.neuroscience.2015.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 12/28/2022]
Abstract
Creatine supplementation has been shown to protect neurons from oxidative damage due to its antioxidant and ergogenic functions. These features have led to the hypothesis of creatine supplementation use during pregnancy as prophylactic treatment to prevent CNS damage, such as hypoxic-ischemic encephalopathy. Unfortunately, very little is known on the effects of creatine supplementation during neuron differentiation, while in vitro studies revealed an influence on neuron excitability, leaving the possibility of creatine supplementation during the CNS development an open question. Using a multiple approach, we studied the hippocampal neuron morphological and functional development in neonatal rats born by dams supplemented with 1% creatine in drinking water during pregnancy. CA1 pyramidal neurons of supplemented newborn rats showed enhanced dendritic tree development, increased LTP maintenance, larger evoked-synaptic responses, and higher intrinsic excitability in comparison to controls. Moreover, a faster repolarizing phase of action potential with the appearance of a hyperpolarization were recorded in neurons of the creatine-treated group. Consistently, CA1 neurons of creatine exposed pups exhibited a higher maximum firing frequency than controls. In summary, we found that creatine supplementation during pregnancy positively affects morphological and electrophysiological development of CA1 neurons in offspring rats, increasing neuronal excitability. Altogether, these findings emphasize the need to evaluate the benefits and the safety of maternal intake of creatine in humans.
Collapse
Affiliation(s)
- S Sartini
- University of Urbino Carlo Bo, Dept. of Earth, Life and Environmental Sciences, Campus Scientifico "Enrico Mattei", via Ca' le Suore, 2, 61029 Urbino, Italy.
| | - D Lattanzi
- University of Urbino Carlo Bo, Dept. of Earth, Life and Environmental Sciences, Campus Scientifico "Enrico Mattei", via Ca' le Suore, 2, 61029 Urbino, Italy
| | - P Ambrogini
- University of Urbino Carlo Bo, Dept. of Earth, Life and Environmental Sciences, Campus Scientifico "Enrico Mattei", via Ca' le Suore, 2, 61029 Urbino, Italy
| | - M Di Palma
- University of Urbino Carlo Bo, Dept. of Earth, Life and Environmental Sciences, Campus Scientifico "Enrico Mattei", via Ca' le Suore, 2, 61029 Urbino, Italy
| | - C Galati
- University of Urbino Carlo Bo, Dept. of Earth, Life and Environmental Sciences, Campus Scientifico "Enrico Mattei", via Ca' le Suore, 2, 61029 Urbino, Italy
| | - D Savelli
- University of Urbino Carlo Bo, Dept. of Earth, Life and Environmental Sciences, Campus Scientifico "Enrico Mattei", via Ca' le Suore, 2, 61029 Urbino, Italy
| | - E Polidori
- University of Urbino Carlo Bo, Dept. of Biomolecular Sciences, via I Maggetti, 26, 61029 Urbino, Italy
| | - C Calcabrini
- University of Urbino Carlo Bo, Dept. of Biomolecular Sciences, via I Maggetti, 26, 61029 Urbino, Italy
| | - M B L Rocchi
- University of Urbino Carlo Bo, Dept. of Biomolecular Sciences, via I Maggetti, 26, 61029 Urbino, Italy
| | - P Sestili
- University of Urbino Carlo Bo, Dept. of Biomolecular Sciences, via I Maggetti, 26, 61029 Urbino, Italy
| | - R Cuppini
- University of Urbino Carlo Bo, Dept. of Earth, Life and Environmental Sciences, Campus Scientifico "Enrico Mattei", via Ca' le Suore, 2, 61029 Urbino, Italy
| |
Collapse
|
45
|
Dixon BJ, Reis C, Ho WM, Tang J, Zhang JH. Neuroprotective Strategies after Neonatal Hypoxic Ischemic Encephalopathy. Int J Mol Sci 2015; 16:22368-401. [PMID: 26389893 PMCID: PMC4613313 DOI: 10.3390/ijms160922368] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/31/2015] [Accepted: 09/06/2015] [Indexed: 12/21/2022] Open
Abstract
Neonatal hypoxic ischemic encephalopathy (HIE) is a devastating disease that primarily causes neuronal and white matter injury and is among the leading cause of death among infants. Currently there are no well-established treatments; thus, it is important to understand the pathophysiology of the disease and elucidate complications that are creating a gap between basic science and clinical translation. In the development of neuroprotective strategies and translation of experimental results in HIE, there are many limitations and challenges to master based on an appropriate study design, drug delivery properties, dosage, and use in neonates. We will identify understudied targets after HIE, as well as neuroprotective molecules that bring hope to future treatments such as melatonin, topiramate, xenon, interferon-beta, stem cell transplantation. This review will also discuss some of the most recent trials being conducted in the clinical setting and evaluate what directions are needed in the future.
Collapse
Affiliation(s)
- Brandon J Dixon
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Wing Mann Ho
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Medical University Innsbruck, Tyrol 6020, Austria.
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
46
|
|
47
|
Kaandorp JJ, Benders MJNL, Schuit E, Rademaker CMA, Oudijk MA, Porath MM, Oetomo SB, Wouters MGAJ, van Elburg RM, Franssen MTM, Bos AF, de Haan TR, Boon J, de Boer IP, Rijnders RJP, Jacobs CJWFM, Scheepers LHCJ, Gavilanes DAW, Bloemenkamp KWM, Rijken M, van Meir CA, von Lindern JS, Huisjes AJM, Bakker SCMJER, Mol BWJ, Visser GHA, Van Bel F, Derks JB. Maternal allopurinol administration during suspected fetal hypoxia: a novel neuroprotective intervention? A multicentre randomised placebo controlled trial. Arch Dis Child Fetal Neonatal Ed 2015; 100:F216-23. [PMID: 25512466 DOI: 10.1136/archdischild-2014-306769] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 11/17/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To determine whether maternal allopurinol treatment during suspected fetal hypoxia would reduce the release of biomarkers associated with neonatal brain damage. DESIGN A randomised double-blind placebo controlled multicentre trial. PATIENTS We studied women in labour at term with clinical indices of fetal hypoxia, prompting immediate delivery. SETTING Delivery rooms of 11 Dutch hospitals. INTERVENTION When immediate delivery was foreseen based on suspected fetal hypoxia, women were allocated to receive allopurinol 500 mg intravenous (ALLO) or placebo intravenous (CONT). MAIN OUTCOME MEASURES Primary endpoint was the difference in cord S100ß, a tissue-specific biomarker for brain damage. RESULTS 222 women were randomised to receive allopurinol (ALLO, n=111) or placebo (CONT, n=111). Cord S100ß was not significantly different between the two groups: 44.5 pg/mL (IQR 20.2-71.4) in the ALLO group versus 54.9 pg/mL (IQR 26.8-94.7) in the CONT group (difference in median -7.69 (95% CI -24.9 to 9.52)). Post hoc subgroup analysis showed a potential treatment effect of allopurinol on the proportion of infants with a cord S100ß value above the 75th percentile in girls (ALLO n=5 (12%) vs CONT n=10 (31%); risk ratio (RR) 0.37 (95% CI 0.14 to 0.99)) but not in boys (ALLO n=18 (32%) vs CONT n=15 (25%); RR 1.4 (95% CI 0.84 to 2.3)). Also, cord neuroketal levels were significantly lower in girls treated with allopurinol as compared with placebo treated girls: 18.0 pg/mL (95% CI 12.1 to 26.9) in the ALLO group versus 32.2 pg/mL (95% CI 22.7 to 45.7) in the CONT group (geometric mean difference -16.4 (95% CI -24.6 to -1.64)). CONCLUSIONS Maternal treatment with allopurinol during fetal hypoxia did not significantly lower neuronal damage markers in cord blood. Post hoc analysis revealed a potential beneficial treatment effect in girls. TRIAL REGISTRATION NUMBER NCT00189007, Dutch Trial Register NTR1383.
Collapse
Affiliation(s)
- Joepe J Kaandorp
- Department of Perinatology, University Medical Center, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Perinatology, University Medical Center, Utrecht, The Netherlands
| | - Ewoud Schuit
- Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, The Netherlands
| | - Carin M A Rademaker
- Department of Clinical Pharmacy, University Medical Center, Utrecht, The Netherlands
| | - Martijn A Oudijk
- Department of Perinatology, University Medical Center, Utrecht, The Netherlands
| | - Martina M Porath
- Department of Perinatology, Maxima Medical Center, Veldhoven, The Netherlands
| | | | | | - Ruurd M van Elburg
- Department of Perinatology, VU Medical Center, Amsterdam, The Netherlands Danone Research, Wageningen, The Netherlands
| | - Maureen T M Franssen
- Department of Perinatology, University Medical Center, Groningen, The Netherlands
| | - Arie F Bos
- Department of Perinatology, University Medical Center, Groningen, The Netherlands
| | - Timo R de Haan
- Department of Perinatology, Academic Medical Center, Amsterdam, The Netherlands
| | - Janine Boon
- Department of Perinatology, Diakonessenhuis, Utrecht, The Netherlands
| | - Inge P de Boer
- Department of Perinatology, Diakonessenhuis, Utrecht, The Netherlands
| | - Robbert J P Rijnders
- Department of Perinatology, Jeroen Bosch Medical Center, Den Bosch, The Netherlands
| | | | | | - Danilo A W Gavilanes
- Department of Perinatology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Kitty W M Bloemenkamp
- Department of Perinatology, Leids University Medical Center, Leiden, The Netherlands
| | - Monique Rijken
- Department of Perinatology, Leids University Medical Center, Leiden, The Netherlands
| | - Claudia A van Meir
- Department of Perinatology, Groene Hart Hospital, Gouda, The Netherlands
| | | | | | | | - Ben W J Mol
- Department of Perinatology, University Medical Center, Groningen, The Netherlands
| | - Gerard H A Visser
- Department of Perinatology, University Medical Center, Utrecht, The Netherlands
| | - Frank Van Bel
- Department of Perinatology, University Medical Center, Utrecht, The Netherlands
| | - Jan B Derks
- Department of Perinatology, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
48
|
New antioxidant drugs for neonatal brain injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:108251. [PMID: 25685254 PMCID: PMC4313724 DOI: 10.1155/2015/108251] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/19/2014] [Indexed: 11/17/2022]
Abstract
The brain injury concept covers a lot of heterogeneity in terms of aetiology involving multiple factors, genetic, hemodynamic, metabolic, nutritional, endocrinological, toxic, and infectious mechanisms, acting in antenatal or postnatal period. Increased vulnerability of the immature brain to oxidative stress is documented because of the limited capacity of antioxidant enzymes and the high free radicals (FRs) generation in rapidly growing tissue. FRs impair transmembrane enzyme Na+/K+-ATPase activity resulting in persistent membrane depolarization and excessive release of FR and excitatory aminoacid glutamate. Besides being neurotoxic, glutamate is also toxic to oligodendroglia, via FR effects. Neuronal cells die of oxidative stress. Excess of free iron and deficient iron/binding metabolising capacity are additional features favouring oxidative stress in newborn. Each step in the oxidative injury cascade has become a potential target for neuroprotective intervention. The administration of antioxidants for suspected or proven brain injury is still not accepted for clinical use due to uncertain beneficial effects when treatments are started after resuscitation of an asphyxiated newborn. The challenge for the future is the early identification of high-risk babies to target a safe and not toxic antioxidant therapy in combination with standard therapies to prevent brain injury and long-term neurodevelopmental impairment.
Collapse
|
49
|
Dickinson H, Bain E, Wilkinson D, Middleton P, Crowther CA, Walker DW. Creatine for women in pregnancy for neuroprotection of the fetus. Cochrane Database Syst Rev 2014; 2014:CD010846. [PMID: 25523279 PMCID: PMC10657457 DOI: 10.1002/14651858.cd010846.pub2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Creatine is an amino acid derivative and, when phosphorylated (phosphocreatine), is involved in replenishing adenosine triphosphate (ATP) via the creatine kinase reaction. Cells obtain creatine from a diet rich in fish, meat, or dairy and by endogenous synthesis from the amino acids arginine, glycine, and methionine in an approximate 50:50 ratio. Animal studies have shown that creatine may provide fetal neuroprotection when given to the mother through her diet in pregnancy. It is important to assess whether maternally administered creatine in human pregnancy (at times of known, suspected, or potential fetal compromise) may offer neuroprotection to the fetus and may accordingly reduce the risk of adverse neurodevelopmental outcomes, such as cerebral palsy and associated impairments and disabilities arising from fetal brain injury. OBJECTIVES To assess the effects of creatine when used for neuroprotection of the fetus. SEARCH METHODS We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 November 2014). SELECTION CRITERIA We planned to include all published, unpublished, and ongoing randomised trials and quasi-randomised trials. We planned to include studies reported as abstracts only as well as full-text manuscripts. Trials using a cross-over or cluster-randomised design were not eligible for inclusion.We planned to include trials comparing creatine given to women in pregnancy for fetal neuroprotection (regardless of the route, timing, dose, or duration of administration) with placebo, no treatment, or with an alternative agent aimed at providing fetal neuroprotection. We also planned to include comparisons of different regimens for administration of creatine. DATA COLLECTION AND ANALYSIS We identified no completed or ongoing randomised controlled trials. MAIN RESULTS We found no randomised controlled trials for inclusion in this review. AUTHORS' CONCLUSIONS As we did not identify any randomised controlled trials for inclusion in this review, we are unable to comment on implications for practice. Although evidence from animal studies has supported a fetal neuroprotective role for creatine when administered to the mother during pregnancy, no trials assessing creatine in pregnant women for fetal neuroprotection have been published to date. If creatine is established as safe for the mother and her fetus, research efforts should first be directed towards randomised trials comparing creatine with either no intervention (ideally using a placebo), or with alternative agents aimed at providing fetal neuroprotection (including magnesium sulphate for the very preterm infant). If appropriate, these trials should then be followed by studies comparing different creatine regimens (dosage and duration of exposure). Such trials should be high quality and adequately powered to evaluate maternal and infant short and longer-term outcomes (including neurodevelopmental disabilities such as cerebral palsy), and should consider utilisation/costs of health care.
Collapse
Affiliation(s)
- Hayley Dickinson
- MIMR‐PHI Institute of Medical ResearchThe Ritchie Centre27‐31 Wright StreetMelbourneVictoriaAustralia3168
| | - Emily Bain
- The University of AdelaideARCH: Australian Research Centre for Health of Women and Babies, Robinson Research Institute, Discipline of Obstetrics and GynaecologyAdelaideSouth AustraliaAustralia5006
| | - Dominic Wilkinson
- University of OxfordOxford Uehiro Centre for Practical EthicsOxfordUK
| | - Philippa Middleton
- The University of AdelaideARCH: Australian Research Centre for Health of Women and Babies, Robinson Research Institute, Discipline of Obstetrics and GynaecologyAdelaideSouth AustraliaAustralia5006
| | - Caroline A Crowther
- The University of AdelaideARCH: Australian Research Centre for Health of Women and Babies, Robinson Research Institute, Discipline of Obstetrics and GynaecologyAdelaideSouth AustraliaAustralia5006
- The University of AucklandLiggins InstitutePrivate Bag 9201985 Park RoadAucklandNew Zealand
| | - David W Walker
- MIMR‐PHI Institute of Medical ResearchThe Ritchie Centre27‐31 Wright StreetMelbourneVictoriaAustralia3168
| | | |
Collapse
|
50
|
Dickinson H, Ellery S, Ireland Z, LaRosa D, Snow R, Walker DW. Creatine supplementation during pregnancy: summary of experimental studies suggesting a treatment to improve fetal and neonatal morbidity and reduce mortality in high-risk human pregnancy. BMC Pregnancy Childbirth 2014; 14:150. [PMID: 24766646 PMCID: PMC4007139 DOI: 10.1186/1471-2393-14-150] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 04/07/2014] [Indexed: 01/03/2023] Open
Abstract
While the use of creatine in human pregnancy is yet to be fully evaluated, its long-term use in healthy adults appears to be safe, and its well documented neuroprotective properties have recently been extended by demonstrations that creatine improves cognitive function in normal and elderly people, and motor skills in sleep-deprived subjects. Creatine has many actions likely to benefit the fetus and newborn, because pregnancy is a state of heightened metabolic activity, and the placenta is a key source of free radicals of oxygen and nitrogen. The multiple benefits of supplementary creatine arise from the fact that the creatine-phosphocreatine [PCr] system has physiologically important roles that include maintenance of intracellular ATP and acid–base balance, post-ischaemic recovery of protein synthesis, cerebral vasodilation, antioxidant actions, and stabilisation of lipid membranes. In the brain, creatine not only reduces lipid peroxidation and improves cerebral perfusion, its interaction with the benzodiazepine site of the GABAA receptor is likely to counteract the effects of glutamate excitotoxicity – actions that may protect the preterm and term fetal brain from the effects of birth hypoxia. In this review we discuss the development of creatine synthesis during fetal life, the transfer of creatine from mother to fetus, and propose that creatine supplementation during pregnancy may have benefits for the fetus and neonate whenever oxidative stress or feto-placental hypoxia arise, as in cases of fetal growth restriction, premature birth, or when parturition is delayed or complicated by oxygen deprivation of the newborn.
Collapse
Affiliation(s)
| | | | | | | | | | - David W Walker
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Monash University, 27-31 Wright St,, Clayton, Melbourne 3168 Australia.
| |
Collapse
|