1
|
Kumar A, Jiang H, Imran M, Valdes C, Leon G, Kang D, Nataraj P, Zhou Y, Weiss MD, Shao W. A flexible 2.5D medical image segmentation approach with in-slice and cross-slice attention. Comput Biol Med 2024; 182:109173. [PMID: 39317055 DOI: 10.1016/j.compbiomed.2024.109173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/18/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Deep learning has become the de facto method for medical image segmentation, with 3D segmentation models excelling in capturing complex 3D structures and 2D models offering high computational efficiency. However, segmenting 2.5D images, characterized by high in-plane resolution but lower through-plane resolution, presents significant challenges. While applying 2D models to individual slices of a 2.5D image is feasible, it fails to capture the spatial relationships between slices. On the other hand, 3D models face challenges such as resolution inconsistencies in 2.5D images, along with computational complexity and susceptibility to overfitting when trained with limited data. In this context, 2.5D models, which capture inter-slice correlations using only 2D neural networks, emerge as a promising solution due to their reduced computational demand and simplicity in implementation. In this paper, we introduce CSA-Net, a flexible 2.5D segmentation model capable of processing 2.5D images with an arbitrary number of slices. CSA-Net features an innovative Cross-Slice Attention (CSA) module that effectively captures 3D spatial information by learning long-range dependencies between the center slice (for segmentation) and its neighboring slices. Moreover, CSA-Net utilizes the self-attention mechanism to learn correlations among pixels within the center slice. We evaluated CSA-Net on three 2.5D segmentation tasks: (1) multi-class brain MR image segmentation, (2) binary prostate MR image segmentation, and (3) multi-class prostate MR image segmentation. CSA-Net outperformed leading 2D, 2.5D, and 3D segmentation methods across all three tasks, achieving average Dice coefficients and HD95 values of 0.897 and 1.40 mm for the brain dataset, 0.921 and 1.06 mm for the prostate dataset, and 0.659 and 2.70 mm for the ProstateX dataset, demonstrating its efficacy and superiority. Our code is publicly available at: https://github.com/mirthAI/CSA-Net.
Collapse
Affiliation(s)
- Amarjeet Kumar
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, 32610, United States
| | - Hongxu Jiang
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32610, United States
| | - Muhammad Imran
- Department of Medicine, University of Florida, Gainesville, FL, 32610, United States
| | - Cyndi Valdes
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, United States
| | - Gabriela Leon
- College of Medicine, University of Florida, Gainesville, FL, 32610, United States
| | - Dahyun Kang
- College of Medicine, University of Florida, Gainesville, FL, 32610, United States
| | - Parvathi Nataraj
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, United States
| | - Yuyin Zhou
- Department of Computer Science and Engineering, University of California, Santa Cruz, CA, 95064, United States
| | - Michael D Weiss
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, United States
| | - Wei Shao
- Department of Medicine, University of Florida, Gainesville, FL, 32610, United States; Intelligent Clinical Care Center, University of Florida, Gainesville, FL, 32610, United States.
| |
Collapse
|
2
|
Vanderhasselt T, Naeyaert M, Buls N, Allemeersch GJ, Raeymaeckers S, Raeymaekers H, Smeets N, Cools F, de Mey J, Dudink J. Synthetic magnetic resonance-based relaxometry and brain volume: cutoff values for predicting neurocognitive outcomes in very preterm infants. Pediatr Radiol 2024; 54:1523-1531. [PMID: 38980354 PMCID: PMC11324712 DOI: 10.1007/s00247-024-05981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Early neurorehabilitation can enhance neurocognitive outcomes in very preterm infants (<32 weeks), and conventional magnetic resonance imaging (MRI) is commonly used to assess neonatal brain injury; however, the predictive value for neurodevelopmental delay is limited. Timely predictive quantitative biomarkers are needed to improve early identification and management of infants at risk of neurodevelopmental delay. OBJECTIVE To evaluate the potential of quantitative synthetic MRI measurements at term-equivalent age as predictive biomarkers of neurodevelopmental impairment and establish practical cutoff values to guide clinical decision-making. MATERIALS AND METHODS This retrospective study included 93 very preterm infants who underwent synthetic MRI at term-equivalent age between January 2017 and September 2020. Clinical outcomes were assessed using the Bayley-III scale of infant development (mean age 2.1 years). The predictive value for impaired development was analyzed using receiver operating characteristic curves for synthetic MRI-based volumetry and T1 and T2 relaxation measurements. RESULTS The T1 relaxation time in the posterior limb of the internal capsule was a potent predictor of severe (sensitivity, 92%; specificity, 80%; area under the curve (AUC), 0.91) and mild or severe (AUC, 0.75) developmental impairment. T2 relaxation time in the posterior limb of the internal capsule was a significant predictor of severe impairment (AUC, 0.76), whereas the brain parenchymal volume was a significant predictor of severe (AUC, 0.72) and mild or severe impairment (AUC, 0.71) outperforming the reported qualitative MRI scores (AUC, 0.66). CONCLUSION The proposed cutoff values for T1 relaxation time in the posterior limb of the internal capsule and for total brain volume measurements, derived from synthetic MRI, show promise as predictors of both mild and severe neurodevelopmental impairment in very preterm infants.
Collapse
Affiliation(s)
- Tim Vanderhasselt
- Department of Radiology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium.
| | - Maarten Naeyaert
- Department of Radiology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Nico Buls
- Department of Radiology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Gert-Jan Allemeersch
- Department of Radiology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Steven Raeymaeckers
- Department of Radiology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Hubert Raeymaekers
- Department of Radiology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Nathalie Smeets
- Department of Pediatric Neurology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Filip Cools
- Department of Neonatology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Johan de Mey
- Department of Radiology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
3
|
Shimotsuma T, Tomotaki S, Akita M, Araki R, Tomotaki H, Iwanaga K, Kobayashi A, Saitoh A, Fushimi Y, Takita J, Kawai M. Severe Bronchopulmonary Dysplasia Adversely Affects Brain Growth in Preterm Infants. Neonatology 2024:1-9. [PMID: 38648742 DOI: 10.1159/000538527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Bronchopulmonary dysplasia (BPD) is associated with neurodevelopmental outcomes of preterm infants, but its effect on brain growth in preterm infants after the neonatal period is unknown. This study aimed to evaluate the effect of severe BPD on brain growth of preterm infants from term to 18 months of corrected age (CA). METHODS Sixty-three preterm infants (42 with severe BPD and 21 without severe BPD) who underwent magnetic resonance imaging at term equivalent age (TEA) and 18 months of CA were studied by using the Infant Brain Extraction and Analysis Toolbox (iBEAT). We measured segmented brain volumes and compared brain volume and brain growth velocity between the severe BPD group and the non-severe BPD group. RESULTS There was no significant difference in brain volumes at TEA between the groups. However, the brain volumes of the total brain and cerebral white matter in the severe BPD group were significantly smaller than those in the non-severe BPD group at 18 months of CA. The brain growth velocities from TEA to 18 months of CA in the total brain, cerebral cortex, and cerebral white matter in the severe BPD group were lower than those in the non-severe BPD group. CONCLUSION Brain growth in preterm infants with severe BPD from TEA age to 18 months of CA is less than that in preterm infants without severe BPD.
Collapse
Affiliation(s)
- Taiki Shimotsuma
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Pediatrics, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Seiichi Tomotaki
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuyo Akita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Araki
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroko Tomotaki
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kougoro Iwanaga
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Kobayashi
- Department of Pediatrics, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Akihiko Saitoh
- Department of Pediatrics, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiko Kawai
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Geng X, Chan PH, Lam HS, Chu WC, Wong PC. Brain templates for Chinese babies from newborn to three months of age. Neuroimage 2024; 289:120536. [PMID: 38346529 DOI: 10.1016/j.neuroimage.2024.120536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/20/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
The infant brain develops rapidly and this area of research has great clinical implications. Neurodevelopmental disorders such as autism and developmental delay have their origins, potentially, in abnormal early brain maturation. Searching for potential early neural markers requires a priori knowledge about infant brain development and anatomy. One of the most common methods of characterizing brain features requires normalization of individual images into a standard stereotactic space and conduct of group-based analyses in this space. A population representative brain template is critical for these population-based studies. Little research is available on constructing brain templates for typical developing Chinese infants. In the present work, a total of 120 babies from 5 to 89 days of age were included with high resolution structural magnetic resonance imaging scans. T1-weighted and T2-weighted templates were constructed using an unbiased registration approach for babies from newborn to 3 months of age. Age-specific templates were also estimated for babies aged at 0, 1, 2 and 3 months old. Then we conducted a series of evaluations and statistical analyses over whole tissue segmentations and brain parcellations. Compared to the use of population mismatched templates, using our established templates resulted in lower deformation energy to transform individual images into the template space and produced a smaller registration error, i.e., smaller standard deviation of the registered images. Significant volumetric growth was observed across total brain tissues and most of the brain regions within the first three months of age. The total brain tissues exhibited larger volumes in baby boys compared to baby girls. To the best of our knowledge, this is the first study focusing on the construction of Chinese infant brain templates. These templates can be used for investigating birth related conditions such as preterm birth, detecting neural biomarkers for neurological and neurodevelopmental disorders in Chinese populations, and exploring genetic and cultural effects on the brain.
Collapse
Affiliation(s)
- Xiujuan Geng
- Brain and Mind Institute The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Peggy Hy Chan
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Hugh Simon Lam
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Winnie Cw Chu
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| | - Patrick Cm Wong
- Brain and Mind Institute The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| |
Collapse
|
5
|
Xu S, Zhang J, Yue S, Qian J, Zhu D, Dong Y, Liu G, Zhang J. Global trends in neonatal MRI brain neuroimaging research over the last decade: a bibliometric analysis. Quant Imaging Med Surg 2024; 14:1526-1540. [PMID: 38415119 PMCID: PMC10895092 DOI: 10.21037/qims-23-880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/20/2023] [Indexed: 02/29/2024]
Abstract
Background Neuroimaging plays a central role in the evaluation, treatment, and prognosis of neonates. In recent years, the exploration of the developing brain has been a major focus of research for researchers and clinicians. In this study, we conducted bibliometric and visualization analyses of the related studies in the field of neonatal magnetic resonance imaging (MRI) brain neuroimaging from the past 10 years, and summarized its research status, hotspots, and frontier development trends. Methods The Web of Science core collection database was used as the literature source from which to retrieve the relevant papers and reviews in the field of neonatal MRI brain neuroimaging published in the Science Citation Index-Expanded from 2013 to 2022. VOSviewer and CiteSpace were used to conduct bibliometric and visualization analyses of the annual publication volume, countries, institutions, journals, authors, co-cited literature, and the overall distribution of keywords. Results We retrieved 3,568 papers and reviews published from 2013 to 2022. The number of publications increased during this period. The United States (US) and the United Kingdom were the largest contributors, with the US receiving the highest H-index and number of citations. The institutions that published the most were the University of London and Harvard University. The research mainly focused on cerebral cortex, brain tissue, brain structure network, artificial intelligence algorithm, automatic image segmentation, and premature infants. Conclusions This study reveals the research status and hotspots of magnetic resonance imaging in the field of neonatal brain neuroimaging in the past decade, which helps researchers to better understand the research status, hotspots, and frontier development trends.
Collapse
Affiliation(s)
- Shengfang Xu
- Second Clinical School, Lanzhou University, Lanzhou, China
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
- Medical Imaging Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Jinlong Zhang
- Pulmonary and Critical Care Medicine, The 940th Hospital of the Joint Logistic Support Force of the People’s Liberation Army, Lanzhou, China
| | - Songhong Yue
- Second Clinical School, Lanzhou University, Lanzhou, China
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Jifang Qian
- Medical Imaging Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Dalin Zhu
- Medical Imaging Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Yankai Dong
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Jing Zhang
- Second Clinical School, Lanzhou University, Lanzhou, China
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| |
Collapse
|
6
|
Halbmeijer NM, Onland W, Dudink J, Cools F, Debeer A, van Kaam AH, Benders MJNL, van der Aa NE. Effect of Systemic Hydrocortisone on Brain Abnormalities and Regional Brain Volumes in Ventilator-dependent Infants Born Preterm: Substudy of the SToP-BPD Study. J Pediatr 2024; 265:113807. [PMID: 37923196 DOI: 10.1016/j.jpeds.2023.113807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/04/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE To evaluate whether a high cumulative dose of systemic hydrocortisone affects brain development compared with placebo when initiated between 7 and 14 days after birth in ventilated infants born preterm. STUDY DESIGN A double-blind, placebo-controlled, randomized trial was conducted in 16 neonatal intensive care units among infants born at <30 weeks of gestation or with a birth weight of <1250 g who were ventilator-dependent in the second week after birth. Three centers performed MRI at term-equivalent age. Brain injury was assessed on MRI using the Kidokoro scoring system and compared between the 2 treatment groups. Both total and regional brain volumes were calculated using an automatic segmentation method and compared using multivariable regression analysis adjusted for baseline variables. RESULTS From the 3 centers, 78 infants participated in the study and 59 had acceptable MRI scans (hydrocortisone group, n = 31; placebo group, n = 28). Analyses of the median global brain abnormality score of the Kidokoro score showed no difference between the hydrocortisone and placebo groups (median, 7; IQR, 5-9 vs median, 8, IQR, 4-10, respectively; P = .92). In 39 infants, brain tissue volumes were measured, showing no differences in the adjusted mean total brain tissue volumes, at 352 ± 32 mL in the hydrocortisone group and 364 ± 51 mL in the placebo group (P = .80). CONCLUSIONS Systemic hydrocortisone started in the second week after birth in ventilator-dependent infants born very preterm was not found to be associated with significant differences in brain development compared with placebo treatment. TRIAL REGISTRATION The SToP-BPD study was registered with the Netherlands Trial Register (NTR2768; registered on 17 February 2011; https://www.trialregister.nl/trial/2640) and the European Union Clinical Trials Register (EudraCT, 2010-023777-19; registered on 2 November 2010; https://www.clinicaltrialsregister.eu/ctr-search/trial/2010-023777-19/NL).
Collapse
Affiliation(s)
- Nienke M Halbmeijer
- Department of Neonatology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands.
| | - Wes Onland
- Department of Neonatology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Filip Cools
- Department of Neonatology, University Hospital Brussel, Brussel, Belgium
| | - Anne Debeer
- Department of Neonatology, University Hospital Leuven, Leuven, Belgium
| | - Anton H van Kaam
- Department of Neonatology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Niek E van der Aa
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands
| |
Collapse
|
7
|
Malin KJ, Vittner D, Darilek U, McGlothen-Bell K, Crawford A, Koerner R, Pados BF, Cartagena D, McGrath JM, Vance AJ. Application of the Adverse Childhood Experiences Framework to the NICU. Adv Neonatal Care 2024; 24:4-13. [PMID: 38061194 PMCID: PMC11317928 DOI: 10.1097/anc.0000000000001122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
BACKGROUND Infants and families requiring neonatal intensive care unit (NICU) care often experience significant stress and trauma during the earliest period of the infant's life, leading to increased risks for poorer infant and family outcomes. There is a need for frameworks to guide clinical care and research that account for the complex interactions of generational stress, pain, toxic stress, parental separation, and lifelong health and developmental outcomes for infants and families. PURPOSE Apply the Adverse Childhood Experiences (ACEs) framework in the context of the NICU as a usable structure to guide clinical practice and research focused on infant neurodevelopment outcomes and parental attachment. METHODS An overview of ACEs is provided along with a detailed discussion of risk at each level of the ACEs pyramid in the context of the NICU. Supportive and protective factors to help mitigate the risk of the ACEs in the NICU are detailed. RESULTS NICU hospitalization may be considered the first ACE, or potentially an additional ACE, resulting in an increased risk for poorer health outcomes. The promotion of safe, stable, and nurturing relationships and implementation of trauma-informed care and individualized developmental care potentially counter the negative impacts of stress in the NICU. IMPLICATIONS FOR PRACTICE AND RESEARCH Nurses can help balance the negative and positive stimulation of the NICU through activities such as facilitated tucking, skin-to-skin care, mother's milk, and active participation of parents in infant care. Future research can consider using the ACEs framework to explain cumulative risk for adverse health and well-being in the context of NICU care.
Collapse
Affiliation(s)
- Kathryn J Malin
- College of Nursing, Marquette University, Milwaukee, Wisconsin (Dr Malin); Children's Wisconsin, Milwaukee (Dr Malin); Egan School of Nursing & Health Studies, Fairfield University, Fairfield, Connecticut (Dr Vittner); Department of Pediatrics (Dr Darilek) and School of Nursing (Drs McGlothen-Bell, Crawford, and McGrath), The University of Texas Health Science Center at San Antonio; University of Florida, Gainesville (Dr Koerner); Infant Feeding Care, Wellesley, Massachusetts (Dr Pados); School of Nursing, Old Dominion University, Norfolk, Virginia (Dr Cartagena); and Center for Health Policy and Health Services Research, Henry Ford Health, Detroit, Michigan (Dr Vance)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Valdes C, Nataraj P, Kisilewicz K, Simenson A, Leon G, Kang D, Nguyen D, Sura L, Bliznyuk N, Weiss M. Impact of Nutritional Status on Total Brain Tissue Volumes in Preterm Infants. CHILDREN (BASEL, SWITZERLAND) 2024; 11:121. [PMID: 38255433 PMCID: PMC10813841 DOI: 10.3390/children11010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Preterm infants bypass the crucial in utero period of brain development and are at increased risk of malnutrition. We aimed to determine if their nutritional status is associated with brain tissue volumes at term equivalent age (TEA), applying recently published malnutrition guidelines for preterm infants. We performed a single center retrospective chart review of 198 infants < 30 weeks' gestation between 2018 and 2021. We primarily analyzed the relationship between the manually obtained neonatal MR-based brain tissue volumes with the maximum weight and length z-score. Significant positive linear associations between brain tissue volumes at TEA and weight and length z-scores were found (p < 0.05). Recommended nutrient intake for preterm infants is not routinely achieved despite efforts to optimize nutrition. Neonatal MR-based brain tissue volumes of preterm infants could serve as objective, quantitative and reproducible surrogate parameters of early brain development. Nutrition is a modifiable factor affecting neurodevelopment and these results could perhaps be used as reference data for future timely nutritional interventions to promote optimal brain volume.
Collapse
Affiliation(s)
- Cyndi Valdes
- Division of Neonatology, Department of Pediatrics, University of Florida, Gainesville, FL 32608, USA; (C.V.); (P.N.); (K.K.); (L.S.)
| | - Parvathi Nataraj
- Division of Neonatology, Department of Pediatrics, University of Florida, Gainesville, FL 32608, USA; (C.V.); (P.N.); (K.K.); (L.S.)
| | - Katherine Kisilewicz
- Division of Neonatology, Department of Pediatrics, University of Florida, Gainesville, FL 32608, USA; (C.V.); (P.N.); (K.K.); (L.S.)
| | - Ashley Simenson
- College of Medicine, Gainesville Campus, University of Florida, Gainesville, FL 32608, USA; (A.S.); (G.L.); (D.K.)
| | - Gabriela Leon
- College of Medicine, Gainesville Campus, University of Florida, Gainesville, FL 32608, USA; (A.S.); (G.L.); (D.K.)
| | - Dahyun Kang
- College of Medicine, Gainesville Campus, University of Florida, Gainesville, FL 32608, USA; (A.S.); (G.L.); (D.K.)
| | - Dai Nguyen
- Department of Pediatrics, University of Florida, Gainesville, FL 32608, USA;
| | - Livia Sura
- Division of Neonatology, Department of Pediatrics, University of Florida, Gainesville, FL 32608, USA; (C.V.); (P.N.); (K.K.); (L.S.)
| | - Nikolay Bliznyuk
- Department of Agricultural & Biological Engineering, University of Florida, Gainesville, FL 32608, USA;
| | - Michael Weiss
- Division of Neonatology, Department of Pediatrics, University of Florida, Gainesville, FL 32608, USA; (C.V.); (P.N.); (K.K.); (L.S.)
| |
Collapse
|
9
|
Minarski M, Maas C, Heinrich C, Böckmann KA, Bernhard W, Shunova A, Poets CF, Franz AR. Choline and Betaine Levels in Plasma Mirror Choline Intake in Very Preterm Infants. Nutrients 2023; 15:4758. [PMID: 38004152 PMCID: PMC10675502 DOI: 10.3390/nu15224758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Choline is essential for cell membrane formation and methyl transfer reactions, impacting parenchymal and neurological development. It is therefore enriched via placental transfer, and fetal plasma concentrations are high. In spite of the greater needs of very low birth weight infants (VLBWI), choline content of breast milk after preterm delivery is lower (median (p25-75): 158 mg/L (61-360 mg/L) compared to term delivery (258 mg/L (142-343 mg/L)). Even preterm formula or fortified breast milk currently provide insufficient choline to achieve physiological plasma concentrations. This secondary analysis of a randomized controlled trial comparing growth of VLBWI with different levels of enteral protein supply aimed to investigate whether increased enteral choline intake results in increased plasma choline, betaine and phosphatidylcholine concentrations. We measured total choline content of breast milk from 33 mothers of 34 VLBWI. Enteral choline intake from administered breast milk, formula and fortifier was related to the respective plasma choline, betaine and phosphatidylcholine concentrations. Plasma choline and betaine levels in VLBWI correlated directly with enteral choline intake, but administered choline was insufficient to achieve physiological (fetus-like) concentrations. Hence, optimizing maternal choline status, and the choline content of milk and fortifiers, is suggested to increase plasma concentrations of choline, ameliorate the choline deficit and improve growth and long-term development of VLBWI.
Collapse
Affiliation(s)
- Michaela Minarski
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
| | - Christoph Maas
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
| | - Christine Heinrich
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
| | - Katrin A. Böckmann
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
| | - Wolfgang Bernhard
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
| | - Anna Shunova
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
| | - Christian F. Poets
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
| | - Axel R. Franz
- Department of Neonatology, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany (W.B.)
- Center for Pediatric Clinical Studies, University Children’s Hospital, Tübingen University Hospital, 72076 Tübingen, Germany
| |
Collapse
|
10
|
Mckinnon K, Galdi P, Blesa-Cábez M, Sullivan G, Vaher K, Corrigan A, Hall J, Jiménez-Sánchez L, Thrippleton M, Bastin ME, Quigley AJ, Valavani E, Tsanas A, Richardson H, Boardman JP. Association of Preterm Birth and Socioeconomic Status With Neonatal Brain Structure. JAMA Netw Open 2023; 6:e2316067. [PMID: 37256618 PMCID: PMC10233421 DOI: 10.1001/jamanetworkopen.2023.16067] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
Importance Preterm birth and socioeconomic status (SES) are associated with brain structure in childhood, but the relative contributions of each during the neonatal period are unknown. Objective To investigate associations of birth gestational age (GA) and SES with neonatal brain morphology by testing 3 hypotheses: GA and SES are associated with brain morphology; associations between SES and brain morphology vary with GA; and associations between SES and brain structure and morphology depend on how SES is operationalized. Design, Setting, and Participants This cohort study recruited participants from November 2016 to September 2021 at a single center in the United Kingdom. Participants were 170 extremely and very preterm infants and 91 full-term or near-term infants. Exclusion criteria were major congenital malformation, chromosomal abnormality, congenital infection, cystic periventricular leukomalacia, hemorrhagic parenchymal infarction, and posthemorrhagic ventricular dilatation. Exposures Birth GA and SES, operationalized at the neighborhood level (using the Scottish Index of Multiple Deprivation), the family level (using parental education and occupation), and subjectively (World Health Organization Quality of Life measure). Main Outcomes and Measures Brain volume (85 parcels) and 5 whole-brain cortical morphology measures (gyrification index, thickness, sulcal depth, curvature, surface area) at term-equivalent age (median [range] age, 40 weeks, 5 days [36 weeks, 2 days to 45 weeks, 6 days] and 42 weeks [38 weeks, 2 days to 46 weeks, 1 day] for preterm and full-term infants, respectively). Results Participants were 170 extremely and very preterm infants (95 [55.9%] male; 4 of 166 [2.4%] Asian, 145 of 166 [87.3%] White) and 91 full-term or near-term infants (50 [54.9%] male; 3 of 86 [3.5%] Asian, 78 of 86 [90.7%] White infants) with median (range) birth GAs of 30 weeks, 0 days (22 weeks, 1 day, to 32 weeks, 6 days) and 39 weeks, 4 days (36 weeks, 3 days, to 42 weeks, 1 day), respectively. In fully adjusted models, birth GA was associated with a higher proportion of brain volumes (27 of 85 parcels [31.8%]; β range, -0.20 to 0.24) than neighborhood-level SES (1 of 85 parcels [1.2%]; β = 0.17 [95% CI, -0.16 to 0.50]) or family-level SES (maternal education: 4 of 85 parcels [4.7%]; β range, 0.09 to 0.15; maternal occupation: 1 of 85 parcels [1.2%]; β = 0.06 [95% CI, 0.02 to 0.11] respectively). There were interactions between GA and both family-level and subjective SES measures on regional brain volumes. Birth GA was associated with cortical surface area (β = 0.10 [95% CI, 0.02 to 0.18]) and gyrification index (β = 0.16 [95% CI, 0.07 to 0.25]); no SES measure was associated with cortical measures. Conclusions and Relevance In this cohort study of UK infants, birth GA and SES were associated with neonatal brain morphology, but low GA had more widely distributed associations with neonatal brain structure than SES. Further work is warranted to elucidate the mechanisms underlying the association of both GA and SES with early brain development.
Collapse
Affiliation(s)
- Katie Mckinnon
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Paola Galdi
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Manuel Blesa-Cábez
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Gemma Sullivan
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Kadi Vaher
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Amy Corrigan
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Jill Hall
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Michael Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark E. Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan J. Quigley
- Department of Radiology, Royal Hospital for Children and Young People, Edinburgh, United Kingdom
| | - Evdoxia Valavani
- Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Athanasios Tsanas
- Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- Alan Turing Institute, London, United Kingdom
| | - Hilary Richardson
- School of Philosophy, Psychology, and Language Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - James P. Boardman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Vo Van P, Beck J, Meunier H, Venot P, Mac Caby G, Bednarek N, Loron G. Assessment of brain two-dimensional metrics in infants born preterm at term equivalent age: Correlation of ultrasound scans with magnetic resonance imaging. Front Pediatr 2022; 10:961556. [PMID: 36204665 PMCID: PMC9531030 DOI: 10.3389/fped.2022.961556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
CONTEXT Developing brain imaging is a critical subject for infants born preterm. Impaired brain growth is correlated with poor neurological outcomes, regardless of overt brain lesions, such as hemorrhage or leukomalacia. As magnetic resonance imaging (MRI) remains a research tool for assessing regional brain volumes, two-dimensional metrics (2D metrics) provide a reliable estimation of brain structures. In neonatal intensive care, cerebral ultrasound (cUS) is routinely performed to assess brain integrity. This prospective work has compared US and MRI accuracy for the measurement of 2D brain metrics and identification of overt injuries. METHODS MRI and cUS were performed at term equivalent age (TEA) in infants born before 32 weeks of gestation (GW). Demographical data and results of serial cUS (Neonatal Intensive Care Unit [NICU]-US) performed during hospitalization were gathered from medical charts. Blinded, experienced senior doctors reviewed the scans for both standard analysis and standardized, 2D measurements. The correlation of 2D metrics and inter-/intraobserver agreements were evaluated using Pearson's coefficient, Bland-Altman plots, and intraclass coefficient (ICC), respectively. RESULTS In total, 102 infants born preterm were included. The performance of "TEA-cUS and NICU-cUS" when compared to "TEA-MRI and NICU-cUS" was identical for the detection of high-grade hemorrhages and close for low-grade ones. However, TEA-MRI only detected nodular lesions of the white matter (WM). No infant presented a cerebellar infarct on imaging. Intra- and inter-observer agreements were excellent for all 2D metrics except for the corpus callosum width (CCW) and anteroposterior vermis diameter. MRI and cUS showed good to excellent correlation for brain and bones biparietal diameters, corpus callosum length (CCL), transcerebellar diameters (TCDs), and lateral ventricle diameters. Measures of CCW and vermis dimensions were poorly correlated. CONCLUSION AND PERSPECTIVE The cUS is a reliable tool to assess selected 2D measurements in the developing brain. Repetition of these metrics by serial cUS during NICU stay would allow the completion of growth charts for several brain structures. Further studies will assess whether these charts are relevant markers of neurological outcome.
Collapse
Affiliation(s)
- Philippe Vo Van
- Department of Neonatology, Hospices Civils de Lyon, Femme Mère Enfant Hospital, Bron, France
| | - Jonathan Beck
- Department of Neonatology, Centre Hospitalier Universitaire de Reims, Reims, France
| | - Hélène Meunier
- Department of Neonatology, Centre Hospitalier Universitaire de Reims, Reims, France
| | - Perrine Venot
- Department of Neonatology, Centre Hospitalier Universitaire de Reims, Reims, France
| | - Gratiella Mac Caby
- Department of Pediatric Imaging, Centre Hospitalier Universitaire de Reims, Reims, France
| | - Nathalie Bednarek
- Department of Neonatology, Centre Hospitalier Universitaire de Reims, Reims, France.,University of Reims Champagne-Ardenne, CReSTIC, Reims, France
| | - Gauthier Loron
- Department of Neonatology, Centre Hospitalier Universitaire de Reims, Reims, France.,University of Reims Champagne-Ardenne, CReSTIC, Reims, France
| |
Collapse
|