1
|
The Update Immune-Regulatory Role of Pro- and Anti-Inflammatory Cytokines in Recurrent Pregnancy Losses. Int J Mol Sci 2022; 24:ijms24010132. [PMID: 36613575 PMCID: PMC9820098 DOI: 10.3390/ijms24010132] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Recurrent pregnancy losses (RPL) is a common reproductive disorder with various underlying etiologies. In recent years, rapid progress has been made in exploring the immunological mechanisms for RPL. A propensity toward Th2 over Th1 and regulatory T (Treg) over Th17 immune responses may be advantageous for reproductive success. In women with RPL and animals prone to abortion, an inordinate expression of cytokines associated with implantation and early embryo development is present in the endometrium or decidua secreted from immune and non-immune cells. Hence, an adverse cytokine milieu at the maternal-fetal interface assaults immunological tolerance, leading to fetal rejection. Similar to T cells, NK cells can be categorized based on the characteristics of cytokines they secrete. Decidual NK (dNK) cells of RPL patients exhibited an increased NK1/NK2 ratio (IFN-γ/IL-4 producing NK cell ratios), leading to pro-inflammatory cytokine milieu and increased NK cell cytotoxicity. Genetic polymorphism may be the underlying etiologies for Th1 and Th17 propensity since it alters cytokine production. In addition, various hormones participate in cytokine regulations, including progesterone and estrogen, controlling cytokine balance in favor of the Th2 type. Consequently, the intricate regulation of cytokines and hormones may prevent the RPL of immune etiologies. Local or systemic administration of cytokines or their antagonists might help maintain adequate cytokine milieu, favoring Th2 over Th1 response or Treg over Th17 immune response in women with RPL. Herein, we provided an updated comprehensive review regarding the immune-regulatory role of pro- and anti-inflammatory cytokines in RPL. Understanding the roles of cytokines involved in RPL might significantly advance the early diagnosis, monitoring, and treatment of RPL.
Collapse
|
2
|
Hehenkamp P, Hoffmann M, Kummer S, Reinauer C, Döing C, Förtsch K, Enczmann J, Balz V, Mayatepek E, Meissner T, Jacobsen M, Seyfarth J. Interleukin-7-dependent nonclassical monocytes and CD40 expression are affected in children with type 1 diabetes. Eur J Immunol 2021; 51:3214-3227. [PMID: 34625948 DOI: 10.1002/eji.202149229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/13/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022]
Abstract
The important role of IL-7 in the generation of self-reactive T-cells in autoimmune diseases is well established. Recent studies on autoimmunity-associated genetic polymorphisms indicated that differential IL-7 receptor (IL-7R) expression of monocytes may play a role in the underlying pathogenesis. The relevance of IL-7-mediated monocyte functions in type 1 diabetes remains elusive. In the present study, we characterized monocyte phenotype and IL-7-mediated effects in children with type 1 diabetes and healthy controls with multicolor flow cytometry and t-distributed Stochastic Neighbor-Embedded (t-SNE)-analyses. IL-7R expression of monocytes rapidly increased in vitro and was boosted through LPS. In the presence of IL-7, we detected lower monocyte IL-7R expression in type 1 diabetes patients as compared to healthy controls. This difference was most evident for the subset of nonclassical monocytes, which increased after IL-7 stimulation. t-SNE analyses revealed IL-7-dependent differences in monocyte subset distribution and expression of activation and maturation markers (i.e., HLA-DR, CD80, CD86, CD40). Notably, monocyte CD40 expression increased considerably by IL-7 and CD40/IL-7R co-expression differed between patients and controls. This study shows the unique effects of IL-7 on monocyte phenotype and functions. Lower IL-7R expression on IL-7-induced CD40high monocytes and impaired IL-7 response characterize monocytes from patients with type 1 diabetes.
Collapse
Affiliation(s)
- Paul Hehenkamp
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Maximilian Hoffmann
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Sebastian Kummer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Christina Reinauer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Carsten Döing
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Katharina Förtsch
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Jürgen Enczmann
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital, Duesseldorf, Germany
| | - Vera Balz
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, University Hospital, Duesseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Julia Seyfarth
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
3
|
Vilsmaier T, Amann N, Löb S, Schmoeckel E, Kuhn C, Zati Zehni A, Meister S, Beyer S, Kolben TM, Becker J, Mumm JN, Mahner S, Jeschke U, Kolben T. The decidual expression of Interleukin-7 is upregulated in early pregnancy loss. Am J Reprod Immunol 2021; 86:e13437. [PMID: 33934432 DOI: 10.1111/aji.13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Maternal immunological rejection of the semi-allogenic fetus is discussed as one of the significant factors involved in early pregnancy loss. An array of cytokines secreted by both maternal and fetal cells is involved in generating a delicate maternal immune tolerance. Interleukin-7 (IL-7) is discussed to play a key role in pro-inflammatory processes, but there is still limited insight into the pathophysiological input on placentation and embryonic development in early pregnancy loss. PATIENTS AND METHODS Cytokine level differences were identified with quantitative real-time PCR in placental tissue from spontaneous abortions (SA) (n = 18), recurrent spontaneous abortions (RSA) (n = 15), and healthy pregnancies (n = 15) at gestational weeks 7 to 14. Protein expression of IL-7 in the decidua was investigated by immunohistochemistry. IL-7-expressing cells were identified with double-immunofluorescence. RESULTS Decidua of women with RSA expressed almost 51-times higher values of IL-7 in gene expression analysis. Immunohistochemistry identified a significant upregulation of IL-7 in the decidua of RSA specimens (p = .013) and in the decidua of women with SA (p = .004). Double-immunofluorescence confirmed decidual stroma cells as IL-7-expressing cells. CONCLUSION Significantly elevated IL-7 values in the decidua of spontaneous and recurrent miscarriages imply a crucial role of the cytokine in the signaling at the feto-maternal interface of the placenta. An overexpression of IL-7 could result in early pregnancy loss by inducing a pro-inflammatory environment. Proven to be valuable in other autoimmune diseases, targeting IL-7 signaling therapeutically may prove to be a very beneficial treatment option for RSA patients.
Collapse
Affiliation(s)
- Theresa Vilsmaier
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Niklas Amann
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Sanja Löb
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany.,Department of Obstetrics and Gynecology, University Hospital, University of Wuerzburg, LMU Munich, Germany
| | - Elisa Schmoeckel
- Department of Pathology, University Hospital, LMU Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital Augsburg, LMU Munich, Germany
| | - Alaleh Zati Zehni
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Theresa M Kolben
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Johanna Becker
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Jan-Niclas Mumm
- Department of Urology, University Hospital, LMU Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany.,Department of Obstetrics and Gynecology, University Hospital Augsburg, LMU Munich, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital Munich, LMU Munich, Germany
| |
Collapse
|
4
|
Adankwah E, Harelimana JDD, Minadzi D, Aniagyei W, Abass MK, Batsa Debrah L, Owusu DO, Mayatepek E, Phillips RO, Jacobsen M. Lower IL-7 Receptor Expression of Monocytes Impairs Antimycobacterial Effector Functions in Patients with Tuberculosis. THE JOURNAL OF IMMUNOLOGY 2021; 206:2430-2440. [PMID: 33911006 DOI: 10.4049/jimmunol.2001256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/04/2021] [Indexed: 12/29/2022]
Abstract
Altered monocyte differentiation and effector functions characterize immune pathogenesis of tuberculosis. IL-7 is an important factor for proliferation of T cells and impaired IL-7 sensitivity due to decreased IL-7 receptor α-chain (IL-7Rα) expression was found in patients with acute tuberculosis. Peripheral blood monocytes have moderate IL-7Rα expression and increased IL-7Rα levels were described for inflammatory diseases. In this study, we investigated a potential role of IL-7 and IL-7Rα expression for monocyte functions in tuberculosis. We analyzed the phenotype of monocytes in the blood from tuberculosis patients (n = 33), asymptomatic contacts of tuberculosis patients (contacts; n = 30), and healthy controls (n = 20) from Ghana by multicolor flow cytometry. Mycobacterial components were analyzed for their capacity to induce IL-7Rα expression in monocytes. Functional effects of monocyte to IL-7 were measured during signaling and by using an antimycobacterial in vitro kill assay. Monocytes were more frequent in peripheral blood from patients with tuberculosis and especially higher proportions of CD14+/CD16+ (M1/2) monocytes with increased PD-L1 expression characterized acute tuberculosis. IL-7Rα expression was decreased particularly on M1/2 monocytes from patients with tuberculosis and aberrant low expression IL-7Rα correlated with high PD-L1 levels. Constitutive low pSTAT5 levels of monocytes ex vivo and impaired IL-7 response confirmed functionally decreased monocyte IL-7 sensitivity of patients with tuberculosis. Mycobacteria and mycobacterial cell wall components induced IL-7 receptor expression in monocytes and IL-7 boosted mycobacterial killing by monocyte-derived macrophages in vitro. We demonstrated impaired monocyte IL-7 receptor expression as well as IL-7 sensitivity in tuberculosis with potential effects on antimycobacterial effector functions.
Collapse
Affiliation(s)
- Ernest Adankwah
- Department of General Pediatrics, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jean De Dieu Harelimana
- Department of General Pediatrics, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Difery Minadzi
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Wilfred Aniagyei
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | | | - Linda Batsa Debrah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Dorcas O Owusu
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Ertan Mayatepek
- Department of General Pediatrics, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Richard O Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana.,School of Public Health, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Marc Jacobsen
- Department of General Pediatrics, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Marković I, Savvides SN. Modulation of Signaling Mediated by TSLP and IL-7 in Inflammation, Autoimmune Diseases, and Cancer. Front Immunol 2020; 11:1557. [PMID: 32849527 PMCID: PMC7396566 DOI: 10.3389/fimmu.2020.01557] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022] Open
Abstract
Thymic Stromal Lymphopoietin (TSLP) and Interleukin-7 (IL-7) are widely studied cytokines within distinct branches of immunology. On one hand, TSLP is crucially important for mediating type 2 immunity at barrier surfaces and has been linked to widespread allergic and inflammatory diseases of the airways, skin, and gut. On the other hand, IL-7 operates at the foundations of T-cell and innate lymphoid cell (ILC) development and homeostasis and has been associated with cancer. Yet, TSLP and IL-7 are united by key commonalities in their structure and the structural basis of the receptor assemblies they mediate to initiate cellular signaling, in particular their cross-utilization of IL-7Rα. As therapeutic targeting of TSLP and IL-7 via diverse approaches is reaching advanced stages and in light of the plethora of mechanistic and structural data on receptor signaling mediated by the two cytokines, the time is ripe to provide integrated views of such knowledge. Here, we first discuss the major pathophysiological roles of TSLP and IL-7 in autoimmune diseases, inflammation and cancer. Subsequently, we curate structural and mechanistic knowledge about receptor assemblies mediated by the two cytokines. Finally, we review therapeutic avenues targeting TSLP and IL-7 signaling. We envision that such integrated view of the mechanism, structure, and modulation of signaling assemblies mediated by TSLP and IL-7 will enhance and fine-tune the development of more effective and selective approaches to further interrogate the role of TSLP and IL-7 in physiology and disease.
Collapse
Affiliation(s)
- Iva Marković
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Savvas N Savvides
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Tseng CC, Chen YJ, Chang WA, Tsai WC, Ou TT, Wu CC, Sung WY, Yen JH, Kuo PL. Dual Role of Chondrocytes in Rheumatoid Arthritis: The Chicken and the Egg. Int J Mol Sci 2020; 21:E1071. [PMID: 32041125 PMCID: PMC7038065 DOI: 10.3390/ijms21031071] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the inflammatory joint diseases that display features of articular cartilage destruction. The underlying disturbance results from immune dysregulation that directly and indirectly influence chondrocyte physiology. In the last years, significant evidence inferred from studies in vitro and in the animal model offered a more holistic vision of chondrocytes in RA. Chondrocytes, despite being one of injured cells in RA, also undergo molecular alterations to actively participate in inflammation and matrix destruction in the human rheumatoid joint. This review covers current knowledge about the specific cellular and biochemical mechanisms that account for the chondrocyte signatures of RA and its potential applications for diagnosis and prognosis in RA.
Collapse
Affiliation(s)
- Chia-Chun Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (Y.-J.C.); (W.-A.C.)
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (Y.-J.C.); (W.-A.C.)
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (Y.-J.C.); (W.-A.C.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Wen-Chan Tsai
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Tsan-Teng Ou
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Cheng-Chin Wu
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Wan-Yu Sung
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Jeng-Hsien Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (Y.-J.C.); (W.-A.C.)
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (W.-C.T.); (T.-T.O.); (C.-C.W.); (W.-Y.S.)
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (Y.-J.C.); (W.-A.C.)
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
7
|
Youssef RM, El-Ramly AZ, Hussien MF, Shoukry NM, Amr K. Expression of B and T lymphocyte attenuator, retinoid-related orphan receptor gamma-isoform-t and interleukin 7 in psoriasis vulgaris. Australas J Dermatol 2019; 60:e132-e137. [PMID: 30671936 DOI: 10.1111/ajd.12965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/11/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVES Psoriasis is one of the immune-mediated inflammatory diseases where CD4+ T lymphocytes, mainly Th1 cells, and B lymphocytes contribute in their pathogenesis through a pro-inflammatory effect, production of antibodies, activation of T cells and cytokine synthesis. B and T lymphocyte attenuator (BTLA) is a co-inhibitory molecule expressed on T and B lymphocytes as well as other immune cells, and it is necessary to inhibit homoeostatic expansion and activation of lymph node and skin-resident γδ T cells. BTLA expression is regulated by RORγt and IL-7. The study aimed at adding more insight on the role played by co-inhibitory molecule BTLA in psoriasis vulgaris and its inter-relation with RORγt and IL-7 to establish a basis for novel treatment strategies. METHODS This case-control study included 25 patients and 25 controls examined for gene expression of BTLA, RORγt and IL-7. RESULTS B and T lymphocyte attenuator was significantly lower in psoriasis patients, whereas both RORγt and IL-7 were higher in comparison with controls. A significant positive correlation between disease severity (PASI) and both RORγt and IL-7 as well as between RORγt and IL-7 was found. A significant negative correlation between BTLA and both RORγt and IL-7 was found. Neither the age nor the duration of disease had any correlation with BTLA, RORγt or IL-7. BTLA had no correlation with PASI. Regarding the control group, a significant negative correlation between RORγt and IL-7 was found. CONCLUSION B and T lymphocyte attenuator, RORγt and IL-7 play an important role in psoriasis.
Collapse
Affiliation(s)
| | | | | | | | - Khalda Amr
- Department of Molecular Genetics, National Research Centre, Cairo, Egypt
| |
Collapse
|
8
|
Lazić Mosler E, Lukač N, Flegar D, Fadljević M, Radanović I, Cvija H, Kelava T, Ivčević S, Šućur A, Markotić A, Katavić V, Marušić A, Grčević D, Kovačić N. Fas receptor induces apoptosis of synovial bone and cartilage progenitor populations and promotes bone loss in antigen-induced arthritis. FASEB J 2018; 33:3330-3342. [PMID: 30383451 DOI: 10.1096/fj.201801426r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rheumatoid arthritis (RA) is an inflammatory joint disease that eventually leads to permanent bone and cartilage destruction. Fas has already been established as the regulator of inflammation in RA, but its role in bone formation under arthritic conditions is not completely defined. The aim of this study was to assess the effect of Fas inactivation on the bone damage during murine antigen-induced arthritis. Subchondral bone of wild-type (WT) and Fas-knockout (Fas-/-) mice was evaluated by histomorphometry and microcomputerized tomography. Proportions of synovial bone and cartilage progenitors were assessed by flow cytometry. Synovial bone and cartilage progenitors were purified by fluorescence-activated cell sorting and expression of Fas and Fas-induced apoptosis were analyzed in vitro. Results showed that Fas-/- mice developed attenuated arthritis characterized by preserved epiphyseal bone and cartilage. A proportion of the earliest CD200+ bone and cartilage progenitors was reduced in WT mice with arthritis and was unaltered in Fas-/- mice. During osteoblastic differentiation in vitro, CD200+ cells express the highest levels of Fas and are removed by Fas ligation. These results suggest that Fas-induced apoptosis of early CD200+ osteoprogenitor population represents potential mechanism underlying the impaired bone formation in arthritis, so their preservation may represent the bone-protective mechanism during arthritis.-Lazić Mosler, E., Lukač, N., Flegar, D., Fadljević, M., Radanović, I., Cvija, H., Kelava, T., Ivčević, S., Šućur, A., Markotić, A., Katavić, V., Marušić, A., Grčević, D., Kovačić, N. Fas receptor induces apoptosis of synovial bone and cartilage progenitor populations and promotes bone loss in antigen-induced arthritis.
Collapse
Affiliation(s)
- Elvira Lazić Mosler
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Dermatology and Venerology, General Hospital Dr. Ivo Pedišić, Sisak, Croatia.,Department of Nursing, Catholic University of Croatia, Zagreb, Croatia
| | - Nina Lukač
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Darja Flegar
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Martina Fadljević
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Igor Radanović
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Hrvoje Cvija
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Tomislav Kelava
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Sanja Ivčević
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Alan Šućur
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Antonio Markotić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre for Clinical Pharmacology, University Clinical Hospital Mostar, Mostar, Bosnia and Herzegovina; and
| | - Vedran Katavić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Marušić
- Department of Research in Biomedicine and Health, University of Split School of Medicine, Split, Croatia
| | - Danka Grčević
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nataša Kovačić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
9
|
Pipi E, Nayar S, Gardner DH, Colafrancesco S, Smith C, Barone F. Tertiary Lymphoid Structures: Autoimmunity Goes Local. Front Immunol 2018; 9:1952. [PMID: 30258435 PMCID: PMC6143705 DOI: 10.3389/fimmu.2018.01952] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are frequently observed in target organs of autoimmune diseases. TLS present features of secondary lymphoid organs such as segregated T and B cell zones, presence of follicular dendritic cell networks, high endothelial venules and specialized lymphoid fibroblasts and display the mechanisms to support local adaptive immune responses toward locally displayed antigens. TLS detection in the tissue is often associated with poor prognosis of disease, auto-antibody production and malignancy development. This review focuses on the contribution of TLS toward the persistence of the inflammatory drive, the survival of autoreactive lymphocyte clones and post-translational modifications, responsible for the pathogenicity of locally formed autoantibodies, during autoimmune disease development.
Collapse
Affiliation(s)
- Elena Pipi
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Experimental Medicine Unit, Immuno-Inflammation Therapeutic Area, GSK Medicines Research Centre, Stevenage, United Kingdom
| | - Saba Nayar
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - David H Gardner
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | | | - Charlotte Smith
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Francesca Barone
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
10
|
Terrazzini N, Mantegani P, Kern F, Fortis C, Mondino A, Caserta S. Interleukin-7 Unveils Pathogen-Specific T Cells by Enhancing Antigen-Recall Responses. J Infect Dis 2018; 217:1997-2007. [PMID: 29506153 PMCID: PMC5972594 DOI: 10.1093/infdis/jiy096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Background Interleukin (IL)-7 promotes the generation, expansion, and survival of memory T cells. Previous mouse and human studies showed that IL-7 can support immune cell reconstitution in lymphopenic conditions, expand tumor-reactive T cells for adoptive immunotherapy, and enhance effector cytokine expression by autoreactive T cells. Whether pathogen-reactive T cells also benefit from IL-7 exposure remains unknown. Methods In this study, we investigated this issue in cultures of peripheral blood mononuclear cells (PBMCs) derived from patients infected with various endemic pathogens. After short-term exposure to IL-7, we measured PBMC responses to antigens derived from pathogens, such as Mycobacterium tuberculosis, Candida albicans, and cytomegalovirus, and to the superantigen Staphylococcus aureus enterotoxin B. Results We found that IL-7 favored the expansion and, in some instances, the uncovering of pathogen-reactive CD4 T cells, by promoting pathogen-specific interferon-γ, IL-2, and tumor necrosis factor recall responses. Conclusions Our findings indicate that IL-7 unveils and supports reactivation of pathogen-specific T cells with possible diagnostic, prognostic, and therapeutic significance of clinical value, especially in conditions of pathogen persistence and chronic infection.
Collapse
Affiliation(s)
- Nadia Terrazzini
- School of Pharmacy and Biomolecular Sciences, University of Brighton, United Kingdom
| | - Paola Mantegani
- Laboratory of Clinical Immunology, Clinic of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Florian Kern
- Brighton and Sussex Medical School, The University of Sussex, Falmer, East Sussex, United Kingdom
| | - Claudio Fortis
- Laboratory of Clinical Immunology, Clinic of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Caserta
- Brighton and Sussex Medical School, The University of Sussex, Falmer, East Sussex, United Kingdom
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
- School of Life Sciences, The University of Hull, United Kingdom
| |
Collapse
|
11
|
Shao B, Fu X, Yu Y, Yang D. Regulatory effects of miRNA‑181a on FasL expression in bone marrow mesenchymal stem cells and its effect on CD4+T lymphocyte apoptosis in estrogen deficiency‑induced osteoporosis. Mol Med Rep 2018; 18:920-930. [PMID: 29845202 PMCID: PMC6059724 DOI: 10.3892/mmr.2018.9026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 04/19/2018] [Indexed: 12/29/2022] Open
Abstract
Post-menopausal osteoporosis is a bone formation disorder induced by estrogen deficiency. Estrogen deficiency facilitates the differentiation and maturation of osteoclasts by activating T lymphocytes. In our previous study, it was demonstrated that estrogen promotes bone marrow mesenchymal stem cell (BMMSC)‑induced osteoclast apoptosis through downregulation of microRNA (miR)‑181a and subsequent Fas ligand (FasL) protein accumulation. In the present study, the regulatory effects of miR‑181a on FasL expression in BMMSCs and the apoptotic effects of BMMSCs on cluster of differentiation (CD)4+T lymphocytes were investigated. An ovariectomized mouse model of osteoporosis (OVX) was established and CD4+T lymphocytes were isolated from the bones of these mice. The results demonstrated that the number of CD4+T lymphocytes was increased in the OVX group compared within the control group, thus suggesting that estrogen deficiency may increase CD4+T lymphocyte number. CD4+T lymphocytes were subsequently co‑cultured with estrogen‑treated BMMSCs, after which it was demonstrated that estrogen significantly promoted the apoptosis of CD4+T lymphocytes. Western blot analysis indicated that estrogen promoted the apoptosis of CD4+T lymphocytes through regulation of FasL expression in BMMSCs in a concentration‑dependent manner. Finally, miR‑181a was transfected into BMMSCs, which were co‑cultured with CD4+T lymphocytes in vitro and in vivo. The results revealed that miR‑181a exerted a negative regulatory effect on BMMSC‑induced CD4+T lymphocyte apoptosis by regulating FasL protein expression in BMMSCs; this maybe a key mechanism underlying the development of estrogen deficiency‑induced osteoporosis.
Collapse
Affiliation(s)
- Bingyi Shao
- Department of Operative Dentistry and Endodontics, Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Xiaohui Fu
- Department of Orthodontics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yang Yu
- Department of Operative Dentistry and Endodontics, Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 401147, P.R. China
| | - Deqin Yang
- Department of Operative Dentistry and Endodontics, Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing 401147, P.R. China
| |
Collapse
|
12
|
Zhou J, Yu Q. Anti-IL-7 receptor-α treatment ameliorates newly established Sjögren's-like exocrinopathy in non-obese diabetic mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2438-2447. [PMID: 29680668 DOI: 10.1016/j.bbadis.2018.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022]
Abstract
The levels of interleukin (IL)-7 and its receptor are elevated in the salivary glands of patients with Sjögren's syndrome (SS). Our previous study indicates that IL-7 plays a critical pathogenic role in the development and onset of SS in a mouse model of this disease. The present study aims at determining whether IL-7 also plays a role in sustaining SS pathologies after the disease onset, by using the non-obese diabetic (NOD) model. Intraperitoneal administration of a blocking antibody against the IL-7 receptor α chain (IL-7Rα) to female NOD mice aged 10 weeks, which exhibited newly onset clinical SS, for the duration of 3 weeks significantly ameliorated characteristic SS pathologies including hyposalivation and leukocyte infiltration of the submandibular glands (SMGs). These changes were accompanied by a decrease in IFN-γ-producing CD4 T- and CD8 T cells, B cells, and lymphocyte chemoattractants CXCL9, -10, -11 and -13 in the SMGs. Anti-IL-7Rα treatment markedly diminished the amount of TNF-α in the SMGs and increased the level of claudin-1 and aquaporin 5, two molecules critical for normal salivary secretion. Furthermore, neutralization of IFN-γ and TNF-α, individually or in combination, considerably improved salivary secretion, reduced leukocyte infiltration and down-regulated CXCL9 and -13 expression in the SMGs. Collectively, the results indicate that endogenous IL-7R signals promote Th1 and Tc1 responses and IFN-γ- and TNF-α production to sustain the persistence of SS-like sialadenitis in NOD mice. These findings suggest that IL-7 and Th1 cytokines could serve as promising therapeutic targets for this prevalent autoimmune disease.
Collapse
Affiliation(s)
- Jing Zhou
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115
| | - Qing Yu
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115..
| |
Collapse
|
13
|
Kim JH, Sim JH, Lee S, Seol MA, Ye SK, Shin HM, Lee EB, Lee YJ, Choi YJ, Yoo WH, Kim JH, Kim WU, Lee DS, Kim JH, Kang I, Kang SW, Kim HR. Interleukin-7 Induces Osteoclast Formation via STAT5, Independent of Receptor Activator of NF-kappaB Ligand. Front Immunol 2017; 8:1376. [PMID: 29104576 PMCID: PMC5655015 DOI: 10.3389/fimmu.2017.01376] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/06/2017] [Indexed: 12/14/2022] Open
Abstract
Interleukin-7 (IL-7), which is required for the development and survival of T cells in the thymus and periphery, plays a role in joint destruction. However, it remains unclear how IL-7 affects osteoclast formation. Thus, we investigated the mechanism by which IL-7 induced osteoclast formation through IL-7 receptor α (IL-7Rα) in osteoclast precursors. We cultured peripheral blood mononuclear cells or synovial fluid mononuclear cells with IL-7 in the presence or absence of an appropriate inhibitor to analyze osteoclast formation. We also constructed IL-7Rα-expressing RAW264.7 cells to uncover the mechanism(s) by which IL-7 induced osteoclast formation differed from that of receptor activator of nuclear factor κB ligand (RANKL). We found that IL-7 induced osteoclast formation of human monocytes from peripheral blood or synovial fluid in a RANKL-independent and a signal transducer and activator of transcription 5 (STAT5)-dependent manner. IL-7-induced osteoclasts had unique characteristics, such as small, multinucleated tartrate-resistant acid phosphatase positive cells and no alterations even when RANKL was added after IL-7 pretreatment. RAW264.7 cells, if overexpressing IL-7Rα, also were able to differentiate into osteoclasts by IL-7 through a STAT5 signaling pathway. Furthermore, IL-7-induced osteoclast formation was repressed by inhibitors of the IL-7R signaling molecules Janus kinase and STAT5. Our findings demonstrate that IL-7 is a truly osteoclastogenic factor, which may induce osteoclast formation via activation of STAT5, independent of RANKL. We also suggest the possibility that an IL-7R pathway blocker could alleviate joint damage by inhibiting osteoclast formation, especially in inflammatory conditions.
Collapse
Affiliation(s)
- Jin-Hee Kim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, South Korea
| | - Ji Hyun Sim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Sunkyung Lee
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Min A Seol
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang-Kyu Ye
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea.,Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea.,Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyun Mu Shin
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea.,Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Eun Bong Lee
- Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Yun Jong Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Yun Jung Choi
- Department of Internal Medicine, Chonbuk National University Medical School and Research Institute of Clinical Medicine of Chonbuk National University Hospital, Jeonju, South Korea
| | - Wan-Hee Yoo
- Department of Internal Medicine, Chonbuk National University Medical School and Research Institute of Clinical Medicine of Chonbuk National University Hospital, Jeonju, South Korea
| | - Jin Hyun Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Wan-Uk Kim
- Department of Internal Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Dong-Sup Lee
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea.,Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jin-Hong Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Insoo Kang
- Department of Internal Medicine, Section of Rheumatology, Yale University School of Medicine, New Haven, CT, United States
| | - Seong Wook Kang
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hang-Rae Kim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea.,Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
14
|
Park YS, Gauna AE, Cha S. Mouse Models of Primary Sjogren's Syndrome. Curr Pharm Des 2016; 21:2350-64. [PMID: 25777752 DOI: 10.2174/1381612821666150316120024] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/13/2015] [Indexed: 01/03/2023]
Abstract
Sjogren's syndrome (SjS) is a chronic autoimmune disorder characterized by immune cell infiltration and progressive injury to the salivary and lacrimal glands. As a consequence, patients with SjS develop xerostomia (dry mouth) and keratoconjunctivitis sicca (dry eyes). SjS is the third most common rheumatic autoimmune disorder, affecting 4 million Americans with over 90% of patients being female. Current diagnostic criteria for SjS frequently utilize histological examinations of minor salivary glands for immune cell foci, serology for autoantibodies, and dry eye evaluation by corneal or conjunctival staining. SjS can be classified as primary or secondary SjS, depending on whether it occurs alone or in association with other systemic rheumatic conditions, respectively. Clinical manifestations typically become apparent when the disease is relatively advanced in SjS patients, which poses a challenge for early diagnosis and treatment of SjS. Therefore, SjS mouse models, because of their close resemblance to the human SjS, have been extremely valuable to identify early disease markers and to investigate underlying biological and immunological dysregulations. However, it is important to bear in mind that no single mouse model has duplicated all aspects of SjS pathogenesis and clinical features, mainly due to the multifactorial etiology of SjS that includes numerous susceptibility genes and environmental factors. As such, various mouse models have been developed in the field to try to recapitulate SjS. In this review, we focus on recent mouse models of primary SjS xerostomia and describe them under three categories of spontaneous, genetically engineered, and experimentally induced models. In addition, we discuss future perspectives highlighting pros and cons of utilizing mouse models and current demands for improved models.
Collapse
Affiliation(s)
| | | | - Seunghee Cha
- Department of Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL32610, USA.
| |
Collapse
|
15
|
Zhou J, Jin JO, Du J, Yu Q. Innate Immune Signaling Induces IL-7 Production, Early Inflammatory Responses, and Sjögren's-Like Dacryoadenitis in C57BL/6 Mice. Invest Ophthalmol Vis Sci 2016; 56:7831-8. [PMID: 26658504 DOI: 10.1167/iovs.15-17368] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Innate immune signaling elicited by polyinosinic-polycytidylic acid (poly I:C) induces IL-7 production and early inflammatory responses in the salivary gland and accelerates the development of Sjögren's syndrome (SS)-like sialadenitis. Whether poly I:C can induce similar responses in the lacrimal gland (LAC) has not been characterized. In this study, we examined the early responses and pathologic changes of the LAC tissue in response to poly I:C treatment. METHODS Poly I:C or recombinant human IL-7 was injected intraperitoneally into C57BL/6 mice, and the LAC was harvested at different time points. Expression of chemokines and cytokines in the LAC was measured by RT-PCR, immunofluorescence staining, and immunohistochemistry. Leukocytic infiltration and caspase-3 activation were analyzed by hematoxylin and eosin staining and immunohistochemistry. Serum antinuclear antibody levels were also determined. Tear secretion was measured by phenol red cotton threads. RESULTS Administration of poly I:C induced IL-7 gene expression and protein production in the LAC. Poly I:C also induced the expression of CXCR3 ligands, monocyte chemoattractant protein-1, IL-23p19, and TNF-α in the LAC in an IL-7-dependent fashion. Similarly to poly I:C, administration of exogenous IL-7 also up-regulated these proinflammatory mediators. Furthermore, repeated administration of poly I:C to C57BL/6 mice over an 8-day period caused leukocytic infiltration and caspase-3 activation in the LAC, antinuclear antibody production, and impaired tear secretion. CONCLUSIONS Poly I:C induces IL-7 production, early inflammatory responses, and characteristic pathologies of SS-like dacryoadenitis in non-autoimmune-prone C57BL/6 mice. These findings provide new evidence that viral infection-elicited innate immune signaling may be one of the early triggers of SS-like dacryoadenitis.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, United States 2Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States
| | - Jun-O Jin
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, United States
| | - Juan Du
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, United States
| | - Qing Yu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, United States 2Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States
| |
Collapse
|
16
|
Mateen S, Zafar A, Moin S, Khan AQ, Zubair S. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin Chim Acta 2016; 455:161-71. [PMID: 26883280 DOI: 10.1016/j.cca.2016.02.010] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune disease of unknown etiology. It is characterized by the presence of rheumatoid factor and anti-citrullinated peptide antibodies. Initial phase of RA involves the activation of both T and B cells. Cytokines have a crucial role in the pathophysiology of RA as pro-inflammatory cytokines such as TNFα, IL-1, IL-17 stimulates inflammation and degradation of bone and cartilage. There occurs an imbalance between the pro- and anti-inflammatory cytokine activities which leads to multisystem immune complications. There occurs a decline in the number of Treg cells which may also play an important role in pathophysiology of the disease. In RA patients, serum or plasma level of cytokines may indicate the severity of disease. Cytokine gene polymorphism could be used as markers of susceptibility and severity of RA. Anti-cytokine agents seem to emerge as potent drug molecules to treat RA. Many clinical trials are ongoing and several positive results have been obtained. There is a need to develop potential anti-cytokine agents that target numerous pathways involved in the pathogenesis of RA. This review article describes the effector functions of pro- and anti-inflammatory cytokines and the role of cytokine gene polymorphism in the pathogenesis of RA. Anti-cytokine agents that are currently available and those that are still in clinical trials have also been summarized.
Collapse
Affiliation(s)
- Somaiya Mateen
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh -202002, India.
| | - Atif Zafar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh -202002, India
| | - Shagufta Moin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh -202002, India
| | - Abdul Qayyum Khan
- Department of Orthopedic Surgery, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh -202002, India
| | - Swaleha Zubair
- Women's college, Aligarh Muslim University, Aligarh, Uttar Pradesh -202002, India
| |
Collapse
|
17
|
Increased Blood Levels of Growth Factors, Proinflammatory Cytokines, and Th17 Cytokines in Patients with Newly Diagnosed Type 1 Diabetes. PLoS One 2015; 10:e0142976. [PMID: 26636339 PMCID: PMC4670260 DOI: 10.1371/journal.pone.0142976] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022] Open
Abstract
The production of several cytokines could be dysregulated in type 1 diabetes (T1D). In particular, the activation of T helper (Th) type 1 (Th1) cells has been proposed to underlie the autoimmune pathogenesis of the disease, although roles for inflammatory processes and the Th17 pathway have also been shown. Nevertheless, despite evidence for the role of cytokines before and at the onset of T1D, the corresponding findings are inconsistent across studies. Moreover, conflicting data exist regarding the blood cytokine levels in T1D patients. The current study was performed to investigate genetic and autoantibody markers in association with the peripheral blood cytokine profiles by xMap multiplex technology in newly diagnosed young T1D patients and age-matched healthy controls. The onset of young-age T1D was characterized by the upregulation of growth factors, including granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-7, the proinflammatory cytokine IL-1β (but not IL-6 or tumor necrosis factor [TNF]-α), Th17 cytokines, and the regulatory cytokines IL-10 and IL-27. Ketoacidosis and autoantibodies (anti-IA-2 and -ZnT8), but not human leukocyte antigen (HLA) genotype, influenced the blood cytokine levels. These findings broaden the current understanding of the dysregulation of systemic levels of several key cytokines at the young-age onset of T1D and provide a further basis for the development of novel immunoregulatory treatments in this disease.
Collapse
|
18
|
Nata T, Basheer A, Cocchi F, van Besien R, Massoud R, Jacobson S, Azimi N, Tagaya Y. Targeting the binding interface on a shared receptor subunit of a cytokine family enables the inhibition of multiple member cytokines with selectable target spectrum. J Biol Chem 2015; 290:22338-51. [PMID: 26183780 DOI: 10.1074/jbc.m115.661074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 02/04/2023] Open
Abstract
The common γ molecule (γc) is a shared signaling receptor subunit used by six γc-cytokines. These cytokines play crucial roles in the differentiation of the mature immune system and are involved in many human diseases. Moreover, recent studies suggest that multiple γc-cytokines are pathogenically involved in a single disease, thus making the shared γc-molecule a logical target for therapeutic intervention. However, the current therapeutic strategies seem to lack options to treat such cases, partly because of the lack of appropriate neutralizing antibodies recognizing the γc and, more importantly, because of the inherent and practical limitations in the use of monoclonal antibodies. By targeting the binding interface of the γc and cytokines, we successfully designed peptides that not only inhibit multiple γc-cytokines but with a selectable target spectrum. Notably, the lead peptide inhibited three γc-cytokines without affecting the other three or non-γc-cytokines. Biological and mutational analyses of our peptide provide new insights to our current understanding on the structural aspect of the binding of γc-cytokines the γc-molecule. Furthermore, we provide evidence that our peptide, when conjugated to polyethylene glycol to gain stability in vivo, efficiently blocks the action of one of the target cytokines in animal models. Collectively, our technology can be expanded to target various combinations of γc-cytokines and thereby will provide a novel strategy to the current anti-cytokine therapies against immune, inflammatory, and malignant diseases.
Collapse
Affiliation(s)
- Toshie Nata
- From the Cell Biology Laboratory, Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | | | - Fiorenza Cocchi
- From the Cell Biology Laboratory, Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Richard van Besien
- From the Cell Biology Laboratory, Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Raya Massoud
- the Section of Neuroimmunology, NINDS, National Institutes of Health, Bethesda, Maryland 20890
| | - Steven Jacobson
- the Section of Neuroimmunology, NINDS, National Institutes of Health, Bethesda, Maryland 20890
| | | | - Yutaka Tagaya
- From the Cell Biology Laboratory, Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201,
| |
Collapse
|
19
|
Zhang Y, Guo M, Xin N, Shao Z, Zhang X, Zhang Y, Chen J, Zheng S, Fu L, Wang Y, Zhou D, Chen H, Huang Y, Dong R, Xiao C, Liu Y, Geng D. Decreased microRNA miR-181c expression in peripheral blood mononuclear cells correlates with elevated serum levels of IL-7 and IL-17 in patients with myasthenia gravis. Clin Exp Med 2015; 16:413-21. [PMID: 25962782 DOI: 10.1007/s10238-015-0358-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/05/2015] [Indexed: 11/30/2022]
Abstract
miR-181c is a newly identified negative regulator of immune cell activation. In this study, we aimed to investigate the expression and functional role of miR-181c in myasthenia gravis (MG). miR-181c showed significant downregulation in peripheral blood mononuclear cells (PBMCs) from MG patients compared with healthy controls, with lower expression in generalized patients than in ocular ones. MG patients also had increased serum IL-7 and IL-17 levels. Additionally, serum IL-7 level presents a positive correlation with the serum IL-17 level. miR-181c levels were negatively correlated with serum levels of IL-7 and IL-17 in either generalized patients or ocular patients. A luciferase reporter assay revealed that miR-181c could directly bind to the 3'-UTR of interleukin-7. Forced expression of miR-181c led to decreased IL-7 and IL-17 release in cultured PBMCs, while depletion of miR-181c increased the secretion of these two proinflammatory cytokines. The results from our study suggested for the first time that miR-181c was able to negatively regulate the production of proinflammatory cytokines IL-7 and IL-17 in MG patients, and it is a novel potential therapeutic target for MG.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China.
| | - Mingfeng Guo
- Department of Emergency Medicine, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Ning Xin
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Zhen Shao
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xiuying Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yanyan Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jing Chen
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Shuangshuang Zheng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Linlin Fu
- Department of Pathogenic Biology and Lab of Infection and Immunology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - YuZhong Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Dongmei Zhou
- Department of Pathogenic Biology and Lab of Infection and Immunology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Hao Chen
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yan Huang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Ruiguo Dong
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China.
| | - Chenghua Xiao
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yonghai Liu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| |
Collapse
|
20
|
Radiolabeled semi-quantitative RT-PCR assay for the analysis of alternative splicing of interleukin genes. Methods Mol Biol 2015; 1172:343-62. [PMID: 24908320 DOI: 10.1007/978-1-4939-0928-5_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alternative splicing evolved as a very efficient way to generate proteome diversity from a limited number of genes, while at the same time modulating posttranscriptional events of gene expression-such as stability, turnover, subcellular localization, binding properties, and general activity of both mRNAs and proteins. Since the vast majority of human genes undergo alternative splicing, it comes to no surprise that interleukin genes also show extensive alternative splicing. In fact, there is a growing body of evidence indicating that alternative splicing plays a central role in modulating the pleiotropic functions of cytokines, and aberrant expression of alternatively spliced interleukin mRNAs has been linked to disease. However, while several interleukin splice variants have been described, their function is still poorly understood. This is particularly relevant, since alternatively spliced cytokine isoforms can act both as disease biomarkers and as candidate entry points for therapeutic intervention. In this chapter we describe a protocol that uses radiolabeled semi-quantitative RT-PCR to efficiently detect, analyze, and quantify alternative splicing patterns of cytokine genes.
Collapse
|
21
|
Malemud CJ, Blumenthal DE. Protein kinase small molecule inhibitors for rheumatoid arthritis: Medicinal chemistry/clinical perspectives. World J Orthop 2014; 5:496-503. [PMID: 25232525 PMCID: PMC4133455 DOI: 10.5312/wjo.v5.i4.496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/28/2014] [Accepted: 06/20/2014] [Indexed: 02/06/2023] Open
Abstract
Medicinal chemistry strategies have contributed to the development, experimental study of and clinical trials assessment of the first type of protein kinase small molecule inhibitor to target the Janus kinase/Signal Transducers and Activators of Transcription (JAK/STAT) signaling pathway. The orally administered small molecule inhibitor, tofacitinib, is the first drug to target the JAK/STAT pathway for entry into the armamentarium of the medical therapy of rheumatoid arthritis. The introduction of tofacitinib into general rheumatologic practice coupled with increasing understanding that additional cellular signal transduction pathways including the mitogen-activated protein kinase and phosphatidylinositide-3-kinase/Akt/mammalian target of rapamycin pathways as well as spleen tyrosine kinase also contribute to immune-mediated inflammatory in rheumatoid arthritis makes it likely that further development of orally administered protein kinase small molecule inhibitors for rheumatoid arthritis will occur in the near future.
Collapse
|
22
|
Innate immune signaling induces interleukin-7 production from salivary gland cells and accelerates the development of primary Sjögren's syndrome in a mouse model. PLoS One 2013; 8:e77605. [PMID: 24147035 PMCID: PMC3798297 DOI: 10.1371/journal.pone.0077605] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/10/2013] [Indexed: 01/04/2023] Open
Abstract
Elevated IL-7 in the target tissues is closely associated with multiple autoimmune disorders, including Sjögren’s syndrome (SS). We recently found that IL-7 plays an essential role in the development and onset of primary SS (pSS) in C57BL/6.NOD-Aec1Aec2 mice, a well-defined mouse model of primary SS. However, environmental signals that cause excessive IL-7 production are not well-characterized. Innate immune signaling plays a critical role in shaping the adaptive immune responses including autoimmune responses. We and others have previously shown that innate immune signaling can induce IL-7 expression in lungs and intestines of C57BL/6 mice. In this study, we characterized the effects of poly I:C, a double-stranded RNA analog and toll-like receptor 3 agonist, on the induction of IL-7 expression in salivary glands and on pSS development. We showed that poly I:C administration to C57BL/6 mice rapidly induced IL-7 expression in the salivary glands in a type 1 IFN- and IFN-γ-dependent manner. Moreover, poly I:C-induced IL-7 contributed to the optimal up-regulation of CXCL9 in the salivary glands, which may subsequently promote recruitment of more IFN-γ-producing T cells. Repeated administration of poly I:C to C57BL/6.NOD-Aec1Aec2 mice accelerated the development of SS-like exocrinopathy, and this effect was abolished by the blockade of IL-7 receptor signaling with a neutralizing antibody. Finally, poly I:C or a combination of IFN-α and IFN-γ induced IL-7 gene expression and protein production in a human salivary gland epithelial cell line. Hence, we demonstrate that IL-7 expression in the salivary gland cells can be induced by poly I:C and delineate a crucial mechanism by which innate immune signals facilitate the development of pSS, which is through induction of IL-7 in the target tissues.
Collapse
|
23
|
Jin JO, Kawai T, Cha S, Yu Q. Interleukin-7 enhances the Th1 response to promote the development of Sjögren's syndrome-like autoimmune exocrinopathy in mice. ACTA ACUST UNITED AC 2013; 65:2132-42. [PMID: 23666710 DOI: 10.1002/art.38007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 04/30/2013] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Although elevated interleukin-7 (IL-7) levels have been reported in patients with primary Sjögren's syndrome (SS), the role of IL-7 in this disease remains unclear. We undertook this study to characterize the previously unexplored role of IL-7 in the development and onset of primary SS using the C57BL/6.NOD-Aec1Aec2 (B6.NOD-Aec) mouse model, which recapitulates human primary SS. METHODS For gain-of-function studies, recombinant IL-7 or control phosphate buffered saline was injected intraperitoneally (IP) into 12-week-old B6.NOD-Aec mice for 8 weeks. For loss-of-function studies, anti-IL-7 receptor α-chain (anti-IL-7Rα) antibody or its isotype control IgG was administered IP into 16-week-old B6.NOD-Aec mice. Salivary flow measurement, histologic and flow cytometric analysis of salivary glands, and serum antinuclear antibody assay were performed to assess various disease parameters. RESULTS Administration of exogenous IL-7 accelerated the development of primary SS, whereas blockade of IL-7Rα signaling almost completely abolished the development of primary SS, based on salivary gland inflammation and apoptosis, autoantibody production, and secretory dysfunction. IL-7 positively regulated interferon-γ (IFNγ)-producing Th1 and CD8+ T cells in the salivary glands without affecting IL-17. Moreover, IL-7 enhanced the expression of CXCR3 ligands in a T cell- and IFNγ-dependent manner. Accordingly, IFNγ induced a human salivary gland epithelial cell line to produce CXCR3 ligands. IL-7 also increased the level of tumor necrosis factor α, another Th1-associated cytokine that can facilitate tissue destruction and inflammation. CONCLUSION IL-7 plays a pivotal pathogenic role in SS, which is underpinned by an enhanced Th1 response and IFNγ/CXCR3 ligand-mediated lymphocyte infiltration of target organs. These results suggest that targeting the IL-7 pathway may be a potential future strategy for preventing and treating SS.
Collapse
Affiliation(s)
- Jun-O Jin
- The Forsyth Institute, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
24
|
Bekiaris V, Šedy JR, Rossetti M, Spreafico R, Sharma S, Rhode-Kurnow A, Ware BC, Huang N, Macauley MG, Norris PS, Albani S, Ware CF. Human CD4+CD3- innate-like T cells provide a source of TNF and lymphotoxin-αβ and are elevated in rheumatoid arthritis. THE JOURNAL OF IMMUNOLOGY 2013; 191:4611-8. [PMID: 24078690 DOI: 10.4049/jimmunol.1301672] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Innate lymphoid cells encompass a diverse array of lymphocyte subsets with unique phenotype that initiate inflammation and provide host defenses in specific microenvironments. In this study, we identify a rare human CD4(+)CD3(-) innate-like lymphoid population with high TNF expression that is enriched in blood from patients with rheumatoid arthritis. These CD4(+)CD3(-) cells belong to the T cell lineage, but the lack of AgR at the cell surface renders them nonresponsive to TCR-directed stimuli. By developing a culture system that sustains survival, we show that CD4(+)CD3(-) innate-like T cells display IL-7-dependent induction of surface lymphotoxin-αβ, demonstrating their potential to modify tissue microenvironments. Furthermore, expression of CCR6 on the CD4(+)CD3(-) population defines a CD127(high) subset that is highly responsive to IL-7. This CD4(+)CD3(-) population is enriched in the peripheral blood from rheumatoid arthritis patients, suggesting a link to their involvement in chronic inflammatory disease.
Collapse
Affiliation(s)
- Vasileios Bekiaris
- Infectious and Inflammatory Disease Center, Sanford
- Burnham Medical Research Institute, La Jolla, CA 92037
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen Z, Kim SJ, Chamberlain ND, Pickens SR, Volin MV, Volkov S, Arami S, Christman JW, Prabhakar BS, Swedler W, Mehta A, Sweiss N, Shahrara S. The novel role of IL-7 ligation to IL-7 receptor in myeloid cells of rheumatoid arthritis and collagen-induced arthritis. THE JOURNAL OF IMMUNOLOGY 2013; 190:5256-66. [PMID: 23606539 DOI: 10.4049/jimmunol.1201675] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although the role of IL-7 and IL-7R has been implicated in the pathogenesis of rheumatoid arthritis (RA), the majority of the studies have focused on the effect of IL-7/IL-7R in T cell development and function. Our novel data, however, document that patients with RA and greater disease activity have higher levels of IL-7, IL-7R, and TNF-α in RA monocytes, suggesting a feedback regulation between IL-7/IL-7R and TNF-α cascades in myeloid cells that is linked to chronic disease progression. Investigations into the involved mechanism showed that IL-7 is a novel and potent chemoattractant that attracts IL-7R(+) monocytes through activation of the PI3K/AKT1 and ERK pathways at similar concentrations of IL-7 detected in RA synovial fluid. To determine whether ligation of IL-7 to IL-7R is a potential target for RA treatment and to identify their mechanism of action, collagen-induced arthritis (CIA) was therapeutically treated with anti-IL-7 Ab or IgG control. Anti-IL-7 Ab treatment significantly reduces CIA monocyte recruitment and osteoclast differentiation as well as potent joint monocyte chemoattractants and bone erosion markers, suggesting that both direct and indirect pathways might contribute to the observed effect. We also demonstrate that reduction in joint MIP-2 levels is responsible for suppressed vascularization detected in mice treated with anti-IL-7 Ab compared with the control group. To our knowledge, we show for the first time that expression of IL-7/IL-7R in myeloid cells is strongly correlated with RA disease activity and that ligation of IL-7 to IL-7R contributes to monocyte homing, differentiation of osteoclasts, and vascularization in the CIA effector phase.
Collapse
Affiliation(s)
- Zhenlong Chen
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zupan J, Jeras M, Marc J. Osteoimmunology and the influence of pro-inflammatory cytokines on osteoclasts. Biochem Med (Zagreb) 2013; 23:43-63. [PMID: 23457765 PMCID: PMC3900089 DOI: 10.11613/bm.2013.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bone and immune system are functionally interconnected. Immune and bone cells derive from same progenitors in the bone marrow, they share a common microenvironment and are being influenced by similar mediators. The evidence on increased bone resorption associated with inappropriate activation of T cells such as during inflammation, is well established. However, the molecular mechanisms beyond this clinical observation have begun to be intensively studied with the advancement of osteoimmunology. Now days, we have firm evidence on the influence of numerous proinflammatory cytokines on bone cells, with the majority of data focused on osteoclasts, the bone resorbing cells. It has been shown that some proinflammatory cytokines could possess osteoclastogenic and/or anti-osteoclastogenic properties and can target osteoclasts directly or via receptor activator of nuclear factor κB (RANK)/RANK ligand(RANKL)/osteoprotegerin (OPG) system. Several studies have reported opposing data regarding (anti)osteoclastogenic properties of these cytokines. Therefore, the first part of this review is summarizing current evidence on the influence of pro-inflammatory cytokines on osteoclasts and thus on bone resorption. In the second part, the evidence on the role of pro-inflammatory cytokines in osteoporosis and osteoarthritis is reviewed to show that unravelling the mechanisms beyond such complex bone diseases, is almost impossible without considering skeletal and immune systems as an indivisible integrated system.
Collapse
Affiliation(s)
- Janja Zupan
- University of Ljubljana, Faculty of Pharmacy, Department of Clinical Biochemistry, Ljubljana, Slovenia
| | | | | |
Collapse
|
27
|
Cytokine levels in the serum of healthy subjects. Mediators Inflamm 2013; 2013:434010. [PMID: 23533306 PMCID: PMC3606775 DOI: 10.1155/2013/434010] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/16/2013] [Indexed: 01/21/2023] Open
Abstract
Growing knowledge about the cytokine network response has led to a better comprehension of mechanisms of pathologies and to the development of new treatments with biological drugs, able to block specific molecules of the immune response. Indeed, when the cytokine production is deregulated, diseases often occur. The understanding of the physiological mechanism of the cytokine network would be useful to better comprehend pathological conditions. Moreover, since the immune system and response change their properties with development, differences in patients' age should be taken into account, both in physiological and in pathological conditions. In this study, we analyzed the profile of 48 cytokines and chemokines in the serum of healthy subjects, comparing adults (≥18 years) with young children and children (1–6 and 7–17 years). We found that a certain number of cytokines were not being produced in healthy subjects; others showed a constant serum level amongst the groups. Certain cytokines exhibited a downward or an upward trend with increasing age. The remaining cytokines were up- or downregulated in the group of the children with respect to the other groups. In conclusion, we drew some kinds of guidelines about the physiological production of cytokines and chemokines, underling the difference caused by aging.
Collapse
|
28
|
Pickens SR, Chamberlain ND, Volin MV, Pope RM, Talarico NE, Mandelin AM, Shahrara S. Characterization of interleukin-7 and interleukin-7 receptor in the pathogenesis of rheumatoid arthritis. ACTA ACUST UNITED AC 2013; 63:2884-93. [PMID: 21647866 DOI: 10.1002/art.30493] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To characterize the expression of interleukin-7 (IL-7) and IL-7 receptor (IL-7R) in rheumatoid arthritis (RA) synovial tissue and to examine their regulation and pathogenic role in macrophages, endothelial cells, and synovial tissue fibroblasts in RA. METHODS Expression of IL-7 and IL-7R in RA and normal synovial tissue was demonstrated by immunohistochemistry. Expression and regulation of IL-7 and IL-7R in RA peripheral blood in vitro-differentiated macrophages, RA synovial tissue fibroblasts, and human microvascular endothelial cells (HMVECs) were determined by real-time reverse transcription-polymerase chain reaction and/or flow cytometry. Enzyme-linked immunosorbent assay was used to examine production of proangiogenic factors by IL-7-activated macrophages, RA fibroblasts, and endothelial cells. RESULTS IL-7 and IL-7R were coexpressed on RA synovial tissue lining and sublining macrophages and endothelial cells. Expression of IL-7 and its receptor was significantly elevated in RA synovial fluid and peripheral blood macrophages as well as RA fibroblasts, compared to normal cells. Toll-like receptor 4 ligation (with lipopolysaccharide) and tumor necrosis factor α (TNFα) stimulation modulated expression of IL-7 and IL-7R on RA macrophages and HMVECs. However, in RA fibroblasts, lipopolysaccharide and TNFα activation increased expression of IL-7R only. IL-7 also mediated RA pathogenesis by inducing production of potent proangiogenic factors from macrophages and endothelial cells. CONCLUSION We have identified, for the first time, regulators of IL-7 and IL-7R expression in RA fibroblasts, RA peripheral blood in vitro-differentiated macrophages, and endothelial cells. Our results document a novel role of IL-7 in RA angiogenesis.
Collapse
Affiliation(s)
- Sarah R Pickens
- University of Illinois at Chicago, Department of Medicine, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Dysfunctional intracellular signaling involving deregulated activation of the Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) and "cross-talk" between JAK/STAT and the stress-activated protein kinase/mitogen-activated protein kinase (SAPK/MAPK) and Phosphatidylinositide-3-Kinase/AKT/mammalian Target of Rapamycin (PI-3K/AKT/mTOR) pathways play a critical role in rheumatoid arthritis. This is exemplified by immune-mediated chronic inflammation, up-regulated matrix metalloproteinase gene expression, induction of articular chondrocyte apoptosis and "apoptosis-resistance" in rheumatoid synovial tissue. An important consideration in the development of novel therapeutics for rheumatoid arthritis will be the extent to which inhibiting these signal transduction pathways will sufficiently suppress immune cell-mediated inflammation to produce a lasting clinical remission and halt the progression of rheumatoid arthritis pathology. In that regard, the majority of the evidence accumulated over the past decade indicated that merely suppressing pro-inflammatory cytokine-mediated JAK/ STAT, SAPK/MAPK or PI-3K/AKT/mTOR activation in RA patients may be necessary but not sufficient to result in clinical improvement. Thus, targeting aberrant enzyme activities of spleen tyrosine kinase, sphingosine kinases-1, -2, transforming growth factor β-activated kinase-1, bone marrow kinase, and nuclear factor-κB-inducing kinase for intervention may also have to be considered.
Collapse
Affiliation(s)
- Charles J Malemud
- Arthritis Research Laboratory, Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University, School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| |
Collapse
|
30
|
Jin JO, Yu Q. Systemic administration of TLR3 agonist induces IL-7 expression and IL-7-dependent CXCR3 ligand production in the lung. J Leukoc Biol 2012; 93:413-25. [PMID: 23271706 DOI: 10.1189/jlb.0712360] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this study, we tested the hypothesis that systemic administration of TLR3 agonist poly I:C can enhance T cell infiltration of lung through up-regulating IL-7 expression. poly I:C, a synthetic analog of viral dsRNA and a TLR3 agonist, is studied extensively as vaccine adjuvant as a result of its pleotropic immune-stimulatory effects. Here, we show that systemic poly I:C administration induces substantial IL-7 production in the lung in a type 1 IFN- and IFN-γ-dependent fashion. Blockade of the IL-7Rα signal with a neutralizing antibody abrogated poly I:C-induced MCP-1 up-regulation, macrophage recruitment, and CXCR3 ligand expression in the lung. Conversely, administration of IL-7 enhances these events, and it does so by enhancing T cell IFN-γ production. We also show that the initial up-regulation of CXCR3 ligands and infiltration of T cells in the lung are mediated by poly I:C-induced IFN-γ from NK cells; however, the sustained and optimal CXCR3 ligand expression and T cell infiltration require poly I:C-induced IL-7 and T cell-derived IFN-γ. In a model of multiorgan inflammation elicited by adoptive transfer of immune cells into RAG1(-/-) mice, we show that poly I:C enhances IL-7 production in the lung and promotes expression of CXCR3 ligands and recruitment of IFN-γ(+) T cells in an IL-7-dependent fashion. Collectively, these results strongly support our hypothesis and delineate a new mechanism by which poly I:C boosts the T cell immune response in the lung by inducing local IL-7 production, which in turn, enhances T cell-derived IFN-γ to promote macrophage recruitment, CXCR3 ligand expression, and T cell infiltration.
Collapse
Affiliation(s)
- Jun-O Jin
- Department of Immunology and Infectious Disease, The Forsyth Institute, 245 First St., Cambridge, MA 02142, USA
| | | |
Collapse
|
31
|
Hartgring SAY, Willis CR, Bijlsma JWJ, Lafeber FPJG, van Roon JAG. Interleukin-7-aggravated joint inflammation and tissue destruction in collagen-induced arthritis is associated with T-cell and B-cell activation. Arthritis Res Ther 2012; 14:R137. [PMID: 22676399 PMCID: PMC3446520 DOI: 10.1186/ar3870] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/09/2012] [Accepted: 06/07/2012] [Indexed: 01/13/2023] Open
Abstract
Introduction We sought to investigate the capacity of interleukin (IL)-7 to enhance collagen-induced arthritis and to study by what mechanisms this is achieved. Methods Mice received multiple injections with IL-7 or phosphate-buffered saline (PBS) as a control. Arthritis severity and incidence were determined by visual examination of the paws. Joint destruction was determined by assessing radiographs and immunohistochemistry of the ankle joints. Total cellularity and numbers of T-cell and B-cell subsets were assessed, as well as ex vivo production of interferon-γ (IFN-γ), IL-17, and IL-4. Proinflammatory mediators were measured in serum with multianalyte profiling. Results IL-7 increased arthritis severity and radiology-assessed joint destruction. This was consistent with IL-7-increased intensity of cell infiltrates, bone erosions, and cartilage damage. Splenic CD19+ B cells and CD19+/GL7+ germinal center B cells, as well as CD4 and CD8 numbers, were increased by IL-7. IL-7 expanded memory T cells, associated with increased percentages of IFN-γ-, IL-4-, and IL-17-producing CD4+ T cells. On antigen restimulation of draining lymph node cells in vitro IL-7 treatment was found to increase IFN-γ and IL-17 production, whereas IL-4 was reduced. IL-7 also increased concentrations of proinflammatory mediators, indicative of T-cell activation (sCD40L), vascular activation (VCAM-1, VEGF), tissue destruction (fibroblast growth factor-basic (FGF-b), LIF), and chemotaxis (MIP-1γ, MIP-3β, lymphotactin, MDC, and MCP-5). Conclusions In arthritic mice, IL-7 causes expansion of T and B cells, associated with increased levels of proinflammatory mediators. IL-7 intensifies arthritis severity and joint destruction, accompanied by increased Th1 and Th17 activity. These data indicate that IL-7 could be an important mediator in arthritic conditions and that targeting IL-7 or its receptor represent novel therapeutic strategies.
Collapse
Affiliation(s)
- Sarita A Y Hartgring
- Department of Rheumatology & Clinical Immunology, UMC Utrecht, Heidelberglaan 100, Utrecht, PO Box 85500 F02,127 3508 GA, The Netherlands.
| | | | | | | | | |
Collapse
|
32
|
Sammicheli S, Ruffin N, Lantto R, Vivar N, Chiodi F, Rethi B. IL-7 modulates B cells survival and activation by inducing BAFF and CD70 expression in T cells. J Autoimmun 2012; 38:304-14. [DOI: 10.1016/j.jaut.2012.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/13/2012] [Accepted: 01/22/2012] [Indexed: 12/01/2022]
|
33
|
Expression and function of interleukin-7 in secondary and tertiary lymphoid organs. Semin Immunol 2012; 24:175-89. [PMID: 22444422 DOI: 10.1016/j.smim.2012.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/06/2012] [Accepted: 02/15/2012] [Indexed: 12/23/2022]
Abstract
Interleukin-7 (IL-7) is known since many years as stromal-cell derived cytokine that plays a key role for the adaptive immune system. It promotes lymphocyte development in the bone marrow and thymus as well as naive and memory T cell homeostasis in the periphery. More recently, IL-7 reporter mice and other approaches have led to the further characterization of the various stromal cell sources of IL-7 in secondary lymphoid organs (SLO) and other tissues. We will review these advances along with a discussion of the regulation of IL-7 and its receptor, and compare the biological effects IL-7 has on adaptive as well as innate immune cells in SLO. Finally, we will review the role of IL-7 in development of SLO and tertiary lymphoid tissues that frequently are associated with sites of chronic inflammation.
Collapse
|
34
|
Li R, Paul A, Ko KWS, Sheldon M, Rich BE, Terashima T, Dieker C, Cormier S, Li L, Nour EA, Chan L, Oka K. Interleukin-7 induces recruitment of monocytes/macrophages to endothelium. Eur Heart J 2011; 33:3114-23. [PMID: 21804111 DOI: 10.1093/eurheartj/ehr245] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIMS Interleukin-7 (IL-7) is a master regulator of T-cell development and homoeostasis. Increased IL-7 levels are associated with inflammatory diseases. The aims of this study were to determine whether IL-7 is a biomarker for inflammatory conditions or an active participant in atherogenesis. METHODS AND RESULTS Advanced atherosclerotic lesions in Apoe(-/-) mice were regressed by long-term cholesterol lowering through treatment with a helper-dependent adenovirus expressing apolipoprotein E (n= 6-10). Using this model, gene expression patterns in the aorta were analysed at an early phase of regression by microarray. After stringent statistical analysis, we found that IL-7 expression is significantly reduced in response to lowering of cholesterol (n= 6). To understand the importance of IL-7 down-regulation for atherosclerotic regression, we studied the effects and mechanisms of action of IL-7 on endothelial cells (ECs) in vitro as well as in vivo. Our major findings are: (i) IL-7 up-regulates cell adhesion molecules and monocyte chemoattractant protein-1 in ECs and promotes monocyte adhesion to ECs; (ii) this regulation is mediated by phosphatidylinositol 3-kinase (PI3K)/AKT-dependent and -independent activation of NF-κB; (iii) elevation of plasma IL-7 induces recruitment of monocytes/macrophages to endothelium without affecting plasma cholesterol (n= 5, 6); and (4) lack of IL-7 in bone marrow-derived cells reduces migration of monocytes/macrophages to the lesions (n= 5, 6). CONCLUSION These results suggest that IL-7 inflames endothelium via PI3K/AKT-dependent and -independent activation of NF-κB and recruits monocytes/macrophages to the endothelium, thus playing an active role in atherogenesis.
Collapse
Affiliation(s)
- Rongying Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mackall CL, Fry TJ, Gress RE. Harnessing the biology of IL-7 for therapeutic application. Nat Rev Immunol 2011; 11:330-42. [PMID: 21508983 DOI: 10.1038/nri2970] [Citation(s) in RCA: 426] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interleukin-7 (IL-7) is required for T cell development and for maintaining and restoring homeostasis of mature T cells. IL-7 is a limiting resource under normal conditions, but it accumulates during lymphopaenia, leading to increased T cell proliferation. The administration of recombinant human IL-7 to normal or lymphopenic mice, non-human primates and humans results in widespread T cell proliferation, increased T cell numbers, modulation of peripheral T cell subsets and increased T cell receptor repertoire diversity. These effects raise the prospect that IL-7 could mediate therapeutic benefits in several clinical settings. This Review summarizes the biology of IL-7 and the results of its clinical use that are available so far to provide a perspective on the opportunities for clinical application of this cytokine.
Collapse
Affiliation(s)
- Crystal L Mackall
- Immunology Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
36
|
Circulating cytokine profiles and their relationships with autoantibodies, acute phase reactants, and disease activity in patients with rheumatoid arthritis. Mediators Inflamm 2011; 2010:158514. [PMID: 21437211 PMCID: PMC3061216 DOI: 10.1155/2010/158514] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/15/2010] [Accepted: 12/27/2010] [Indexed: 11/17/2022] Open
Abstract
Our objective was to analyse the relationship between circulating cytokines, autoantibodies, acute phase reactants, and disease activity in DMARDs-naïve rheumatoid arthritis (RA) patients (n = 140). All cytokines were significantly higher in the RA cohort than in healthy controls. Moderate-to-strong positive intercorrelations were observed between Th1/Th2/macrophage/fibroblast-derived cytokines. RF correlated significantly with IL-1β, IL-2, IL-4, IL-10, IL-12, G-CSF, GM-CSF, IFN-γ, and TNF (P < .0001), and aCCP and aMCV with IL-1β, IL-2, IL-4, and IL-10 (P < .0002), while IL-6 correlated best with the acute phase reactants, CRP, and SAA (P < .0001). In patients with a DAS28 score of ≥5.1, IFN-γ, IL-1β, IL-1Ra, TNF, GM-CSF, and VEGF were significantly correlated (P < .04–.001) with high disease activity (HDA). Circulating cytokines in RA reflect a multifaceted increase in immune reactivity encompassing Th1 and Th2 cells, monocytes/macrophages, and synovial fibroblasts, underscored by strong correlations between these cytokines, as well as their relationships with RF, aCCP, and aMCV, with some cytokines showing promise as biomarkers of HDA.
Collapse
|
37
|
Ponchel F, Cuthbert RJ, Goëb V. IL-7 and lymphopenia. Clin Chim Acta 2010; 412:7-16. [PMID: 20850425 DOI: 10.1016/j.cca.2010.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/01/2010] [Accepted: 09/01/2010] [Indexed: 01/10/2023]
Abstract
Interleukin-7 (IL-7) is a growth and anti-apoptotic factor for T-lymphocytes, with potential for clinical use in the treatment of immunodeficiencies due to loss of T-cells. Lymphopenia induced by disease (HIV infection, hemodialysis or Idiopathic CD4+ lymphopenia) or by treatment (high dose chemotherapy or depleting antibodies) for cancer or auto-immune diseases results in increased circulating levels of IL-7 which decline with T-cell recovery, however, the mechanism of such response remains to be elucidated. Furthermore, IL-7 is a major player in the regulation of peripheral T-cell homeostasis and as such is an important candidate cytokine for therapy aimed at improving T-cell reconstitution following lymphopenia. Anti- IL-7 is on the other hand proposed to treat conditions where IL-7 may play a more direct role in pathogenesis such as autoimmune disease like Rheumatoid Arthritis, Multiple Sclerosis or Inflammatory Bowel disease.
Collapse
Affiliation(s)
- Frederique Ponchel
- Leeds Institute of Molecular Medicine, Section of Musculoskeletal disease, the University of Leeds, Leeds, UK.
| | | | | |
Collapse
|
38
|
van Roon JAG, Hartgring SAY, van der Wurff-Jacobs KMG, Bijlsma JWJ, Lafeber FPJG. Numbers of CD25+Foxp3+ T cells that lack the IL-7 receptor are increased intra-articularly and have impaired suppressive function in RA patients. Rheumatology (Oxford) 2010; 49:2084-9. [DOI: 10.1093/rheumatology/keq237] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
39
|
Chetoui N, Boisvert M, Gendron S, Aoudjit F. Interleukin-7 promotes the survival of human CD4+ effector/memory T cells by up-regulating Bcl-2 proteins and activating the JAK/STAT signalling pathway. Immunology 2010; 130:418-26. [PMID: 20465565 DOI: 10.1111/j.1365-2567.2009.03244.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
SUMMARY Interleukin-7 (IL-7) is a crucial cytokine involved in T-cell survival and development but its signalling in human T cells, particularly in effector/memory T cells, is poorly documented. In this study, we found that IL-7 protects human CD4(+) effector/memory T cells from apoptosis induced upon the absence of stimulation and cytokines. We show that IL-7 up-regulates not only Bcl-2 but also Bcl-xL and Mcl-1 as well. Interleukin-7-induced activation of the janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway is sufficient for cell survival and up-regulation of Bcl-2 proteins. In contrast to previous studies with naive T cells, we found that IL-7 is a weak activator of the phosphatidylinositol 3 kinase (PI3K)/AKT (also referred as protein kinase B) pathway and IL-7-mediated cell survival occurs independently from the PI3K/AKT pathway as well as from activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. Considering the contribution of both IL-7 and CD4(+) effector/memory T cells to the pathogenesis of autoimmune diseases such as rheumatoid arthritis and colitis, our study suggests that IL-7 can contribute to these diseases by promoting cell survival. A further understanding of the mechanisms of IL-7 signalling in effector/memory T cells associated with autoimmune inflammatory diseases may lead to potential new therapeutic avenues.
Collapse
Affiliation(s)
- Nizar Chetoui
- Centre de Recherche en Rhumatologie/Immunologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, and Faculté de Médecine, Université Laval, Québec, PQ, Canada
| | | | | | | |
Collapse
|
40
|
The discovery of novel experimental therapies for inflammatory arthritis. Mediators Inflamm 2010; 2009:698769. [PMID: 20339519 PMCID: PMC2842969 DOI: 10.1155/2009/698769] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 12/21/2009] [Indexed: 12/16/2022] Open
Abstract
Conventional and biologic disease-modifying antirheumatic drugs have revolutionized the medical therapy of inflammatory arthritis. However, it remains unclear as to what can be done to treat immune-mediated chronic inflammation after patients become refractory to these therapies or develop serious side-effects and/or infections forcing drug withdrawal. Because of these concerns it is imperative that novel targets be continuously identified and experimental strategies designed to test potential arthritis interventions in vitro, but more importantly, in well-validated animal models of inflammatory arthritis. Over the past few years, sphingosine-1-phosphate, interleukin-7 receptor, spleen tyrosine kinase, extracellular signal-regulated kinase, mitogen-activated protein kinase 5/p38 kinase regulated/activated protein kinase, micro-RNAs, tumor necrosis factor-related apoptosis inducing ligand and the polyubiquitin-proteasome pathway were identified as promising novel targets for potential antiarthritis drug development. Indeed several experimental compounds alter the biological activity of these targets and have shown clinical efficacy in animal models of arthritis. A few of them have even entered the first phase of human clinical trials.
Collapse
|
41
|
Quinn JMW, Saleh H. Modulation of osteoclast function in bone by the immune system. Mol Cell Endocrinol 2009; 310:40-51. [PMID: 19056462 DOI: 10.1016/j.mce.2008.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/29/2008] [Accepted: 11/06/2008] [Indexed: 12/27/2022]
Abstract
Osteoclast differentiation and function is regulated by cellular signals and cytokines that also play significant roles in the immune system. There is much scope, therefore, for immune cell influence on osteoclasts and bone metabolism. Many examples of this have been identified and T cells in particular are a source of factors affecting osteoclast formation and activity, a number which have either pro-osteolytic or anti-osteolytic actions depending on the cellular and microenvironmental context. For example, IL-12 and IL-18 participate in inflammatory processes that can lead to highly destructive osteolysis, yet these cytokines potently block osteoclast formation through mediation of T cells. IL-23 participates in chronic inflammatory processes, but lack of this cytokine results in reduced bone mass in mice, pointing to an influence on physiological regulation of bone mass. Such insights suggest that therapies that target immune responses may significantly influence osteolysis. Investigations into links between the immune system and bone metabolism are thus uncovering important information about the functioning of both systems.
Collapse
|
42
|
Hartgring SAY, van Roon JAG, Wenting-van Wijk M, Jacobs KMG, Jahangier ZN, Willis CR, Bijlsma JWJ, Lafeber FPJG. Elevated expression of interleukin-7 receptor in inflamed joints mediates interleukin-7-induced immune activation in rheumatoid arthritis. ACTA ACUST UNITED AC 2009; 60:2595-605. [PMID: 19714586 DOI: 10.1002/art.24754] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To evaluate the expression and functional ability of the high-affinity interleukin-7 receptor (IL-7Ralpha) in patients with rheumatoid arthritis (RA). METHODS Expression of IL-7Ralpha and IL-7 was determined in synovial tissue from RA patients and was compared with that in synovial tissue from patients with undifferentiated arthritis (UA) and osteoarthritis (OA). IL-7Ralpha expression on CD4 T cells, CD19 B cells, and CD14 monocyte/macrophages from RA synovial tissue, synovial fluid, and peripheral blood was also assessed. The proliferative capacity of IL-7Ralpha(bright) and IL-7Ralpha(dim/-) T cells was measured. In addition, we examined IL-7R blockade with soluble human IL-7Ralpha (hIL-7Ralpha) in the prevention of immune activation of peripheral blood mononuclear cells. RESULTS We found significantly higher IL-7Ralpha expression in RA and UA synovial tissue than in OA synovial tissue, and the level of IL-7Ralpha expression correlated significantly with the levels of CD3 and IL-7 expression. CD4 T cells from RA synovial fluid and synovial tissue strongly expressed IL-7Ralpha. A substantial percentage of B cells and macrophages from RA synovial fluid and synovial tissue also expressed IL-7Ralpha, although less prominently than T cells. We found that peripheral blood IL-7Ralpha(bright) T cells that did not express FoxP3 were highly proliferative as compared with IL-7Ralpha(dim/-) T cells that did express high levels of FoxP3. Soluble hIL-7Ralpha inhibited IL-7-induced proliferation and interferon-gamma production by mononuclear cells from RA patients. CONCLUSION Our data suggest that enhanced expression of IL-7Ralpha and IL-7 in RA patients contributes significantly to the joint inflammation by activating T cells, B cells, and macrophages. The inhibition of IL-7R-mediated immune activation by soluble hIL-7Ralpha further indicates an important role of IL-7Ralpha in inflammatory responses in RA, suggesting IL-7Ralpha as a therapeutic target for immunotherapy in RA.
Collapse
Affiliation(s)
- Sarita A Y Hartgring
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hofer J, Hofer S, Zlamy M, Jeller V, Koppelstaetter C, Brandstätter A, Kern H, Köhle J, Zimmerhackl LB, Prelog M. Elevated Proportions of Recent Thymic Emigrants in Children and Adolescents with Type 1 Diabetes. Rejuvenation Res 2009; 12:311-20. [DOI: 10.1089/rej.2009.0863] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Johannes Hofer
- Department of Pediatrics, Pediatrics I, Medical University Innsbruck, Innsbruck, Austria
| | - Sabine Hofer
- Department of Pediatrics, Pediatrics I, Medical University Innsbruck, Innsbruck, Austria
| | - Manuela Zlamy
- Department of Pediatrics, Pediatrics I, Medical University Innsbruck, Innsbruck, Austria
| | - Verena Jeller
- Department of Pediatrics, Pediatrics I, Medical University Innsbruck, Innsbruck, Austria
| | | | - Anita Brandstätter
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Division of Genetic Epidemiology, Medical University Innsbruck, Innsbruck, Austria
| | - Hannelore Kern
- Department of Pediatrics, Pediatrics II, Medical University Innsbruck, Innsbruck, Austria
| | - Julia Köhle
- Department of Pediatrics, Pediatrics I, Medical University Innsbruck, Innsbruck, Austria
| | | | - Martina Prelog
- Department of Pediatrics, Pediatrics I, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
44
|
Efalizumab binding to the LFA-1 alphaL I domain blocks ICAM-1 binding via steric hindrance. Proc Natl Acad Sci U S A 2009; 106:4349-54. [PMID: 19258452 DOI: 10.1073/pnas.0810844106] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lymphocyte function-associated antigen 1 (LFA-1) plays important roles in immune cell adhesion, trafficking, and activation and is a therapeutic target for the treatment of multiple autoimmune diseases. Efalizumab is one of the most efficacious antibody drugs for treating psoriasis, a very common skin disease, through inhibition of the binding of LFA-1 to the ligand intercellular adhesion molecule 1 (ICAM-1). We report here the crystal structures of the Efalizumab Fab alone and in complex with the LFA-1 alpha(L) I domain, which reveal the molecular mechanism of inhibition of LFA-1 by Efalizumab. The Fab binds with an epitope on the inserted (I) domain that is distinct from the ligand-binding site. Efalizumab binding blocks the binding of LFA-1 to ICAM-1 via steric hindrance between its light chain and ICAM-1 domain 2 and thus inhibits the activities of LFA-1. These results have important implications for the development of improved antibodies and new therapeutic strategies for the treatment of autoimmune diseases.
Collapse
|
45
|
van Roon JAG, Lafeber FPJG. Role of interleukin-7 in degenerative and inflammatory joint diseases. Arthritis Res Ther 2008; 10:107. [PMID: 18466642 PMCID: PMC2453758 DOI: 10.1186/ar2395] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
IL-7 is known foremost for its immunostimulatory capacities, including potent T cell-dependent catabolic effects on bone. In joint diseases like rheumatoid arthritis and osteoarthritis, IL-7, via immune activation, can induce joint destruction. Now it has been demonstrated that increased IL-7 levels are produced by human articular chondrocytes of older individuals and osteoarthritis patients. IL-7 stimulates production of proteases by IL-7 receptor-expressing chondrocytes and enhances cartilage matrix degradation. This indicates that IL-7, indirectly via immune activation, but also by a direct action on cartilage, contributes to joint destruction in rheumatic diseases.
Collapse
|
46
|
Human articular chondrocytes produce IL-7 and respond to IL-7 with increased production of matrix metalloproteinase-13. Arthritis Res Ther 2008; 10:R23. [PMID: 18289383 PMCID: PMC2374453 DOI: 10.1186/ar2376] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 01/29/2008] [Accepted: 02/20/2008] [Indexed: 02/04/2023] Open
Abstract
Introduction Fibronectin fragments have been found in the articular cartilage and synovial fluid of patients with osteoarthritis and rheumatoid arthritis. These matrix fragments can stimulate production of multiple mediators of matrix destruction, including various cytokines and metalloproteinases. The purpose of this study was to discover novel mediators of cartilage destruction using fibronectin fragments as a stimulus. Methods Human articular cartilage was obtained from tissue donors and from osteoarthritic cartilage removed at the time of knee replacement surgery. Enzymatically isolated chondrocytes in serum-free cultures were stimulated overnight with the 110 kDa α5β1 integrin-binding fibronectin fragment or with IL-1, IL-6, or IL-7. Cytokines and matrix metalloproteinases released into the media were detected using antibody arrays and quantified by ELISA. IL-7 receptor expression was evaluated by flow cytometry, immunocytochemical staining, and PCR. Results IL-7 was found to be produced by chondrocytes treated with fibronectin fragments. Compared with cells isolated from normal young adult human articular cartilage, increased IL-7 production was noted in cells isolated from older adult tissue donors and from osteoarthritic cartilage. Chondrocyte IL-7 production was also stimulated by combined treatment with the catabolic cytokines IL-1 and IL-6. Chondrocytes were found to express IL-7 receptors and to respond to IL-7 stimulation with increased production of matrix metalloproteinase-13 and with proteoglycan release from cartilage explants. Conclusion These novel findings indicate that IL-7 may contribute to cartilage destruction in joint diseases, including osteoarthritis.
Collapse
|
47
|
CD4 T cells, lymphopenia, and IL-7 in a multistep pathway to autoimmunity. Proc Natl Acad Sci U S A 2008; 105:2999-3004. [PMID: 18287017 DOI: 10.1073/pnas.0712135105] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There are many inhibitory mechanisms that function at the cellular and molecular levels to maintain tolerance. Despite this, self-reactive clones escape regulatory mechanisms and cause autoimmunity in certain circumstances. We hypothesized that the same mechanisms that permit T cells to expand during homeostatic proliferation may inadvertently promote autoimmunity under certain conditions. One major homeostatic cytokine is IL-7, and studies have linked it or its receptor to the development of multiple sclerosis and other autoimmune diseases. We show in a model of beta-islet cell self-reactivity that the transfer of activated autoreactive CD4 T cells can prime and expand endogenous autoreactive CD8 T cells in a CD28- and CD40-dependent manner through the licensing of dendritic cells. Despite this, mice do not develop diabetes. However, the provision of exogenous IL-7 or the physiological production of IL-7 associated with lymphopenia was able to profoundly promote the expansion of self-reactive clones even in the presence of regulatory T cells. Autoimmune diabetes rapidly ensued with CD4 help and the subsequent activation of CD8 T cells, which contributed to disease progression. With the advent of many biologicals targeting TNFalpha, IL-6, and IL-1 and their effective use in the treatment of autoimmune diseases, we propose that IL-7 and its receptor may be promising targets for biological agents in the treatment of autoimmunity.
Collapse
|
48
|
Cartilage preservation by inhibition of Janus kinase 3 in two rodent models of rheumatoid arthritis. Arthritis Res Ther 2008; 10:R14. [PMID: 18234077 PMCID: PMC2374467 DOI: 10.1186/ar2365] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 01/24/2008] [Accepted: 01/30/2008] [Indexed: 01/12/2023] Open
Abstract
Introduction CP-690550 is a small molecule inhibitor of Janus kinase 3 (JAK3), a critical enzyme in the signaling pathway of multiple cytokines (interleukin (IL)-2, -7, -15 and -21) that are important in various T cell functions including development, activation and homeostasis. The purpose of this study was to evaluate CP-690550 in murine collagen-induced (CIA) and rat adjuvant-induced (AA) models of rheumatoid arthritis (RA). Methods CIA and AA were induced using standard protocols and animals received the JAK3 inhibitor via osmotic mini-pump infusion at doses ranging from 1.5–15 mg/kg/day following disease induction. Arthritis was assessed by clinical scores in the CIA models and paw swelling monitored using a plethysmometer in the AA model until study conclusion, at which time animals were killed and evaluated histologically. Results CP-690550 dose-dependently decreased endpoints of disease in both RA models with greater than 90% reduction observed at the highest administered dose. An approximate ED50 of approximately 1.5 mg/kg/day was determined for the compound based upon disease endpoints in both RA models examined and corresponds to CP-690550 serum levels of 5.8 ng/ml in mice (day 28) and 24 ng/ml in rats (day 24). The compound also reduced inflammatory cell influx and joint damage as measured histologically. Animals receiving a CP-690550 dose of 15 mg/k/d showed no histological evidence of disease. Conclusion The efficacy observed with CP-690550 in CIA and AA suggests JAK3 inhibition may represent a novel therapeutic target for the treatment of RA.
Collapse
|