1
|
Alijanpour K, Dastgheib SA, Azizi L, Shiri A, Bahrami M, Aghasipour M, Miri S, Aghili K, Dehghani-Manshadi Z, Neamatzadeh H, Khajehnoori S. Correlation of growth differentiation factor-5 + 104T>C polymorphism with the risk of knee, hand, and hip osteoarthritis: a case-control study and meta-analysis based on 47 case-control studies. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-26. [PMID: 38743962 DOI: 10.1080/15257770.2024.2350531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Osteoarthritis (OA) arises from a intricate interplay of genetic and environmental factors. Numerous studies have explored the link between the growth differentiation factor 5 (GDF-5) +104T>C polymorphism and OA risk, but the findings have been inconclusive. We carried out a case-control study with 704 OA cases and 418 healthy controls. Furthermore, we conducted a meta-analysis by thoroughly searching the literature for relevant studies published until 1 September, 2023. The combined odds ratio and 95% confidence intervals were used to assess the correlation's strength. A total of 47 independent case-control studies, including 17,602 OA cases and 30,947 controls, were analyzed. Of these, 31 studies (11,176 cases, 16,724 controls) focused on knee OA, 8 studies (3,973 cases, 8,055 controls) examined hip OA, and 6 studies (2244 cases, 5965 controls) investigated hand OA. Overall, our findings suggest that the GDF-5 + 104T>C polymorphism has a protectibe role in development of OA in global scale. Subgroup analyses by ethnicity indicated that this genetic variation provides protection against OA in Caucasian, Asian, and African populations. Further subgroup analysis based on the type of OA showed a decreased risk of knee and hand OA associated with this variation, but not for hip OA. Our combined data indicates that the GDF-5 + 104T>C polymorphism offers protection against the development of OA in general, as well as knee and hand OA. Nevertheless, there was no correlation found between this polymorphism and the development of hip OA.
Collapse
Affiliation(s)
- Kamran Alijanpour
- General Practitioner, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Alireza Dastgheib
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Azizi
- Department of Internal Medicine, School of Medicine, Firoozgar General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Amirmasoud Shiri
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Bahrami
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Aghasipour
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Somaye Miri
- Department of Biology, Ashkezar Branch, Islamic Azad University, Ashkezar, Iran
| | - Kazem Aghili
- Department of Radiology, Shahid Rahnamoun Hospital, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Hossein Neamatzadeh
- Mother and Newborn Health Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sahel Khajehnoori
- Hematology and Oncology Research Center, Shahid Sadoughi Hospital, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Tyurin A, Akhiiarova K, Minniakhmetov I, Mokrysheva N, Khusainova R. The Genetic Markers of Knee Osteoarthritis in Women from Russia. Biomedicines 2024; 12:782. [PMID: 38672138 PMCID: PMC11048526 DOI: 10.3390/biomedicines12040782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Osteoarthritis is a chronic progressive joint disease that clinically debuts at the stage of pronounced morphologic changes, which makes treatment difficult. In this regard, an important task is the study of genetic markers of the disease, which have not been definitively established, due to the clinical and ethnic heterogeneity of the studied populations. To find the genetic markers for the development of knee osteoarthritis (OA) in women from the Volga-Ural region of Russia, we conducted research in two stages using different genotyping methods, such as the restriction fragment length polymorphism (RFLP) measurement, TaqMan technology and competitive allele-specific PCR-KASPTM. In the first stage, we studied polymorphic variants of candidate genes (ACAN, ADAMTS5, CHST11, SOX9, COL1A1) for OA development. The association of the *27 allele of the VNTR locus of the ACAN gene was identified (OR = 1.6). In the second stage, we replicated the GWAS results (ASTN2, ALDH1A2, DVWA, CHST11, GNL3, NCOA3, FILIP/SENP1, MCF2L, GLT8D, DOT1L) for knee OA studies. The association of the *T allele of the rs7639618 locus of the DVWA gene was detected (OR = 1.54). Thus, the VNTR locus of ACAN and the rs7639618 locus of DVWA are risk factors for knee OA in women from the Volga-Ural region of Russia.
Collapse
Affiliation(s)
- Anton Tyurin
- Internal Medicine Department, Bashkir State Medical University, 450008 Ufa, Russia;
| | - Karina Akhiiarova
- Internal Medicine Department, Bashkir State Medical University, 450008 Ufa, Russia;
| | - Ildar Minniakhmetov
- Endocrinology Research Centre, Dmitriya Ulianova Street, 11, 117036 Moscow, Russia; (I.M.); (N.M.); (R.K.)
| | - Natalia Mokrysheva
- Endocrinology Research Centre, Dmitriya Ulianova Street, 11, 117036 Moscow, Russia; (I.M.); (N.M.); (R.K.)
| | - Rita Khusainova
- Endocrinology Research Centre, Dmitriya Ulianova Street, 11, 117036 Moscow, Russia; (I.M.); (N.M.); (R.K.)
- Medical Genetics Department, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
3
|
Wang YP, Di WJ, Yang S, Qin SL, Xu YF, Han PF, Hou KD. The association of growth differentiation factor 5 rs143383 gene polymorphism with osteoarthritis: a systematic review and meta-analysis. J Orthop Surg Res 2023; 18:763. [PMID: 37817264 PMCID: PMC10563324 DOI: 10.1186/s13018-023-04245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is caused by a complex set of pathophysiological factors. The genetic factors involved in the occurrence and progress of the disease have been widely discussed by scholars. It was found that growth differentiation factor 5 (GDF5) gene polymorphisms may be linked to OA susceptibility, which has been controversial and needs to be further confirmed by an updated meta-analysis. OBJECTIVES We examined the association between GDF5 rs143383 single nucleotide polymorphism (SNP) and OA susceptibility. METHODS All relevant articles that met the criteria are retrieved and included, and the search deadline is June 2022. The allele frequencies and different genotype frequencies of GDF5 rs143383 loci in each study were extracted and statistically analyzed by R4.1.3 software, and the different genetic models were analyzed based on their odds ratio (OR) and 95% confidence interval (CI). RESULTS The meta-analysis explained that GDF5 rs143383 SNP was crucial correlated with OA in all patients with OA of knee, hip and hand. The codominant gene model in the whole crowd (OR = 1.17, 95% CI 1.07-1.27, P < 0.01) enlightened that OA was vitally associated with GDF5 gene polymorphism. At the same time, we did a subgroup analysis based on ethnicity. The codominant gene model (OR = 1.31, 95% CI 1.12-1.53, P < 0.01) in Asian population, the codominant homozygote model (OR = 1.28, 95% CI 1.14-1.43), codominant heterozygote gene model (OR = 1.12, 95% CI 1.01-1.23, P = 0.02), and dominant gene model (OR = 1.19, 95% CI 1.09-1.31, P < 0.01) in Caucasian are analyzed by subgroup analysis. It means that there is a momentous relationship between the GDF5rs143383 gene polymorphism and OA, especially among Caucasians. In addition, we also discussed different types of OA separately and discover that the GDF5rs143383 gene polymorphism was relevant for knee osteoarthritis (KOA) and hand osteoarthritis, and it was more significant in the Caucasian population. But due to the high heterogeneity in hip osteoarthritis, it could not be accurately concluded. Furthermore, we also analyzed the osteoarthritis of different genders and found that the GDF5 rs143383 SNP was associated with both men and women and was still significant in the Caucasian population. CONCLUSION We found a close association between osteoarthritis and GDF5rs143383SNP in this study. From the analysis of each group, we got the same conclusion in KOA and hand OA, but which need further verification in hip OA. Considering gender, we found a close relationship between GDF5 rs143383 SNP and OA of the knee, hip and hand, both for men and women. This conclusion is more obvious in Caucasian people.
Collapse
Affiliation(s)
- Yue-Peng Wang
- Department of Orthopaedics, Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing, 101200, China
| | - Wen-Jia Di
- Department of Graduate School, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Su Yang
- Department of Orthopaedics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China
| | - Shi-Lei Qin
- Department of Orthopaedics, Changzhi Yunfeng Hospital, Changzhi, 046000, China
| | - Yun-Feng Xu
- Department of Orthopaedics, Changzhi Yunfeng Hospital, Changzhi, 046000, China
| | - Peng-Fei Han
- Department of Orthopaedics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China.
| | - Ke-Dong Hou
- Department of Orthopaedics, Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing, 101200, China.
| |
Collapse
|
4
|
Yan S, Nie H, Bu G, Yuan W, Wang S. The effect of common variants in GDF5 gene on the susceptibility to chronic postsurgical pain. J Orthop Surg Res 2021; 16:420. [PMID: 34210342 PMCID: PMC8247225 DOI: 10.1186/s13018-021-02549-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background The growth differentiation factor 5 (GDF5) gene regulates the growth of neuronal axons and dendrites and plays a role in the inflammatory response and tissue damage. The gene may also be associated with chronic postsurgical pain. This study aimed to reveal the relationship between SNPs in the GDF5 gene and orthopedic chronic postsurgical pain in Han Chinese population based on a case-control study. Methods We genotyped 8 SNPs within GDF5 gene in 1048 surgical patients with chronic postsurgical pain as the case group and 2062 surgical patients who were pain free as the control group. SNP and haplotypic analyses were performed, and stratified analyses were conducted to determine the correlations between significant SNPs and clinical characteristics. Results Only rs143384 in the 5′UTR of GDF5 was identified as significantly associated with increased susceptibility to chronic postsurgical pain, and the risk of A allele carriers was increased approximately 1.35-fold compared with that of G allele carriers. Haplotypes AGG and GGG in the LD block rs143384-rs224335-rs739329 also showed similar association patterns. Furthermore, we found that rs143384 was significantly correlated with chronic postsurgical pain in the subgroup aged ≤ 61 years, subgroup with a BMI ≤ 26, subgroup with no-smoking or no pain history, and subgroup with a drinking history. Conclusion Our study provided supportive evidence that genetic variations in the GDF5 gene are potential genetic factors that can increase the risk of chronic postsurgical pain in the Han Chinese population, but further research is necessary to elucidate the underlying mechanism. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02549-5.
Collapse
Affiliation(s)
- Shaoyao Yan
- Department of Pain, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, China
| | - Huiyong Nie
- Department of Pain, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, China
| | - Gang Bu
- Department of Pain, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, China
| | - Weili Yuan
- Department of Pain, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, China
| | - Suoliang Wang
- Department of Pain, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Jia B, Jiang Y, Xu Y, Wang Y, Li T. Correlation between growth differentiation factor 5 (rs143383) gene polymorphism and knee osteoarthritis: an updated systematic review and meta-analysis. J Orthop Surg Res 2021; 16:146. [PMID: 33608035 PMCID: PMC7893760 DOI: 10.1186/s13018-021-02269-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/28/2021] [Indexed: 01/11/2023] Open
Abstract
Background A great deal of evidence has supported that growth differentiation factor 5 (GDF5) is associated with the occurrence of knee osteoarthritis (KOA), while their results are not consistent. In the present study, we aimed to explore the association between GDF5 gene polymorphism and KOA for a more credible conclusion. Methods Comprehensive literature searches were carried out in English databases, including PubMed, Embase, Web of Science (WOS), and Cochrane, and Chinese databases, including China National Knowledge Infrastructure (CNKI), WANFANG, and VIP database. After the data were extracted from the required studies, the odds ratios (ORs) and their 95% confidence intervals (CIs) were determined to assess the correlation between GDF5 gene polymorphism and KOA. The publication bias was evaluated by funnel plot. Results According to the inclusion and exclusion criteria, 15 studies on the correlation between GDF5 gene polymorphism and KOA occurrence were eligible for meta-analysis. Among these articles, four studies showed no apparent correlation, while the other 11 studies indicated an obvious correlation. Meanwhile, we also carried out a subgroup analysis of the population. Due to the inevitable heterogeneity, three genetic models were finally selected for analysis. With the allele model (C versus T: OR = 0.79, 95% CI = 0.73~0.87), recessive model (CC versus CT + TT: OR = 0.76, 95% CI = 0.68~0.86), and homozygous model (CC versus TT: OR = 0.66, 95% CI = 0.58~0.76), GDF5 gene polymorphism decreased the risk of KOA. Besides, a significant association was observed in Caucasians, Asians, and Africans. Meanwhile, the protective effect of genotype C (or CC) in the Asian group was little obvious than that in the Caucasian group and the African group. Although the quality of the included studies was above medium-quality, we obtained results with a low level of evidence. Conclusions The results of the meta-analysis showed that the genotype C (or CC) of GDF5 protected against KOA occurrence in Caucasian, Asian, and African populations.
Collapse
Affiliation(s)
- Bin Jia
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.,Medical Department of Qingdao University, Qingdao, 266071, Shandong, China
| | - Yaping Jiang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yingxing Xu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.,Medical Department of Qingdao University, Qingdao, 266071, Shandong, China
| | - Yingzhen Wang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Tao Li
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
6
|
Suntsov V, Jovanovic F, Knezevic E, Candido KD, Knezevic NN. Can Implementation of Genetics and Pharmacogenomics Improve Treatment of Chronic Low Back Pain? Pharmaceutics 2020; 12:pharmaceutics12090894. [PMID: 32967120 PMCID: PMC7558486 DOI: 10.3390/pharmaceutics12090894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Etiology of back pain is multifactorial and not completely understood, and for the majority of people who suffer from chronic low back pain (cLBP), the precise cause cannot be determined. We know that back pain is somewhat heritable, chronic pain more so than acute. The aim of this review is to compile the genes identified by numerous genetic association studies of chronic pain conditions, focusing on cLBP specifically. Higher-order neurologic processes involved in pain maintenance and generation may explain genetic contributions and functional predisposition to formation of cLBP that does not involve spine pathology. Several genes have been identified in genetic association studies of cLBP and roughly, these genes could be grouped into several categories, coding for: receptors, enzymes, cytokines and related molecules, and transcription factors. Treatment of cLBP should be multimodal. In this review, we discuss how an individual's genotype could affect their response to therapy, as well as how genetic polymorphisms in CYP450 and other enzymes are crucial for affecting the metabolic profile of drugs used for the treatment of cLBP. Implementation of gene-focused pharmacotherapy has the potential to deliver select, more efficacious drugs and avoid unnecessary, polypharmacy-related adverse events in many painful conditions, including cLBP.
Collapse
Affiliation(s)
- Vladislav Suntsov
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (V.S.); (F.J.); (E.K.); (K.D.C.)
| | - Filip Jovanovic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (V.S.); (F.J.); (E.K.); (K.D.C.)
| | - Emilija Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (V.S.); (F.J.); (E.K.); (K.D.C.)
| | - Kenneth D. Candido
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (V.S.); (F.J.); (E.K.); (K.D.C.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (V.S.); (F.J.); (E.K.); (K.D.C.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
- Correspondence: ; Tel.: +1-773-296-5619; Fax: +1-773-296-5362
| |
Collapse
|
7
|
Peng L, Jin S, Lu J, Ouyang C, Guo J, Xie Z, Shen H, Wang P. Association between growth differentiation factor 5 rs143383 genetic polymorphism and the risk of knee osteoarthritis among Caucasian but not Asian: a meta-analysis. Arthritis Res Ther 2020; 22:215. [PMID: 32928309 PMCID: PMC7488690 DOI: 10.1186/s13075-020-02306-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A few months ago, the Bioscience Reports journal showed that growth differentiation factor 5 (GDF5) rs143383 genetic polymorphism increases the susceptibility of knee osteoarthritis (KOA), but previous studies' results have debates about available data. Considering the availability of more recent data, we focus on clarifying the relationship of KOA and GDF5 rs143383 genetic polymorphism by a meta-analysis of case-control trial data. METHODS The eligible studies from the time of database established to Oct. 2019 were collected from PubMed, Springer, Cochrane library, Web of Science, China National Knowledge Infrastructure (CNKI), and Wan Fang library. Odds ratios (OR) and 95% confidence intervals (CI) were used to estimate the association between these polymorphisms and KOA risk. The meta-analysis was completed by STATA 18.0 software. RESULTS A total of 196 studies were collected, 16 of them included in final meta-analysis (7997 cases and 12,684 controls). There was significant association between GDF5 rs143383 polymorphism and KOA in all genetic models (for Allele model (C versus T): OR = 0.84 (95% CI = 0.76-0.91); dominate model (CC+CT versus TT): OR = 0.80 (95% CI = 0.72-0.90); recessive model (CC versus CT+TT): OR = 0.79 (95% CI = 0.68-0.92); heterozygote model (CT versus CC+TT): OR = 0.89 (95% CI = 0.80-0.97); homozygous model (CC versus TT): OR = 0.71 (95% CI = 0.60-0.85)). In the subgroup analysis, we obtained the results that there is no significance among Asians. CONCLUSION GDF5 rs143383 genetic polymorphism increases the risk of KOA among Caucasians; CC genotype and C allele are protective factors for the susceptibility of KOA among Caucasians.
Collapse
Affiliation(s)
- Lei Peng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shen Nan Road, Shenzhen, 518033, People's Republic of China.,Department of Orthopedics, The Second Affiliated Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, 510120, People's Republic of China.,Department of Orthopedics, The Second Affiliated Hospital of Hunan Normal University, The 921 Central Hospital of the People's Liberation Army, Hongshan bridge, Changsha, People's Republic of China
| | - Song Jin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shen Nan Road, Shenzhen, 518033, People's Republic of China
| | - Jiping Lu
- Department of Orthopedics, The Second Affiliated Hospital of Hunan Normal University, The 921 Central Hospital of the People's Liberation Army, Hongshan bridge, Changsha, People's Republic of China
| | - Chao Ouyang
- Department of Orthopedics, The Second Affiliated Hospital of Hunan Normal University, The 921 Central Hospital of the People's Liberation Army, Hongshan bridge, Changsha, People's Republic of China
| | - Jiang Guo
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shen Nan Road, Shenzhen, 518033, People's Republic of China.,Department of Orthopedics, The Second Affiliated Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, 510120, People's Republic of China
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shen Nan Road, Shenzhen, 518033, People's Republic of China.,Department of Orthopedics, The Second Affiliated Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, 510120, People's Republic of China
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shen Nan Road, Shenzhen, 518033, People's Republic of China. .,Department of Orthopedics, The Second Affiliated Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, 510120, People's Republic of China.
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shen Nan Road, Shenzhen, 518033, People's Republic of China. .,Department of Orthopedics, The Second Affiliated Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
8
|
Szwedowski D, Szczepanek J, Paczesny Ł, Pękała P, Zabrzyński J, Kruczyński J. Genetics in Cartilage Lesions: Basic Science and Therapy Approaches. Int J Mol Sci 2020; 21:E5430. [PMID: 32751537 PMCID: PMC7432875 DOI: 10.3390/ijms21155430] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022] Open
Abstract
Cartilage lesions have a multifactorial nature, and genetic factors are their strongest determinants. As biochemical and genetic studies have dramatically progressed over the past decade, the molecular basis of cartilage pathologies has become clearer. Several homeostasis abnormalities within cartilaginous tissue have been found, including various structural changes, differential gene expression patterns, as well as altered epigenetic regulation. However, the efficient treatment of cartilage pathologies represents a substantial challenge. Understanding the complex genetic background pertaining to cartilage pathologies is useful primarily in the context of seeking new pathways leading to disease progression as well as in developing new targeted therapies. A technology utilizing gene transfer to deliver therapeutic genes to the site of injury is quickly becoming an emerging approach in cartilage renewal. The goal of this work is to provide an overview of the genetic basis of chondral lesions and the different approaches of the most recent systems exploiting therapeutic gene transfer in cartilage repair. The integration of tissue engineering with viral gene vectors is a novel and active area of research. However, despite promising preclinical data, this therapeutic concept needs to be supported by the growing body of clinical trials.
Collapse
Affiliation(s)
- Dawid Szwedowski
- Orthopedic Arthroscopic Surgery International (O.A.S.I.) Bioresearch Foundation, Gobbi N.P.O., 20133 Milan, Italy;
- Department of Orthopaedics and Trauma Surgery, Provincial Polyclinical Hospital, 87100 Torun, Poland
| | - Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87100 Torun, Poland
| | - Łukasz Paczesny
- Orvit Clinic, Citomed Healthcare Center, 87100 Torun, Poland; (Ł.P.); (J.Z.)
| | - Przemysław Pękała
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30705 Krakow, Poland;
| | - Jan Zabrzyński
- Orvit Clinic, Citomed Healthcare Center, 87100 Torun, Poland; (Ł.P.); (J.Z.)
| | - Jacek Kruczyński
- Department of General Orthopaedics, Musculoskeletal Oncology and Trauma Surgery, Poznan University of Medical Sciences, 60512 Poznań, Poland;
| |
Collapse
|
9
|
A Meta-analysis Assessing the Association Between COL11A1 and GDF5 Genetic Variants and Intervertebral Disc Degeneration Susceptibility. Spine (Phila Pa 1976) 2020; 45:E616-E623. [PMID: 31923126 DOI: 10.1097/brs.0000000000003371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Meta-analysis to collect relevant studies to assess the association between COL11A1 and GDF5 genetic variants and susceptibility to IDD. OBJECTIVE The aim of this study was to assess whether or not COL11A1 and GDF5 genetic variants were associated with susceptibility to IDD. SUMMARY OF BACKGROUND DATA IDD or LDH is a major public health problem. There have been several studies evaluating the relationship between COL11A1 and GDF5 genetic variants with risk of intervertebral disc degeneration (IDD). However, the studies were limited in discrete outcome and sample size, and some of the results were contradictory. METHODS We systematically searched the relevant publications in electronic databases. Eligible studies were included based on the defined criteria. The pooled odds ratios (ORs) with its 95% confidence intervals (CIs) were received using STATA 15. Subgroup analysis, sensitivity analysis, publication bias, and the "Trim and fill" method were performed in the meta-analysis. RESULTS A total of 3287 IDD cases and 5115 controls were incorporated into the meta-analysis. Our results demonstrated that COL11A1 rs1676486 was significantly associated with increased IDD susceptibility under all genetic models (allele model T vs. C: OR = 1.40, 95% CI 1.23-1.59, P = 0.000; homozygote model TT vs. CC: OR = 1.89, 95%CI 1.40-2.56, P = 0.000; dominant model TT+TC vs. CC: OR = 1.52, 95% CI 1.29-1.80, P = 0.000; recessive model TT vs. TC + CC: OR = 1.58, 95% CI 1.18-2.12, P = 0.002). However, GDF5 rs143383 was not (allele model T vs. C: OR = 1.15, 95% CI 0.91-1.44, P = 0.244; homozygote model TT vs. CC: OR = 1.22, 95% CI 0.75-2.00, P = 0.429; dominant model TT vs. CC+CT: OR = 1.22, 95% CI 0.95-1.57, P = 0.112; recessive model TC + TT vs. CC: OR = 1.12, 95% CI 0.73-1.73, P = 0.594). Subgroup analysis indicated ethnicity was not the source of heterogeneity. Sensitivity analysis, publication bias, and the "Trim and fill" method demonstrated the meta-analysis was of reliability. CONCLUSION Our results suggested that COL11A1 rs1676486 was significantly associated with IDD and the T allele was a risky factor. However, GDF5 rs143383 was not. LEVEL OF EVIDENCE 1.
Collapse
|
10
|
Choi YR, Collins KH, Lee JW, Kang HJ, Guilak F. Genome Engineering for Osteoarthritis: From Designer Cells to Disease-Modifying Drugs. Tissue Eng Regen Med 2019; 16:335-343. [PMID: 31413938 PMCID: PMC6675820 DOI: 10.1007/s13770-018-0172-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a highly prevalent degenerative joint disease involving joint cartilage and its surrounding tissues. OA is the leading cause of pain and disability worldwide. At present, there are no disease-modifying OA drugs, and the primary therapies include exercise and nonsteroidal anti-inflammatory drugs until total joint replacement at the end-stage of the disease. METHODS In this review, we summarized the current state of knowledge in genetic and epigenetic associations and risk factors for OA and their potential diagnostic and therapeutic applications. RESULTS Genome-wide association studies and analysis of epigenetic modifications (such as miRNA expression, DNA methylation and histone modifications) conducted across various populations support the notion that there is a genetic basis for certain subsets of OA pathogenesis. CONCLUSION With recent advances in the development of genome editing technologies such as the CRISPR-Cas9 system, these genetic and epigenetic alternations in OA can be used as platforms from which potential biomarkers for the diagnosis, prognosis, drug response, and development of potential personalized therapeutic targets for OA can be approached. Furthermore, genome editing has allowed the development of "designer" cells, whereby the receptors, gene regulatory networks, or transgenes can be modified as a basis for new cell-based therapies.
Collapse
Affiliation(s)
- Yun-Rak Choi
- Department of Orthopaedic Surgery, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO 63130 USA
- Shriners Hospitals for Children – St. Louis, 4400 Clayton Ave, St. Louis, MO 63110 USA
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Kelsey H. Collins
- Department of Orthopaedic Surgery, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO 63130 USA
- Shriners Hospitals for Children – St. Louis, 4400 Clayton Ave, St. Louis, MO 63110 USA
| | - Jin-Woo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Ho-Jung Kang
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO 63130 USA
- Shriners Hospitals for Children – St. Louis, 4400 Clayton Ave, St. Louis, MO 63110 USA
- Center of Regenerative Medicine, Campus Box 8233, McKinley Research Bldg, Room 3121, St. Louis, MO 63110 USA
| |
Collapse
|
11
|
Mohasseb DMF, Saba EKA, Saad NLM, Sarofeem ADH. Genetic Association Between Growth Differentiation Factor 5 Single Nucleotide Polymorphism and Primary Knee Osteoarthritis in a Group of Egyptian Patients: A Pilot Study. Mediterr J Rheumatol 2019; 30:114-122. [PMID: 32185351 PMCID: PMC7045969 DOI: 10.31138/mjr.30.2.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 12/31/2022] Open
Abstract
Aim This study aimed to determine the genetic association between Growth Differentiation Factor 5 (GDF5) gene (rs143383 T/C) single nucleotide polymorphism (SNP) and primary knee osteoarthritis (OA) in a group of Egyptian patients. Patients and Methods The study included 47 patients with primary knee OA and 40 apparently healthy control subjects. The disease was assessed using Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score and Health Assessment Questionnaire (HAQ). Radiological assessment was done by Kellgren-Laurence (K/L) grading system. The genetic association of the SNP with primary knee OA was assessed by restriction fragment length polymorphism - polymerase chain reaction (RFLP-PCR). Results The mean total WOMAC index was significantly higher in patients with TT genotype as compared to patients with CC and CT genotypes (P<0.001). Similarly, the HAQ score was significantly higher among patients with TT genotype when compared to patients with CT and CC genotypes (P<0.001). There was a statistically significant association between different GDF5 genotypes and K/L radiological grading of knee OA among the studied patients (P=0.029). No statistically significant association was detected on comparing the frequency distribution of GDF5 alleles and genotypes frequencies of the SNP in patients and healthy controls. Conclusion There is a possible genetic association between GDF5 (rs143383) SNP and severity of primary knee OA, which might facilitate the detection of patients with high risk for disease progression. The present study did not detect an association between the SNP and development of primary knee OA.
Collapse
Affiliation(s)
- Dia Mohamed Fahmy Mohasseb
- Physical Medicine, Rheumatology and Rehabilitation Department, Faculty of Medicine, Alexandria University, Egypt
| | - Emmanuel Kamal Aziz Saba
- Physical Medicine, Rheumatology and Rehabilitation Department, Faculty of Medicine, Alexandria University, Egypt
| | | | - Amira Dimas Hanna Sarofeem
- Physical Medicine, Rheumatology and Rehabilitation Department, Ministry of Health, Alexandria Governorate, Egypt
| |
Collapse
|
12
|
Huang X, Zhang W, Shao Z. Association between GDF5 rs143383 genetic polymorphism and musculoskeletal degenerative diseases susceptibility: a meta-analysis. BMC MEDICAL GENETICS 2018; 19:169. [PMID: 30217184 PMCID: PMC6137727 DOI: 10.1186/s12881-018-0685-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/09/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Several studies have assessed the association between GDF5 rs143383 polymorphism and the susceptibility of musculoskeletal degenerative diseases, such as intervertebral disc degeneration (IDD) and osteoarthritis (OA), but the results are inconsistent. The aim of our study was to evaluate the association between them comprehensively. METHODS A systematical search was conducted on PubMed, Scopus, Web of Science (WOS), Embase, and the Cochrane Library databases updated to April 20, 2018. Eligible studies about polymorphisms in GDF5 gene and risk of IDD or OA were included. Pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) were utilized. RESULTS Fifteen studies with a total of 5915 cases and 12,252 controls were finally included in our study. Meta-analysis of GDF5 rs143383 polymorphism was statistically associated with increased risk of musculoskeletal degenerative diseases under each genetic model (allele model: OR = 1.32, 95% CI 1.19-1.48, P = 0.000; homozygote model: OR = 1.80, 95%CI 1.49-2.16, P = 0.000; heterozygote model: OR = 1.37, 95%CI 1.21-1.55, P = 0.000; dominant model: OR = 1.56, 95%CI 1.39-1.75, P = 0.000; recessive model: OR = 1.39, 95%CI 1.20-1.60, P = 0.000). Stratified analyses based on disease type showed a significant association between the GDF5 rs143383 polymorphism and increased risk of IDD and OA under all genetic models studied. When stratified with ethnicity, pooled outcomes revealed that this polymorphism was significantly related with increased risk of musculoskeletal degenerative diseases in both Asian and Caucasian populations under all genetic models studied. CONCLUSIONS The present study suggested that GDF5 rs143383 polymorphism was significantly associated with susceptibility to musculoskeletal degenerative diseases.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weiyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
13
|
Association of GDF-5 rs143383 polymorphism with radiographic defined knee osteoarthritis: A systematic review and meta-analysis. J Orthop 2018; 15:945-951. [PMID: 30202144 DOI: 10.1016/j.jor.2018.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/16/2018] [Indexed: 12/16/2022] Open
Abstract
Objective To assess the association of GDF-5 rs143383 polymorphism with radiographic defined knee osteoarthritis (OA), a systematic review and meta-analysis was conducted. Methods A total of 17 relevant case-control studies with 7424 cases and 11,310 controls was collected from several electronic databases up to June 2018. Results The pooled results showed that GDF-5 rs143383 polymorphism was significantly associated with radiographic defined knee OA in overall and stratified analysis by ethnicity, source of controls and genotyping techniques. Conclusions The GDF-5 rs143383 polymorphism might be used as a relevant risk estimate for radiographic defined Knee OA.
Collapse
|
14
|
Li H, Zhang X, Cao Y, Hu S, Peng F, Zhou J, Li J. Association between EN1 rs4144782 and susceptibility of knee osteoarthritis: A case-control study. Oncotarget 2018; 8:36650-36657. [PMID: 28430581 PMCID: PMC5482684 DOI: 10.18632/oncotarget.16842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/10/2017] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA) is a complex disease that affects the whole joint, resulting from the combined influence of biomechanical factors and genetic factors. The heritable component for primary OA accounts for about 60% of variation in population liability to the disease. So far, genome-wide association studies (GWAS) and candidate gene studies have established many OA-related loci. However, these findings account for only a rather small fraction of the genetic component. To further reveal the genetic architecture of OA, we conducted this case-control study to explore the association of locus EN1 rs4144782 and knee OA susceptibility in a Chinese population. EN1 rs4144782 was significantly associated with increased risk of knee OA (OR=1.26; 95% CI: 1.05-1.50, P value=0.012). In dominant model, compared with carriers of GG genotype, those with AG or AA genotype have an 1.44-fold increased risk of OA (OR: 1.44; 95% CI: 1.10-1.88; P value=0.008). Subgroup analyses didn't change the results materially. This should be the first association study of EN1 locus on risk of OA, and our finding suggested that the EN1 rs4144782 might contribute to the susceptibility of knee OA.
Collapse
Affiliation(s)
- Haohuan Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaolong Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yiping Cao
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan, 430056, China
| | - Song Hu
- Department of Physiology, Jianghan University, Wuhan Medical College, Wuhan, 430056, China
| | - Fei Peng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jianlin Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jianping Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
15
|
Taipale M, Solovieva S, Leino-Arjas P, Männikkö M. Functional polymorphisms in asporin and CILP together with joint loading predispose to hand osteoarthritis. BMC Genet 2017; 18:108. [PMID: 29233086 PMCID: PMC5727665 DOI: 10.1186/s12863-017-0585-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 12/07/2017] [Indexed: 01/07/2023] Open
Abstract
Background Osteoarthritis (OA) is the most common degenerative joint disease afflicting people in the Western world and has a strong genetic influence. The aim of this study was to examine the association of two known functional polymorphisms in the TGF-β inhibiting genes, asporin (ASPN) and cartilage intermediate layer protein (CILP), with hand OA and potential gene-occupational hand loading interaction. Results Statistically significant interaction of the CILP rs2073711 T and ASPN D15 alleles with hand OA was observed (OR = 2.48, 95% CI 1.27–4.85, p = 0.008) in a Finnish hand OA cohort of 543 women (aged 45–63). When stratified by variation in working tasks, low variation of working tasks increased the risk further (OR = 3.00, 95% CI 1.35–6.66, p = 0.007). Based on the analysis of ASPN and CILP protein-coding regions, functional studies were performed with one observed variant, rs41278695 in the ASPN gene. Analyses showed that bone morphogenetic protein 2 (BMP2) mediated expression of aggrecan (Agc1) and type II collagen (Col2a1) was significantly suppressed (p = 0.011 and p = 0.023, respectively) in a murine chondrocytic cell line (ATDC5) with cells stably expressing ASPN rs41278695. Conclusions The carriage of either ASPN D15 or CILP rs2073711 TT is associated with increased risk of symmetrical hand OA, particularly in individuals with low variation in work tasks. ASPN rs41278695 SNP had an effect on Agc1 and Col2a1 gene expression when induced with BMP-2 suggesting an effect on the cartilage extracellular matrix composition.
Collapse
Affiliation(s)
- Mari Taipale
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Aapistie 5, 90220, Oulu, Finland.,Biocenter Oulu and Faculty of Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Svetlana Solovieva
- Department of Epidemiology and Biostatistics, Centre of Expertise for Health and Work Ability, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Päivi Leino-Arjas
- Department of Epidemiology and Biostatistics, Centre of Expertise for Health and Work Ability, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Minna Männikkö
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Aapistie 5, 90220, Oulu, Finland. .,Biocenter Oulu and Faculty of Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
16
|
Yin Y, Wang Y. Association of BMP-14 rs143383 ploymorphism with its susceptibility to osteoarthritis: A meta-analysis and systematic review according to PRISMA guideline. Medicine (Baltimore) 2017; 96:e7447. [PMID: 29049177 PMCID: PMC5662343 DOI: 10.1097/md.0000000000007447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/26/2017] [Accepted: 06/15/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a complex disease which can be caused by both environmental and genetic factors. A functional locus rs143383 of bone morphogenetic protein-14 (BMP-14) has been pointed out to be associated with OA etiology, but conflicting conclusions have been reached. To provide a more comprehensive conclusion about this issue, we performed this meta-analysis. METHODS Relevant studies were searched from electronic databases including PubMed, Chinese National Knowledge Infrastructure, Embase, and Wanfang. The strength of correlations was examined with pooled odds ratios (ORs) and 95% confidence intervals (95% CIs). Subgroup analyses stratified by ethnicity and source of control were carried out. All statistical analyses were performed with STATA software (version 12.0). RESULTS Overall, BMP-14 rs143383 polymorphism was negatively correlated with the susceptibility to knee OA and hand OA under genetic contrasts of CC versus TT, CC + TC versus TT, CC versus TT + TC, C versus T, TC versus TT (OR = 0.71, 95% CI = 0.65-0.79; OR = 0.81, 95% CI = 0.73-0.89; OR = 0.79, 95% CI = 0.71-0.86; OR = 0.85, 95% CI = 0.81-0.90; OR = 0.84, 95% CI = 0.75-0.93), and TC versus TT, CC versus TT + TC, C versus T (OR = 0.76, 95% CI = 0.65-0.89; OR = 0.79, 95% CI = 0.68-0.92; OR = 0.90, 95% CI = 0.85-0.95), respectively; similar results were observed in subgroups after stratification analyses. Additionally, the polymorphism also reduced hip OA risk in Asian group after stratified analysis by ethnicity. CONCLUSION BMP-14 rs143383 polymorphism may be a protective factor against OA occurrence.
Collapse
|
17
|
Abd Elazeem MI, Abdelaleem EA, Mohamed RA. Genetic influence of growth and differentiation factor 5 gene polymorphism (+104T/C) on the development of knee osteoarthritis and its association with disease severity. Eur J Rheumatol 2017. [PMID: 28638680 DOI: 10.5152/eurjrheum.2017.160093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE The growth and differentiation factor 5 (GDF5) gene is recognized for its role in the development, repair, and maintenance of cartilage and bone. The present case-control study was conducted to detect the genetic association between GDF5 (+104T/C) single-nucleotide polymorphism (SNP) and primary knee osteoarthritis (KOA), as well as the possible association of SNP with the severity of KOA. MATERIAL AND METHODS The study included 50 patients with primary KOA and 50 healthy control subjects. The severity of the disease was assessed by using the Kellgren-Laurence (K-L) grading system and aided by the Western Ontario & McMaster Universities Osteoarthritis Index (WOMAC) score, visual analog scale (VAS) score, and tenderness score. The genetic association of the SNP with primary KOA was assessed by means of the TaqMan® allelic discrimination technique. RESULTS The radiological assessment of patients according to the K-L grading system revealed a statistically significant association between the wild-type (TT) genotype and disease severity in both the right and left knees (p=0.049). The frequency distribution of patients with VAS score ≤6 was significantly higher in patients carrying the TT genotype (p=0.005) as compared to the CT and CC genotypes. The mean WOMAC score was significantly higher in patients carrying the TT genotype as compared to patients carrying the CC and CT genotypes (p=0.017). No statistically significant association was detected on comparing the frequency distribution of allele and genotype frequencies of the SNP in patients and healthy controls. CONCLUSION The results of the current study revealed a possible genetic association between GDF5 (+104T/C) SNP and the severity of KOA, which might be of benefit for the detection of patients with a high risk for disease progression. The present study did not detect an association between the SNP and development of KOA.
Collapse
Affiliation(s)
- Mervat I Abd Elazeem
- Department of Rheumatology and Rehabilitation, Beni-Suef University School of Medicine, Beni-Suef University Hospital, Beni-Suef, Egypt
| | - Enas Abolkheir Abdelaleem
- Department of Rheumatology and Rehabilitation, Beni-Suef University School of Medicine, Beni-Suef University Hospital, Beni-Suef, Egypt
| | - Rabab A Mohamed
- Department of Clinical and Chemical Pathology, Beni-Suef University School of Medicine, Beni-Suef University Hospital, Beni-Suef, Egypt
| |
Collapse
|
18
|
Chen H, Capellini TD, Schoor M, Mortlock DP, Reddi AH, Kingsley DM. Heads, Shoulders, Elbows, Knees, and Toes: Modular Gdf5 Enhancers Control Different Joints in the Vertebrate Skeleton. PLoS Genet 2016; 12:e1006454. [PMID: 27902701 PMCID: PMC5130176 DOI: 10.1371/journal.pgen.1006454] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/02/2016] [Indexed: 11/18/2022] Open
Abstract
Synovial joints are crucial for support and locomotion in vertebrates, and are the frequent site of serious skeletal defects and degenerative diseases in humans. Growth and differentiation factor 5 (Gdf5) is one of the earliest markers of joint formation, is required for normal joint development in both mice and humans, and has been genetically linked to risk of common osteoarthritis in Eurasian populations. Here, we systematically survey the mouse Gdf5 gene for regulatory elements controlling expression in synovial joints. We identify separate regions of the locus that control expression in axial tissues, in proximal versus distal joints in the limbs, and in remarkably specific sub-sets of composite joints like the elbow. Predicted transcription factor binding sites within Gdf5 regulatory enhancers are required for expression in particular joints. The multiple enhancers that control Gdf5 expression in different joints are distributed over a hundred kilobases of DNA, including regions both upstream and downstream of Gdf5 coding exons. Functional rescue tests in mice confirm that the large flanking regions are required to restore normal joint formation and patterning. Orthologs of these enhancers are located throughout the large genomic region previously associated with common osteoarthritis risk in humans. The large array of modular enhancers for Gdf5 provide a new foundation for studying the spatial specificity of joint patterning in vertebrates, as well as new candidates for regulatory regions that may also influence osteoarthritis risk in human populations. Joints, such as the hip and knee, are crucial for support and locomotion in animals, and are the frequent sites of serious human diseases such as arthritis. The Growth and differentiation factor 5 (Gdf5) gene is required for normal joint formation, and has been linked to risk of common arthritis in Eurasians. Here, we surveyed the mouse gene for the regulatory information that controls Gdf5's expression pattern in stripes at sites of joint formation. The gene does not have a single regulatory sequence that drives expression in all joints. Instead, Gdf5 has multiple different control sequences that show striking specificity for joints in the head, vertebral column, shoulder, elbow, wrist, hip, knee, and digits. Rescue experiments show that multiple control sequences are required to restore normal joint formation in Gdf5 mutants. The joint control sequences originally found in mice are also present in humans, where they are marked as active regions during fetal development and post-natal life, and map to a large region associated with arthritis risk in human populations. Regulatory variants in the human GDF5 control sequences can now be studied for their potential role in altering joint development or disease risk at particular locations in the skeleton.
Collapse
Affiliation(s)
- Hao Chen
- Department of Developmental Biology, Beckman Center B300, Stanford University School of Medicine, Stanford, California, United States of America
| | - Terence D. Capellini
- Department of Developmental Biology, Beckman Center B300, Stanford University School of Medicine, Stanford, California, United States of America
- Human Evolutionary Biology, Peabody Museum, Harvard University, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | - Doug P. Mortlock
- Molecular Physiology and Biophysics and Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee, United States of America
| | - A. Hari Reddi
- Center for Tissue Regeneration and Repair, University of California Davis Medical Center, Sacramento, California, United States of America
| | - David M. Kingsley
- Department of Developmental Biology, Beckman Center B300, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Jiang D, Hao Z, Fan D, Guo W, Xu P, Yin C, Wen S, Wang J. Association between GDF5 +104T/C polymorphism and knee osteoarthritis in Caucasian and Asian populations: a meta-analysis based on case-control studies. J Orthop Surg Res 2016; 11:104. [PMID: 27662846 PMCID: PMC5035499 DOI: 10.1186/s13018-016-0436-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/05/2016] [Indexed: 12/15/2022] Open
Abstract
Background Osteoarthritis (OA) is a degenerative joint disease with a complex genetic background. Variants in growth differentiation factor 5 (GDF5) have been reported to be associated with rheumatoid arthritis (RA) in several ethnic populations. The present study aimed to assess the association between the GDF5 +104T/C polymorphism and the susceptibility of the knee to OA through a meta-analysis of available case-control studies. Methods The PubMed and Science Direct citation databases were used to search electronic literature in order to identify studies published between January 2007 and July 2016 that evaluated the association between the GDF5 +104T/C polymorphism and the susceptibility of the knee to OA. Different genetic models were used to assess the pooled and stratified data. Results A positive association was found in all pooled studies (OR = 0.808, 95 % CI = 0.754–0.866, p < 0.001). Regarding genotypes, significant associations were found using a dominant model (OR = 0.777, 95 % CI = 0.708–0.852, p < 0.001), a recessive model (OR = 0.723, 95%CI = 0.623–0.839, p < 0.001), and an additive model (CC vs TT OR = 0.648, 95 % CI = 0.552–0.760, p < 0.001; CC vs CT OR = 0.801, 95 % CI = 0.685–0.936, p = 0.005). Meta-analysis data were stratified by ethnicity, and the GDF5 C allele was found to be positively associated with OA of the knee in both Caucasians and Asians, as were the GDF5 TC and CC genotypes. In addition, using an additive model, the CC genotype was found to be significantly associated with OA of the knee in both Caucasians and Asians when comparing CC vs TT genotypes, but not in Caucasians when comparing TT vs CT genotypes. Conclusions Meta-analysis results indicated that the GDF5 +104T/C polymorphism is a protective factor for OA among Caucasian and Asian populations.
Collapse
Affiliation(s)
- Dong Jiang
- Inner Mongolia Medical University, Hohhot, 010000, People's Republic of China
| | - Zengtao Hao
- Department of Hand and Microsurgery II, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, China
| | - Dongsheng Fan
- Department of Hand and Microsurgery II, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, China
| | - Wen Guo
- Inner Mongolia Medical University, Hohhot, 010000, People's Republic of China
| | - Pengcheng Xu
- Inner Mongolia Medical University, Hohhot, 010000, People's Republic of China
| | - Chao Yin
- Department of Hand and Microsurgery II, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, China
| | - Shuzheng Wen
- Department of Hand and Microsurgery II, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, China.
| | - Jihong Wang
- Department of Hand and Microsurgery II, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, China.
| |
Collapse
|
20
|
Khan S, Basit S, Khan MA, Muhammad N, Ahmad W. Genetics of human isolated acromesomelic dysplasia. Eur J Med Genet 2016; 59:198-203. [DOI: 10.1016/j.ejmg.2016.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 12/27/2015] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
|
21
|
Wang T, Liang Y, Li H, Li H, He Q, Xue Y, Shen C, Zhang C, Xiang J, Ding J, Qiao L, Zheng Q. Single Nucleotide Polymorphisms and Osteoarthritis: An Overview and a Meta-Analysis. Medicine (Baltimore) 2016; 95:e2811. [PMID: 26886631 PMCID: PMC4998631 DOI: 10.1097/md.0000000000002811] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/15/2016] [Accepted: 01/16/2016] [Indexed: 01/22/2023] Open
Abstract
Osteoarthritis (OA) is a complex disorder characterized by degenerative articular cartilage and is largely attributed to genetic risk factors. Single nucleotide polymorphisms (SNPs) are common DNA variants that have shown promising and efficiency, compared with positional cloning, to map candidate genes of complex diseases, including OA. In this study, we aim to provide an overview of multiple SNPs from a number of genes that have recently been linked to OA susceptibility. We also performed a comprehensive meta-analysis to evaluate the association of SNP rs7639618 of double von Willebrand factor A domains (DVWA) gene with OA susceptibility. A systematic search of studies on the association of SNPs with susceptibility to OA was conducted in PubMed and Google scholar. Studies subjected to meta-analysis include human and case-control studies that met the Hardy-Weinberg equilibrium model and provide sufficient data to calculate an odds ratio (OR). A total of 9500 OA cases and 9365 controls in 7 case-control studies relating to SNP rs7639618 were included in this study and the ORs with 95% confidence intervals (CIs) were calculated. Over 50 SNPs from different genes have been shown to be associated with either hip (23), or knee (20), or both (13) OA. The ORs of these SNPs for OA and the subtypes are not consistent. As to SNP rs7639618 of DVWA, increased knee OA risk was observed in all genetic models analyzed. Specifically, people from Asian with G-allele showed significantly increased risk of knee OA (A versus G: OR = 1.28, 95% CI 1.13-1.46; AA versus GG: OR = 1.60, 95% CI 1.25-2.05; GA versus GG: OR = 1.31, 95% CI 1.18-1.44; AA versus GA+GG: OR = 1.34, 95% CI 1.12-1.61; AA+GA versus GG: OR = 1.40, 95% CI 1.19-1.64), but not in Caucasians or with hip OA. Our results suggest that multiple SNPs play different roles in the pathogenesis of OA and its subtypes; SNP rs7639618 of DVWA gene is associated with a significantly increased risk of knee OA in Asians. Given the limited sample size, further studies are needed to evaluate this observation.
Collapse
Affiliation(s)
- Ting Wang
- From the Center for Reproduction and Genetics (TW, HL, HL, QH, YX, CS, CZ, JX, JD, LQ), Suzhou Hospital affiliated to Nanjing Medical University, Suzhou, Jiangsu; Department of Laboratory Medicine (YL), Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai; Department of Hematology and Hematological Laboratory Science (QZ), Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China (QZ); and Department of Anatomy and Cell Biology (QZ), Rush University Medical Center, Chicago, IL
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang R, Yao J, Xu P, Ji B, Luck JV, Chin B, Lu S, Kelsoe JR, Ma J. A comprehensive meta-analysis of association between genetic variants of GDF5 and osteoarthritis of the knee, hip and hand. Inflamm Res 2015; 64:405-14. [DOI: 10.1007/s00011-015-0818-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 04/03/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022] Open
|
23
|
Bravatà V, Minafra L, Forte GI, Cammarata FP, Saporito M, Boniforti F, Lio D, Gilardi MC, Messa C. DVWA gene polymorphisms and osteoarthritis. BMC Res Notes 2015; 8:30. [PMID: 25648366 PMCID: PMC4323016 DOI: 10.1186/s13104-015-0987-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 01/22/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative joints disorder influenced by genetic predisposition. We reported that rs11718863 DVWA SNP was represented in Sicilian with a more severe Kellgren and Lawrence (KL) radiographic grade, displaying its predictive role as OA marker progression. Here, we describe the DVWA SNPs: rs11718863, rs7639618, rs7651842, rs7639807 and rs17040821 probably able to induce protein functional changes. FINDINGS Sixty-one Sicilian patients with knee OA and 100 healthy subjects were enrolled. Clinical and radiographic evaluation was performed using AKSS scores and KL. Linkage Disequilibrium (LD) analyses were performed in order to verify whether the SNPs segregate as haplotype. All DVWA SNPs'MinorAllele Frequencies (MAF) were greater than in the European. The rs7639618 SNP showed a statistical association with KL. Our analyses show that a LD exists among rs11718863 and rs7639618, as well as between rs7651842, rs7639807 and rs17040821 SNPs. We also observed that three out of the 161 individuals investigated were simultaneously homozygous carriers of the rs7651842, rs7639807 and rs17040821 MAF alleles. CONCLUSIONS In summary, the purpose of this preliminary research was to highlight possible associations between DVWA SNPs and OA clinical and radiographic data. This work represents a multidisciplinary medicine approach to study OA where clinical, radiological and genetic evaluation could contribute to better define OA grading.
Collapse
Affiliation(s)
| | | | | | | | - Michele Saporito
- Clinica Ortopedica e Traumatologica, Università degli Studi di Palermo, Palermo, Italy.
| | - Filippo Boniforti
- Unità Operativa di Ortopedia, San Raffaele Hospital "G. Giglio", Cefalù, PA, Italy.
| | - Domenico Lio
- Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy.
| | - Maria C Gilardi
- IBFM CNR-LATO, Cefalù, PA, Italy. .,Nuclear Medicine, San Raffaele Scientific Institute, Milan, Italy. .,Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy.
| | - Cristina Messa
- IBFM CNR-LATO, Cefalù, PA, Italy. .,Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy. .,Nuclear Medicine Center, San Gerardo Hospital, Monza, Italy.
| |
Collapse
|
24
|
Rodriguez-Fontenla C, Gonzalez A. Genética de la artrosis. ACTA ACUST UNITED AC 2015; 11:33-40. [DOI: 10.1016/j.reuma.2014.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
|
25
|
Pan F, Tian J, Winzenberg T, Ding C, Jones G. Association between GDF5 rs143383 polymorphism and knee osteoarthritis: an updated meta-analysis based on 23,995 subjects. BMC Musculoskelet Disord 2014; 15:404. [PMID: 25467786 PMCID: PMC4265459 DOI: 10.1186/1471-2474-15-404] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 11/06/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Previous studies investigating the association between GDF5 rs143383 polymorphism and knee osteoarthritis (OA) have suggested stronger associations in Asians than Caucasians, but limitations on the amount of available data have meant that a definitive assessment has not been possible. Given the availability of more recent data, the aim of this meta-analysis was to determine the overall association between GDF5 rs143383 polymorphism and knee OA and whether the association varies by ethnicity. METHODS Searches of Medline, Embase, and ISI Web of Science were conducted up to July 2013. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to estimate the strength of association between the GDF5 polymorphism and knee OA risk. RESULTS A total of 20 studies with 23,995 individuals were included. There were weak but significant associations present between the GDF5 polymorphism and knee OA at the allele level (C vs. T: OR =0.85, 95% CI = 0.80-0.90) and genotype level (CC vs. TT: OR = 0.73; CT vs. TT: OR = 0.84; CC/CT vs. TT: OR = 0.81; CC vs. CT/TT OR = 0.81) in the overall population. In the subgroup analysis by ethnicity, we observed a strong significant association (OR = 0.60 to 0.80, all P <0.05) in Asian population and weaker associations (OR =0.78 to 0.87, all P <0.05) in Caucasian population; however marked heterogeneity was detected in all models except for CC vs. TT (I2 = 12.9%) and CC vs. CT + TT (I2 = 0.0%) in Asians. CONCLUSIONS These results strongly suggest that the C allele and CC genotype of the GDF5 gene are protective for knee OA susceptibility across different populations.
Collapse
Affiliation(s)
- Feng Pan
- Menzies Research Institute Tasmania, University of Tasmania, Private Bag 23, Hobart, Tasmania 7000, Australia.
| | | | | | | | | |
Collapse
|
26
|
Genetic, clinical and radiographic signs in knee osteoarthritis susceptibility. Arthritis Res Ther 2014; 16:R91. [PMID: 24716474 PMCID: PMC4060235 DOI: 10.1186/ar4535] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/25/2014] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is considered to be a multifactorial and polygenic disease and diagnosis is mainly clinical and radiological. Correlation between radiographic data and clinical status has been reported. However, very few studies, especially in Caucasian people, describe the association between the Kellgren and Lawrence OA grading scale (KL) and genetic alterations to better understand OA etiopathogenesis and susceptibility. In order to update the knee OA grading, in this study we assessed the associations between KL grade, clinical features such as American Knee Society Score (AKSS), age, and polymorphisms in the principal osteoarthritis susceptibility (OS) genes in Sicilian individuals. METHODS In 66 Sicilian individuals affected by primary knee OA, the clinical and radiographic evaluation was performed using 2 sub-scores of AKSS (knee score (KS) and function score (FS)) and KL. The patients were also classified according to age. Online Mendelian Inheritance in Man (OMIM) and Database of Single Nucleotide Polymorphisms (dbSNP) Short Genetic Variations databases were used to select gene regions containing the following polymorphisms to analyze: FRZB rs288326 and rs7775, MATN3 rs77245812, ASPN D14 repeats, PTHR2 rs76758470, GDF5 rs143383 and DVWA rs11718863. Patient genotypes were obtained using Sanger DNA sequencing analysis. RESULTS In our cohort of patients a statistical association between the variables analyzed was reported in all associations tested (KL versus KS, FS and age). We observed that a mild to severe OA radiographic grade is related to severe clinical conditions and loss of articular function and that the severity of symptoms increases with age. Concerning the genotyping analysis, our results revealed a significant statistical association between KL grading and GDF5 rs143383 and DVWA rs11718863 genetic alterations. The latter was also associated with a more severe radiographic grade, displaying its predictive role as OA marker progression. Statistically significant association between clinical, radiographic and genetic signs observed, suggests extending the actual grading of knee OA based mainly on X-ray features. CONCLUSIONS This work represents a multidisciplinary and translational medicine approach to study OA where clinical, radiological, and OS5 and OS6 SNPs evaluation could contribute to better define grading and progression of OA and to the development of new therapies.
Collapse
|
27
|
Mu J, Ge W, Zuo X, Chen Y, Huang C. A SNP in the 5'UTR of GDF5 is associated with susceptibility to symptomatic lumbar disc herniation in the Chinese Han population. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2013; 23:498-503. [PMID: 24105021 DOI: 10.1007/s00586-013-3059-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 01/08/2023]
Abstract
PURPOSE The aim of the present study is to assess whether the single nucleotide polymorphism in the GDF5 (+104T/C; rs143383) is associated with the symptomatic lumbar disc herniation in the Chinese Han population and the identification of the mechanisms of its action. METHODS This study consisted of 231 patients with symptomatic lumbar disc herniation as the case group and 370 patients who had a lifetime lack of symptoms as the control group. PCR products were genotyped. Thirty-eight disc specimens derived from the cases were analyzed by immunohistochemical staining. The stain intensity of immunohistochemistry was quantified using a computerized image analysis system. RESULTS Significant differences in genotypic and allelic frequencies were found between case group and control group (TT genotype P < 0.001; CC genotype P = 0.002; T allele P < 0.001). The T allele was more frequent in the case group regardless of gender (Female P = 0.018; Male P < 0.001). Significant differences were found in the genotype frequencies when stratified by gender except the comparison between the CC genotype and other genotypes combined among the female samples (P > 0.05). A semi-quantification of collagen protein in the nucleus pulposus showed that the average collagen protein content in TC group was higher than in TT group (P < 0.05). CONCLUSION Our results suggested that the GDF5 polymorphism is associated with a susceptibility to symptomatic lumbar disc herniation in the Chinese Han population and type II collagen in the nucleus pulposus may be a key factor in susceptibility to symptomatic lumbar disc herniation.
Collapse
Affiliation(s)
- Jihong Mu
- The 425th Hospital of Chinese PLA, Sanya, China
| | | | | | | | | |
Collapse
|
28
|
Gonzalez A. Osteoarthritis year 2013 in review: genetics and genomics. Osteoarthritis Cartilage 2013; 21:1443-51. [PMID: 23845519 DOI: 10.1016/j.joca.2013.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/10/2013] [Accepted: 07/01/2013] [Indexed: 02/02/2023]
Abstract
Progress in genetic research has delivered important highlights in the last year. One of the widest impact is the publication of the Encyclopedia of DNA Elements (ENCODE) project showing the impressive complexity of the human genome and providing information useful for all areas of genetics. More specific of osteoarthritis (OA) has been the incorporation of DOT1-like, histone H3 methyltransferase (DOT1L) to the list of 11 OA loci with genome-wide significant association, the demonstration of significant overlap between OA genetics and height or body mass index (BMI) genetics, and the tentative prioritization of HMG-box transcription factor 1 (HBP1) in the 7q22 locus based on functional analysis. In addition, the first large scale analysis of DNA methylation has found modest differences between OA and normal cartilage, but has identified a subgroup of OA patients with a very differentiated phenotype. The role of DNA methylation in regulation of NOS2, SOX9, MMP13 and IL1B has been further clarified. MicroRNA expression studies in turn have shown some replication of differences between OA and control cartilage from previous profiling studies and have identified potential regulators of TGFβ signaling and of IL1β effects. In addition, non-coding RNAs showed promising results as serum biomarkers of cartilage damage. Gene expression microarray studies have found important differences between studies of hip or knee OA that reinforce the idea of joint specificity in OA. Expression differences between articular cartilage and other types of cartilage highlighted the WNT pathway whose regulation is proposed as critical for maintaining the articular cartilage phenotype. Many of these results need confirmation but they signal the exciting progress that is taking place in all areas of OA genetics, indicate questions requiring more study and augur further interesting discoveries.
Collapse
Affiliation(s)
- A Gonzalez
- Instituto de Investigación Sanitaria - Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain.
| |
Collapse
|
29
|
Ikegawa S. The Genetics of Common Degenerative Skeletal Disorders: Osteoarthritis and Degenerative Disc Disease. Annu Rev Genomics Hum Genet 2013; 14:245-56. [DOI: 10.1146/annurev-genom-091212-153427] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, Center for Genomic Medicine, RIKEN, Tokyo 108-8639, Japan;
| |
Collapse
|
30
|
Abstract
Personalized medicine is a much talked about subject that is a timely and important development to healthcare in general and also specifically for patients affected by osteoarthritis. This review uses biomarker examples pertinent to osteoarthritis to highlight the current status of the field, while also highlighting probable future developments. It is not meant to be an exhaustive account. The BIPED(s) [Burden of disease, Investigative, Prognosis, Efficacy, Diagnosis (safety)] classification system is used to organize the discussion of examples. Biomarkers pertaining to burden, investigation, prognosis, efficacy, diagnosis and safety are highlighted. The examples are followed by a discussion of issues related to interpretation and application of biomarker results and approaches to solve the challenges interpretation faces, including graphical, mathematical and synthetic representations. Through this review, it is hoped that a better appreciation can be gained of the potential and pitfalls of personal medicine in the care of patients with osteoarthritis.
Collapse
Affiliation(s)
- Allen Dale Sawitzke
- Internal Medicines, University of Utah, 30N 1900E SOM, 4B200, Salt Lake City, UT 84132, USA
| |
Collapse
|
31
|
Williams FMK, Popham M, Hart DJ, de Schepper E, Bierma-Zeinstra S, Hofman A, Uitterlinden AG, Arden NK, Cooper C, Spector TD, Valdes AM, van Meurs J. GDF5 single-nucleotide polymorphism rs143383 is associated with lumbar disc degeneration in Northern European women. ACTA ACUST UNITED AC 2013; 63:708-12. [PMID: 21360499 PMCID: PMC3498734 DOI: 10.1002/art.30169] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Objective Lumbar disc degeneration (LDD) is a serious social and medical problem which has been shown to be highly heritable. It has similarities with peripheral joint osteoarthritis (OA) in terms of both epidemiology and pathologic processes. A few known genetic variants have been identified using a candidate gene approach, but many more are thought to exist. GDF5 is a gene whose variants have been shown to play a role in skeletal height as well as predisposing to peripheral joint OA. In vitro, the gene product growth differentiation factor 5 has been shown to promote growth and repair of animal disc. This study was undertaken to investigate whether the GDF5 gene plays a role in LDD. Methods We investigated whether the 5′ upstream single-nucleotide polymorphism (SNP) variant rs143383 was associated with LDD, using plain radiography and magnetic resonance imaging to identify disc space narrowing and osteophytes, in 5 population cohorts from Northern Europe. Results An association between LDD and the SNP rs143383 was identified in women, with the same risk allele as in knee and hip OA (odds ratio 1.72 [95% confidence interval 1.15–2.57], P = 0.008). Conclusion Our findings in 5 population cohorts from Northern Europe indicate that a variant in the GDF5 gene is a risk factor for LDD in women. Many more such variants are predicted to exist, but this result highlights the growth and differentiation cellular pathway as a possible route to a better understanding of the process behind lumbar disc degeneration.
Collapse
Affiliation(s)
- F M K Williams
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Collagen VI is a component of the extracellular matrix of almost all connective tissues, including cartilage, bone, tendon, muscles and cornea, where it forms abundant and structurally unique microfibrils organized into different suprastructural assemblies. The precise role of collagen VI is not clearly defined although it is most abundant in the interstitial matrix of tissues and often found in close association with basement membranes. Three genetically distinct collagen VI chains, α1(VI), α2(VI) and α3(VI), encoded by the COL6A1. COL6A2 and COL6A3 genes, were first described more than 20 years ago. Their molecular assembly and role in congenital muscular dystrophy has been broadly characterized. In 2008, three additional collagen VI genes arrayed in tandem at a single gene locus on chromosome 3q in humans, and chromosome 9 in mice, were described. Following the naming scheme for collagens the new genes were designated COL6A4. COL6A5 and COL6A6 encoding the α4(VI), α5(VI) and α6(VI) chains, respectively. This review will focus on the current state of knowledge of the three new chains.
Collapse
Affiliation(s)
- Jamie Fitzgerald
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR 97239, USA,Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Paul Holden
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR 97239, USA
| | - Uwe Hansen
- Institute for Physiological Chemistry and Pathobiochemistry, University Hospital of Muenster, 48129 Muenster, Germany
| |
Collapse
|
33
|
Liu J, Cai W, Zhang H, He C, Deng L. Rs143383 in the growth differentiation factor 5 (GDF5) gene significantly associated with osteoarthritis (OA)-a comprehensive meta-analysis. Int J Med Sci 2013; 10:312-9. [PMID: 23423687 PMCID: PMC3575627 DOI: 10.7150/ijms.5455] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 01/09/2013] [Indexed: 11/17/2022] Open
Abstract
Family, twin, adoption studies show osteoarthritis (OA) has a substantial genetic component. Several studies have shown an association between OA and Growth Differentiation Factor 5 (GDF5), some others have not. Thus, the status of the OA-GDF5 association is uncertain. This meta-analysis was applied to case-control studies of the association between OA and GDF5 to assess the joint evidence for the association, the influence of individual studies, and evidence for publication bias. Relevant studies were identified from the following electronic databases: MEDLINE and current contents before Feb. 2012. For the case-control studies, the authors found 1) support for the association between OA and GDF5. The rs143383 polymorphism was significantly associated with OA [fixed: OR and 95% CI: 1.193 (1.139-1.249), p < 0.001; random: OR and 95% CI: 1.204 (1.135-1.276), p < 0.001], 2) no evidence that this association was accounted for by any one study, and 3) no evidence for publication bias. Although the effect size of the association between OA and GDF5 is small, there is suggestive evidence for an association. Further studies are needed to clarify what variant of GDF5 (or some nearby gene) accounts for this association.
Collapse
Affiliation(s)
- Jie Liu
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Orthopaedics and Traumatology, Department of Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | | | | | | | | |
Collapse
|
34
|
Genome-wide association and functional studies identify the DOT1L gene to be involved in cartilage thickness and hip osteoarthritis. Proc Natl Acad Sci U S A 2012; 109:8218-23. [PMID: 22566624 DOI: 10.1073/pnas.1119899109] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hip osteoarthritis (HOA) is one of the most disabling and common joint disorders with a large genetic component that is, however, still ill-defined. To date, genome-wide association studies (GWAS) in osteoarthritis (OA) and specifically in HOA have yielded only few loci, which is partly explained by heterogeneity in the OA definition. Therefore, we here focused on radiographically measured joint-space width (JSW), a proxy for cartilage thickness and an important underlying intermediate trait for HOA. In a GWAS of 6,523 individuals on hip-JSW, we identified the G allele of rs12982744 on chromosome 19p13.3 to be associated with a 5% larger JSW (P = 4.8 × 10(-10)). The association was replicated in 4,442 individuals from three United Kingdom cohorts with an overall meta-analysis P value of 1.1 × 10(-11). The SNP was also strongly associated with a 12% reduced risk for HOA (P = 1 × 10(-4)). The SNP is located in the DOT1L gene, which is an evolutionarily conserved histone methyltransferase, recently identified as a potentially dedicated enzyme for Wnt target-gene activation in leukemia. Immunohistochemical staining of the DOT1L protein in mouse limbs supports a role for DOT1L in chondrogenic differentiation and adult articular cartilage. DOT1L is also expressed in OA articular chondrocytes. Silencing of Dot1l inhibited chondrogenesis in vitro. Dot1l knockdown reduces proteoglycan and collagen content, and mineralization during chondrogenesis. In the ATDC5 chondrogenesis model system, DOT1L interacts with TCF and Wnt signaling. These data are a further step to better understand the role of Wnt-signaling during chondrogenesis and cartilage homeostasis. DOT1L may represent a therapeutic target for OA.
Collapse
|
35
|
Omair A, Lie BA, Reikeras O, Brox JI. An Association Study of Interleukin 18 Receptor Genes (IL18R1 and IL18RAP) in Lumbar Disc Degeneration. Open Orthop J 2012; 6:164-71. [PMID: 22550553 PMCID: PMC3339430 DOI: 10.2174/1874325001206010164] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 12/19/2022] Open
Abstract
Objectives: To examine association of candidate genetic variants in structural, inflammatory, matrix modifying, vitamin D receptor genes and variants associated with osteoarthritis, with surgical candidates and surgical patients with lumbar disc degeneration (LDD), in light of their previously reported susceptibility for LDD. Methods: Genotyping of 146 Norwegian LDD patients and 188 Norwegian controls was performed for 20 single-nucleotide polymorphisms (SNPs) from collagen, aggrecan, interleukin, VDR, MMP3 and COX2 genes and 7 SNPs from osteoarthritic genes. Results: The neighboring genes IL18R1 and IL18RAP polymorphisms (rs2287037 and rs1420100), showed a statistically non-significant risk for developing LDD (OR 1.36 [95 % CI 0.99 – 1.87]; p=0.06 and OR 1.33 [95 % CI 0.98-1.81]; p=0.07). Homozygosity of these risk alleles was associated with LDD (p=0.023 and p=0.027). The non-risk alleles at these SNPs were situated on a haplotype negatively associated with LDD (p=0.008). Carriage of at least one non-risk allele at both loci also reduces the risk of developing LDD (OR 0.51 [95 % CI 0.33-0.80]; p=0.003). Conclusion: Our findings support the polygenic nature of LDD and suggest that variation in interleukin 18 receptor genes could affect the risk of severe LDD and associated low back pain.
Collapse
Affiliation(s)
- Ahmad Omair
- Department of Orthopaedics, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | | | | | | |
Collapse
|
36
|
Abstract
Osteoarthritis (OA) has a considerable hereditary component and is considered to be a polygenic disease. Data derived from genetic analyses and genome-wide screening of individuals with this disease have revealed a surprising trend: genes associated with OA tend to be related to the process of synovial joint development. Mutations in these genes might directly cause OA. In addition, they could also determine the age at which OA becomes apparent, the joint sites involved, the severity of the disease and how rapidly it progresses. In this Review, I propose that genetic mutations associated with OA can be placed on a continuum. Early-onset OA is caused by mutations in matrix molecules often associated with chondrodysplasias, whereas less destructive structural abnormalities or mutations confer increased susceptibility to injury or malalignment that can result in middle-age onset. Finally, mutations in molecules that regulate subtle aspects of joint development and structure lead to late-onset OA. In this Review, I discuss the genetics of OA in general, but focus on the potential effect of genetic mutations associated with OA on joint structure, the role of joint structure in the development of OA--using hip abnormalities as a model--and how understanding the etiology of the disease could influence treatment.
Collapse
|
37
|
Lee SJ, Kim MJ, Kee SJ, Song SK, Kweon SS, Shin MH, Park DJ, Park YW, Lee SS, Kim TJ. Association study of the candidate gene for knee osteoarthritis in Koreans. Rheumatol Int 2011; 33:783-6. [PMID: 22083612 DOI: 10.1007/s00296-011-2191-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 10/22/2011] [Indexed: 11/27/2022]
Abstract
The aim of this study was to examine a single-nucleotide polymorphism (SNP) rs7639618 of double von Willebrand factor (DVWA) gene for the association with osteoarthritis (OA) susceptibility in Korean cohort. The study was a part of the Korean cohort study. Two thousand four hundred sixty-two subjects aged 50 years and older who were derived from the cohort and who were assessed for OA at the knee were genotyped. The anteroposterior extended-view weight-bearing radiographs of the knees were obtained. Of the subjects, 725 subjects had radiographic OA. Genomic DNA was extracted from peripheral blood using a QIAamp DNA Blood Mini Kit (Qiagen, Valencia, CA). Genotyping was performed using High Resolution Melt or the Taq-Man allelic discrimination assay and the Rotor-Gene 6000 (Corbett Research, Sydney,Australia). Associations were tested by calculating the odds ratios (ORs) and 95% confidence intervals (95% CIs), using logistic regression analysis with adjustments for age, gender, and body mass index (BMI). The mean age of the OA patients (females: 554 subjects, 76.4%) was 67.4 (7.9) years. The intraobserver agreement was high for the identification of osteophytes (κ: 0.80) and joint space narrowing (κ: 0.70). There was no significant difference (all P values > 0.05) in the genotype or allele frequencies between the patients with OA and healthy controls. There was also no significant difference when the cases were adjusted by age, gender, and BMI. The associations of DVWA SNPs with OA were noted in previous studies and were not found in the Korean OA cohort.
Collapse
Affiliation(s)
- Sung-Ji Lee
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Valdes AM, De Wilde G, Doherty SA, Lories RJ, Vaughn FL, Laslett LL, Maciewicz RA, Soni A, Hart DJ, Zhang W, Muir KR, Dennison EM, Wheeler M, Leaverton P, Cooper C, Spector TD, Cicuttini FM, Chapman V, Jones G, Arden NK, Doherty M. The Ile585Val TRPV1 variant is involved in risk of painful knee osteoarthritis. Ann Rheum Dis 2011; 70:1556-61. [PMID: 21616913 PMCID: PMC3147243 DOI: 10.1136/ard.2010.148122] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objective To assess if a coding variant in the gene encoding transient receptor potential cation channel, subfamily V, member 1 (TRPV1) is associated with genetic risk of painful knee osteoarthritis (OA). Methods The Ile585Val TRPV1 variant encoded by rs8065080 was genotyped in 3270 cases of symptomatic knee OA, 1098 cases of asymptomatic knee OA and 3852 controls from seven cohorts from the UK, the USA and Australia. The genetic association between the low-pain genotype Ile–Ile and risk of symptomatic and asymptomatic knee OA was assessed. Results The TRPV1 585 Ile–Ile genotype, reported to be associated with lower thermal pain sensitivity, was associated with a lower risk of symptomatic knee OA in a comparison of symptomatic cases with healthy controls, with an odds ratio (OR) of 0.75 (95% CI 0.64 to 0.88; p=0.00039 by meta-analysis) after adjustment for age, sex and body mass index. No difference was seen between asymptomatic OA cases and controls (OR=1.02, 95% CI 0.82 to 1.27 p=0.86) but the Ile–Ile genotype was associated with lower risk of symptomatic versus asymptomatic knee OA adjusting for covariates and radiographic severity (OR=0.73, 95% CI 0.57 to 0.94 p=0.0136). TRPV1 expression in articular cartilage was increased by inflammatory cytokines (tumour necrosis factor α and interleukin 1). However, there were no differences in TRPV1 expression in healthy and arthritic synovial tissue. Conclusions A genotype involved in lower peripheral pain sensitivity is significantly associated with a decreased risk of painful knee OA. This indicates a role for the pro-nociceptive gene TRPV1 in genetic susceptibility to symptomatic knee OA, which may also be influenced by a role for this molecule in cartilage function.
Collapse
Affiliation(s)
- Ana M Valdes
- Department of Twin Research, King’s College London, St Thomas’ Hospital, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gara SK, Grumati P, Squarzoni S, Sabatelli P, Urciuolo A, Bonaldo P, Paulsson M, Wagener R. Differential and restricted expression of novel collagen VI chains in mouse. Matrix Biol 2011; 30:248-57. [PMID: 21477648 DOI: 10.1016/j.matbio.2011.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/15/2011] [Accepted: 03/29/2011] [Indexed: 12/22/2022]
Abstract
Recently, three novel collagen VI chains, α4, α5 and α6, were identified. These are thought to substitute for the collagen VI α3 chain, probably forming α1α2α4, α1α2α5 or α1α2α6 heterotrimers. The expression pattern of the novel chains is so far largely unknown. In the present study, we compared the tissue distribution of the novel collagen VI chains in mouse with that of the α3 chain by immunohistochemistry, immunoelectron microscopy and immunoblots. In contrast to the widely expressed α3 chain, the novel chains show a highly differential, restricted and often complementary expression. The α4 chain is strongly expressed in the intestinal smooth muscle, surrounding the follicles in ovary, and in testis. The α5 chain is present in perimysium and at the neuromuscular junctions in skeletal muscle, in skin, in the kidney glomerulus, in the interfollicular stroma in ovary and in the tunica albuginea of testis. The α6 chain is most abundant in the endomysium and perimysium of skeletal muscle and in myocard. Immunoelectron microscopy of skeletal muscle localized the α6 chain to the reticular lamina of muscle fibers. The highly differential and restricted expression points to the possibility of tissue-specific roles of the novel chains in collagen VI assembly and function.
Collapse
|
40
|
Kerkhof HJM, Doherty M, Arden NK, Abramson SB, Attur M, Bos SD, Cooper C, Dennison EM, Doherty SA, Evangelou E, Hart DJ, Hofman A, Javaid K, Kerna I, Kisand K, Kloppenburg M, Krasnokutsky S, Maciewicz RA, Meulenbelt I, Muir KR, Rivadeneira F, Samuels J, Sezgin M, Slagboom E, Smith AJP, Spector TD, Tamm A, Tamm A, Uitterlinden AG, Wheeler M, Zhai G, Zhang W, van Meurs JBJ, Valdes AM. Large-scale meta-analysis of interleukin-1 beta and interleukin-1 receptor antagonist polymorphisms on risk of radiographic hip and knee osteoarthritis and severity of knee osteoarthritis. Osteoarthritis Cartilage 2011; 19:265-71. [PMID: 21146623 DOI: 10.1016/j.joca.2010.12.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 11/29/2010] [Accepted: 12/02/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To clarify the role of common genetic variation in the Interleukin-1β (IL1B) and Interleukin-1R antagonist (IL1RN) genes on risk of knee and hip osteoarthritis (OA) and severity of knee OA by means of large-scale meta-analyses. METHODS We searched PubMed for articles assessing the role of IL1B and IL1RN polymorphisms/haplotypes on the risk of hip and/or knee OA. Novel data were included from eight unpublished studies. Meta-analyses were performed using fixed- and random-effects models with a total of 3595 hip OA and 5013 knee OA cases, and 6559 and 9132 controls respectively. The role of ILRN haplotypes on radiographic severity of knee OA was tested in 1918 cases with Kellgren-Lawrence (K/L) 1 or 2 compared to 199 cases with K/L 3 or 4. RESULTS The meta-analysis of six published studies retrieved from the literature search and eight unpublished studies showed no evidence of association between common genetic variation in the IL1B or IL1RN genes and risk of hip OA or knee OA (P>0.05 for rs16944, rs1143634, rs419598 and haplotype C-G-C (rs1143634, rs16944 and rs419598) previously implicated in risk of hip OA). The C-T-A haplotype formed by rs419598, rs315952 and rs9005, previously implicated in radiographic severity of knee OA, was associated with reduced severity of knee OA (odds ratio (OR)=0.71 95%CI 0.56-0.91; P=0.006, I(2)=74%), and achieved borderline statistical significance in a random-effects model (OR=0.61 95%CI 0.35-1.06 P=0.08). CONCLUSION Common genetic variation in the Interleukin-1 region is not associated with prevalence of hip or knee OA but our data suggest that IL1RN might have a role in severity of knee OA.
Collapse
Affiliation(s)
- H J M Kerkhof
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Evangelou E, Valdes AM, Kerkhof HJM, Styrkarsdottir U, Zhu Y, Meulenbelt I, Lories RJ, Karassa FB, Tylzanowski P, Bos SD, Akune T, Arden NK, Carr A, Chapman K, Cupples LA, Dai J, Deloukas P, Doherty M, Doherty S, Engstrom G, Gonzalez A, Halldorsson BV, Hammond CL, Hart DJ, Helgadottir H, Hofman A, Ikegawa S, Ingvarsson T, Jiang Q, Jonsson H, Kaprio J, Kawaguchi H, Kisand K, Kloppenburg M, Kujala UM, Lohmander LS, Loughlin J, Luyten FP, Mabuchi A, McCaskie A, Nakajima M, Nilsson PM, Nishida N, Ollier WER, Panoutsopoulou K, van de Putte T, Ralston SH, Rivadeneira F, Saarela J, Schulte-Merker S, Shi D, Slagboom PE, Sudo A, Tamm A, Tamm A, Thorleifsson G, Thorsteinsdottir U, Tsezou A, Wallis GA, Wilkinson JM, Yoshimura N, Zeggini E, Zhai G, Zhang F, Jonsdottir I, Uitterlinden AG, Felson DT, van Meurs JB, Stefansson K, Ioannidis JPA, Spector TD. Meta-analysis of genome-wide association studies confirms a susceptibility locus for knee osteoarthritis on chromosome 7q22. Ann Rheum Dis 2011; 70:349-55. [PMID: 21068099 PMCID: PMC3615180 DOI: 10.1136/ard.2010.132787] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Osteoarthritis (OA) is the most prevalent form of arthritis and accounts for substantial morbidity and disability, particularly in older people. It is characterised by changes in joint structure, including degeneration of the articular cartilage, and its aetiology is multifactorial with a strong postulated genetic component. METHODS A meta-analysis was performed of four genome-wide association (GWA) studies of 2371 cases of knee OA and 35 909 controls in Caucasian populations. Replication of the top hits was attempted with data from 10 additional replication datasets. RESULTS With a cumulative sample size of 6709 cases and 44 439 controls, one genome-wide significant locus was identified on chromosome 7q22 for knee OA (rs4730250, p=9.2 × 10⁻⁹), thereby confirming its role as a susceptibility locus for OA. CONCLUSION The associated signal is located within a large (500 kb) linkage disequilibrium block that contains six genes: PRKAR2B (protein kinase, cAMP-dependent, regulatory, type II, β), HPB1 (HMG-box transcription factor 1), COG5 (component of oligomeric golgi complex 5), GPR22 (G protein-coupled receptor 22), DUS4L (dihydrouridine synthase 4-like) and BCAP29 (B cell receptor-associated protein 29). Gene expression analyses of the (six) genes in primary cells derived from different joint tissues confirmed expression of all the genes in the joint environment.
Collapse
Affiliation(s)
- Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Osteoarthritis (OA) is the most common cause of arthritis and represents an enormous healthcare burden in industrialized societies. Current therapeutic approaches for OA are limited and are insufficient to prevent the initiation and progression of the disease. Genetic studies of patients with OA can help to unravel the molecular mechanisms responsible for specific disease manifestations, including joint damage, nociception and chronic pain. Indeed, these studies have identified molecules, such as growth/differentiation factor 5, involved in signaling cascades that are important for the pathology of joint components. Genome-wide association studies have uncovered a likely role in OA for the genes encoding structural extracellular matrix components (such as DVWA) and molecules involved in prostaglandin metabolism (such as DQB1 and BTNL2). A ∼300 kilobase region in chromosome 7q22 is also associated with OA susceptibility. Finally, the identification of individuals at a high risk of OA and of total joint arthroplasty failure might be facilitated by the use of combinations of genetic markers, allowing for the application of preventive and disease-management strategies.
Collapse
|
43
|
Valdes AM, Evangelou E, Kerkhof HJM, Tamm A, Doherty SA, Kisand K, Tamm A, Kerna I, Uitterlinden A, Hofman A, Rivadeneira F, Cooper C, Dennison EM, Zhang W, Muir KR, Ioannidis JPA, Wheeler M, Maciewicz RA, van Meurs JB, Arden NK, Spector TD, Doherty M. The GDF5 rs143383 polymorphism is associated with osteoarthritis of the knee with genome-wide statistical significance. Ann Rheum Dis 2010; 70:873-5. [PMID: 20870806 DOI: 10.1136/ard.2010.134155] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
44
|
Valdes AM, Spector TD, Tamm A, Kisand K, Doherty SA, Dennison EM, Mangino M, Tamm A, Kerna I, Hart DJ, Wheeler M, Cooper C, Lories RJ, Arden NK, Doherty M. Genetic variation in the SMAD3 gene is associated with hip and knee osteoarthritis. ACTA ACUST UNITED AC 2010; 62:2347-52. [PMID: 20506137 DOI: 10.1002/art.27530] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Smad3 (or, MADH3) is a key intracellular messenger in the transforming growth factor beta signaling pathway. In mice, Smad3 deficiency accelerates growth plate chondrocyte maturation and leads to an osteoarthritis (OA)-like disease. We undertook this study to investigate the role of genetic variation in SMAD3 in the risk of large-joint OA in humans. METHODS Ten tag single-nucleotide polymorphisms (SNPs) in the SMAD3 gene region were tested in a discovery set: 313 patients who had undergone total knee replacement, 214 patients who had undergone total hip replacement, and 520 controls from the UK. The SNP associated with both hip and knee OA was subsequently genotyped in 1,221 controls and 1,074 cases from 2 cohorts of patients with hip OA and 2,537 controls and 1,575 cases from 4 cohorts of patients with knee OA. RESULTS A SNP (rs12901499) mapping to intron 1 of SMAD3 was associated with both knee and hip OA (P < 0.0022 and P < 0.021, respectively) in the discovery set. In all study cohorts, the major allele (G) was increased among OA patients relative to controls. A meta-analysis for knee OA yielded an odds ratio (OR) of 1.22 (95% confidence interval [95% CI] 1.12-1.34), P < 7.5 x 10(-6). For hip OA, the OR was 1.22 (95% CI 1.09-1.36), P < 4.0 x 10(-4). No evidence for heterogeneity was found (I(2) = 0%). CONCLUSION Our data indicate that genetic variation in the SMAD3 gene is involved in the risk of both hip OA and knee OA in European populations, confirming the results from animal models on the potential importance of this molecule in the pathogenesis of OA.
Collapse
Affiliation(s)
- Ana M Valdes
- Department of Twin Research and Genetic Epidemiology, St. Thomas' Hospital Campus, King's College London, London SE1 7EH, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Rouault K, Scotet V, Autret S, Gaucher F, Dubrana F, Tanguy D, El Rassi CY, Fenoll B, Férec C. Evidence of association between GDF5 polymorphisms and congenital dislocation of the hip in a Caucasian population. Osteoarthritis Cartilage 2010; 18:1144-9. [PMID: 20633687 DOI: 10.1016/j.joca.2010.05.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 05/06/2010] [Accepted: 05/29/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Congenital dislocation of the hip (CDH) is a multifactorial disease which involves genetic factors that are still unidentified. Recently, a functional polymorphism (rs143383) of the 5'-untranslated region of GDF5 (Growth/Differentiation Factor 5) - previously reported to be associated with osteoarthritis - has been associated with CDH in a Chinese population. The aim of our study was to determine whether GDF5, known to be involved in bone, joint and cartilage morphogenesis, is also associated with CDH in Caucasians. DESIGN We genotyped three tagSNPs (rs224334, rs143384, rs143383) in 239 cases and 239 controls from western Brittany (France) where CDH is frequent, and tested the association using both single-locus and haplotype-based approaches. RESULTS The most significant association was observed with rs143384. The T allele of this SNP was overrepresented in cases (65.9% vs 55.9%, P=0.002). Under a recessive model, carriers of the TT genotype had a 1.71-fold higher risk of developing CDH than carriers of the other genotypes (OR(TT vs CT+CC)=1.71, 95% CI: [1.18-2.48], P=0.005). At a nominal level, the association was also significant with rs143383 (OR(TT vs CT+CC)=1.52, 95% CI: [1.05-2.19], P=0.026). The haplotype carrying the susceptibility alleles of these SNPs was also more frequent in cases (65.9% vs 55.9%, OR=1.53, 95% CI: [1.18-1.98], P=0.002). CONCLUSION This study reports, for the first time, the association between GDF5 polymorphisms and CDH in Caucasians, and points out another polymorphism of interest that requires further investigation. Reduction in GDF5 expression might lead to developmental deficiency of ligaments and capsule in hip joint, and therefore contribute to CDH pathogenesis.
Collapse
|
46
|
Valdes AM, Arden NK, Tamm A, Kisand K, Doherty S, Pola E, Cooper C, Tamm A, Muir KR, Kerna I, Hart D, O'Neil F, Zhang W, Spector TD, Maciewicz RA, Doherty M. A meta-analysis of interleukin-6 promoter polymorphisms on risk of hip and knee osteoarthritis. Osteoarthritis Cartilage 2010; 18:699-704. [PMID: 20175976 DOI: 10.1016/j.joca.2009.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/07/2009] [Accepted: 12/21/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Interleukin-6 is a pro-inflammatory cytokine involved in the pathogenesis of osteoarthritis (OA). We investigated the role of two single nucleotide polymorphisms (SNPs) mapping to the promoter of the IL-6 gene on genetic susceptibility to hip and knee OA. METHODS The -174G/C (rs1800795) and -597G/A (rs1800797) SNPs, implicated in the literature in risk of hip and hand OA, were genotyped in 2511 controls, 1101 hip OA cases and 1904 knee OA cases from four cohorts from the UK and Estonia. Data were analysed in conjuntion with published data on rs1800797 from the Genetics of OA and Lifestyle study (UK) on 791 controls, 1034 knee and 997 hip OA cases and rs1800795 data on 75 hip OA cases and 96 controls from Italy. Cases included both radiographic OA only and radiographic and symptomatic OA. Fixed and random-effects meta-analysis models were tested. RESULTS No significant association was found with hip OA or knee OA with either SNP nor with the haplotypes formed by them. For individual SNPs the smallest P-value for hip OA was observed using a random-effects model for rs1800795 OR(Gallele)=1.066 (95% CI 0.89-1.28) P<0.49, and significant heterogeneity between cohorts (I(2)=65%, P<0.034) was detected. For knee OA the smallest P-value was seen for rs1800797 OR(Aallele)=1.055 (95%CI 0.98-1.12) P<0.18, no significant heterogeneity was observed (I(2)=0%, P<0.68). CONCLUSIONS Our data do not support a role for the -174 and -597 IL-6 promoter polymorphisms in genetic susceptibility to knee or hip OA in Caucasian populations.
Collapse
Affiliation(s)
- A M Valdes
- Department of Twin Research, St. Thomas' Hospital Campus, Kings College London School of Medicine London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Osteoarthritis is the most common form of arthritis in the elderly and is influenced by both genetic and environmental risk factors. The scope of the present article is to offer an overview of recent developments in the genetic epidemiology of knee and hip osteoarthritis, with particular emphasis on published genomewide association studies (GWAS). RECENT FINDINGS Candidate gene studies and genomewide linkage studies have identified genes in the bone morphogenetic pathway (e.g. GDF5), the thyroid regulation pathway (DIO2) and apoptotic pathways as involved in genetic risk of large joint osteoarthritis. GWAS have reported structural genes (COL6A4), inflammation-related genes (PTGS2/PLA2G4A) and a locus on chr 7q22 (GPR22 and four other genes in the same linkage disequilibrium block) associated with osteoarthritis. SUMMARY Genetic studies have identified polymorphisms associated with osteoarthritis and related end-points. These include genes in signaling cascades involved in joint and bone biology, as well as genes in inflammatory pathways and a cluster of five genes in perfect linkage disequilibrium in the 7q22 region.
Collapse
|
48
|
Kraus VB, Kepler TB, Stabler T, Renner J, Jordan J. First qualification study of serum biomarkers as indicators of total body burden of osteoarthritis. PLoS One 2010; 5:e9739. [PMID: 20305824 PMCID: PMC2840035 DOI: 10.1371/journal.pone.0009739] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 02/03/2010] [Indexed: 12/01/2022] Open
Abstract
Background Osteoarthritis (OA) is a debilitating chronic multijoint disease of global proportions. OA presence and severity is usually documented by x-ray imaging but whole body imaging is impractical due to radiation exposure, time and cost. Systemic (serum or urine) biomarkers offer a potential alternative method of quantifying total body burden of disease but no OA-related biomarker has ever been stringently qualified to determine the feasibility of this approach. The goal of this study was to evaluate the ability of three OA-related biomarkers to predict various forms or subspecies of OA and total body burden of disease. Methodology/Principal Findings Female participants (461) with clinical hand OA underwent radiography of hands, hips, knees and lumbar spine; x-rays were comprehensively scored for OA features of osteophyte and joint space narrowing. Three OA-related biomarkers, serum hyaluronan (sHA), cartilage oligomeric matrix protein (sCOMP), and urinary C-telopeptide of type II collagen (uCTX2), were measured by ELISA. sHA, sCOMP and uCTX2 correlated positively with total osteophyte burden in models accounting for demographics (age, weight, height): R2 = 0.60, R2 = 0.47, R2 = 0.51 (all p<10−6); sCOMP correlated negatively with total joint space narrowing burden: R2 = 0.69 (p<10−6). Biomarkers and demographics predicted 35–38% of variance in total burden of OA (total joint space narrowing or osteophyte). Joint size did not determine the contribution to the systemic biomarker concentration. Biomarker correlation with disease in the lumbar spine resembled that in the rest of the skeleton. Conclusions/Significance We have suspected that the correlation of systemic biomarkers with disease has been hampered by the inability to fully phenotype the burden of OA in a patient. These results confirm the hypothesis, revealed upon adequate patient phenotyping, that systemic joint tissue concentrations of several biomarkers can be quantitative indicators of specific subspecies of OA and of total body burden of disease.
Collapse
Affiliation(s)
- Virginia B Kraus
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America.
| | | | | | | | | |
Collapse
|
49
|
Kerkhof HJM, Lories RJ, Meulenbelt I, Jonsdottir I, Valdes AM, Arp P, Ingvarsson T, Jhamai M, Jonsson H, Stolk L, Thorleifsson G, Zhai G, Zhang F, Zhu Y, van der Breggen R, Carr A, Doherty M, Doherty S, Felson DT, Gonzalez A, Halldorsson BV, Hart DJ, Hauksson VB, Hofman A, Ioannidis JPA, Kloppenburg M, Lane NE, Loughlin J, Luyten FP, Nevitt MC, Parimi N, Pols HAP, Rivadeneira F, Slagboom EP, Styrkársdóttir U, Tsezou A, van de Putte T, Zmuda J, Spector TD, Stefansson K, Uitterlinden AG, van Meurs JBJ. A genome-wide association study identifies an osteoarthritis susceptibility locus on chromosome 7q22. ARTHRITIS AND RHEUMATISM 2010; 62:499-510. [PMID: 20112360 PMCID: PMC3354739 DOI: 10.1002/art.27184] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To identify novel genes involved in osteoarthritis (OA), by means of a genome-wide association study. METHODS We tested 500,510 single-nucleotide polymorphisms (SNPs) in 1,341 Dutch Caucasian OA cases and 3,496 Dutch Caucasian controls. SNPs associated with at least 2 OA phenotypes were analyzed in 14,938 OA cases and approximately 39,000 controls. Meta-analyses were performed using the program Comprehensive Meta-analysis, with P values <1 x 10(-7) considered genome-wide significant. RESULTS The C allele of rs3815148 on chromosome 7q22 (minor allele frequency 23%; intron 12 of the COG5 gene) was associated with a 1.14-fold increased risk (95% confidence interval 1.09-1.19) of knee and/or hand OA (P = 8 x 10(-8)) and also with a 30% increased risk of knee OA progression (95% confidence interval 1.03-1.64) (P = 0.03). This SNP is in almost complete linkage disequilibrium with rs3757713 (68 kb upstream of GPR22), which is associated with GPR22 expression levels in lymphoblast cell lines (P = 4 x 10(-12)). Immunohistochemistry experiments revealed that G protein-coupled receptor protein 22 (GPR22) was absent in normal mouse articular cartilage or synovium. However, GPR22-positive chondrocytes were found in the upper layers of the articular cartilage of mouse knee joints that were challenged with in vivo papain treatment or methylated bovine serum albumin treatment. GPR22-positive chondrocyte-like cells were also found in osteophytes in instability-induced OA. CONCLUSION Our findings identify a novel common variant on chromosome 7q22 that influences susceptibility to prevalence and progression of OA. Since the GPR22 gene encodes a G protein-coupled receptor, this is potentially an interesting therapeutic target.
Collapse
MESH Headings
- Animals
- Cartilage, Articular/drug effects
- Cartilage, Articular/pathology
- Cartilage, Articular/physiology
- Cell Line
- Chromosomes, Human, Pair 7
- Female
- Genetic Predisposition to Disease
- Genome-Wide Association Study
- Humans
- Lymphocytes/cytology
- Lymphocytes/physiology
- Male
- Mice
- Netherlands
- Osteoarthritis, Hip/ethnology
- Osteoarthritis, Hip/genetics
- Osteoarthritis, Knee/ethnology
- Osteoarthritis, Knee/genetics
- Papain/pharmacology
- Phenotype
- Polymorphism, Single Nucleotide
- Prevalence
- Receptors, G-Protein-Coupled/genetics
- Risk Factors
- Serum Albumin, Bovine/pharmacology
- Synovial Membrane/drug effects
- Synovial Membrane/pathology
- Synovial Membrane/physiology
- White People/genetics
- White People/statistics & numerical data
Collapse
|
50
|
Abstract
Osteoarthritis (OA) is a polygenic disease with a definite genetic component, and recent advances in genome research have enabled us to investigate OA susceptibility genes. Several research groups, including ours, have reported the identification of OA susceptibility genes, mainly using candidate gene association studies. However, we are now entering the era of genome-wide association studies (GWAS). Here, we review recent progress in the study of susceptibility genes for OA, focusing in particular on GWAS and large-scale replication studies.
Collapse
|