1
|
Casanova JL, Peel J, Donadieu J, Neehus AL, Puel A, Bastard P. The ouroboros of autoimmunity. Nat Immunol 2024; 25:743-754. [PMID: 38698239 DOI: 10.1038/s41590-024-01815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/13/2024] [Indexed: 05/05/2024]
Abstract
Human autoimmunity against elements conferring protective immunity can be symbolized by the 'ouroboros', a snake eating its own tail. Underlying infection is autoimmunity against three immunological targets: neutrophils, complement and cytokines. Autoantibodies against neutrophils can cause peripheral neutropenia underlying mild pyogenic bacterial infections. The pathogenic contribution of autoantibodies against molecules of the complement system is often unclear, but autoantibodies specific for C3 convertase can enhance its activity, lowering complement levels and underlying severe bacterial infections. Autoantibodies neutralizing granulocyte-macrophage colony-stimulating factor impair alveolar macrophages, thereby underlying pulmonary proteinosis and airborne infections, type I interferon viral diseases, type II interferon intra-macrophagic infections, interleukin-6 pyogenic bacterial diseases and interleukin-17A/F mucocutaneous candidiasis. Each of these five cytokine autoantibodies underlies a specific range of infectious diseases, phenocopying infections that occur in patients with the corresponding inborn errors. In this Review, we analyze this ouroboros of immunity against immunity and posit that it should be considered as a factor in patients with unexplained infection.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Jessica Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
| | - Jean Donadieu
- Trousseau Hospital for Sick Children, Centre de référence des neutropénies chroniques, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
2
|
Cheng A, Holland SM. Anti-cytokine autoantibodies: mechanistic insights and disease associations. Nat Rev Immunol 2024; 24:161-177. [PMID: 37726402 DOI: 10.1038/s41577-023-00933-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
Anti-cytokine autoantibodies (ACAAs) are increasingly recognized as modulating disease severity in infection, inflammation and autoimmunity. By reducing or augmenting cytokine signalling pathways or by altering the half-life of cytokines in the circulation, ACAAs can be either pathogenic or disease ameliorating. The origins of ACAAs remain unclear. Here, we focus on the most common ACAAs in the context of disease groups with similar characteristics. We review the emerging genetic and environmental factors that are thought to drive their production. We also describe how the profiling of ACAAs should be considered for the early diagnosis, active monitoring, treatment or sub-phenotyping of diseases. Finally, we discuss how understanding the biology of naturally occurring ACAAs can guide therapeutic strategies.
Collapse
Affiliation(s)
- Aristine Cheng
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Bastard P, Gervais A, Le Voyer T, Philippot Q, Cobat A, Rosain J, Jouanguy E, Abel L, Zhang SY, Zhang Q, Puel A, Casanova JL. Human autoantibodies neutralizing type I IFNs: From 1981 to 2023. Immunol Rev 2024; 322:98-112. [PMID: 38193358 PMCID: PMC10950543 DOI: 10.1111/imr.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Human autoantibodies (auto-Abs) neutralizing type I IFNs were first discovered in a woman with disseminated shingles and were described by Ion Gresser from 1981 to 1984. They have since been found in patients with diverse conditions and are even used as a diagnostic criterion in patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1). However, their apparent lack of association with viral diseases, including shingles, led to wide acceptance of the conclusion that they had no pathological consequences. This perception began to change in 2020, when they were found to underlie about 15% of cases of critical COVID-19 pneumonia. They have since been shown to underlie other severe viral diseases, including 5%, 20%, and 40% of cases of critical influenza pneumonia, critical MERS pneumonia, and West Nile virus encephalitis, respectively. They also seem to be associated with shingles in various settings. These auto-Abs are present in all age groups of the general population, but their frequency increases with age to reach at least 5% in the elderly. We estimate that at least 100 million people worldwide carry auto-Abs neutralizing type I IFNs. Here, we briefly review the history of the study of these auto-Abs, focusing particularly on their known causes and consequences.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, France, EU
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, APHP, Paris, France, EU
| |
Collapse
|
4
|
Arts RJW, Janssen NAF, van de Veerdonk FL. Anticytokine Autoantibodies in Infectious Diseases: A Practical Overview. Int J Mol Sci 2023; 25:515. [PMID: 38203686 PMCID: PMC10778971 DOI: 10.3390/ijms25010515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Anticytokine autoantibodies (ACAAs) are a fascinating group of antibodies that have gained more and more attention in the field of autoimmunity and secondary immunodeficiencies over the years. Some of these antibodies are characterized by their ability to target and neutralize specific cytokines. ACAAs can play a role in the susceptibility to several infectious diseases, and their infectious manifestations depending on which specific immunological pathway is affected. In this review, we will give an outline per infection in which ACAAs might play a role and whether additional immunomodulatory treatment next to antimicrobial treatment can be considered. Finally, we describe the areas for future research on ACAAs.
Collapse
Affiliation(s)
- Rob J. W. Arts
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS), Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.A.F.J.); (F.L.v.d.V.)
| | - Nico A. F. Janssen
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS), Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.A.F.J.); (F.L.v.d.V.)
- Center of Expertise in Mycology Radboudumc, Canisius-Wilhelmina Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Infectious Diseases, The National Aspergillosis Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Frank L. van de Veerdonk
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS), Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.A.F.J.); (F.L.v.d.V.)
- Center of Expertise in Mycology Radboudumc, Canisius-Wilhelmina Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
5
|
Mabo A, Borie R, Wemeau-Stervinou L, Uzunhan Y, Gomez E, Prevot G, Reynaud-Gaubert M, Traclet J, Bergot E, Cadranel J, Marchand-Adam S, Bergeron A, Blanchard E, Bondue B, Bonniaud P, Bourdin A, Burgel PR, Hirschi S, Marquette CH, Quétant S, Nunes H, Chenivesse C, Crestani B, Guirriec Y, Monnier D, Ménard C, Tattevin P, Cottin V, Luque Paz D, Jouneau S. Infections in autoimmune pulmonary alveolar proteinosis: a large retrospective cohort. Thorax 2023; 79:68-74. [PMID: 37758458 DOI: 10.1136/thorax-2023-220040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Autoimmune pulmonary alveolar proteinosis (aPAP) is a rare disease, predisposing to an increased risk of infection. A complete picture of these infections is lacking. RESEARCH QUESTION Describe the characteristics and clinical outcomes of patients diagnosed with aPAP, and to identify risk factors associated with opportunistic infections. METHODS We conducted a retrospective cohort including all patients diagnosed with aPAP between 2008 and 2018 in France and Belgium. Data were collected using a standardised questionnaire including demographics, comorbidities, imaging features, outcomes and microbiological data. RESULTS We included 104 patients, 2/3 were men and median age at diagnosis was 45 years. With a median follow-up of 3.4 years (IQR 1.7-6.6 years), 60 patients (58%), developed at least one infection, including 23 (22%) with opportunistic infections. Nocardia spp was the main pathogen identified (n=10). Thirty-five (34%) patients were hospitalised due to infection. In univariate analysis, male gender was associated with opportunistic infections (p=0.04, OR=3.88; 95% CI (1.02 to 22.06)). Anti-granulocyte macrophage colony-stimulating factor antibody titre at diagnosis was significantly higher among patients who developed nocardiosis (1058 (316-1591) vs 580 (200-1190), p=0.01). Nine patients had died (9%), but only one death was related to infection. INTERPRETATION Patients with aPAP often presented with opportunistic infections, especially nocardiosis, which highlights the importance of systematic search for slow-growing bacteria in bronchoalveolar lavage or whole lung lavage.
Collapse
Affiliation(s)
- Axelle Mabo
- Service de Pneumologie, Centre de Compétence pour les Maladies Pulmonaires Rares, Hôpital Pontchaillou, CHU Rennes, Rennes, France
| | - Raphael Borie
- Centre de Référence Constitutif des Maladies Pulmonaires Rares, Service de Pneumologie A, Hopital Bichat, APHP, Paris, France
| | - Lidwine Wemeau-Stervinou
- Centre de Référence Constitutif des Maladies Pulmonaires Rares, Institut Cœur-Poumon, Service de Pneumologie et Immuno-Allergologie, CHRU Lille, Lille, France
| | - Yurdagül Uzunhan
- Centre de Référence Constitutif des Maladies Pulmonaires Rares, Service de Pneumologie, Hôpital Avicenne, APHP, Bobigny, France
| | - Emmanuel Gomez
- Centre de Compétence pour les Maladies Pulmonaires Rares, Département de Pneumologie, Hôpitaux de Brabois, CHRU de Nancy, Vandoeuvre-les Nancy, France
| | - Gregoire Prevot
- Service de Pneumologie, Centre de Compétence pour les Maladies Pulmonaires Rares, Hôpital Larry, CHU Toulouse, Toulouse, France
| | - Martine Reynaud-Gaubert
- Service de Pneumologie et Transplantation Pulmonaire, Centre de Compétences des Maladies Rares Pulmonaires et de l'Hypertension Pulmonaire, CHU Nord de Marseille, AP-HM, Aix Marseille Université, Marseille, France
| | - Julie Traclet
- Service de Pneumologie, Centre National Coordonnateur de Référence des Maladies Pulmonaires Rares, Hôpital Louis-Pradel, Hospices Civils de Lyon (HCL), UMR754, INRAE, Université Lyon 1, ERN-LUNG, Lyon, France
| | - Emmanuel Bergot
- Centre de Compétence pour les Maladies Pulmonaires Rares de l'Adulte, Service de Pneumologie et Oncologie Thoracique, Hôpital Côte de Nacre, CHU de Caen, Caen, France
| | - Jacques Cadranel
- Service de Pneumologie et Oncologie Thoracique, Centre Constitutif Maladies Pulmonaires Rares, Hôpital Tenon, APHP, Sorbonne Université, Paris, France
| | - Sylvain Marchand-Adam
- Service de Pneumologie, CHRU de Tours, Université François Rabelais de Tours, INSERM U1100, Tours, France
| | - Anne Bergeron
- Service de Pneumologie, Hôpitaux Universitaires de Genève, Genève, Switzerland
| | - Elodie Blanchard
- Service de Pneumologie, centre de compétence pour les maladies pulmonaires rares, CHU de Bordeaux, Pessac, France
| | - Benjamin Bondue
- Service de Pneumologie, CUB Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Philippe Bonniaud
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence Constitutif des Maladies Pulmonaires Rares de l'Adulte, CHU Dijon-Bourgogne, Inserm U123, Université de Bourgogne, Dijon, France
| | - Arnaud Bourdin
- Service de Pneumologie, CHU Montpellier, Université de Montpellier, Inserm U1046, Montpellier, France
| | - Pierre Regis Burgel
- Service de Pneumologie, Hopital Cochin Pneumologie, AP-HP, Université Paris Cité Paris, Paris, France
| | - Sandrine Hirschi
- Service de Pneumologie et Transplantation Pulmonaire, Hopitaux universitaires de Strasbourg, Strasbourg, France
| | - Charles Hugo Marquette
- Service de Pneumologie, CHU Nice, Fédération Hospitalo-Universitaire OncoAge, Nice, France
| | - Sébastien Quétant
- Service Hospitalo-Universitaire de Pneumologie et Physiologie, Pôle Thorax et Vaisseaux, CHU de Grenoble-Alpes, La Tronche, Grenoble, France
| | - Hilario Nunes
- Centre de Référence Constitutif des Maladies Pulmonaires Rares, Service de Pneumologie, Hôpital Avicenne, APHP, Bobigny, France
| | - Cécile Chenivesse
- Centre de Référence Constitutif des Maladies Pulmonaires Rares, Institut Cœur-Poumon, Service de Pneumologie et Immuno-Allergologie, CHRU Lille, Lille, France
| | - Bruno Crestani
- Centre de Référence Constitutif des Maladies Pulmonaires Rares, Service de Pneumologie A, Hopital Bichat, APHP, Paris, France
| | - Yoann Guirriec
- Service de Pneumologie, Centre de Compétence pour les Maladies Pulmonaires Rares, Hôpital Pontchaillou, CHU Rennes, Rennes, France
| | - Delphine Monnier
- Service d'Immunologie, Laboratoire de Biologie Médicale de Référence Lipoprotéinose Alvéolaire, Hôpital Pontchaillou, CHU Rennes, Rennes, France
| | - Cédric Ménard
- Service d'Immunologie, Laboratoire de Biologie Médicale de Référence Lipoprotéinose Alvéolaire, Hôpital Pontchaillou, CHU Rennes, Rennes, France
| | - Pierre Tattevin
- Service de Maladies Infectieuses et Réanimation Médicale, Hôpital Pontchaillou, Inserm U1230, Université de Rennes, Rennes, France
| | - Vincent Cottin
- Service de Pneumologie, Centre National Coordonnateur de Référence des Maladies Pulmonaires Rares, Hôpital Louis-Pradel, Hospices Civils de Lyon (HCL), UMR754, INRAE, Université Lyon 1, ERN-LUNG, Lyon, France
| | - David Luque Paz
- Service de Pneumologie, Centre de Compétence pour les Maladies Pulmonaires Rares, Hôpital Pontchaillou, CHU Rennes, Rennes, France
- Service de Maladies Infectieuses et Réanimation Médicale, Hôpital Pontchaillou, Inserm U1230, Université de Rennes, Rennes, France
| | - Stéphane Jouneau
- Service de Pneumologie, Centre de Compétence pour les Maladies Pulmonaires Rares, Hôpital Pontchaillou, CHU Rennes, Rennes, France
- Inserm UMR1085 IRSET, Université de Rennes, EHESP, Rennes, France
| |
Collapse
|
6
|
Arango-Franco CA, Migaud M, Ramírez-Sánchez IC, Arango-Bustamante K, Moncada-Vélez M, Rojas J, Gervais A, Patiño-Giraldo S, Perez-Zapata LJ, Álvarez Álvarez JA, Orrego JC, Roncancio-Villamil G, Boisson-Dupuis S, Jouanguy E, Abel L, Casanova JL, Bustamante J, Arias AA, Franco JL, Puel A. Anti-GM-CSF Neutralizing Autoantibodies in Colombian Patients with Disseminated Cryptococcosis. J Clin Immunol 2023; 43:921-932. [PMID: 36821021 PMCID: PMC9947894 DOI: 10.1007/s10875-023-01451-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Cryptococcosis is a potentially life-threatening fungal disease caused by encapsulated yeasts of the genus Cryptococcus, mostly C. neoformans or C. gattii. Cryptococcal meningitis is the most frequent clinical manifestation in humans. Neutralizing autoantibodies (auto-Abs) against granulocyte-macrophage colony-stimulating factor (GM-CSF) have recently been discovered in otherwise healthy adult patients with cryptococcal meningitis, mostly caused by C. gattii. We hypothesized that three Colombian patients with cryptococcal meningitis caused by C. neoformans in two of them would carry high plasma levels of neutralizing auto-Abs against GM-CSF. METHODS We reviewed medical and laboratory records, performed immunological evaluations, and tested for anti-cytokine auto-Abs three previously healthy HIV-negative adults with disseminated cryptococcosis. RESULTS Peripheral blood leukocyte subset levels and serum immunoglobulin concentrations were within the normal ranges. We detected high levels of neutralizing auto-Abs against GM-CSF in the plasma of all three patients. CONCLUSIONS We report three Colombian patients with disseminated cryptococcosis associated with neutralizing auto-Abs against GM-CSF. Further studies should evaluate the genetic contribution to anti-GM-CSF autoantibody production and the role of the GM-CSF signaling pathway in the immune response to Cryptococcus spp.
Collapse
Affiliation(s)
- Carlos A Arango-Franco
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse, Paris, France
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
| | - Isabel Cristina Ramírez-Sánchez
- Department of Internal Medicine, School of Medicine, University of Antioquia, Medellín, Colombia
- Department of Internal Medicine, Division of Infectious Diseases, Pablo Tobón Uribe Hospital, Medellín, Colombia
| | - Karen Arango-Bustamante
- Medical and Experimental Mycology Unit, Corporation for Biological Research (CIB), Medellín, Colombia
| | - Marcela Moncada-Vélez
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Julián Rojas
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
| | - Santiago Patiño-Giraldo
- Department of Internal Medicine, School of Medicine, University of Antioquia, Medellín, Colombia
- Department of Internal Medicine, Pablo Tobón Uribe Hospital, Medellín, Colombia
| | - Lizeth J Perez-Zapata
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Jesús A Álvarez Álvarez
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Julio César Orrego
- Primary Immunodeficiencies Group, Department of Pediatrics, School of Medicine, University of Antioquia, Medellin, Colombia
| | - Gustavo Roncancio-Villamil
- School of Health Sciences, Pontifical Bolivarian University, Medellín, Colombia
- CardioVID Clinic, Medellín, Colombia
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Andrés A Arias
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
- School of Health Sciences, Pontifical Bolivarian University, Medellín, Colombia
| | - José Luis Franco
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia.
- Grupo de Inmunodeficiencias Primarias (IDPs), Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse, Paris, France.
- Imagine Institute, University of Paris Cité, Paris, France.
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
7
|
Prevel R, Guillotin V, Imbert S, Blanco P, Delhaes L, Duffau P. Central Nervous System Cryptococcosis in Patients With Sarcoidosis: Comparison With Non-sarcoidosis Patients and Review of Potential Pathophysiological Mechanisms. Front Med (Lausanne) 2022; 9:836886. [PMID: 35425769 PMCID: PMC9002233 DOI: 10.3389/fmed.2022.836886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Cryptococcus spp. infection of the central nervous system (CINS) is a devastating opportunistic infection that was historically described in patients with acquired immunodeficiency syndrome (AIDS). Cryptococcus spp. infections are also associated with sarcoidosis; the impairment of cell-mediated immunity and long-term corticosteroid therapy being evoked to explain this association. Nevertheless, this assertion is debated and the underlying pathophysiological mechanisms are still unknown. The aims of this study were (i) to describe the clinical and biological presentation, treatments, and outcomes of CINS patients with and without sarcoidosis and (ii) to review the pathophysiological evidence underlying this clinical association. Patients and Methods Every patient with positive cerebrospinal fluid (CSF) cryptococcal antigen testing, India ink preparation, and/or culture from January 2015 to December 2020 at a tertiary university hospital were included, and patients with sarcoidosis were compared with non-sarcoidosis patients. Quantitative variables are presented as mean ± SD and are compared using the Mann-Whitney Wilcoxon rank-sum test. Categorical variables are expressed as the number of patients (percentage) and compared using the χ2 or Fisher's tests. Results During the study period, 16 patients experienced CINS, of whom 5 (31%) were associated with sarcoidosis. CINS symptoms, biological, and CSF features were similar between CINS patients with and without sarcoidosis except regarding CD4 cells percentages and CD4/CD8 ratio that was higher in those with sarcoidosis (47 ± 12 vs. 22 ± 18, p = 0.02 and 2.24 ± 1.42 vs. 0.83 ± 1.10, p = 0.03, respectively). CINS patients with sarcoidosis had less often positive blood antigen testing than those without sarcoidosis (2/5 vs. 11/11, p = 0.02). CINS patients with and without sarcoidosis were treated with similar drugs, but patients with sarcoidosis had a shorter length of treatment. CD4 cell levels do not seem to explain the association between sarcoidosis and cryptococcosis. Conclusion Sarcoidosis was the most frequently associated condition with CINS in this study. CINS patients associated with sarcoidosis had overall similar clinical and biological presentation than CINS patients associated with other conditions but exhibited a lower rate of positive blood cryptococcal antigen testing and higher CD4/CD8 T cells ratio. Pathophysiological mechanisms underlying this association remain poorly understood but B-1 cell deficiency or lack of IgM could be a part of the explanation. Another plausible mechanism is the presence of anti-granulocyte-macrophage colony-stimulating factor (GM-CSF) antibodies in a subset of patients with sarcoidosis, which could impair macrophage phagocytic function. Further studies are strongly needed to better understand those mechanisms and to identify at-risk patients.
Collapse
Affiliation(s)
- Renaud Prevel
- CHU Bordeaux, Internal Medicine Department, Bordeaux, France.,Univ Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm UMR 1045, Bordeaux, France
| | | | - Sébastien Imbert
- Univ Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm UMR 1045, Bordeaux, France.,CHU Bordeaux, Mycology-Parasitology Department, CIC 1401, Bordeaux, France
| | - Patrick Blanco
- CHU Bordeaux, Immunology Department, Bordeaux, France.,Univ Bordeaux, CNRS ImmunoConcEpT UMR 5164, Bordeaux, France
| | - Laurence Delhaes
- Univ Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm UMR 1045, Bordeaux, France.,CHU Bordeaux, Mycology-Parasitology Department, CIC 1401, Bordeaux, France
| | - Pierre Duffau
- CHU Bordeaux, Internal Medicine Department, Bordeaux, France.,Univ Bordeaux, CNRS ImmunoConcEpT UMR 5164, Bordeaux, France
| |
Collapse
|
8
|
Lee E, Miller C, Ataya A, Wang T. Opportunistic Infection Associated with Elevated GM-CSF Autoantibodies: A Case Series and Review of the Literature. Open Forum Infect Dis 2022; 9:ofac146. [PMID: 35531378 PMCID: PMC9070348 DOI: 10.1093/ofid/ofac146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is known to play a key role in enhancing multiple immune functions that affect response to infectious pathogens including antigen presentation, complement- and antibody-mediated phagocytosis, microbicidal activity, and neutrophil chemotaxis. Reduced GM-CSF activity and immune response provides a mechanism for increased infection risk associated with autoimmune pulmonary alveolar proteinosis (aPAP) and other disorders involving the presence of GM-CSF autoantibodies. We present a case series of five patients with persistent or unusual pulmonary and central nervous system opportunistic infections (Cryptococcus gattii, Flavobacterium, Nocardia) and elevated GM-CSF autoantibody levels, as well as 27 cases identified on systematic review of the literature.
Collapse
Affiliation(s)
- Elinor Lee
- UCLA Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Christopher Miller
- UCLA Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ali Ataya
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Tisha Wang
- UCLA Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
9
|
Puel A, Bastard P, Bustamante J, Casanova JL. Human autoantibodies underlying infectious diseases. J Exp Med 2022; 219:e20211387. [PMID: 35319722 PMCID: PMC8952682 DOI: 10.1084/jem.20211387] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
The vast interindividual clinical variability observed in any microbial infection-ranging from silent infection to lethal disease-is increasingly being explained by human genetic and immunological determinants. Autoantibodies neutralizing specific cytokines underlie the same infectious diseases as inborn errors of the corresponding cytokine or response pathway. Autoantibodies against type I IFNs underlie COVID-19 pneumonia and adverse reactions to the live attenuated yellow fever virus vaccine. Autoantibodies against type II IFN underlie severe disease caused by environmental or tuberculous mycobacteria, and other intra-macrophagic microbes. Autoantibodies against IL-17A/F and IL-6 are less common and underlie mucocutaneous candidiasis and staphylococcal diseases, respectively. Inborn errors of and autoantibodies against GM-CSF underlie pulmonary alveolar proteinosis; associated infections are less well characterized. In individual patients, autoantibodies against cytokines preexist infection with the pathogen concerned and underlie the infectious disease. Human antibody-driven autoimmunity can interfere with cytokines that are essential for protective immunity to specific infectious agents but that are otherwise redundant, thereby underlying specific infectious diseases.
Collapse
Affiliation(s)
- Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, Paris, France
| |
Collapse
|
10
|
Fang L, Zhang J, Lv F. Disseminated cryptococcosis with varicella-zoster virus coinfection of idiopathic CD4 + T lymphocytopenia: a case report and literature review. Virol J 2022; 19:38. [PMID: 35248113 PMCID: PMC8898517 DOI: 10.1186/s12985-022-01765-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/10/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Idiopathic CD4 + T lymphocytopenia (ICL) is a rare immunodeficiency syndrome, unaccompanied by various opportunistic infections. Cryptococcus and varicella-zoster viruse are the most common opportunistic infections. METHOD We described a case of disseminated cryptococcosis with varicella-zoster virus coinfection in a patient with ICL and reviewed all published reports. A total of 26 cases with cryptococcal meningitis in ICL were enrolled. DISCUSSION ICL remains poorly understood to clinicians. Patients with cryptococcal meningitis in ICL mostly suffered with headache and fever in a subacute or chronic period, while some patients might have atypical manifestations which makes a difficulty for early diagnosis. Some characteristics of cerebrospinal fluid can help to predict the prognosis of the disease. Cryptococcosis with varicella-zoster virus coinfection is rare but serious. CONCLUSION We recommed CD4 + T cells should be assessed in patients with unusual or recurrent infections. As the underlying pathophysiology is poorly understood, there is no standard therapy for ICL. Increased awareness of the disease and early prevention for CD4 reduction are needed.
Collapse
Affiliation(s)
- Li Fang
- Department of Infectious Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun East Road, Hangzhou, 310020, China
| | - Junli Zhang
- Department of Infectious Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun East Road, Hangzhou, 310020, China
| | - Fangfang Lv
- Department of Infectious Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun East Road, Hangzhou, 310020, China.
| |
Collapse
|
11
|
Kuo PH, Wu UI, Pan YH, Wang JT, Wang YC, Sun HY, Sheng WH, Chen YC, Chang SC. Neutralizing anti-GM-CSF autoantibodies in patients with CNS and localized cryptococcosis: a longitudinal follow-up and literature review. Clin Infect Dis 2021; 75:278-287. [PMID: 34718451 DOI: 10.1093/cid/ciab920] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Neutralizing anti-GM-CSF autoantibodies (AAbs) have been increasingly recognized to predispose healthy individuals to disseminated cryptococcosis. However, studies have only considered patients with central nervous system (CNS) infection. No longitudinal study has captured the disease spectrum and clinical course. METHODS We prospectively enrolled adults without human immunodeficiency virus infection who had disseminated or unusual cryptococcosis. We compared the demographics, clinical features, kinetics of serum cryptococcal antigen (CrAg) titers, anti-GM-CSF AAb concentrations, and treatment outcomes between patients with (case patients) and without (control patients) anti-GM-CSF AAbs. Additional reports from the literature were also reviewed. RESULTS Twenty-three patients were enrolled, of whom 6 tested positive for anti-GM-CSF AAbs. All case patients with positive fungal cultures (5/5, 100%) were infected with Cryptococcus gattii VGII. Among them, 3 had exclusively pulmonary involvement, and 1 had only musculoskeletal lesions. Patients with CNS cryptococcosis exhibited a higher serum concentration of anti-GM-CSF AAb than those with extraneural cryptococcosis. Case patients had higher initial and peak levels of serum CrAg and longer duration of antigenemia compared with the control patients. All case patients who had completed antifungal therapy had favorable outcomes without recurrence. CONCLUSIONS Testing for anti-GM-CSF AAbs should be considered for not only previously healthy patients with disseminated cryptococcosis but also those with unexplained, localized cryptococcosis. Recurrence after completion of antifungal therapy was rare despite the persistence of anti-GM-CSF AAbs.
Collapse
Affiliation(s)
- Po-Hsien Kuo
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Un-In Wu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Yi-Hua Pan
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Chen Wang
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-Yun Sun
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
12
|
Viola GM, Malek AE, Rosen LB, DiNardo AR, Nishiguchi T, Okhuysen PC, Holland SM, Kontoyiannis DP. Disseminated cryptococcosis and anti-granulocyte-macrophage colony-stimulating factor autoantibodies: An underappreciated association. Mycoses 2021; 64:576-582. [PMID: 33476401 DOI: 10.1111/myc.13247] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/14/2021] [Indexed: 12/21/2022]
Abstract
The development of disseminated cryptococcosis has historically occurred in patients living with advanced human immunodeficiency virus or other immunosuppressive conditions affecting T-cell function. Recently, patients with anti-cytokine neutralising autoantibodies have been recognised to be at risk for disseminated infections by opportunistic intracellular pathogens, including Cryptococcus species. Herein, we present a previously healthy 26-year-old man who was evaluated with disseminated cryptococcosis involving the bone, lung, mediastinum and brain. The patient's serum cryptococcal antigen titres were >1:1,100,000, and evaluation for an underlying immunodeficiency revealed high titres for anti-granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibodies. We also review the literature of all published cases of disseminated cryptococcosis associated with the presence of anti-GM-CSF autoantibodies. Clinicians should have a heightened awareness of anti-cytokine autoantibodies in patients without a known immunodeficiency and development disseminated infections by opportunistic intracellular pathogens.
Collapse
Affiliation(s)
- George M Viola
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandre E Malek
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lindsey B Rosen
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Andrew R DiNardo
- Division of Infectious Diseases, Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Tomoki Nishiguchi
- Division of Infectious Diseases, Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Pablo C Okhuysen
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven M Holland
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Anticytokine autoantibodies leading to infection: early recognition, diagnosis and treatment options. Curr Opin Infect Dis 2020; 32:330-336. [PMID: 31116133 PMCID: PMC6635052 DOI: 10.1097/qco.0000000000000561] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Purpose of review The current review gives a concise and updated overview of the relative new field of anticytokine autoantibodies (ACAA) and associated infections with a focus on recent findings regarding clinical manifestions, diagnostic and treatments. Recent findings Several recent case reports of unusual presentations of patients with neutralizing autoantibodies to IFN-γ and granulocyt macrophage colony-stimulating factor and expand the spectrum of clinical manifestations and suggest that anticytokine-mediated acquired immunodeficiency causing susceptibility to infection may be underdiagnosed. There is an expanding geographical distribution of antigranulocyt macrophage colony-stimulating factor associated Cryptococcus gattii infection. The spectrum of identified infections in patients with neutralizing antibodies to IFN-γ has a strong endemic component. Rituximab or cyclophophamide in addition to antimycobacterials could be a treatment options in refractory cases. NF-κB2 deficiency may be associated with a complex pattern of high titre neutralizing ACAA similar to autoimmune polyglandular syndrome type I and Thymoma. New technique for the detection of anticytokine antibodies are presented. Quantiferon testing, which is widely available for TB-diagnostic, may be repurposed to detect anti-IFN-γ autoantibodies. We propose that this test could be as well used to show if they are neutralizing. Summary ACAA are an emerging cause of acquired immunodeficiency which is likely underdiagnosed. Recent case reports document expanding spectra of clinical manifestations. NF-κB2 deficiency may be associated with a complex anti cytokine autoantibody pattern.
Collapse
|
14
|
Autoantibodies against cytokines: phenocopies of primary immunodeficiencies? Hum Genet 2020; 139:783-794. [PMID: 32419033 PMCID: PMC7272486 DOI: 10.1007/s00439-020-02180-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/05/2020] [Indexed: 01/04/2023]
Abstract
Anti-cytokine autoantibodies may cause immunodeficiency and have been recently recognized as ‘autoimmune phenocopies of primary immunodeficiencies’ and are found in particular, but not exclusively in adult patients. By blocking the cytokine’s biological function, patients with anti-cytokine autoantibodies may present with a similar clinical phenotype as the related inborn genetic disorders. So far, autoantibodies to interferon (IFN)-γ, GM-CSF, to a group of TH-17 cytokines and to IL-6 have been found to be causative or closely associated with susceptibility to infection. This review compares infectious diseases associated with anti-cytokine autoantibodies with primary immunodeficiencies affecting similar cytokines or related pathways.
Collapse
|
15
|
Swan CD, Gottlieb T. Cryptococcus neoformans empyema in a patient receiving ibrutinib for diffuse large B-cell lymphoma and a review of the literature. BMJ Case Rep 2018; 2018:bcr-2018-224786. [PMID: 30021735 DOI: 10.1136/bcr-2018-224786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We report a case of Cryptococcus neoformans pulmonary infection complicated by empyema in a 79-year-old man with diffuse large B-cell lymphoma treated with R-CHOP and ibrutinib. A literature review identified 25 cases of cryptococcal pleural disease published since 1980. Most cases were caused by the C. neoformans species in immunocompromised hosts with an exudative pleural effusion and lymphocyte-predominant infiltrate. The cryptococcal antigen test was often positive when pleural fluid and serum were tested. The outcome was favourable in most cases with antifungal therapy and either thoracocentesis or surgical resection. We also identified 40 cases of opportunistic infections, most commonly aspergillosis, cryptococcosis and Pneumocystis jirovecii pneumonia, in patients treated with ibrutinib. In vitro studies indicate Bruton tyrosine kinase inhibition impairs phagocyte function and offer a mechanism for the apparent association between ibrutinib and invasive fungal infections.
Collapse
Affiliation(s)
- Christopher David Swan
- Infectious Diseases and Microbiology, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Thomas Gottlieb
- Infectious Diseases and Microbiology, Concord Repatriation General Hospital, Concord, New South Wales, Australia.,Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|