1
|
Fayed AE, Menten MJ, Kreitner L, Paetzold JC, Rueckert D, Bassily SM, Fikry RR, Hagag AM, Sivaprasad S. Retinal vasculature of different diameters and plexuses exhibit distinct vulnerability in varying severity of diabetic retinopathy. Eye (Lond) 2024; 38:1762-1769. [PMID: 38514853 PMCID: PMC11156674 DOI: 10.1038/s41433-024-03021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/08/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
OBJECTIVES To study the changes in vessel densities (VD) stratified by vessel diameter in the retinal superficial and deep vascular complexes (SVC/DVC) using optical coherence tomography angiography (OCTA) images obtained from people with diabetes and age-matched healthy controls. METHODS We quantified the VD based on vessel diameter categorized as <10, 10-20 and >20 μm in the SVC/DVC obtained on 3 × 3 mm2 OCTA scans using a deep learning-based segmentation and vascular graph extraction tool in people with diabetes and age-matched healthy controls. RESULTS OCTA images obtained from 854 eyes of 854 subjects were divided into 5 groups: healthy controls (n = 555); people with diabetes with no diabetic retinopathy (DR, n = 90), mild and moderate non-proliferative DR (NPDR) (n = 96), severe NPDR (n = 42) and proliferative DR (PDR) (n = 71). Both SVC and DVC showed significant decrease in VD with increasing DR severity (p < 0.001). The largest difference was observed in the <10 μm vessels of the SVC between healthy controls and no DR (13.9% lower in no DR, p < 0.001). Progressive decrease in <10 μm vessels of the SVC and DVC was seen with increasing DR severity (p < 0.001). However, 10-20 μm vessels only showed decline in the DVC, but not the SVC (p < 0.001) and there was no change observed in the >20 μm vessels in either plexus. CONCLUSIONS Our findings suggest that OCTA is able to demonstrate a distinct vulnerability of the smallest retinal vessels in both plexuses that worsens with increasing severity of DR.
Collapse
Affiliation(s)
- Alaa E Fayed
- Department of Ophthalmology, Kasr Al-Ainy School of Medicine, Cairo University, Giza, Egypt.
- Watany Eye Hospital, Cairo, Egypt.
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Martin J Menten
- Lab for AI in Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- BioMedIA, Imperial College London, London, UK
| | - Linus Kreitner
- Lab for AI in Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Johannes C Paetzold
- Lab for AI in Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- BioMedIA, Imperial College London, London, UK
| | - Daniel Rueckert
- Lab for AI in Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- BioMedIA, Imperial College London, London, UK
| | | | - Ramy R Fikry
- Department of Ophthalmology, Kasr Al-Ainy School of Medicine, Cairo University, Giza, Egypt
- Watany Eye Hospital, Cairo, Egypt
| | - Ahmed M Hagag
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Boehringer Ingelheim Limited, London, UK
| | - Sobha Sivaprasad
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, UK
- University College London, London, UK
| |
Collapse
|
2
|
Waghode P, Quadir SS, Choudhary D, Sharma S, Joshi G. Small interfering RNA (siRNA) as a potential gene silencing strategy for diabetes and associated complications: challenges and future perspectives. J Diabetes Metab Disord 2024; 23:365-383. [PMID: 38932822 PMCID: PMC11196550 DOI: 10.1007/s40200-024-01405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/17/2024] [Indexed: 06/28/2024]
Abstract
Objective This article critically reviews the recent search on the use of Small Interfering RNA (siRNA) in the process of gene regulation that has been harnessed to silence specific genes in various cell types, including those involved in diabetes complications. Significance Diabetes, a prevalent and severe condition, poses life-threatening risks due to elevated blood glucose levels. It results from inadequate insulin production by the pancreas or ineffective insulin utilization by the body. Recent research suggests siRNA could hold promise in addressing diabetes complications. Methods In this review, we discussed several subjects, including diabetes; its function, and common treatment options. An in-depth analysis of gene silencing method for siRNA and role of siRNA in diabetes, focusing on its impact on glucose homeostasis, diabetic retinopathy, wound healing, diabetic nephropathy and peripheral neuropathy, diabetic foot ulcers, diabetic atherosclerosis, and diabetic cardiomyopathy. Result siRNA-based treatment has the potential to target specific genes without disrupting several other endogenous pathways, which decreases the risk of off-target effects. In addition, siRNA has the capability to provide long-term efficacy with a single dose which will reduce treatment options and enhance patient compliance. Conclusion In the context of diabetic complications, siRNA has been explored as a potential therapeutic tool to modulate the expression of genes involved in various processes associated with diabetes-related issues such as Diabetic Retinopathy, Neuropathy, Nephropathy, wound healing. The use of siRNA in these contexts is still largely experimental, and challenges such as delivery to specific tissues, potential off-target effects, and long-term safety need to be addressed. Additionally, the development of siRNA-based therapies for clinical use in diabetic complications is an active area of research. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01405-7.
Collapse
Affiliation(s)
- Pranali Waghode
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, deemed to be University, Vile Parle West, 400056 Mumbai, Maharashtra India
| | - Sheikh Shahnawaz Quadir
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, 313001 Udaipur, Rajasthan India
| | - Deepak Choudhary
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, 313001 Udaipur, Rajasthan India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, deemed to be University, Vile Parle West, 400056 Mumbai, Maharashtra India
| | - Garima Joshi
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, 313001 Udaipur, Rajasthan India
| |
Collapse
|
3
|
Kovoor E, Chauhan SK, Hajrasouliha A. Role of inflammatory cells in pathophysiology and management of diabetic retinopathy. Surv Ophthalmol 2022; 67:1563-1573. [PMID: 35914582 PMCID: PMC11082823 DOI: 10.1016/j.survophthal.2022.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023]
Abstract
Diabetic retinopathy (DR) is a sight-threatening complication of diabetes mellitus. Several inflammatory cells and proteins, including macrophages and microglia, cytokines, and vascular endothelial growth factors, are found to play a significant role in the development and progression of DR. Inflammatory cells play a significant role in the earliest changes seen in DR including the breakdown of the blood retinal barrier leading to leakage of blood into the retina. They also have an important role in the pathogenesis of more advanced stage of proliferative diabetic retinopathy, leading to neovascularization, vitreous hemorrhage, and tractional retinal detachment. In this review, we examine the function of numerous inflammatory cells involved in the pathogenesis, progression, and role as a potential therapeutic target in DR. Additionally, we explore the role of inflammation following treatment of DR.
Collapse
Affiliation(s)
- Elias Kovoor
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sunil K Chauhan
- Schepens Eye Institute, Harvard Medical School, Boston, MA, USA
| | - Amir Hajrasouliha
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Kaushik A, Sangtani R, Parmar HS, Bala K. Algal metabolites: Paving the way towards new generation antidiabetic therapeutics. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Gao M, Guo Y, Hormel TT, Tsuboi K, Pacheco G, Poole D, Bailey ST, Flaxel CJ, Huang D, Hwang TS, Jia Y. A Deep Learning Network for Classifying Arteries and Veins in Montaged Widefield OCT Angiograms. OPHTHALMOLOGY SCIENCE 2022; 2:100149. [PMID: 36278031 PMCID: PMC9562370 DOI: 10.1016/j.xops.2022.100149] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 01/18/2023]
Abstract
Purpose To propose a deep-learning-based method to differentiate arteries from veins in montaged widefield OCT angiography (OCTA). Design Cross-sectional study. Participants A total of 232 participants, including 109 participants with diabetic retinopathy (DR), 64 participants with branch retinal vein occlusion (BRVO), 27 participants with diabetes but without DR, and 32 healthy participants. Methods We propose a convolutional neural network (CAVnet) to classify retinal blood vessels on montaged widefield OCTA en face images as arteries and veins. A total of 240 retinal angiograms from 88 eyes were used to train CAVnet, and 302 retinal angiograms from 144 eyes were used for testing. This method takes the OCTA images as input and outputs the segmentation results with arteries and veins down to the level of precapillary arterioles and postcapillary venules. The network also identifies their intersections. We evaluated the agreement (in pixels) between segmentation results and the manually graded ground truth using sensitivity, specificity, F1-score, and Intersection over Union (IoU). Measurements of arterial and venous caliber or tortuosity are made on our algorithm's output of healthy and diseased eyes. Main Outcome Measures Classification of arteries and veins, arterial and venous caliber, and arterial and venous tortuosity. Results For classification and identification of arteries, the algorithm achieved average sensitivity of 95.3%, specificity of 99.6%, F1 score of 94.2%, and IoU of 89.3%. For veins, the algorithm achieved average sensitivity of 94.4%, specificity of 99.7%, F1 score of 94.1%, and IoU of 89.2%. We also achieved an average sensitivity of 76.3% in identifying intersection points. The results show CAVnet has high accuracy on differentiating arteries and veins in DR and BRVO cases. These classification results are robust across 2 instruments and multiple scan volume sizes. Outputs of CAVnet were used to measure arterial and venous caliber or tortuosity, and pixel-wise caliber and tortuosity maps were generated. Differences between healthy and diseased eyes were demonstrated, indicating potential clinical utility. Conclusions The CAVnet can classify arteries and veins and their branches with high accuracy and is potentially useful in the analysis of vessel type-specific features on diseases such as branch retinal artery occlusion and BRVO.
Collapse
Affiliation(s)
- Min Gao
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Yukun Guo
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Tristan T. Hormel
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Kotaro Tsuboi
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - George Pacheco
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - David Poole
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Steven T. Bailey
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | | | - David Huang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Thomas S. Hwang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Yali Jia
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
6
|
Zhu BT. Biochemical mechanism underlying the pathogenesis of diabetic retinopathy and other diabetic complications in humans: the methanol-formaldehyde-formic acid hypothesis. Acta Biochim Biophys Sin (Shanghai) 2022; 54:415-451. [PMID: 35607958 PMCID: PMC9828688 DOI: 10.3724/abbs.2022012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
Hyperglycemia in diabetic patients is associated with abnormally-elevated cellular glucose levels. It is hypothesized that increased cellular glucose will lead to increased formation of endogenous methanol and/or formaldehyde, both of which are then metabolically converted to formic acid. These one-carbon metabolites are known to be present naturally in humans, and their levels are increased under diabetic conditions. Mechanistically, while formaldehyde is a cross-linking agent capable of causing extensive cytotoxicity, formic acid is an inhibitor of mitochondrial cytochrome oxidase, capable of inducing histotoxic hypoxia, ATP deficiency and cytotoxicity. Chronic increase in the production and accumulation of these toxic one-carbon metabolites in diabetic patients can drive the pathogenesis of ocular as well as other diabetic complications. This hypothesis is supported by a large body of experimental and clinical observations scattered in the literature. For instance, methanol is known to have organ- and species-selective toxicities, including the characteristic ocular lesions commonly seen in humans and non-human primates, but not in rodents. Similarly, some of the diabetic complications (such as ocular lesions) also have a characteristic species-selective pattern, closely resembling methanol intoxication. Moreover, while alcohol consumption or combined use of folic acid plus vitamin B is beneficial for mitigating acute methanol toxicity in humans, their use also improves the outcomes of diabetic complications. In addition, there is also a large body of evidence from biochemical and cellular studies. Together, there is considerable experimental support for the proposed hypothesis that increased metabolic formation of toxic one-carbon metabolites in diabetic patients contributes importantly to the development of various clinical complications.
Collapse
Affiliation(s)
- Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhen518172China
- Department of PharmacologyToxicology and TherapeuticsSchool of MedicineUniversity of Kansas Medical CenterKansas CityKS66160USA
| |
Collapse
|
7
|
Association of changes of retinal vessels diameter with ocular blood flow in eyes with diabetic retinopathy. Sci Rep 2021; 11:4653. [PMID: 33633255 PMCID: PMC7907275 DOI: 10.1038/s41598-021-84067-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/09/2021] [Indexed: 12/25/2022] Open
Abstract
We investigated morphological changes of retinal arteries to determine their association with the blood flow and systemic variables in type 2 diabetes patients. The patients included 47 non-diabetic retinopathy eyes, 36 mild or moderate nonproliferative diabetic retinopathy (M-NPDR) eyes, 22 severe NPDR (S-NPDR) eyes, 32 PDR eyes, and 24 normal eyes as controls. The mean wall to lumen ratio (WLR) measured by adaptive optics camera was significantly higher in the PDR groups than in all of the other groups (all P < 0.001). However, the external diameter of the retinal vessels was not significantly different among the groups. The mean blur rate (MBR)-vessel determined by laser speckle flowgraphy was significantly lower in the PDR group than in the other groups (P < 0.001). The WLR was correlated with MBR-vessel (r = − 0.337, P < 0.001), duration of disease (r = 0.191, P = 0.042), stage of DM (r = 0.643, P < 0.001), systolic blood pressure (r = 0.166, P < 0.037), and presence of systemic hypertension (r = 0.443, P < 0.001). Multiple regression analysis demonstrated that MBR-vessel (β = − 0.389, P < 0.001), presence of systemic hypertension (β = 0.334, P = 0.001), and LDL (β = 0.199, P = 0.045) were independent factors significantly associated with the WLR. The increased retinal vessel wall thickness led to a narrowing of lumen diameter and a decrease in the blood flow in the PDR group.
Collapse
|
8
|
Ishibazawa A, De Pretto LR, Alibhai AY, Moult EM, Arya M, Sorour O, Mehta N, Baumal CR, Witkin AJ, Yoshida A, Duker JS, Fujimoto JG, Waheed NK. Retinal Nonperfusion Relationship to Arteries or Veins Observed on Widefield Optical Coherence Tomography Angiography in Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2020; 60:4310-4318. [PMID: 31622467 PMCID: PMC6996665 DOI: 10.1167/iovs.19-26653] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose To evaluate whether retinal capillary nonperfusion is found predominantly adjacent to arteries or veins in eyes with diabetic retinopathy (DR). Methods Sixty-three eyes from 44 patients with proliferative DR (PDR) or non-PDR (NPDR) were included. Images (12 × 12-mm) foveal-centered optical coherence tomography (OCT) angiography (OCTA) images were taken using the Zeiss Plex Elite 9000. In 37 eyes, widefield montages with five fixation points were also obtained. A semiautomatic algorithm that detects nonperfusion in full-retina OCT slabs was developed, and the percentages of capillary nonperfusion within the total image area were calculated. Retinal arteries and veins were manually traced. Based on the shortest distance, nonperfusion pixels were labeled as either arterial-side or venous-side. Arterial-adjacent and venous-adjacent nonperfusion and the A/V ratio (arterial-adjacent nonperfusion divided by venous-adjacent nonperfusion) were quantified. Results Twenty-two eyes with moderate NPDR, 16 eyes with severe NPDR, and 25 eyes with PDR were scanned. Total nonperfusion area in PDR (median: 8.93%) was greater than in moderate NPDR (3.49%, P < 0.01). Arterial-adjacent nonperfusion was greater than venous-adjacent nonperfusion for all stages of DR (P < 0.001). The median A/V ratios were 1.93 in moderate NPDR, 1.84 in severe NPDR, and 1.78 in PDR. The A/V ratio was negatively correlated with the total nonperfusion area (r = −0.600, P < 0.0001). The results from the widefield montages showed similar patterns. Conclusions OCTA images with arteries and veins traced allowed us to estimate the nonperfusion distribution. In DR, smaller nonperfusion tends to be arterial-adjacent, while larger nonperfusion tends toward veins.
Collapse
Affiliation(s)
- Akihiro Ishibazawa
- New England Eye Center, Tufts Medical Center, Boston, Massachusetts, United States.,Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Japan
| | - Lucas R De Pretto
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States.,Nuclear and Energy Research Institute, Sao Paulo, Sao Paulo, Brazil
| | - A Yasin Alibhai
- New England Eye Center, Tufts Medical Center, Boston, Massachusetts, United States
| | - Eric M Moult
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Malvika Arya
- New England Eye Center, Tufts Medical Center, Boston, Massachusetts, United States
| | - Osama Sorour
- New England Eye Center, Tufts Medical Center, Boston, Massachusetts, United States
| | - Nihaal Mehta
- New England Eye Center, Tufts Medical Center, Boston, Massachusetts, United States
| | - Caroline R Baumal
- New England Eye Center, Tufts Medical Center, Boston, Massachusetts, United States
| | - Andre J Witkin
- New England Eye Center, Tufts Medical Center, Boston, Massachusetts, United States
| | - Akitoshi Yoshida
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Japan
| | - Jay S Duker
- New England Eye Center, Tufts Medical Center, Boston, Massachusetts, United States
| | - James G Fujimoto
- Department of Electrical Engineering and Computer Science, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Nadia K Waheed
- New England Eye Center, Tufts Medical Center, Boston, Massachusetts, United States
| |
Collapse
|
9
|
Hachana S, Pouliot M, Couture R, Vaucher E. Diabetes-Induced Inflammation and Vascular Alterations in the Goto-Kakizaki Rat Retina. Curr Eye Res 2020; 45:965-974. [PMID: 31902231 DOI: 10.1080/02713683.2020.1712730] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Diabetic retinopathy is characterized by multiple microcirculatory dysfunctions and angiogenesis resulting from hyperglycemia, oxidative stress, and inflammation. In this study, the retina and retinal pigmented epithelium of non-insulin-dependent diabetic Goto-Kakizaki (GK) rats were examined to detect microvascular alterations, gliosis, macrophage infiltration, lipid deposits, and fibrosis. Emphasis was given to the distribution of kinin B1 receptor (B1R) and vascular endothelial growth factor (VEGF), two major factors in inflammation and angiogenesis. MATERIALS AND METHODS 30-week-old male GK rats and age-matched Wistar rats were used. The retinal vascular bed was examined using ADPase staining. The level of lipid accumulation was graded using triglyceride staining with Oil red O. Macrophage and retinal microglia activation, as well as other markers, were revealed by immunohistochemistry and studied with confocal laser scanning microscopy. RESULTS Abundant lipid deposits were observed in the Bruch's membrane of GK rats. Immunohistochemistry and quantitative analysis showed significantly higher B1R, VEGF, Iba1 (microglia), CD11 (macrophages), fibronectin, and collagen I labeling in the diabetic retina. B1R immunolabeling was detected in the vascular layers of the GK retina. A strong VEGF staining within different retinal cell processes was detected and a pattern of GFAP staining suggested strong Müller cells/astrocytes reactivity. Microgliosis was apparent in the GK retina. A greater tortuosity of the retinal microvessels (an index of endothelial dysfunction) and their increased number were also observed in GK retinas. CONCLUSIONS Data suggest retinal vascular bed alterations in spontaneous type 2 diabetic retinas at 30 weeks. Lipid and collagen accumulation in the retina and choroid, in addition to retinal upregulation of VEGF and B1R, microgliosis, and Müller cell reactivity, may contribute to vascular alterations and inflammatory processes.
Collapse
Affiliation(s)
- Soumaya Hachana
- École d'optométrie, Université de Montréal , Montréal, Québec, Canada.,Département de pharmacologie et physiologie, Université de Montréal , Montréal, Québec, Canada
| | - Mylène Pouliot
- École d'optométrie, Université de Montréal , Montréal, Québec, Canada.,Département de pharmacologie et physiologie, Université de Montréal , Montréal, Québec, Canada
| | - Réjean Couture
- Département de pharmacologie et physiologie, Université de Montréal , Montréal, Québec, Canada
| | - Elvire Vaucher
- École d'optométrie, Université de Montréal , Montréal, Québec, Canada
| |
Collapse
|
10
|
Whitehead M, Wickremasinghe S, Osborne A, Van Wijngaarden P, Martin KR. Diabetic retinopathy: a complex pathophysiology requiring novel therapeutic strategies. Expert Opin Biol Ther 2018; 18:1257-1270. [PMID: 30408422 PMCID: PMC6299358 DOI: 10.1080/14712598.2018.1545836] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Diabetic retinopathy (DR) is the leading cause of vision loss in the working age population of the developed world. DR encompasses a complex pathology, and one that is reflected in the variety of currently available treatments, which include laser photocoagulation, glucocorticoids, vitrectomy and agents which neutralize vascular endothelial growth factor (VEGF). Whilst these options demonstrate modest clinical benefits, none is yet to fully attenuate clinical progression or reverse damage to the retina. This has led to an interest in developing novel therapies for the condition, such as mediators of angiopoietin signaling axes, immunosuppressants, nonsteroidal anti-inflammatory drugs (NSAIDs), oxidative stress inhibitors and vitriol viscosity inhibitors. Further, preclinical research suggests that gene therapy treatment for DR could provide significant benefits over existing treatments options. AREAS COVERED Here we review the pathophysiology of DR and provide an overview of currently available treatments. We then outline recent advances made towards improved patient outcomes and highlight the potential of the gene therapy paradigm to revolutionize DR management. EXPERT OPINION Whilst significant progress has been made towards our understanding of DR, further research is required to enable the development of a detailed spatiotemporal model of the disease. In addition, we hope that improvements in our knowledge of the condition facilitate therapeutic innovations that continue to address unmet medical need and improve patient outcomes, with a focus on the development of targeted medicines.
Collapse
Affiliation(s)
- Michael Whitehead
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sanjeewa Wickremasinghe
- Centre for Eye Research Australia, University of Melbourne and Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Van Wijngaarden
- Centre for Eye Research Australia, University of Melbourne and Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Keith R. Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Eye Department, Addenbrooke’s Hospital, Cambridge, UK
- Cambridge NIHR Biomedical Research Centre, Cambridge, UK
- Wellcome Trust – MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Li J, Wang P, Chen Z, Yu S, Xu H. Fenofibrate Ameliorates Oxidative Stress-Induced Retinal Microvascular Dysfunction in Diabetic Rats. Curr Eye Res 2018; 43:1395-1403. [PMID: 30024319 DOI: 10.1080/02713683.2018.1501072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jun Li
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
- Department of Ophthalmology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, PR China
| | - Peipei Wang
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
- Department of Ophthalmology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, PR China
- Department of Stomatology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, PR China
| | - Zhen Chen
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
- Department of Ophthalmology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, PR China
| | - Songping Yu
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
- Department of Ophthalmology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, PR China
| | - Huiwen Xu
- Department of Ophthalmology, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
- Department of Ophthalmology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, PR China
| |
Collapse
|
12
|
Abstract
Diabetes is a condition that is not completely treatable but life of a diabetic patient can be smoothed by preventing or delaying the associate conditions like diabetic retinopathy, nephropathy, impaired wound healing process, etc. Apart from conventional methods to regulate diabetic condition, new techniques using siRNA have been emerged to prevent the associated conditions. This paper focuses on how siRNA used as a tool to silence the expression of genes which plays critical role in pathogenesis of these conditions. A marked improvement in wound-healing process of diabetic patients has been observed with siRNA treatment by silencing of Keap1 gene. Glucagon plays critical role in glucose homoeostasis and increases blood glucose level during hypoglycaemia. Glucose homoeostasis is impaired in diabetic patient and suppressing the expression of glucagon secretion with siRNA is used to suppress the progress of diabetes. Similarly, silencing expression of several factors has demonstrated improvement of treatment of diabetic nephropathy, retinopathy and inflammation by the use of siRNA.
Collapse
Affiliation(s)
- Pravin Shende
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM'S NMIMS , Mumbai , India
| | - Chirag Patel
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM'S NMIMS , Mumbai , India
| |
Collapse
|
13
|
Temporal diabetes-induced biochemical changes in distinctive layers of mouse retina. Sci Rep 2018; 8:1096. [PMID: 29348593 PMCID: PMC5773523 DOI: 10.1038/s41598-018-19425-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/20/2017] [Indexed: 02/08/2023] Open
Abstract
To discover the mechanisms underlying the progression of diabetic retinopathy (DR), a more comprehensive understanding of the biomolecular processes in individual retinal cells subjected to hyperglycemia is required. Despite extensive studies, the changes in the biochemistry of retinal layers during the development of DR are not well known. In this study, we aimed to determine a more detailed understanding of the natural history of DR in Akita/+ (type 1 diabetes model) male mice with different duration of diabetes. Employing label-free spatially resolved Fourier transform infrared (FT-IR) chemical imaging engaged with multivariate analysis enabled us to identify temporal-dependent reproducible biomarkers of the individual retinal layers from mice with 6 weeks,12 weeks, 6 months, and 10 months of age. We report, for the first time, the nature of the biochemical alterations over time in the biochemistry of distinctive retinal layers namely photoreceptor retinal layer (PRL), inner nuclear layer (INL), and plexiform layers (OPL, IPL). Moreover, we present the molecular factors associated with the changes in the protein structure and cellular lipids of retinal layers induced by different duration of diabetes. Our paradigm provides a new conceptual framework for a better understanding of the temporal cellular changes underlying the progression of DR.
Collapse
|
14
|
Hooper P, Boucher MC, Cruess A, Dawson KG, Delpero W, Greve M, Kozousek V, Lam WC, Maberley DAL. Excerpt from the Canadian Ophthalmological Society evidence-based clinical practice guidelines for the management of diabetic retinopathy. Can J Ophthalmol 2017; 52 Suppl 1:S45-S74. [PMID: 29074014 DOI: 10.1016/j.jcjo.2017.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Philip Hooper
- Philip Hooper, London, ON (Chair) (retina and uveitis); Marie Carole Boucher, Montreal, QC (retina and teleophthalmology); Alan Cruess, Halifax, NS (retina); Keith G. Dawson, Vancouver, BC (endocrinology); Walter Delpero, Ottawa, ON (cataract and strabismus); Mark Greve, Edmonton, AB (retina and teleophthalmology); Vladimir Kozousek, Halifax, NS (medical retina); Wai-Ching Lam, Toronto, ON (retina and research); David A.L. Maberley, Vancouver, BC (retina)..
| | - Marie Carole Boucher
- Philip Hooper, London, ON (Chair) (retina and uveitis); Marie Carole Boucher, Montreal, QC (retina and teleophthalmology); Alan Cruess, Halifax, NS (retina); Keith G. Dawson, Vancouver, BC (endocrinology); Walter Delpero, Ottawa, ON (cataract and strabismus); Mark Greve, Edmonton, AB (retina and teleophthalmology); Vladimir Kozousek, Halifax, NS (medical retina); Wai-Ching Lam, Toronto, ON (retina and research); David A.L. Maberley, Vancouver, BC (retina)
| | - Alan Cruess
- Philip Hooper, London, ON (Chair) (retina and uveitis); Marie Carole Boucher, Montreal, QC (retina and teleophthalmology); Alan Cruess, Halifax, NS (retina); Keith G. Dawson, Vancouver, BC (endocrinology); Walter Delpero, Ottawa, ON (cataract and strabismus); Mark Greve, Edmonton, AB (retina and teleophthalmology); Vladimir Kozousek, Halifax, NS (medical retina); Wai-Ching Lam, Toronto, ON (retina and research); David A.L. Maberley, Vancouver, BC (retina)
| | - Keith G Dawson
- Philip Hooper, London, ON (Chair) (retina and uveitis); Marie Carole Boucher, Montreal, QC (retina and teleophthalmology); Alan Cruess, Halifax, NS (retina); Keith G. Dawson, Vancouver, BC (endocrinology); Walter Delpero, Ottawa, ON (cataract and strabismus); Mark Greve, Edmonton, AB (retina and teleophthalmology); Vladimir Kozousek, Halifax, NS (medical retina); Wai-Ching Lam, Toronto, ON (retina and research); David A.L. Maberley, Vancouver, BC (retina)
| | - Walter Delpero
- Philip Hooper, London, ON (Chair) (retina and uveitis); Marie Carole Boucher, Montreal, QC (retina and teleophthalmology); Alan Cruess, Halifax, NS (retina); Keith G. Dawson, Vancouver, BC (endocrinology); Walter Delpero, Ottawa, ON (cataract and strabismus); Mark Greve, Edmonton, AB (retina and teleophthalmology); Vladimir Kozousek, Halifax, NS (medical retina); Wai-Ching Lam, Toronto, ON (retina and research); David A.L. Maberley, Vancouver, BC (retina)
| | - Mark Greve
- Philip Hooper, London, ON (Chair) (retina and uveitis); Marie Carole Boucher, Montreal, QC (retina and teleophthalmology); Alan Cruess, Halifax, NS (retina); Keith G. Dawson, Vancouver, BC (endocrinology); Walter Delpero, Ottawa, ON (cataract and strabismus); Mark Greve, Edmonton, AB (retina and teleophthalmology); Vladimir Kozousek, Halifax, NS (medical retina); Wai-Ching Lam, Toronto, ON (retina and research); David A.L. Maberley, Vancouver, BC (retina)
| | - Vladimir Kozousek
- Philip Hooper, London, ON (Chair) (retina and uveitis); Marie Carole Boucher, Montreal, QC (retina and teleophthalmology); Alan Cruess, Halifax, NS (retina); Keith G. Dawson, Vancouver, BC (endocrinology); Walter Delpero, Ottawa, ON (cataract and strabismus); Mark Greve, Edmonton, AB (retina and teleophthalmology); Vladimir Kozousek, Halifax, NS (medical retina); Wai-Ching Lam, Toronto, ON (retina and research); David A.L. Maberley, Vancouver, BC (retina)
| | - Wai-Ching Lam
- Philip Hooper, London, ON (Chair) (retina and uveitis); Marie Carole Boucher, Montreal, QC (retina and teleophthalmology); Alan Cruess, Halifax, NS (retina); Keith G. Dawson, Vancouver, BC (endocrinology); Walter Delpero, Ottawa, ON (cataract and strabismus); Mark Greve, Edmonton, AB (retina and teleophthalmology); Vladimir Kozousek, Halifax, NS (medical retina); Wai-Ching Lam, Toronto, ON (retina and research); David A.L. Maberley, Vancouver, BC (retina)
| | - David A L Maberley
- Philip Hooper, London, ON (Chair) (retina and uveitis); Marie Carole Boucher, Montreal, QC (retina and teleophthalmology); Alan Cruess, Halifax, NS (retina); Keith G. Dawson, Vancouver, BC (endocrinology); Walter Delpero, Ottawa, ON (cataract and strabismus); Mark Greve, Edmonton, AB (retina and teleophthalmology); Vladimir Kozousek, Halifax, NS (medical retina); Wai-Ching Lam, Toronto, ON (retina and research); David A.L. Maberley, Vancouver, BC (retina)
| |
Collapse
|
15
|
Arichika S, Uji A, Murakami T, Suzuma K, Gotoh N, Yoshimura N. Correlation of retinal arterial wall thickness with atherosclerosis predictors in type 2 diabetes without clinical retinopathy. Br J Ophthalmol 2016; 101:69-74. [PMID: 27913444 DOI: 10.1136/bjophthalmol-2016-309612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 11/03/2022]
Abstract
AIMS To evaluate retinal arterial wall thickness (WT) using high-resolution retinal imaging in patients with type 2 diabetes and assess its correlation with risk factors for arteriosclerosis. METHODS Outer diameter, inner diameter and WT of the retinal artery were measured using adaptive optics scanning laser ophthalmoscopy in 28 patients with type 2 diabetes without clinically apparent diabetic retinopathy and normal volunteers. Laboratory values and intima-media thickness (IMT) in the common carotid artery were measured. RESULTS Retinal arterial WT was significantly greater in patients with type 2 diabetes than in controls (p=0.02). There was a significant correlation of retinal artery WT with IMT in patients with diabetes (r=0.40, p=0.04). WT in patients with diabetes was positively correlated with haemoglobin A1c (HbA1c) (r=0.49, p=0.001), total cholesterol (r=0.47, p=0.002) and low-density lipoprotein cholesterol (r=0.47, p=0.003). CONCLUSIONS Microvasuclar thickness was greater in patients with diabetes than in controls. Furthermore, WT was positively correlated with HbA1c, total cholesterol and low-density lipoprotein cholesterol levels and IMT in the diabetic group. These results suggest that retinal artery wall measurements can be potential surrogate markers of early diabetic microangiopathy.
Collapse
Affiliation(s)
- Shigeta Arichika
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihito Uji
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoaki Murakami
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kiyoshi Suzuma
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norimoto Gotoh
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nagahisa Yoshimura
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
16
|
Bianchi E, Ripandelli G, Taurone S, Feher J, Plateroti R, Kovacs I, Magliulo G, Orlando MP, Micera A, Battaglione E, Artico M. Age and diabetes related changes of the retinal capillaries: An ultrastructural and immunohistochemical study. Int J Immunopathol Pharmacol 2015; 29:40-53. [PMID: 26604209 DOI: 10.1177/0394632015615592] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/13/2015] [Indexed: 11/17/2022] Open
Abstract
Normal human aging and diabetes are associated with a gradual decrease of cerebral flow in the brain with changes in vascular architecture. Thickening of the capillary basement membrane and microvascular fibrosis are evident in the central nervous system of elderly and diabetic patients. Current findings assign a primary role to endothelial dysfunction as a cause of basement membrane (BM) thickening, while retinal alterations are considered to be a secondary cause of either ischemia or exudation. The aim of this study was to reveal any initial retinal alterations and variations in the BM of retinal capillaries during diabetes and aging as compared to healthy controls. Moreover, we investigated the potential role of vascular endothelial growth factor (VEGF) and pro-inflammatory cytokines in diabetic retina.Transmission electron microscopy (TEM) was performed on 46 enucleated human eyes with particular attention to alterations of the retinal capillary wall and Müller glial cells. Inflammatory cytokines expression in the retina was investigated by immunohistochemistry.Our electron microscopy findings demonstrated that thickening of the BM begins primarily at the level of the glial side of the retina during aging and diabetes. The Müller cells showed numerous cytoplasmic endosomes and highly electron-dense lysosomes which surrounded the retinal capillaries. Our study is the first to present morphological evidence that Müller cells start to deposit excessive BM material in retinal capillaries during aging and diabetes. Our results confirm the induction of pro-inflammatory cytokines TNF-α and IL-1β within the retina as a result of diabetes.These observations strongly suggest that inflammatory cytokines and changes in the metabolism of Müller glial cells rather than changes in of endothelial cells may play a primary role in the alteration of retinal capillaries BM during aging and diabetes.
Collapse
Affiliation(s)
- Enrica Bianchi
- Department of Sensory Organs, University of Rome "Sapienza", Rome, Italy
| | | | | | - Janos Feher
- Department of Sensory Organs, University of Rome "Sapienza", Rome, Italy Ophthalmic Neuroscience Program, Nutripharma Hungaria Ltd., Budapest, Hungary
| | - Rocco Plateroti
- Department of Sensory Organs, University of Rome "Sapienza", Rome, Italy
| | - Illes Kovacs
- Department of Ophthalmology, Semmelweis University of Budapest, Budapest, Hungary
| | - Giuseppe Magliulo
- Department of Sensory Organs, University of Rome "Sapienza", Rome, Italy
| | | | | | - Ezio Battaglione
- Department of Anatomical, Histological, Forensic and Locomotor System Sciences, Sapienza University of Rome, Rome, Italy
| | - Marco Artico
- Department of Sensory Organs, University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
17
|
The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res 2015; 51:156-86. [PMID: 26297071 DOI: 10.1016/j.preteyeres.2015.08.001] [Citation(s) in RCA: 633] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy is the most frequently occurring complication of diabetes mellitus and remains a leading cause of vision loss globally. Its aetiology and pathology have been extensively studied for half a century, yet there are disappointingly few therapeutic options. Although some new treatments have been introduced for diabetic macular oedema (DMO) (e.g. intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') and new steroids), up to 50% of patients fail to respond. Furthermore, for people with proliferative diabetic retinopathy (PDR), laser photocoagulation remains a mainstay therapy, even though it is an inherently destructive procedure. This review summarises the clinical features of diabetic retinopathy and its risk factors. It describes details of retinal pathology and how advances in our understanding of pathogenesis have led to identification of new therapeutic targets. We emphasise that although there have been significant advances, there is still a pressing need for a better understanding basic mechanisms enable development of reliable and robust means to identify patients at highest risk, and to intervene effectively before vision loss occurs.
Collapse
|
18
|
Roy S, Bae E, Amin S, Kim D. Extracellular matrix, gap junctions, and retinal vascular homeostasis in diabetic retinopathy. Exp Eye Res 2015; 133:58-68. [PMID: 25819455 DOI: 10.1016/j.exer.2014.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022]
Abstract
The vascular basement membrane (BM) contains extracellular matrix (ECM) proteins that assemble in a highly organized manner to form a supportive substratum for cell attachment facilitating myriad functions that are vital to cell survival and overall retinal homeostasis. The BM provides a microenvironment in which bidirectional signaling through integrins regulates cell attachment, turnover, and functionality. In diabetic retinopathy, the BM undergoes profound structural and functional changes, and recent studies have brought to light the implications of such changes. Thickened vascular BM in the retinal capillaries actively participate in the development and progression of characteristic changes associated with diabetic retinopathy. High glucose (HG)-induced compromised cell-cell communication via gap junctions (GJ) in retinal vascular cells may disrupt homeostasis in the retinal microenvironment. In this review, the role of altered ECM synthesis, compromised GJ activity, and disturbed retinal homeostasis in the development of retinal vascular lesions in diabetic retinopathy are discussed.
Collapse
Affiliation(s)
- Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA.
| | - Edward Bae
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Shruti Amin
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Dongjoon Kim
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
19
|
Klaassen I, van Geest RJ, Kuiper EJ, van Noorden CJF, Schlingemann RO. The role of CTGF in diabetic retinopathy. Exp Eye Res 2015; 133:37-48. [PMID: 25819453 DOI: 10.1016/j.exer.2014.10.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 10/23/2022]
Abstract
Connective tissue growth factor (CTGF, CCN2) contributes to fibrotic responses in diabetic retinopathy, both before clinical manifestations occur in the pre-clinical stage of diabetic retinopathy (PCDR) and in proliferative diabetic retinopathy (PDR), the late clinical stage of the disease. CTGF is a secreted protein that modulates the actions of many growth factors and extracellular matrix (ECM) proteins, leading to tissue reorganization, such as ECM formation and remodeling, basal lamina (BL) thickening, pericyte apoptosis, angiogenesis, wound healing and fibrosis. In PCDR, CTGF contributes to thickening of the retinal capillary BL and is involved in loss of pericytes. In this stage, CTGF expression is induced by advanced glycation end products, and by growth factors such as vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-β. In PDR, the switch from neovascularization to a fibrotic phase - the angio-fibrotic switch - in PDR is driven by CTGF, in a critical balance with vascular endothelial growth factor (VEGF). We discuss here the roles of CTGF in the pathogenesis of DR in relation to ECM remodeling and wound healing mechanisms, and explore whether CTGF may be a potential novel therapeutic target in the clinical management of early as well as late stages of DR.
Collapse
Affiliation(s)
- Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Rob J van Geest
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther J Kuiper
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis J F van Noorden
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Sciences, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Abstract
Diabetic retinopathy (DR) is one of today's main causes of blindness in numerous developed countries worldwide. The underlying pathogenesis of DR is complex and not well understood, thus impeding development of specific, effective treatment modalities. Consequently, the use of animal models of DR is of critical importance for investigating the pathogenesis of and treatment for DR. While rats and mice are the most commonly used animal models of DR, the zebrafish now appears to be a promising model. Nonhuman primates and humans have similar eye structures, and both can develop spontaneous diabetes mellitus (DM). Although various traditionally used animal models of DR undergo a number of pathological changes similar to those of human DR, several human variations, e.g. retinal neovascularization, cannot yet be fully mimicked in any existing animal model of DM. Since both the animal models and the methods chosen for inducing DR have great influence on experimental results, a clear understanding of available animal models is vital for planning an experimental design. In this review, we summarize the mechanisms, methodologies and pros and cons of the most commonly used animal models of DR.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou , P.R. China
| | | | | |
Collapse
|
21
|
Bhatwadekar A, Stitt AW. AGE and RAGE inhibitors in the treatment of diabetic retinopathy. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/17469899.2.1.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Van Geest RJ, Leeuwis JW, Dendooven A, Pfister F, Bosch K, Hoeben KA, Vogels IMC, Van der Giezen DM, Dietrich N, Hammes HP, Goldschmeding R, Klaassen I, Van Noorden CJF, Schlingemann RO. Connective tissue growth factor is involved in structural retinal vascular changes in long-term experimental diabetes. J Histochem Cytochem 2013; 62:109-18. [PMID: 24217924 PMCID: PMC3902096 DOI: 10.1369/0022155413512656] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Early retinal vascular changes in the development of diabetic retinopathy (DR) include capillary basal lamina (BL) thickening, pericyte loss and the development of acellular capillaries. Expression of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family member CCN2 or connective tissue growth factor (CTGF), a potent inducer of the expression of BL components, is upregulated early in diabetes. Diabetic mice lacking one functional CTGF allele (CTGF⁺/⁻) do not show this BL thickening. As early events in DR may be interrelated, we hypothesized that CTGF plays a role in the pathological changes of retinal capillaries other than BL thickening. We studied the effects of long-term (6-8 months) streptozotocin-induced diabetes on retinal capillary BL thickness, numbers of pericytes and the development of acellular capillaries in wild type and CTGF⁺/⁻ mice. Our results show that an absence of BL thickening of retinal capillaries in long-term diabetic CTGF⁺/⁻ mice is associated with reduced pericyte dropout and reduced formation of acellular capillaries. We conclude that CTGF is involved in structural retinal vascular changes in diabetic rodents. Inhibition of CTGF in the eye may therefore be protective against the development of DR.
Collapse
Affiliation(s)
- Rob J Van Geest
- Ocular Angiogenesis Group, Departments of Ophthalmology and Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (RJVG, IMCV, IK, CJFVN, ROS)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bek T. Regional morphology and pathophysiology of retinal vascular disease. Prog Retin Eye Res 2013; 36:247-59. [PMID: 23892140 DOI: 10.1016/j.preteyeres.2013.07.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/20/2013] [Accepted: 07/12/2013] [Indexed: 12/19/2022]
Abstract
Disturbances in the retinal vascular supply are involved in the pathophysiology of the most frequent diseases causing visual impairment and blindness in the Western World. These diseases are diagnosed by noting how morphological lesions in the retina vary in shape, size, location and dynamics, and subsequently concluding the presence of a specific disease entity. This diagnostic approach can be used to identify the site of a retinal vascular occlusion, to assess whether retinal diseases are primarily due to changes in the larger retinal vessels or the microcirculation, and to differentiate the relative involvement of the choroidal and the retinal vascular systems. However, a number of morphological manifestations of retinal vascular disease cannot presently be related to the underlying pathophysiology. The review concludes that there is a need for developing new methods for assessing vascular structure and function in the ciliary vascular system supplying the choroid and the optic nerve head. Presently, the study of these structures relies on imaging techniques with limited penetration and resolution into the tissue. Secondly, there is a need for studying oscillations in retinal vascular function occurring within days to weeks, and for studying regional manifestations of retinal vascular disease. This may constitute the basis for future research in retinal vascular pathophysiology and for the development of new treatment modalities to reduce blindness secondary to retinal vascular disease.
Collapse
Affiliation(s)
- Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
24
|
Vadlapatla RK, Vadlapudi AD, Mitra AK. Hypoxia-inducible factor-1 (HIF-1): a potential target for intervention in ocular neovascular diseases. Curr Drug Targets 2013; 14:919-35. [PMID: 23701276 DOI: 10.2174/13894501113149990015] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 05/20/2013] [Indexed: 12/29/2022]
Abstract
Constant oxygen supply is essential for proper tissue development, homeostasis and function of all eukaryotic organisms. Cellular response to reduced oxygen levels is mediated by the transcriptional regulator hypoxia-inducible factor-1 (HIF-1). It is a heterodimeric complex protein consisting of an oxygen dependent subunit (HIF-1α) and a constitutively expressed nuclear subunit (HIF-1β). In normoxic conditions, de novo synthesized cytoplasmic HIF-1α is degraded by 26S proteasome. Under hypoxic conditions, HIF-1α is stabilized, binds with HIF-1β and activates transcription of various target genes. These genes play a key role in regulating angiogenesis, cell survival, proliferation, chemotherapy, radiation resistance, invasion, metastasis, genetic instability, immortalization, immune evasion, metabolism and stem cell maintenance. This review highlights the importance of hypoxia signaling in development and progression of various vision threatening pathologies such as diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration and glaucoma. Further, various inhibitors of HIF-1 pathway that may have a viable potential in the treatment of oxygen-dependent ocular diseases are also discussed.
Collapse
Affiliation(s)
- Ramya Krishna Vadlapatla
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108-2718, USA
| | | | | |
Collapse
|
25
|
Stitt AW, Lois N, Medina RJ, Adamson P, Curtis TM. Advances in our understanding of diabetic retinopathy. Clin Sci (Lond) 2013; 125:1-17. [PMID: 23485060 DOI: 10.1042/cs20120588] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetic retinopathy remains the most common complication of diabetes mellitus and is a leading cause of visual loss in industrialized nations. The clinicopathology of the diabetic retina has been extensively studied, although the precise pathogenesis and cellular and molecular defects that lead to retinal vascular, neural and glial cell dysfunction remain somewhat elusive. This lack of understanding has seriously limited the therapeutic options available for the ophthalmologist and there is a need to identify the definitive pathways that initiate retinal cell damage and drive progression to overt retinopathy. The present review begins by outlining the natural history of diabetic retinopathy, the clinical features and risk factors. Reviewing the histopathological data from clinical specimens and animal models, the recent paradigm that neuroretinal dysfunction may play an important role in the early development of the disease is discussed. The review then focuses on the molecular pathogenesis of diabetic retinopathy with perspective provided on new advances that have furthered our understanding of the key mechanisms underlying early changes in the diabetic retina. Studies have also emerged in the past year suggesting that defective repair of injured retinal vessels by endothelial progenitor cells may contribute to the pathogenesis of diabetic retinopathy. We assess these findings and discuss how they could eventually lead to new therapeutic options for diabetic retinopathy.
Collapse
Affiliation(s)
- Alan W Stitt
- Centre for Vision and Vascular Science, Queen's University of Belfast, The Royal Victoria Hospital, Belfast BT12 6BA, UK.
| | | | | | | | | |
Collapse
|
26
|
Alterations in basement membrane immunoreactivity of the diabetic retina in three diabetic mouse models. Graefes Arch Clin Exp Ophthalmol 2012; 251:763-75. [DOI: 10.1007/s00417-012-2237-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/19/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022] Open
|
27
|
Hooper P, Boucher MC, Cruess A, Dawson KG, Delpero W, Greve M, Kozousek V, Lam WC, Maberley DAL. Canadian Ophthalmological Society evidence-based clinical practice guidelines for the management of diabetic retinopathy. Can J Ophthalmol 2012; 47:S1-30, S31-54. [PMID: 22632804 DOI: 10.1016/j.jcjo.2011.12.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Yellowlees Douglas J, Bhatwadekar AD, Li Calzi S, Shaw LC, Carnegie D, Caballero S, Li Q, Stitt AW, Raizada MK, Grant MB. Bone marrow-CNS connections: implications in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res 2012; 31:481-94. [PMID: 22609081 DOI: 10.1016/j.preteyeres.2012.04.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy is the fourth most common cause of blindness in adults. Current therapies, including anti-VEGF therapy, have partial efficacy in arresting the progression of proliferative diabetic retinopathy and diabetic macular edema. This review provides an overview of a novel, innovative approach to viewing diabetic retinopathy as the result of an inflammatory cycle that affects the bone marrow (BM) and the central and sympathetic nervous systems. Diabetes associated inflammation may be the result of BM neuropathy which skews haematopoiesis towards generation of increased inflammatory cells but also reduces production of endothelial progenitor cells responsible for maintaining healthy endothelial function and renewal. The resulting systemic inflammation further impacts the hypothalamus, promoting insulin resistance and diabetes, and initiates an inflammatory cascade that adversely impacts both macrovascular and microvascular complications, including diabetic retinopathy (DR). This review examines the idea of using anti-inflammatory agents that cross not only the blood-retinal barrier to enter the retina but also have the capability to target the central nervous system and cross the blood-brain barrier to reduce neuroinflammation. This neuroinflammation in key sympathetic centers serves to not only perpetuate BM pathology but promote insulin resistance which is characteristic of type 2 diabetic patients (T2D) but is also seen in T1D. A case series of morbidly obese T2D patients with retinopathy and neuropathy treated with minocycline, a well-tolerated antibiotic that crosses both the blood-retina and blood-brain barrier is presented. Our results indicates that minocycine shows promise for improving visual acuity, reducing pain from peripheral neuropathy, promoting weight loss and improving blood pressure control and we postulate that these observed beneficial effects are due to a reduction of chronic inflammation.
Collapse
Affiliation(s)
- Jane Yellowlees Douglas
- Clinical and Translational Science Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kumar B, Gupta SK, Nag TC, Srivastava S, Saxena R. Green Tea Prevents Hyperglycemia-Induced Retinal Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Rats. Ophthalmic Res 2012; 47:103-8. [DOI: 10.1159/000330051] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 06/06/2011] [Indexed: 12/12/2022]
|
30
|
Caprara C, Grimm C. From oxygen to erythropoietin: relevance of hypoxia for retinal development, health and disease. Prog Retin Eye Res 2011; 31:89-119. [PMID: 22108059 DOI: 10.1016/j.preteyeres.2011.11.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/01/2011] [Accepted: 11/07/2011] [Indexed: 12/20/2022]
Abstract
Photoreceptors and other cells of the retina consume large quantities of energy to efficiently convert light information into a neuronal signal understandable by the brain. The necessary energy is mainly provided by the oxygen-dependent generation of ATP in the numerous mitochondria of retinal cells. To secure the availability of sufficient oxygen for this process, the retina requires constant blood flow through the vasculature of the retina and the choroid. Inefficient supply of oxygen and nutrients, as it may occur in conditions of disturbed hemodynamics or vascular defects, results in tissue ischemia or hypoxia. This has profound consequences on retinal function and cell survival, requiring an adaptational response by cells to cope with the reduced oxygen tension. Central to this response are hypoxia inducible factors, transcription factors that accumulate under hypoxic conditions and drive the expression of a large variety of target genes involved in angiogenesis, cell survival and metabolism. Prominent among these factors are vascular endothelial growth factor and erythropoietin, which may contribute to normal angiogenesis during development, but may also cause neovascularization and vascular leakage under pathologically reduced oxygen levels. Since ischemia and hypoxia may have a role in various retinal diseases such as diabetic retinopathy and retinopathy of prematurity, studying the cellular and molecular response to reduced tissue oxygenation is of high relevance. In addition, the concept of preconditioning with ischemia or hypoxia demonstrates the capacity of the retina to activate endogenous survival mechanisms, which may protect cells against a following noxious insult. Part of these mechanisms is the local production of protective factors such as erythropoietin. Due to its plethora of effects in the retina including neuro- and vaso-protective activities, erythropoietin has gained strong interest as potential therapeutic factor for retinal degenerative diseases.
Collapse
Affiliation(s)
- Christian Caprara
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
31
|
Lockhart CJ, McCann A, Agnew CA, Hamilton PK, Quinn CE, McClenaghan V, Patterson C, Canice McGivern R, Harbinson MT, McVeigh GE. Impaired microvascular properties in uncomplicated type 1 diabetes identified by Doppler ultrasound of the ocular circulation. Diab Vasc Dis Res 2011; 8:211-20. [PMID: 21653677 DOI: 10.1177/1479164111411324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Quantification of Doppler flow velocity waveforms has been shown to predict adverse cardiovascular outcomes and identify altered downstream haemodynamics and vascular damage in a number of organ beds. We employed novel techniques to quantify Doppler flow velocity waveforms from the retro bulbar circulation. METHODS AND RESULTS In total, 39 patients with uncomplicated Type 1 diabetes mellitus, and no other significant cardiovascular risk factors were compared with 30 control subjects. Flow velocity waveforms were captured from the ophthalmic artery (OA), central retinal artery (CRA) and the common carotid artery. The flow velocity profiles were analysed in the time domain to calculate the resistive index (RI), and time-frequency domain using novel discrete wavelet transform methods for comparison. Analysis of flow waveforms from the OA and CRA identified specific frequency band differences between groups, occurring independently of potential haemodynamic or metabolic confounding influences. No changes were identified in the calculated RI from any arterial site. CONCLUSION Novel analysis of the arterial flow velocity waveforms recorded from the retro bulbar circulation identified quantifiable differences in Doppler flow velocity waveform morphology in patients with diabetes prior to the development of overt retinopathy. The technique may be useful as an additional marker of cardiovascular risk.
Collapse
|
32
|
Powner MB, Scott A, Zhu M, Munro PMG, Foss AJE, Hageman GS, Gillies MC, Fruttiger M. Basement membrane changes in capillaries of the ageing human retina. Br J Ophthalmol 2011; 95:1316-22. [PMID: 21606466 DOI: 10.1136/bjo.2011.204222] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES The ultrastructural appearance of retinal capillaries can yield important information about disease mechanisms, but is not well characterised in human post mortem samples. We therefore aimed to create a baseline for the appearance of capillaries and establish how this is influenced by post mortem fixation delays and donor age. METHODS Electron microscopy was used to characterise retinal capillaries in 20 anonymous donors (with no known eye diseases) of various ages and with various post mortem fixation delays. In addition, samples from six patients with conditions that are known to affect the retinal vasculature (four cases of type 2 diabetes without diabetic retinopathy, one case of diabetic retinopathy and one case of macular telangiectasia type 2) were analysed. RESULTS Vacuoles were found in capillary basement membranes at the vessel-glia interface in all samples, from both the normal and disease cases. Vacuole frequency increased with donor age but was not influenced by post mortem fixation delays. CONCLUSION Vacuoles in the basement membrane are a normal feature of adult human retinal capillaries and do not indicate disease. Their incidence increases with age and might be a contributing factor to late-onset pathologies of the retinal vasculature.
Collapse
Affiliation(s)
- Michael B Powner
- MacTel Laboratory Research Group, UCL Institute of Ophthalmology, University College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Roy S, Ha J, Trudeau K, Beglova E. Vascular basement membrane thickening in diabetic retinopathy. Curr Eye Res 2010; 35:1045-56. [PMID: 20929292 DOI: 10.3109/02713683.2010.514659] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vascular basement membrane (BM) thickening is a fundamental structural alteration of small blood vessels in diabetes. Over two decades of research has established hyperglycemia as the primary causal factor mediating this alteration. Various high glucose-induced mechanisms have been investigated and excess synthesis of BM components has been identified as a major contributing factor to BM thickening. Although BM thickening has been long hailed as the histological hallmark of diabetic microangiopathy, the consequences of BM thickening on the functionality of target organs of diabetes remain elusive even today. This review presents an overview of our current understanding of the BM structure and function, and focuses on how capillary BM thickening develops, its effect on retinal vascular function, and potential strategies for preventing the development of BM thickening in diabetic retinopathy.
Collapse
Affiliation(s)
- Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.
| | | | | | | |
Collapse
|
34
|
Qingli Li, Yiting Wang, Jingfa Zhang, Guotong Xu, Yongqi Xue. Quantitative Analysis of Protective Effect of Erythropoietin on Diabetic Retinal Cells Using Molecular Hyperspectral Imaging Technology. IEEE Trans Biomed Eng 2010; 57:1699-1706. [DOI: 10.1109/tbme.2010.2041663] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
35
|
Li Q, Verma A, Han PY, Nakagawa T, Johnson RJ, Grant MB, Campbell-Thompson M, Jarajapu YPR, Lei B, Hauswirth WW. Diabetic eNOS-knockout mice develop accelerated retinopathy. Invest Ophthalmol Vis Sci 2010; 51:5240-6. [PMID: 20435587 DOI: 10.1167/iovs.09-5147] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Dysfunction of endothelial nitric oxide synthase (eNOS) has been implicated in the pathogenesis of diabetic vascular complications. This study was undertaken to determine the role of eNOS in the development of diabetic retinopathy (DR), by investigating the functional consequences of its deficiency in the diabetic state. METHODS Diabetes was induced in eNOS-knockout (eNOS(-/-)) and C57B/6 mice by streptozotocin (STZ) injection. Retinal vasculature was evaluated by albumin extravasation, to quantitatively measure vascular permeability, and by trypsin-digested retinal vascular preparations, to quantify acellular capillaries. Gliosis was evaluated by immunofluorescent techniques. Retinal capillary basement membrane thickness was assessed by transmission electron microscopy. Total retinal nitric oxide level was assessed by measuring nitrate/nitrite using a fluorometric-based assay, iNOS expression was examined by real-time PCR. RESULTS Diabetic eNOS(-/-) mice exhibit more severe retinal vascular permeability than age-matched diabetic C57BL/6 mice, detectable as early as 3 weeks after diabetes induction. Diabetic eNOS(-/-) mice also show earlier onset and an increased number of acellular capillaries, sustained gliosis, and increased capillary basement membrane thickness. Total nitric oxide (NO) level was also increased, concomitant with elevated iNOS expression in diabetic eNOS(-/-) retina. CONCLUSIONS Diabetic eNOS(-/-) mice exhibit A significantly wider range of advanced retinal vascular complications than the age-matched diabetic C57BL/6 mice, supporting the notion that eNOS-derived NO plays an essential role in retinal vascular function. This mouse model also faithfully replicates many of the hallmarks of vascular changes associated with human retinopathy, thus providing a unique model to aid in understanding the pathologic mechanisms of and to develop effective therapeutic strategies for diabetic retinopathy.
Collapse
Affiliation(s)
- Qiuhong Li
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida 32610-0284, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Park JM, Lee JE, Oum BS. Ultrastructural Investigation of the Retinal Changes in Diabetic Rat (OLETF). JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2010. [DOI: 10.3341/jkos.2010.51.1.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jun Mo Park
- Department of Ophthalmology, School of Medicine, Yangsan Pusan National University, Yangsan, Korea
| | - Ji Eun Lee
- Department of Ophthalmology, School of Medicine, Pusan National University, Busan, Korea
| | - Boo Sup Oum
- Department of Ophthalmology, School of Medicine, Pusan National University, Busan, Korea
| |
Collapse
|
37
|
McDonald DM, Coleman G, Bhatwadekar A, Gardiner TA, Stitt AW. Advanced glycation of the Arg-Gly-Asp (RGD) tripeptide motif modulates retinal microvascular endothelial cell dysfunction. Mol Vis 2009; 15:1509-20. [PMID: 19668595 PMCID: PMC2722710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 07/27/2009] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Advanced glycation endproduct (AGE) formation on the basement membrane of retinal capillaries has been previously described but the impact of these adducts on capillary endothelial cell function vascular repair remains uncertain. This investigation has evaluated retinal microvascular endothelial cells (RMECs) growing on AGE-modified fibronectin (FN) and determined how this has an impact on cell-substrate interactions and downstream oxidative responses and cell survival. METHODS RMECs were grown on methylglyoxal-modified FN (AGE-FN) or native FN as a control. RMEC attachment and spreading was quantified. In a separate treatment, the AGE-FN substrate had Arg-Gly-Asp-Ser (RGDS) or scrambled peptide added before seeding. Phosphorylation of focal adhesion kinase (FAK) and alpha5beta1 integrin localization was assessed and apoptosis evaluated. In a subset of RMECs that remained attached to the AGE-FN substrate, the production of superoxide (O(2) (-)) was assayed using dihydroethidium (DHE) fluorescence or lucigenin, in the presence or absence of NADPH. The specificity of the O(2) (-) assays was confirmed by inhibition in the presence of polyethylene-glycol-superoxide dismutase (PEG-SOD). AGE-mediated changes to mRNAs encoding key basement membrane proteins and regulatory enzymes were investigated using real-time RT-PCR. RESULTS AGE-FN reduced RMEC attachment and spreading when compared to FN controls (p<0.001). RGDS peptide enhanced cell attachment on AGE-FN (p<0.001), while the scrambled peptide had no effect. FAK phosphorylation in AGE-exposed RMECs was reduced in a time-dependent fashion, while alpha5beta1 integrin-immunoreactivity became focal at the basal membrane. AGE-exposure induced apoptosis, a response significantly prevented by RGDS peptide. AGE-exposure caused a significant increase in basal O(2) (-) and NADPH-stimulated production by RMECs (p<0.01), while AGE-FN also increased basement membrane associated mRNA expression (p<0.05). CONCLUSIONS AGE substrate modifications impair the function of retinal capillary endothelium and their reparative potential in response to diabetes-related insults. Arginine-specific modifications alter vital endothelial cell interactions with the substrate. This phenomenon could play an important role in dysfunction and nonperfusion of retinal capillaries during diabetes.
Collapse
|
38
|
Abstract
Inner retinal ischaemia is involved in the pathogenesis of major vision-threatening diseases such as retinal vein thrombosis, diabetic retinopathy and retinopathy of prematurity. However, the pathogenesis of inner retinal ischaemia has not been fully elucidated, which represents an impediment to the development and improvement of techniques to prevent and treat these diseases on a rational basis. This paper provides a comprehensive review of current knowledge of the pathophysiology of inner retinal ischaemia, including clinical, anatomical and physiological aspects of disease development. It is suggested that chronic inner retinal ischaemia caused by capillary occlusion may develop secondary to an increase in hydrostatic pressure in the vessels. Further knowledge of the pathophysiology of inner retinal ischaemia can be obtained by identifying the mechanisms that lead to increased hydrostatic pressure in the capillary bed and establishing the structural and functional basis for the different response patterns in the central and peripheral areas of the retina that develop secondary to this increased hydrostatic pressure. Further elucidation of these unknown response patterns requires both in vitro and in vivo studies of retinal vascular pathophysiology. It is conceivable that a more detailed knowledge of these response patterns may help in the design of new treatments for retinal ischaemia and its vision-threatening consequences.
Collapse
Affiliation(s)
- Toke Bek
- Department of Ophthalmology, Arhus University Hospital, Arhus, Denmark.
| |
Collapse
|
39
|
Curtis TM, Gardiner TA, Stitt AW. Microvascular lesions of diabetic retinopathy: clues towards understanding pathogenesis? Eye (Lond) 2009; 23:1496-508. [DOI: 10.1038/eye.2009.108] [Citation(s) in RCA: 232] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
40
|
Sakallioğlu EE, Ayas B, Sakallioğlu U, Yavuz U, Açikgöz G, Firatli E. Osmotic pressure and vasculature of gingiva in experimental diabetes mellitus. J Periodontol 2007; 78:757-63. [PMID: 17397326 DOI: 10.1902/jop.2007.060332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Alterations in tissue osmotic pressure (OP) and vasculature are considered to be the inevitable aspects of an inflammatory process that subsequently alter the fluid dynamics of the tissues involved. The aim of this study was to reveal a profile of OP and vascular changes in periodontally healthy gingival tissues and analyze the relationship between them in diabetes mellitus (DM) to evaluate the possible effects of DM on the fluid dynamics of the periodontium. METHODS Experimental DM was created by intraperitoneal streptozotocin injection in 10 periodontally healthy rats. These rats were used as the test group, and 10 systemically and periodontally healthy rats served as the control group. Gingival tissue samples obtained from the groups were used for the test procedures. OP was measured in the supernatants of these samples by a semimicrodigital osmometer. Vasculature was assessed as the alterations in vascularization (vessel number [VN]) and vasodilatation (vessel diameter [VD]) by histomorphometric means. RESULTS There was a gross increase in the OP level of the test group (172.7 +/- 59.7 mOsm/kg) compared to the control group (11.4 +/- 4.2 mOsm/kg; P <0.001). VN was found to be significantly larger in the test group (12.7 +/- 2.8) than in the control group (6.8 +/- 1.1; P <0.001). VD was found to be smaller in the test group (10.1 +/- 2.8 microm) than in the control group (15.5 +/- 2.4 microm), and this difference was statistically significant (P <0.001). A positive correlation between OP and VN (r = 0.77; P <0.001) and a negative correlation between OP and VD (r = 0.1; P >0.05) were observed in the test group. CONCLUSION Our results reveal that the fluid dynamics of periodontal soft tissues may be affected by the diabetic conditions in this diabetic model because of the increased OP and VN during the pathogenesis of the disease.
Collapse
Affiliation(s)
- Elif Eser Sakallioğlu
- Department of Periodontology, Faculty of Dentistry, Ondokuz Mayis University, Samsun, Turkey.
| | | | | | | | | | | |
Collapse
|
41
|
Oshitari T, Brown D, Roy S. SiRNA strategy against overexpression of extracellular matrix in diabetic retinopathy. Exp Eye Res 2005; 81:32-7. [PMID: 15978252 DOI: 10.1016/j.exer.2005.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 01/06/2005] [Accepted: 01/10/2005] [Indexed: 02/09/2023]
Abstract
Increased synthesis of extracellular matrix (ECM) contributes to the development of vascular BM thickening, a prominent abnormality in diabetic retinopathy. RNA interference (RNAi) approach was used in this study to examine the effect of small interfering RNAs (siRNAs) for their ability to inhibit ECM-specific gene overexpression under high glucose condition in rat microvascular endothelial cells (RMECs). Four fibronectin (FN)-siRNAs, three collagen IV (Coll IV)-siRNAs, and four laminin (LM)-siRNAs, a total of 11 siRNAs were screened. RMECs were transfected with 10, 30, or 100 nm of each siRNAs in the presence of 8 microm lipofectin and subjected to analysis 72 hr after transfection. In long-term studies siRNA-transfected cells were examined after 12 days. Two FN siRNAs, two Coll IV siRNAs, and two LM siRNAs significantly reduced the respective target expressions. Findings from this study indicate that high glucose-induced abnormal expression of BM components may contribute to increased vascular permeability. SiRNA may be a useful tool in preventing excess vascular permeability, a characteristic feature of early diabetic retinopathy.
Collapse
Affiliation(s)
- Toshiyuki Oshitari
- Department of Medicine, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.
| | | | | |
Collapse
|
42
|
Gardiner TA, Anderson HR, Degenhardt T, Thorpe SR, Baynes JW, Archer DB, Stitt AW. Prevention of retinal capillary basement membrane thickening in diabetic dogs by a non-steroidal anti-inflammatory drug. Diabetologia 2003; 46:1269-75. [PMID: 12861449 DOI: 10.1007/s00125-003-1147-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2002] [Revised: 03/07/2003] [Indexed: 11/27/2022]
Abstract
AIMS/HYPOTHESIS To investigate the effect of treatment with the non-steroidal anti-inflammatory drug Sulindac on the early vascular pathology of diabetic retinopathy in the dog, and it's effect on recognised biochemical indices of hyperglycaemia-related pathophysiology. METHODS Experimental diabetes (streptozotocin/alloxan) was induced in 22 male beagle dogs and 12 of the animals were assigned at random to receive oral Sulindac (10 mg/kg daily). Age- and sex-matched control animals were maintained as non-diabetic controls. After 4 years, several morphological parameters were quantified in the retinal microvasculature of each animal group using an established stereological method. Also, the following diabetes-associated biochemical parameters were analysed: accumulation of advanced glycation end products (AGEs), red blood cell polyol levels and antioxidant status. RESULTS Diabetes increased red blood cell sorbitol levels when compared to non-diabetic controls (p< or =0.05), however, there was no difference in sorbitol levels between the untreated and the treated diabetic animals. No significant differences were found in red blood cell myoinositol levels between the three groups of animals. Pentosidine and other AGEs were increased two- to three-fold in the diabetic animals (p< or =0.001) although treatment with Sulindac did not affect their accumulation in diabetic skin collagen or alter diabetes-induced rises in plasma malondialdehyde. Retinal capillary basement membrane volume was significantly increased in the untreated diabetic dogs compared to non-diabetic controls or Sulindac-treated diabetic animals (p< or =0.0001). CONCLUSION/INTERPRETATION This study has confirmed the beneficial effect of a non-steroidal anti-inflammatory drug on the early vascular pathology of diabetic retinopathy. However the treatment benefit was not dependent on inhibition of polyol pathway activity, advanced glycation, or oxidative stress.
Collapse
Affiliation(s)
- T A Gardiner
- Department of Ophthalmology, Institute of Clinical Science, Queen's University of Belfast, Royal Victoria Hospital, Northern Ireland, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Retinopathy is one of the commonest microvascular complications of diabetes and is still the prevailing cause of registerable blindness in the working population of developed countries. The clinicopathology of microvascular lesions and the dysregulation of an array of biochemical pathways in the diabetic retina have been extensively studied, although the relative contribution of various biochemical sequelae of hyperglycaemia remains ill- defined. There is little doubt that the pathogenesis of this diabetic complication is highly complex and there is a pressing need to establish new therapeutic regimens that can effectively prevent or retard the initiation and progression of retinal microvascular cell dysfunction and death which is characteristic of the vasodegenerative stages of diabetic retinopathy. Among the several pathogenic mechanisms that may contribute to diabetic retinopathy are the formation and accumulation of advanced glycation endproducts (AGEs). AGEs can form on the amino groups of proteins, lipids, and DNA through a number of complex pathways, including nonenzymatic glycation by glucose and reaction with metabolic intermediates and reactive dicarbonyl intermediates. These reactions not only modify the structure and function of proteins, but also cause intramolecular and intermolecular cross-link formation. AGEs are known to accumulate in the diabetic retina where they may have important effects on retinal vascular cell function in vitro and in vivo. Evidence now points toward a pathogenic role for advanced glycation in the initiation and progression of diabetic retinopathy. This review will examine the basis of AGE-related pathology in the diabetic retina at cellular and molecular levels. It will also outline how recent strategies to inhibit AGE formation or limit their pathogenic influence during chronic diabetes may have an important role to play in the treatment of retinopathy.
Collapse
Affiliation(s)
- Alan W Stitt
- Department of Ophthalmology, Queen's University of Belfast, Royal Victoria Hospital, Belfast BT12 6BA, Northern Ireland, UK
| |
Collapse
|
44
|
Roy S, Sato T, Paryani G, Kao R. Downregulation of fibronectin overexpression reduces basement membrane thickening and vascular lesions in retinas of galactose-fed rats. Diabetes 2003; 52:1229-34. [PMID: 12716757 DOI: 10.2337/diabetes.52.5.1229] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Overexpression of extracellular matrix (ECM) components is closely associated with the development of vascular basement membrane (BM) thickening, a histological hallmark of diabetic microangiopathy. To determine whether BM thickening of retinal capillaries could be prevented by down regulating synthesis of fibronectin, an ECM component, we used antisense oligos targeted against translation initiation site of the fibronectin transcript in galactose-fed rat, an animal model of diabetic retinopathy. After 2 months of galactose-feeding, intravitreal administration of 3 micro mol/l antisense fibronectin oligos was initiated at monthly intervals for 3 months. The antisense strategy significantly reduced fibronectin mRNA and protein level in the retinas of treated eyes compared with untreated eyes of galactose-fed rats (130 +/- 16 vs. 179 +/- 18% of control, P < 0.01, and 144 +/- 28 vs. 204 +/- 22% of control, respectively, r = 0.9) and resulted in partial reduction of retinal capillary BM width (123 +/- 16 vs. 201 +/- 12 nm, P < 0.03). In eyes treated with antisense fibronectin oligos, approximately 35% reduction in both pericyte loss and acellular retinal capillaries was observed (P < 0.04 and P < 0.03, respectively). Glycohemoglobin level was consistently elevated in the treated (6.9 +/- 0.6%) and untreated (6.5 +/- 0.7%) galactose-fed rats compared with control rats (4.5 +/- 0.8%). Overall, these results indicate that downregulation of fibronectin synthesis reduces BM thickening in retinal capillaries with beneficial effect to retinal lesions. The antisense fibronectin oligos may provide a useful approach for reducing vascular lesions in diabetic retinopathy. The thickened vascular BM may be a potential therapeutic target for preventing retinal lesions in diabetic retinopathy.
Collapse
Affiliation(s)
- Sayon Roy
- Department of Ophthalmology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.
| | | | | | | |
Collapse
|
45
|
Carlson EC, Audette JL, Veitenheimer NJ, Risan JA, Laturnus DI, Epstein PN. Ultrastructural morphometry of capillary basement membrane thickness in normal and transgenic diabetic mice. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 271:332-41. [PMID: 12629676 DOI: 10.1002/ar.a.10038] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Capillary basement membrane (CBM) thickening is an ultrastructural hallmark in diabetic patients and in animal models of diabetes. However, the wide variety of tissues sampled and diverse methods employed have made the interpretation of thickness data difficult. We showed previously that acellular glomerular BMs in OVE26 transgenic diabetic mice were thickened beyond normal age-related thickening, and in the current study we hypothesized that other microvascular BMs likewise would show increased widths relative to age-matched controls. Accordingly, a series of tissues, including skeletal and cardiac muscle, ocular retina and choriod, peripheral nerve, lung, pancreas, and renal glomerulus was collected from 300-350-day-old normal and transgenic mice. Transmission electron micrographs of cross sections through capillary walls were prepared, and CBM thickness (CBMT) was determined by the "orthogonal intercept" method. Morphometric analyses showed highly variable transgene-related BMT increases in the sampled tissues, with glomerular BM showing by far the greatest increase (+87%). Significant thickness increases were also seen in the retina, pulmonary alveolus, and thoracoabdominal diaphragm. BMT increases were not universal; however, most were modestly widened, and those that were thickest in controls generally showed the greatest increase. Although the pathogenesis of diabetes-related increases in CBM is poorly understood, data in the current study showed that in OVE26 transgenic mice increased BMT was a frequent concomitant of hyperglycemia. Accordingly, it seems likely that hyperglycemia-induced microvascular damage may be a contributing factor in diabetic BM disease, and that microvessel cellular and extracellular heterogeneity may limit the extent of CBM thickening in diverse tissues.
Collapse
Affiliation(s)
- Edward C Carlson
- Department of Anatomy and Cell Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Gardiner TA, Anderson HR, Stitt AW. Inhibition of advanced glycation end-products protects against retinal capillary basement membrane expansion during long-term diabetes. J Pathol 2003; 201:328-33. [PMID: 14517851 DOI: 10.1002/path.1429] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The purpose of this study was to investigate the advanced glycation end-product (AGE)-inhibitory properties of aminoguanidine and to determine whether treatment in long-term diabetic rats can prevent basement membrane lesions of diabetic retinopathy. Four groups of male Wistar rats were studied: untreated diabetics injected with 45 mg/kg streptozotocin, aminoguanidine-treated diabetics, untreated controls, and aminoguanidine-treated controls. After 12 months' diabetes, the retinas from six animals were processed for electron microscopy or the retinal microvasculature was isolated using the trypsin digest technique. Stereological analysis was used to estimate quantitative ultrastructural changes in the retinal capillary-associated basement membrane. Serum AGEs were quantified by competitive AGE-ELISA, while microvascular-associated, immunoreactive AGEs were analysed on retinal trypsin digests. Aminoguanidine significantly reduced serum AGEs in the diabetic group (p < 0.001). In the retinal capillaries, there was a marked reduction in AGE immunoreactivity in the aminoguanidine-treated diabetics when compared with untreated diabetics. The surface area and absolute volume of the retinal capillary basement membrane were significantly increased in the diabetic rats when compared with non-diabetic controls (p < 0.001 and p < 0.001, respectively). Aminoguanidine treatment of diabetic rats protected against basement membrane expansion when compared with untreated diabetic counterparts. Aminoguanidine treatment prevents the development of diabetes-induced basement membrane expansion in retinal capillaries. The AGE inhibition properties of aminoguanidine suggest that AGEs play an important role in the complex pathogenesis of basement membrane thickening during diabetic retinopathy.
Collapse
Affiliation(s)
- T A Gardiner
- Department of Ophthalmology, Queen's University of Belfast, Northern Ireland, UK
| | | | | |
Collapse
|
47
|
Saito J, Enoki M, Hara M, Morishige N, Chikama TI, Nishida T. Correlation of corneal sensation, but not of basal or reflex tear secretion, with the stage of diabetic retinopathy. Cornea 2003; 22:15-8. [PMID: 12502941 DOI: 10.1097/00003226-200301000-00004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To examine the possible relation between corneal sensation or tear secretion and the stage of diabetic retinopathy in diabetic patients. METHODS Total reflex or basal tear secretion and corneal sensation were determined in 95 patients with type II diabetes mellitus and 58 nondiabetic control subjects. Tear secretion was measured by the Schirmer test and corneal sensation with a Cochet-Bonnet esthesiometer. RESULTS Corneal sensation and total or reflex tear secretion were significantly reduced in diabetic patients compared with nondiabetic controls. The loss of corneal sensation, but not that of tear secretion, was significantly correlated with stage of diabetic retinopathy in diabetic patients who were diagnosed with no diabetic retinopathy, simple diabetic retinopathy, preproliferative retinopathy, or proliferative retinopathy. CONCLUSION Both corneal sensation and total or reflex tear secretion are reduced in individuals with diabetes. The decrease in corneal sensation, but not that in each tear secretion, was correlated with the stage of diabetic retinopathy. Given that loss of corneal sensation is a manifestation of diabetic polyneuropathy, these results are consistent with the notion that both diabetic retinopathy and polyneuropathy result from a basement membrane abnormality.
Collapse
Affiliation(s)
- Jun Saito
- Department of Biomolecular Recognition and Ophthalmology, Yamaguchi University School of Medicine, Ube City, Yamaguchi, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Stitt AW, Jenkins AJ, Cooper ME. Advanced glycation end products and diabetic complications. Expert Opin Investig Drugs 2002; 11:1205-23. [PMID: 12225243 DOI: 10.1517/13543784.11.9.1205] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Diabetic complications are major cause of morbidity and mortality in patients with diabetes. While the precise pathogenic mechanism(s) underlying conditions such as diabetic retinopathy, diabetic nephropathy and increased risk of atherosclerosis remain ill-defined, it is clear that hyperglycaemia is a primary factor that initiates and promotes complications. Formation of advanced glycation end products (AGEs) correlate with glycaemic control, and these reactive adducts form on DNA, lipids and proteins where they represent pathophysiological modifications that precipitate dysfunction at a cellular and molecular level. Many of these adducts form rapidly during diabetes and promote progression of a raft of diabetes-related complications. Recent evidence also suggests an important interaction with other pathogenic mechanisms activated within the diabetic milieu. This review outlines the nature of AGE formation in biological systems and highlights accumulative evidence that implicates these adducts in diabetic complications. As more therapeutic agents are developed to inhibit AGE formation or limit their pathogenic influence during chronic diabetes, it is becoming clear that these anti-AGE strategies have an important role to play in the treatment of diabetic patients.
Collapse
Affiliation(s)
- Alan W Stitt
- Dept of Ophthalmology, Royal Victoria Hospital, Queen's University of Belfast, Northern Ireland
| | | | | |
Collapse
|
49
|
Archer DB. Bowman Lecture 1998. Diabetic retinopathy: some cellular, molecular and therapeutic considerations. Eye (Lond) 1999; 13 ( Pt 4):497-523. [PMID: 10692923 DOI: 10.1038/eye.1999.130] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- D B Archer
- Department of Ophthalmology, Royal Victoria Hospital, Belfast, Northern Ireland.
| |
Collapse
|
50
|
Stitt AW, Li YM, Gardiner TA, Bucala R, Archer DB, Vlassara H. Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. THE AMERICAN JOURNAL OF PATHOLOGY 1997; 150:523-31. [PMID: 9033268 PMCID: PMC1858286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Advanced glycation end products (AGEs), formed from the nonenzymatic glycation of proteins and lipids with reducing sugars, have been implicated in many diabetic complications; however, their role in diabetic retinopathy remains largely unknown. Recent studies suggest that the cellular actions of AGEs may be mediated by AGE-specific receptors (AGE-R). We have examined the immunolocalization of AGEs and AGE-R components R1 and R2 in the retinal vasculature at 2, 4, and 8 months after STZ-induced diabetes as well as in nondiabetic rats infused with AGE bovine serum albumin for 2 weeks. Using polyclonal or monoclonal anti-AGE antibodies and polyclonal antibodies to recombinant AGE-R1 and AGE-R2, immunoreactivity (IR) was examined in the complete retinal vascular tree after isolation by trypsin digestion. After 2, 4, and 8 months of diabetes, there was a gradual increase in AGE IR in basement membrane. At 8 months, pericytes, smooth muscle cells, and endothelial cells of the retinal vessels showed dense intracellular AGE IR. AGE epitopes stained most intensely within pericytes and smooth muscle cells but less in basement membrane of AGE-infused rats compared with the diabetic group. Retinas from normal or bovine-serum-albumin-infused rats were largely negative for AGE IR. AGE-R1 and -R2 co-localized strongly with AGEs of vascular endothelial cells, pericytes, and smooth muscle cells of either normal, diabetic, or AGE-infused rat retinas, and this distribution did not vary with each condition. The data indicate that AGEs accumulate as a function of diabetes duration first within the basement membrane and then intracellularly, co-localizing with cellular AGE-Rs. Significant AGE deposits appear within the pericytes after long-term diabetes or acute challenge with AGE infusion conditions associated with pericyte damage. Co-localization of AGEs and AGE-Rs in retinal cells points to possible interactions of pathogenic significance.
Collapse
Affiliation(s)
- A W Stitt
- Picower Institute for Medical Research, Manhasset, New York 11030, USA
| | | | | | | | | | | |
Collapse
|