1
|
Zhang J, Gao F, Ma Y, Xue T, Shen Y. Identification of early-onset photoreceptor degeneration in transgenic mouse models of Alzheimer's disease. iScience 2021; 24:103327. [PMID: 34805789 PMCID: PMC8581578 DOI: 10.1016/j.isci.2021.103327] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Light sensitivity of the vertebrate retina relies on the integrity of photoreceptors, including rods and cones. Research in patients with Alzheimer's disease (AD) and in AD transgenic mice reports that accumulated amyloid-β (Aβ) plaques in the retina are toxic to retinal neurons. Moreover, Aβ plaques are deposited around the rods and cones, yet photoreceptor anomalies remain unclear in AD. Here, we identify the progressive degeneration of rods and cones characterized by impaired expression of phototransduction proteins, morphological alterations, functional deficits, and even cell loss. Furthermore, we demonstrate that cell senescence and necroptosis were involved in rod degeneration. Importantly, using in vivo scotopic electroretinogram, we detected rod degeneration in early-stage AD transgenic mice before Aβ plaques were observed in the brain. Moreover, we demonstrate that rod degeneration was among the earliest AD retinal manifestations compared with other types of retinal neurons. Overall, our study is the first to identify and detect in vivo, early-onset photoreceptor degeneration in AD. Progressive rod degeneration has been identified in AD transgenic mice Cell senescence and necroptosis were involved in rod degeneration Rod degeneration can be detected by in vivo scotopic electroretinogram Rod degeneration has earlier onset than amyloid-β plaques in the brain
Collapse
Affiliation(s)
- Jie Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Feng Gao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Yuqian Ma
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
- Eye Center at The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Tian Xue
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
- Eye Center at The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
- Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Corresponding author
| |
Collapse
|
2
|
Gimeno-Hernández R, Cantó A, Fernández-Carbonell A, Olivar T, Hernández-Rabaza V, Almansa I, Miranda M. Thioredoxin Delays Photoreceptor Degeneration, Oxidative and Inflammation Alterations in Retinitis Pigmentosa. Front Pharmacol 2021; 11:590572. [PMID: 33424600 PMCID: PMC7785808 DOI: 10.3389/fphar.2020.590572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/03/2020] [Indexed: 01/02/2023] Open
Abstract
Retinitis pigmentosa (RP) is an inherited ocular disorder with no effective treatment. RP onset and progression trigger a cascade of retinal disorders that lead to the death of photoreceptors. After photoreceptors death, neuronal, glial and vascular remodeling can be observed in the retina. The purpose of this study was to study if thioredoxin (TRX) administration is able to decrease photoreceptor death in an animal model of RP (rd1 mouse), but also if it is able to modulate the retinal oxidative stress, glial and vascular changes that can be observed as the disease progresses. Wild type and rd1 mice received several doses of TRX. After treatment, animals were euthanized at postnatals days 11, 17, or 28. Glutathione (GSH) and other thiol compounds were determined by high performance liquid chromatography (HPLC). Glial fibrilary acidic protein (GFAP) and anti-ionized calcium binding adaptor molecule 1 (Iba1) were studied by immunohistochemistry. Vascular endothelial growth factor (VEGF) and hepatic growth factor (HGF) expression were determined by western blot. TRX administration significantly diminished cell death in rd1 mouse retinas and increased GSH retinal concentrations at postnatal day 11 (PN11). TRX was also able to reverse glial alterations at PN11 and PN17. No alterations were observed in retinal VEGF and HGF expression in rd1 mice. In conclusion, TRX treatment decreases photoreceptor death in the first stages of RP and this protective effect may be due in part to the GSH system activation and to a partially decrease in inflammation.
Collapse
Affiliation(s)
- Roberto Gimeno-Hernández
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Antolin Cantó
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Angel Fernández-Carbonell
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Teresa Olivar
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Vicente Hernández-Rabaza
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Inmaculada Almansa
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - María Miranda
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| |
Collapse
|
3
|
Gorbatyuk MS, Starr CR, Gorbatyuk OS. Endoplasmic reticulum stress: New insights into the pathogenesis and treatment of retinal degenerative diseases. Prog Retin Eye Res 2020; 79:100860. [PMID: 32272207 DOI: 10.1016/j.preteyeres.2020.100860] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/08/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
Physiological equilibrium in the retina depends on coordinated work between rod and cone photoreceptors and can be compromised by the expression of mutant proteins leading to inherited retinal degeneration (IRD). IRD is a diverse group of retinal dystrophies with multifaceted molecular mechanisms that are not fully understood. In this review, we focus on the contribution of chronically activated unfolded protein response (UPR) to inherited retinal pathogenesis, placing special emphasis on studies employing genetically modified animal models. As constitutively active UPR in degenerating retinas may activate pro-apoptotic programs associated with oxidative stress, pro-inflammatory signaling, dysfunctional autophagy, free cytosolic Ca2+ overload, and altered protein synthesis rate in the retina, we focus on the regulatory mechanisms of translational attenuation and approaches to overcoming translational attenuation in degenerating retinas. We also discuss current research on the role of the UPR mediator PERK and its downstream targets in degenerating retinas and highlight the therapeutic benefits of reprogramming PERK signaling in preclinical animal models of IRD. Finally, we describe pharmacological approaches targeting UPR in ocular diseases and consider their potential applications to IRD.
Collapse
Affiliation(s)
- Marina S Gorbatyuk
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA.
| | - Christopher R Starr
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA
| | - Oleg S Gorbatyuk
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA
| |
Collapse
|
4
|
Wensel TG, Zhang Z, Anastassov IA, Gilliam JC, He F, Schmid MF, Robichaux MA. Structural and molecular bases of rod photoreceptor morphogenesis and disease. Prog Retin Eye Res 2016; 55:32-51. [PMID: 27352937 PMCID: PMC5112133 DOI: 10.1016/j.preteyeres.2016.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/15/2022]
Abstract
The rod cell has an extraordinarily specialized structure that allows it to carry out its unique function of detecting individual photons of light. Both the structural features of the rod and the metabolic processes required for highly amplified light detection seem to have rendered the rod especially sensitive to structural and metabolic defects, so that a large number of gene defects are primarily associated with rod cell death and give rise to blinding retinal dystrophies. The structures of the rod, especially those of the sensory cilium known as the outer segment, have been the subject of structural, biochemical, and genetic analysis for many years, but the molecular bases for rod morphogenesis and for cell death in rod dystrophies are still poorly understood. Recent developments in imaging technology, such as cryo-electron tomography and super-resolution fluorescence microscopy, in gene sequencing technology, and in gene editing technology are rapidly leading to new breakthroughs in our understanding of these questions. A summary is presented of our current understanding of selected aspects of these questions, highlighting areas of uncertainty and contention as well as recent discoveries that provide new insights. Examples of structural data from emerging imaging technologies are presented.
Collapse
Affiliation(s)
- Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Zhixian Zhang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ivan A Anastassov
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jared C Gilliam
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F Schmid
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael A Robichaux
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Jiang Y, Zhang Y, Zhang L, Wang M, Zhang X, Li X. Therapeutic effect of bone marrow mesenchymal stem cells on laser-induced retinal injury in mice. Int J Mol Sci 2014; 15:9372-85. [PMID: 24871366 PMCID: PMC4100100 DOI: 10.3390/ijms15069372] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/29/2014] [Accepted: 05/12/2014] [Indexed: 12/13/2022] Open
Abstract
Stem cell therapy has shown encouraging results for neurodegenerative diseases. The retina provides a convenient locus to investigate stem cell functions and distribution in the nervous system. In the current study, we investigated the therapeutic potential of bone marrow mesenchymal stem cells (MSCs) by systemic transplantation in a laser-induced retinal injury model. MSCs from C57BL/6 mice labeled with green fluorescent protein (GFP) were injected via the tail vein into mice after laser photocoagulation. We found that the average diameters of laser spots and retinal cell apoptosis were decreased in the MSC-treated group. Interestingly, GFP-MSCs did not migrate to the injured retina. Further examination revealed that the mRNA expression levels of glial fibrillary acidic protein and matrix metalloproteinase-2 were lower in the injured eyes after MSC transplantation. Our results suggest that intravenously injected MSCs have the ability to inhibit retinal cell apoptosis, reduce the inflammatory response and limit the spreading of damage in the laser-injured retina of mice. Systemic MSC therapy might play a role in neuroprotection, mainly by regulation of the intraocular microenvironment.
Collapse
Affiliation(s)
- Yuanfeng Jiang
- Tianjin Medical University Eye Hospital and Eye Institute, No. 251, Fukang Road, Nankai District, Tianjin 300384, China.
| | - Yan Zhang
- Tianjin Medical University Eye Hospital and Eye Institute, No. 251, Fukang Road, Nankai District, Tianjin 300384, China.
| | - Lingjun Zhang
- Tianjin Medical University Eye Hospital and Eye Institute, No. 251, Fukang Road, Nankai District, Tianjin 300384, China.
| | - Meiyan Wang
- Department of Ophthalmology, Haibin People's Hospital of Tianjin, No. 400, Chuangye Road, Binhai New District, Tianjin 300280, China.
| | - Xiaomin Zhang
- Tianjin Medical University Eye Hospital and Eye Institute, No. 251, Fukang Road, Nankai District, Tianjin 300384, China.
| | - Xiaorong Li
- Tianjin Medical University Eye Hospital and Eye Institute, No. 251, Fukang Road, Nankai District, Tianjin 300384, China.
| |
Collapse
|
6
|
Schafer KA, Render JA. Toxicologic Pathology of the Eye: Alterations of the Lens and Posterior Segment. ASSESSING OCULAR TOXICOLOGY IN LABORATORY ANIMALS 2012. [DOI: 10.1007/978-1-62703-164-6_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Apoptotic death ligands and interleukins in the vitreous of diabetic patients. SPEKTRUM DER AUGENHEILKUNDE 2010. [DOI: 10.1007/s00717-010-0446-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Dutt K, Cao Y. Engineering retina from human retinal progenitors (cell lines). Tissue Eng Part A 2009; 15:1401-13. [PMID: 19113950 DOI: 10.1089/ten.tea.2007.0358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retinal degeneration resulting in the loss of photoreceptors is the leading cause of blindness. Several therapeutic protocols are under consideration for treatment of this disease. Tissue replacement is one such strategy currently being explored. However, availability of tissues for transplant poses a major obstacle. Another strategy with great potential is the use of adult stem cells, which could be expanded in culture and then utilized to engineer retinal tissue. In this study, we have explored a spontaneously immortalized human retinal progenitor cell line for its potential in retinal engineering using rotary cultures to generate three-dimensional (3D) structures. Retinal progenitors cultured alone or cocultured with retinal pigment epithelial cells form aggregates. The aggregate size increases between days 1 and 10. The cells grown as a 3D culture rotary system, which promotes cell-cell interaction, retain a spectrum of differentiation capability. Photoreceptor differentiation in these cultures is confirmed by significant upregulation of rhodopsin and AaNat, an enzyme implicated in melatonin synthesis (immunohistochemistry and Western blot analysis). Photoreceptor induction and differentiation is further attested to by the upregulation of rod transcription factor Nrl, Nr(2)e(3), expression of interstitial retinal binding protein, and rhodopsin kinase by reverse transcription-polymerase chain reaction. Differentiation toward other cell lineages is confirmed by the expression of tyrosine hydroxylase in amacrine cells, thy 1.1 expression in ganglion cells and calbindin, and GNB3 expression in cone cells. The capability of retinal progenitors to give rise to several retinal cell types when grown as aggregated cells in rotary culture offers hope that progenitor stem cells under appropriate culture conditions will be valuable to engineer retinal constructs, which could be further tested for their transplant potential. The fidelity with which this multipotential cell line retains its capacity to differentiate into multiple cell types holds great promise for the use of tissue-specific adult stem cells for therapy.
Collapse
Affiliation(s)
- Kamla Dutt
- Department of Pathology, Morehouse School of Medicine, Atlanta, Georgia 30310-1495, USA.
| | | |
Collapse
|
9
|
Weleber RG, Gregory-Evans K. Retinitis Pigmentosa and Allied Disorders. Retina 2006. [DOI: 10.1016/b978-0-323-02598-0.50023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
10
|
Kubay OV, Charteris DG, Newland HS, Raymond GL. Retinal Detachment Neuropathology and Potential Strategies for Neuroprotection. Surv Ophthalmol 2005; 50:463-75. [PMID: 16139039 DOI: 10.1016/j.survophthal.2005.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Understanding the neuropathology of retinal detachment from postmortem and animal models allows identification of cellular targets, receptors and mediators for pharmacological manipulation. In this review, concepts of retinal detachment and neuropathology are examined at cellular and structural anatomical levels using postmortem and animal model data. Possible neuroprotective strategies are reviewed in the setting of the new environment created by successful retinal reattachment surgery.
Collapse
Affiliation(s)
- O V Kubay
- Retinal Unit, Department of Ophthalmology, Royal Adelaide Hospital, Adelaide, Australia
| | | | | | | |
Collapse
|
11
|
Haas P, Binder S. Hereditäre Makulaerkrankungen — Aktueller Stand der Therapiemöglichkeiten. SPEKTRUM DER AUGENHEILKUNDE 2003. [DOI: 10.1007/bf03162734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Cashman SM, Sadowski SL, Morris DJ, Frederick J, Kumar-Singh R. Intercellular trafficking of adenovirus-delivered HSV VP22 from the retinal pigment epithelium to the photoreceptors--implications for gene therapy. Mol Ther 2002; 6:813-23. [PMID: 12498777 DOI: 10.1006/mthe.2002.0806] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenovirus (Ad)-mediated gene transfer is a promising technology for therapy of a wide variety of genetic disorders of the retina. The tropism of Ad vectors limits their utility to cells that express the coxsackie-adenovirus receptor. Upon ocular delivery, Ad vectors primarily infect the retinal pigment epithelium (RPE) and the Müller cells of the retina. However, the most frequent blinding diseases such as retinitis pigmentosa and age-related macular degeneration are associated with the expression of mutant proteins in the photoreceptors. In this study we demonstrate that adenovirus-delivered heterologous proteins fused to the herpes simplex virus tegument protein VP22 can translocate from infected cells to uninfected cells in culture and in vivo. We tested three different ocular cell lines, specifically Y79, RPE-J, and Chang C. We show that there is a 3.25-fold increase in the number of Y79 cells that take up GFP mediated by the intercellular trafficking properties of VP22. Our data are based on FACS analysis of living cells and there was no need for cell fixation for the effect to be observed. When adenovirus expressing a VP22-GFP fusion was injected into the subretinal space of adult mice, the VP22-GFP fusion peptides translocated from the RPE to all of the other layers of the retina, including the outer nuclear layer, which contains the photoreceptor cell bodies. Our study has significant implications for a wide variety of diseases of the retina and other organ systems.
Collapse
Affiliation(s)
- Siobhan M Cashman
- Department of Ophthalmology, University of Utah, Salt Lake City, Utah 84112-5330, USA
| | | | | | | | | |
Collapse
|
13
|
Mainster MA, Reichel E. Transpupillary Thermotherapy for Age-Related Macular Degeneration: Long-Pulse Photocoagulation, Apoptosis, and Heat Shock Proteins. Ophthalmic Surg Lasers Imaging Retina 2000. [DOI: 10.3928/1542-8877-20000901-03] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Minke B, Hardie R. Chapter 9 Genetic dissection of Drosophila phototransduction. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1383-8121(00)80012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
15
|
Abstract
The mechanisms of apoptosis are strongly dependent on cell-cell interactions typical of organized tissues. Experimental studies of apoptosis using a histotypical preparation of retinal explants are reported in the present article. We found that various characteristics of apoptosis are selectively associated with retinal cell death depending on cell type, stage of maturation, and means of induction of apoptosis. Among these were: (1) the requirements of protein synthesis; (2) the role of cAMP; (3) the expression of certain apoptosis-associated proteins; and (4) the sensitivity to excitotoxicity, modulation of protein phosphatases and calcium mobilization. Dividing cells undergo apoptosis in response to several inducers in specific phases of the cell cycle, and in distinct regions within their pathway of interkinetic nuclear migration. Recent post-mitotic cells are selectively sensitive to apoptosis induced by blockade of protein synthesis, while both proliferating and differentiated cells are more resistant. We also studied the association of several proteins, some of which play critical roles in the cell cycle, with both differentiation and apoptosis in the retinal tissue. Detection of cell cycle markers did not support the hypothesis that retinal cells re-enter the cell cycle on their pathway to apoptosis, although some proteins associated with cell proliferation re-appeared in degenerating cells. The transcription factors c-Jun, c-Fos and c-Myc were found associated with apoptosis in retinal cells, but their sub-cellular location in apoptotic bodies is not consistent with their canonical functions in the control of gene expression. The bifunctional redox factor/AP endonuclease Ref-1 and the transcription factor Max are associated with progressive cell differentiation, and both are down-regulated during cell death in the retina. The data suggest that Ref-1 and Max may normally function as negative modulators of retinal apoptosis. The results indicate that nuclear exclusion of transcription factors and other important control proteins is a hallmark of retinal apoptosis. Histotypical explants may be a choice preparation for the experimental analysis of the mechanisms of apoptosis, in the context both of cell-cell interactions and of the dynamic behavior of developing cells within the organized retinal tissue.
Collapse
Affiliation(s)
- R Linden
- Instituto de Biofísica da UFRJ, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
16
|
Abstract
Photoreceptor cell death is the final, irreversible event in many blinding diseases including retinitis pigmentosa, age-related macular disease and retinal detachment. This paper examines the potential strategies for preventing photoreceptor cell death in the context of current understanding of the mechanisms of cell death. There is evidence to suggest that photoreceptor cells are inherently vulnerable, apoptosis is the final common pathway of photoreceptor cell loss, and other retinal cells play an important role in the survival of rods and cones. Furthermore, the rationale of using neurotrophic factors as therapeutic agents in retinal degeneration is discussed in detail. Photoreceptor rescue by manipulation of genes involved in apoptosis and some pharmacological agents is also described.
Collapse
|
17
|
Abstract
Apoptosis is a regulated mode of single cell death that involves gene expression in many instances and occurs under physiological and pathological conditions in a large variety of systems. We briefly summarize major features of apoptosis in general and describe the occurrence of apoptosis in the retina in different situations that comprise animal models of retinitis pigmentosa, light-induced lesions, histogenesis during development, and others. Apoptosis can be separated into several phases: the induction by a multitude of stimuli, the effector phase in which the apoptotic signal is transmitted to the cellular death machinery, the excecution period when proteolytic cascades are activated, and the phagocytic removal of cellular remnants. Control mechanisms for retinal apoptosis are only beginning to be clarified. Potential apoptotic signal transducers were investigated in our laboratory, including metabolites of arachidonic acid and downstream mediators of signaling molecules such as transcription factors. Work in our laboratory revealed an essential role of the immediate-early gene product c-Fos in light-induced apoptosis. c-Fos is a member of the AP-1 family of transcription factors and, together with other members of this family, it may regulate apoptosis in the central nervous system. Expression of the c-fos gene in the retina can be evoked by light exposure and follows a diurnal rhythm. Future studies will have to clarify how light can control the expression of specific genes, and specifically, the role of c-fos and other genes of retinal apoptosis including potential target genes and signaling pathways.
Collapse
Affiliation(s)
- C E Remé
- Department of Ophthalmology, University Hospital, Zuerich, Switzerland.
| | | | | | | | | |
Collapse
|
18
|
Mohand-Said S, Deudon-Combe A, Hicks D, Simonutti M, Forster V, Fintz AC, Léveillard T, Dreyfus H, Sahel JA. Normal retina releases a diffusible factor stimulating cone survival in the retinal degeneration mouse. Proc Natl Acad Sci U S A 1998; 95:8357-62. [PMID: 9653191 PMCID: PMC20980 DOI: 10.1073/pnas.95.14.8357] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/1997] [Accepted: 05/06/1998] [Indexed: 02/08/2023] Open
Abstract
The role of cellular interactions in the mechanism of secondary cone photoreceptor degeneration in inherited retinal degenerations in which the mutation specifically affects rod photoreceptors was studied. We developed an organ culture model of whole retinas from 5-week-old mice carrying the retinal degeneration mutation, which at this age contain few remaining rods and numerous surviving cones cocultured with primary cultures of mixed cells from postnatal day 8 normal-sighted mice (C57BL/6) retinas or retinal explants from normal (C57BL/6) or dystrophic (C3H/He) 5-week-old mice. After 7 days, the numbers of residual cone photoreceptors were quantified after specific peanut lectin or anti-arrestin antibody labeling by using an unbiased stereological approach. Examination of organ cultured retinas revealed significantly greater numbers of surviving cones (15-20%) if cultured in the presence of retinas containing normal rods as compared with controls or cocultures with rod-deprived retinas. These data indicate the existence of a diffusible trophic factor released from retinas containing rod cells and acting on retinas in which only cones are present. Because cones are responsible for high acuity and color vision, such data could have important implications not only for eventual therapeutic approaches to human retinal degenerations but also to define interactions between retinal photoreceptor types.
Collapse
Affiliation(s)
- S Mohand-Said
- Laboratoire de Physiopathologie Rétinienne, Université Louis Pasteur, Clinique Ophtalmologique, Centre Hospitalier et Universitaire, BP 426, 1, Place de l'Hôpital, 67091 Strasbourg Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gregory-Evans K, Bhattacharya SS. Genetic blindness: current concepts in the pathogenesis of human outer retinal dystrophies. Trends Genet 1998; 14:103-8. [PMID: 9540407 DOI: 10.1016/s0168-9525(98)01402-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Outer retinal dystrophies are the major causes of incurable blindness in the Western world. Understanding the etiology of retinal dystrophies has improved remarkably over the past decade. A number of genes, such as RHO, PDE-beta, RDS, TIMP3, MYO7A, RETGC1, RPGR, CRX and ABCR, are now known to be particularly important. Characterization of the genetic basis for disease is leading to new concepts of pathogenesis at the molecular and cellular levels. Such detailed understanding of disease processes is also stimulating a renewed interest in therapeutic strategies.
Collapse
Affiliation(s)
- K Gregory-Evans
- Department of Molecular Genetics, Institute of Ophthalmology (University College London) UK.
| | | |
Collapse
|
20
|
Rich KA, Zhan Y, Blanks JC. Aberrant expression of c-Fos accompanies photoreceptor cell death in the rd mouse. JOURNAL OF NEUROBIOLOGY 1997; 32:593-612. [PMID: 9183740 DOI: 10.1002/(sici)1097-4695(19970605)32:6<593::aid-neu5>3.0.co;2-v] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Selective degeneration of rod photoreceptor cells in the retinal degenerative (rd) mouse prior to their complete maturation is thought to result from elevated cyclic guanosine monophosphate (cGMP) levels owing to the inherited defect in cGMP-phosphodiesterase. To investigate potential signaling pathways which might lead to apoptotic death of photoreceptors in the rd retina, the expression of immediate-early genes (IEG) of the activating protein-1 transcription factor (AP-1) family was examined. Increasing numbers of apoptotic photoreceptor nuclei were observed in the outer nuclear layer of the rd mouse beginning at postnatal day (P) 10. The peak incidence of apoptotic cells was observed at P13; by P16, almost the entire population of photoreceptors had been lost. Although c-Fos-like immunoreactivity was absent in photoreceptors of normal retinas, we observed that commencing at around P10, increasing numbers of rod photoreceptors in the rd retina exhibited nuclear staining for c-Fos protein. While no change in the distribution patterns of other members of the AP-1 family (c-Jun, JunB, and JunD) was observed in photoreceptors, Müller cell nuclei were transiently immunoreactive for c-Jun on P11. The incidence of c-Fos-positive photoreceptors peaked sharply at P12, 1 day earlier than the peak in apoptosis. Furthermore, the population of c-Fos-positive photoreceptors was distinct from apoptotic photoreceptors exhibiting chromatin condensation. The aberrant expression of c-Fos protein in rod photoreceptors immediately prior to their death in the rd mouse raises the possibility that c-Fos may be directly or indirectly involved in triggering the apoptotic cascade. Furthermore, the additional finding of c-Jun induction in Müller glia suggests that the IEG response to photoreceptor degeneration involves both intra- and intercellular signal transduction pathways.
Collapse
Affiliation(s)
- K A Rich
- Department of Pathology, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | | | |
Collapse
|
21
|
Piguet B, Héon E, Munier FL, Grounauer PA, Niemeyer G, Butler N, Schorderet DF, Sheffield VC, Stone EM. Full characterization of the maculopathy associated with an Arg-172-Trp mutation in the RDS/peripherin gene. Ophthalmic Genet 1996; 17:175-86. [PMID: 9010868 DOI: 10.3109/13816819609057891] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The objective of this study was to fully characterize the macular dystrophy phenotype and genotype in a large family of the Zermatt area of Switzerland. Clinical and molecular studies of the family included a comprehensive eye examination and a mutational analysis of the RDS, rhodopsin, and TIMP-3 genes. In selected cases, fluorescein angiography, perimetry, and electroretinography were performed. Forty-two family members at risk of expressing the maculopathy were studied. Of these, 24 were found to be clinically affected. The severity of macular disease in these patients was clearly age-related and different stages of progression were identified. Central pigmentary alterations were seen in adolescent patients, while patients in their late teens and twenties exhibited drusen-like deposits. Later, these defects formed focal areas of atrophy which eventually led to central geographic atrophy with severe visual loss by the fifth decade and cone-rod dysfunction. The transmission of this condition is autosomal dominant with complete penetrance. The underlying genetic defect is a mutation in codon 172 of the RDS/peripherin gene, a gene expressed in both rods and cones, which results in the substitution of tryptophan for an arginine residue at that position. 'Zermatt macular dystrophy' is a dominant, age-related, progressive macular dystrophy which in later stages resembles atrophic age-related macular degeneration. The size of the family studied allowed definition of the clinical spectrum of this condition and identification of the related genetic defect which allows more precise diagnosis and counseling.
Collapse
Affiliation(s)
- B Piguet
- Hôpital Jules Gonin, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|