1
|
Abstract
The glycocalyx is a dense and diverse coat of glycans and glycoconjugates responsible for maintaining cell surface integrity and regulating the interaction of cells with the external environment. Transmembrane mucins such as MUC1 and MUC16 comprise a major component of the epithelial glycocalyx and are currently used to monitor disease progression in cancer. At the ocular surface, multiple lines of evidence indicate that abnormal expression of the enzymes responsible for glycan biosynthesis during pathological conditions impairs the glycosylation of transmembrane mucins. It is now becoming clear that these changes contribute to modify the interaction of mucins with galectin-3, a multimeric lectin crucial for preserving the ocular surface epithelial barrier. This review highlights the potential of using the epithelial glycocalyx as a reliable source for the generation of biomarkers to diagnose and monitor ocular surface disease.
Collapse
|
2
|
Boost M, Cho P, Wang Z. Disturbing the balance: effect of contact lens use on the ocular proteome and microbiome. Clin Exp Optom 2017; 100:459-472. [PMID: 28771841 DOI: 10.1111/cxo.12582] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 12/17/2022] Open
Abstract
Contact lens wear is a popular, convenient and effective method for vision correction. In recent years, contact lens practice has expanded to include new paradigms, including orthokeratology; however, their use is not entirely without risk, as the incidence of infection has consistently been reported to be higher in contact lens wearers. The explanations for this increased susceptibility have largely focused on physical damage, especially to the cornea, due to a combination of hypoxia, mechanical trauma, deposits and solution cytotoxicity, as well as poor compliance with care routines leading to introduction of pathogens into the ocular environment. However, in recent years, with the increasing availability and reduced cost of molecular techniques, the ocular environment has received greater attention with in-depth studies of proteins and other components. Numerous proteins were found to be present in the tears and their functions and interactions indicate that the tears are far more complex than formerly presumed. In addition, the concept of a sterile or limited microbial population on the ocular surface has been challenged by analysis of the microbiome. Ocular microbiome was not considered as one of the key sites for the Human Microbiome Project, as it was thought to be limited compared to other body sites. This was proven to be fallacious, as a wide variety of micro-organisms were identified in the analyses of human tears. Thus, the ocular environment is now recognised to be more complicated and interference with this ecological balance may lead to adverse effects. The use of contact lenses clearly changes the situation at the ocular surface, which may result in consequences which disturb the balance in the healthy eye.
Collapse
Affiliation(s)
- Maureen Boost
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong.,Squina International Centre for Infection Control, Hong Kong
| | - Pauline Cho
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong.,Squina International Centre for Infection Control, Hong Kong
| | - Zhaoran Wang
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
3
|
Bron AJ, de Paiva CS, Chauhan SK, Bonini S, Gabison EE, Jain S, Knop E, Markoulli M, Ogawa Y, Perez V, Uchino Y, Yokoi N, Zoukhri D, Sullivan DA. TFOS DEWS II pathophysiology report. Ocul Surf 2017; 15:438-510. [PMID: 28736340 DOI: 10.1016/j.jtos.2017.05.011] [Citation(s) in RCA: 1113] [Impact Index Per Article: 139.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022]
Abstract
The TFOS DEWS II Pathophysiology Subcommittee reviewed the mechanisms involved in the initiation and perpetuation of dry eye disease. Its central mechanism is evaporative water loss leading to hyperosmolar tissue damage. Research in human disease and in animal models has shown that this, either directly or by inducing inflammation, causes a loss of both epithelial and goblet cells. The consequent decrease in surface wettability leads to early tear film breakup and amplifies hyperosmolarity via a Vicious Circle. Pain in dry eye is caused by tear hyperosmolarity, loss of lubrication, inflammatory mediators and neurosensory factors, while visual symptoms arise from tear and ocular surface irregularity. Increased friction targets damage to the lids and ocular surface, resulting in characteristic punctate epithelial keratitis, superior limbic keratoconjunctivitis, filamentary keratitis, lid parallel conjunctival folds, and lid wiper epitheliopathy. Hybrid dry eye disease, with features of both aqueous deficiency and increased evaporation, is common and efforts should be made to determine the relative contribution of each form to the total picture. To this end, practical methods are needed to measure tear evaporation in the clinic, and similarly, methods are needed to measure osmolarity at the tissue level across the ocular surface, to better determine the severity of dry eye. Areas for future research include the role of genetic mechanisms in non-Sjögren syndrome dry eye, the targeting of the terminal duct in meibomian gland disease and the influence of gaze dynamics and the closed eye state on tear stability and ocular surface inflammation.
Collapse
Affiliation(s)
- Anthony J Bron
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Vision and Eye Research Unit, Anglia Ruskin University, Cambridge, UK.
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute & Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Stefano Bonini
- Department of Ophthalmology, University Campus Biomedico, Rome, Italy
| | - Eric E Gabison
- Department of Ophthalmology, Fondation Ophtalmologique Rothschild & Hôpital Bichat Claude Bernard, Paris, France
| | - Sandeep Jain
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Erich Knop
- Departments of Cell and Neurobiology and Ocular Surface Center Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Markoulli
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Victor Perez
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Yuichi Uchino
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Norihiko Yokoi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Driss Zoukhri
- Tufts University School of Dental Medicine, Boston, MA, USA
| | - David A Sullivan
- Schepens Eye Research Institute & Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Corfield A. Eukaryotic protein glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 2017; 147:119-147. [PMID: 28012131 PMCID: PMC5306191 DOI: 10.1007/s00418-016-1526-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2016] [Indexed: 12/21/2022]
Abstract
Proteins undergo co- and posttranslational modifications, and their glycosylation is the most frequent and structurally variegated type. Histochemically, the detection of glycan presence has first been performed by stains. The availability of carbohydrate-specific tools (lectins, monoclonal antibodies) has revolutionized glycophenotyping, allowing monitoring of distinct structures. The different types of protein glycosylation in Eukaryotes are described. Following this educational survey, examples where known biological function is related to the glycan structures carried by proteins are given. In particular, mucins and their glycosylation patterns are considered as instructive proof-of-principle case. The tissue and cellular location of glycoprotein biosynthesis and metabolism is reviewed, with attention to new findings in goblet cells. Finally, protein glycosylation in disease is documented, with selected examples, where aberrant glycan expression impacts on normal function to let disease pathology become manifest. The histological applications adopted in these studies are emphasized throughout the text.
Collapse
Affiliation(s)
- Anthony Corfield
- Mucin Research Group, School of Clinical Sciences, Bristol Royal Infirmary, University of Bristol, Bristol, BS2 8HW, UK.
| |
Collapse
|
5
|
A Comprehensive Review on Dry Eye Disease: Diagnosis, Medical Management, Recent Developments, and Future Challenges. ACTA ACUST UNITED AC 2015. [DOI: 10.1155/2015/704946] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dry eye syndrome (DES) or keratoconjunctivitis sicca (KCS) is a common disorder of the tear film caused by decreased tear production or increased evaporation and manifests with a wide variety of signs and symptoms. The present review from interpretation of the literature gives detailed information on the prevalence, definition, causes, diagnostic tests, and medical management of dry eye disease. A number of systems contribute to the physiological integrity of the ocular surface and disruption of system may or may not produce symptoms. Therefore accurate diagnosis of dry eyes with no or minimal disruption of physiological function is necessary. The paper also discusses different colloidal drug delivery systems and current challenges in the development of topical ophthalmic drug delivery systems for treatment of KCS. Due to the wide prevalence and number of factors involved, newer, more sensitive diagnostic techniques and novel therapeutic agents have been developed to provide ocular delivery systems with high therapeutic efficacy. The aim of this review is to provide awareness among the patients, health care professionals, and researchers about diagnosis and treatment of KCS and recent developments and future challenges in management of dry eye disease.
Collapse
|
6
|
Interfacial Phenomena and the Ocular Surface. Ocul Surf 2014; 12:178-201. [DOI: 10.1016/j.jtos.2014.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 01/06/2014] [Accepted: 01/21/2014] [Indexed: 01/07/2023]
|
7
|
Tears as a source of biomarkers for ocular and systemic diseases. Exp Eye Res 2013; 117:126-37. [DOI: 10.1016/j.exer.2013.07.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/05/2013] [Accepted: 07/12/2013] [Indexed: 12/23/2022]
|
8
|
McDermott AM. Antimicrobial compounds in tears. Exp Eye Res 2013; 117:53-61. [PMID: 23880529 PMCID: PMC3844110 DOI: 10.1016/j.exer.2013.07.014] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 01/30/2023]
Abstract
The tear film coats the cornea and conjunctiva and serves several important functions. It provides lubrication, prevents drying of the ocular surface epithelia, helps provide a smooth surface for refracting light, supplies oxygen and is an important component of the innate defense system of the eye providing protection against a range of potential pathogens. This review describes both classic antimicrobial compounds found in tears such as lysozyme and some more recently identified such as members of the cationic antimicrobial peptide family and surfactant protein-D as well as potential new candidate molecules that may contribute to antimicrobial protection. As is readily evident from the literature review herein, tears, like all mucosal fluids, contain a plethora of molecules with known antimicrobial effects. That all of these are active in vivo is debatable as many are present in low concentrations, may be influenced by other tear components such as the ionic environment, and antimicrobial action may be only one of several activities ascribed to the molecule. However, there are many studies showing synergistic/additive interactions between several of the tear antimicrobials and it is highly likely that cooperativity between molecules is the primary way tears are able to afford significant antimicrobial protection to the ocular surface in vivo. In addition to effects on pathogen growth and survival some tear components prevent epithelial cell invasion and promote the epithelial expression of innate defense molecules. Given the protective role of tears a number of scenarios can be envisaged that may affect the amount and/or activity of tear antimicrobials and hence compromise tear immunity. Two such situations, dry eye disease and contact lens wear, are discussed here.
Collapse
Affiliation(s)
- Alison M McDermott
- University of Houston, College of Optometry, 4901 Calhoun Road, 505 J Davis Armistead Bldg, Houston, TX 77204-2020, USA.
| |
Collapse
|
9
|
An ultrasensitive electrochemiluminescence immunoassay for carbohydrate antigen 19-9 in serum based on antibody labeled Fe3O4 nanoparticles as capture probes and graphene/CdTe quantum dot bionanoconjugates as signal amplifiers. Int J Mol Sci 2013; 14:10397-411. [PMID: 23685872 PMCID: PMC3676846 DOI: 10.3390/ijms140510397] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 11/25/2022] Open
Abstract
The CdTe quantum dots (QDs), graphene nanocomposite (CdTe-G) and dextran–Fe3O4 magnetic nanoparticles have been synthesized for developing an ultrasensitive electrochemiluminescence (ECL) immunoassay for Carcinoembryonic antigen 19-9 (CA 19-9) in serums. Firstly, the capture probes (CA 19-9 Ab1/Fe3O4) for enriching CA 19-9 were synthesized by immobilizing the CA 19-9’s first antibody (CA 19-9 Ab1) on magnetic nanoparticles (dextran-Fe3O4). Secondly, the signal probes (CA 19-9 Ab2/CdTe-G), which can emit an ECL signal, were formed by attaching the secondary CA 19-9 antibody (CA 19-9 Ab2) to the surface of the CdTe-G. Thirdly, the above two probes were used for conjugating with a serial of CA 19-9 concentrations. Graphene can immobilize dozens of CdTe QDs on their surface, which can emit stronger ECL intensity than CdTe QDs. Based on the amplified signal, ultrasensitive antigen detection can be realized. Under the optimal conditions, the ECL signal depended linearly on the logarithm of CA 19-9 concentration from 0.005 to 100 pg/mL, and the detection limit was 0.002 pg/mL. Finally, five samples of human serum were tested, and the results were compared with a time-resolved fluorescence assay (TRFA). The novel immunoassay provides a stable, specific and highly sensitive immunoassay protocol for tumor marker detection at very low levels, which can be applied in early diagnosis of tumor.
Collapse
|
10
|
Jain P, Li R, Lama T, Saragovi HU, Cumberlidge G, Meerovitch K. An NGF mimetic, MIM-D3, stimulates conjunctival cell glycoconjugate secretion and demonstrates therapeutic efficacy in a rat model of dry eye. Exp Eye Res 2011; 93:503-12. [PMID: 21726552 DOI: 10.1016/j.exer.2011.06.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 06/17/2011] [Accepted: 06/19/2011] [Indexed: 12/22/2022]
Abstract
The aim of this study was to evaluate the efficacy of MIM-D3, a small molecule nerve growth factor (NGF) peptidomimetic, as a therapeutic agent in rats with scopolamine induced dry eye. NGF plays an important role in ocular surface maintenance and corneal wound healing and was recently shown to have mucin secretagogue activity in conjunctival cells. We investigated whether MIM-D3 increased glycoconjugate secretion in conjunctival cells in vitro and in rat tear fluids in vivo. Primary rat conjunctival cell cultures were treated with increasing concentrations of MIM-D3 and evaluated for glycoconjugate secretion, proliferation and MAPK1/2 activation. Glycoconjugates were quantitated in tear fluids from normal rats treated topically with increasing doses of MIM-D3 (0.4%, 1% and 2.5%). Dry eye was induced in rats by subcutaneous scopolamine treatment, administered by surgically implanted osmotic pumps for 14 or 28 days. Aqueous tear production, tear clearance, fluorescein corneal staining and tear break-up time (tBUT) were evaluated. Glycoconjugates and NGF were quantitated in the tear fluids by enzyme-linked lectin assay (ELLA) and enzyme-linked immunosorbant assay (ELISA), respectively. We found that 50 μM MIM-D3 statistically significantly induced a 1.3-fold increase in glycoconjugate secretion and a 2.3-fold increase in MAPK1/2 activation without increasing proliferation from conjunctival cell cultures. Application of 2.5% MIM-D3 in normal rat eyes statistically significantly increased tear glycoconjugate concentration by 2.3-fold. In the experimental dry eye model, application of 1% MIM-D3 to rat eyes for either 1 or 17 consecutive days, followed by 1 week of no dosing produced a statistically significant decrease in corneal staining (p < 0.001), a slight increase in tBUT, and increases in tear glycoconjugates (p < 0.05) compared to vehicle. Scopolamine treatment also caused a statistically significant increase of endogenous NGF in tears (p < 0.005). We concluded that the increase in glycoconjugate concentration by the 1% MIM-D3 dose may have improved the quality and stability of the tear film, and thereby improved healing on the ocular surface in dry eye. Therefore, MIM-D3 may have therapeutic potential as a topical agent for the treatment of dry eye.
Collapse
Affiliation(s)
- Pooja Jain
- Mimetogen Pharmaceuticals, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Mokhtarzadeh M, Casey R, Glasgow BJ. Fluorescein punctate staining traced to superficial corneal epithelial cells by impression cytology and confocal microscopy. Invest Ophthalmol Vis Sci 2011; 52:2127-35. [PMID: 21212176 DOI: 10.1167/iovs.10-6489] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The basis of fluorescein-associated superficial punctate staining in dry eyes is controversial. Prior explanations include fluorescein pooling in surface erosive defects, intercellular trapping of fluorescein, and intracellular staining in dead cells. In this study, the hypothesis that punctate erosions are individual cells with enhanced fluorescence was tested. METHODS Ten impression cytology membrane materials were compared, to optimize cellular yield in buccal mucosa and cornea. Clinicocytologic correlation of punctate fluorescent spots was performed in four dry eye patients. Individual punctate spots were localized by fiducial marks in photographs, before and after removal with impression membranes, and were traced in fluorescence microscopy and cytologic staining. Two-way contingency table analysis was used to determine the correlation of punctate spots with cells removed by the membrane. Clinicopathologic correlation of punctate spots was performed in 10 corneas removed in dry eye patients by transplantation for concurrent diseases. Punctate fluorescence was tracked in specimens by fiducial marks and epifluorescence. The distribution of fluorescent spots in specific cell layers of the cornea was determined by confocal microscopy. RESULTS Cellular yield was greatest with impressions from polytetrafluoroethylene (PTFE [Teflon]; BioPore; Millipore, Billerica, MA) membrane compared with its closest rival (P = 0.019). Punctate fluorescent spots, most of which disappeared after impression cytology (71%), correlated with cells on the membranes (P = 0.009). The punctate spots were more frequent in the superficial cell layers of the cornea (80%) compared with the deepest two layers (0%) (P < 0.00049). CONCLUSIONS Punctate epithelial erosions correspond to enhanced fluorescence in epithelial cells predominantly in superficial layers of the cornea and would be more aptly named fluorescent epithelial cells (FLECs).
Collapse
|
12
|
Guzman-Aranguez A, Argüeso P. Structure and Biological Roles of Mucin-type O-glycans at the Ocular Surface. Ocul Surf 2010; 8:8-17. [DOI: 10.1016/s1542-0124(12)70213-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Guzman-Aranguez A, Mantelli F, Argüeso P. Mucin-type O-glycans in tears of normal subjects and patients with non-Sjögren's dry eye. Invest Ophthalmol Vis Sci 2009; 50:4581-7. [PMID: 19407012 PMCID: PMC2751810 DOI: 10.1167/iovs.09-3563] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE O-linked carbohydrates (O-glycans) contribute to the hydrophilic character of mucins in mucosal tissues. This study was conducted to identify the repertoire of O-glycans in the tear film and the glycosyltransferases associated with their biosynthesis, in normal subjects and patients with non-Sjögren's dry eye. METHODS Human tear fluid was collected from the inferior conjunctival fornix. O-glycans were released by hydrazinolysis, labeled with 2-aminobenzamide, and analyzed by fluorometric, high-performance liquid chromatography (HPLC) coupled with exoglycosidase digestions. O-glycan structures identified in tears were related to potential biosynthetic pathways in human conjunctival epithelium by using a glycogene microarray database. Lectin-binding analyses were performed with agglutinins from Arachis hypogaea, Maackia amurensis, and Sambucus nigra. RESULTS The O-glycan profile of human tears consisted primarily of core 1 (Gal beta 1-3GalNAc alpha 1-Ser/Thr)-based structures. Mono-sialyl O-glycans represented approximately 66% of the glycan pool, with alpha2-6-sialyl core 1 being the predominant O-glycan structure in human tears (48%). Four families of glycosyltransferases potentially related to the biosynthesis of these structures were identified in human conjunctiva. These included 13 polypeptide-GalNAc-transferases (GALNT), the core 1 beta-3-galactosyltransferase (T-synthase), three alpha2-6-sialyltransferases (ST6GalNAc), and two alpha2-3-sialyltransferases (ST3Gal). No significant differences in total amount of O-glycans were detected between tears of normal subjects and patients with dry eye, by HPLC and lectin blot. Likewise, no differences in glycosyltransferase expression were found by glycogene microarray. CONCLUSIONS This study identified the most common mucin-type O-glycans in human tears and their expected biosynthetic pathways in ocular surface epithelia. Patients with non-Sjögren's dry eye showed no alterations in composition and amount of O-glycans in the tear fluid.
Collapse
Affiliation(s)
- Ana Guzman-Aranguez
- Schepens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
14
|
Gipson IK, Hori Y, Argüeso P. Character of ocular surface mucins and their alteration in dry eye disease. Ocul Surf 2007; 2:131-48. [PMID: 17216084 DOI: 10.1016/s1542-0124(12)70149-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
At the ocular surface, three types of mucins are present. The large gel-forming mucin MUC5AC is expressed by conjunctival goblet cells. Some cells of the lacrimal gland acini express the small soluble mucin MUC7. The corneal and conjunctival epithelia express the membrane-associated mucins MUCs 1, 4, and 16. With the characterization of the mucin gene repertoire of the ocular surface epithelia, studies of the function of specific mucins, their gene regulation, and their alteration in ocular surface disease have begun. Current information suggests that all the mucins are hydrophilic and play a role in maintenance of water on the surface of the eye. The large secreted mucins represent the "janitorial service" that moves over the surface of the eye to wrap up and remove debris. The membrane-associated mucins form the glycocalyx, which provides a continuous barrier across the surface of the eye that prevents pathogen penetrance and has signaling capabilities that influence epithelial activity. Factors regulating mucin gene expression include retinoic acid, serum, and dexamethasone. Alteration in both secreted and membrane-associated mucins occur in drying ocular surface diseases. In Sjogren syndrome, MUC5AC expression is reduced, and in non-Sjogren dry eye, glycosylation of MUC16 appears to be altered. The pattern of expression of enzymes that glycosylate mucins is altered in ocular cicatricial pemphigoid. Therapies being evaluated for dry eye, including cyclosporine A, P2Y2 agonists, gefarnate, 15-(S)-HETE, and corticosteroids, may be efficacious due to their effect on mucin gene expression and secretion.
Collapse
Affiliation(s)
- Ilene K Gipson
- Schepens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
15
|
Abstract
Members of the DEWS Research Subcommittee reviewed research into the basic mechanisms underlying dry eye disease. Evidence was evaluated concerning the tear film, lacrimal gland and accessory lacrimal glands, ocular surface epithelia (including cornea and conjunctiva), meibomian glands, lacrimal duct system and the immune system. Consideration was given to both animal and human research data. Results are presented as a series of information matrices, identifying what is known and providing supporting references. An attempt is made to identify areas for further investigation.
Collapse
|
16
|
Abstract
Dry eye is a complex clinicopathological entity involving tear film, lacrimal glands, eyelids, and a wide spectrum of ocular surface cells, including epithelial, inflammatory, immune, and goblet cells. From the tightly regulated lacrimal film functions and structure, a large variety of investigations have been developed, including tear meniscus measurements, fluorophotometry, meibometry, interference pattern analysis, evaporation rate, tear osmolarity, and thermography. Dry eye conditions also interfere with the ocular surface, causing corneal irregularities that may be explored using the techniques of videokeratography and in vivo confocal microscopy, or optical impairment, as confirmed by aberrometry. At the level of ocular surface cells, impression cytology remains a standard for assessing cell alterations. It has greatly benefited from new confocal microscopy, molecular biology, and flow cytometry techniques. Biological assessment of tear proteins or other mediators is also useful. Major limits should be acknowledged, however, such as technical issues in tear film collection, especially in dry eyes, and the lack of standardization of most measurements. Tear osmolarity, electrophoresis, and dosage of normal tear proteins, such as lysozyme or lactoferrin, remain the most useful tests. Finally, some extraocular explorations such as accessory gland biopsy or serum antinuclear antibody dosage may be useful for assessing the diagnosis of Sjögren's syndrome.
Collapse
Affiliation(s)
- A Labbé
- Service d'ophtalmologie 3, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France
| | | | | |
Collapse
|
17
|
Spurr-Michaud S, Argüeso P, Gipson I. Assay of mucins in human tear fluid. Exp Eye Res 2007; 84:939-50. [PMID: 17399701 PMCID: PMC1950265 DOI: 10.1016/j.exer.2007.01.018] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 12/21/2006] [Accepted: 01/20/2007] [Indexed: 01/05/2023]
Abstract
Mucin genes, both secreted (MUC2, MUC5AC, MUC5B, MUC7) and membrane associated (MUC1, MUC4, MUC16), have been reported to be expressed by ocular surface epithelia. The purpose of this study was to comprehensively assay the mucin content of human tear fluid using multiple antibodies for each mucin and to develop a sensitive, semi-quantitative method for the assay of mucins in tears. Tear washes were obtained by instillation of saline onto the ocular surface, followed by collection from the inferior fornix. Tear proteins were separated in 1% agarose gels, transferred to nitrocellulose membrane by vacuum blotting and probed with multiple antibodies recognizing MUC1, MUC2, MUC4, MUC5AC, MUC5B, MUC7 and MUC16. Binding was detected using chemiluminescence, and quantity was determined by densitometry. Serial dilutions of pooled tears from normal individuals were assayed to determine the linear range of detectability. MUC1, MUC4, MUC16, MUC5AC and low levels of MUC2 were consistently detected in human tear fluid, while MUC5B and MUC7 were not. Use of several antibodies recognizing different epitopes on the same mucin confirmed these findings. The antibodies to mucins bound to serial dilutions of tears in a linear fashion (r2 > 0.9), indicating the feasibility of semi-quantitation. MUC5AC in tear fluid had an increased electrophoretic mobility compared to MUC5AC isolated from conjunctival tissue. This study provides clear evidence that the mucin component of tears is a mixture of secreted and shed membrane-associated mucins, and for the first time demonstrates MUC16 in tear fluid. Immunoblots of tears using agarose gel electrophoresis and chemiluminescence detection provide a semi-quantitative assay for mucin protein that will be useful for comparisons with tears from diseased eyes or after pharmacological intervention.
Collapse
Affiliation(s)
- Sandra Spurr-Michaud
- Schepens Eye Research Institute, 20 Staniford Street, Boston, MA 02114
- Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Pablo Argüeso
- Schepens Eye Research Institute, 20 Staniford Street, Boston, MA 02114
- Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Ilene Gipson
- Schepens Eye Research Institute, 20 Staniford Street, Boston, MA 02114
- Department of Ophthalmology, Harvard Medical School, Boston, MA
- *Corresponding Author: Ilene K. Gipson, Ph.D., Schepens Eye Research Institute, 20 Staniford Street, Boston, MA 02114; Tel: 001-617-912-0210; Fax: 001-617-912-0126; Em:
| |
Collapse
|
18
|
Abstract
Tear film quality depends on fine regulatory mechanisms affected by neuronal and hormonal influences. Indeed, receptors for androgens, estrogens, progesterone and prolactin have been identified in several ocular tissues in the rat, rabbit and in humans. The eye is thus a target organ for sex hormones, particularly the androgens. These hormones regulate the immune system, the morphology and secretory functions of lacrimal glands and the functioning of Meibomian glands. The influence of hormone replacement therapy in menopausal women remains unclear, as some authors support the idea that they improve the quality and the volume of tear film, whereas others have shown that they increase the risk of dry eye. Finally, knowledge of the interactions between the hormones that influence the lacrimal glands is essential for the understanding of the regulation of lacrimal gland function. However, the data presently available strongly suggest that optimal bioavailable androgen levels are essential for normal lacrimal gland function and that prolactin and estrogens also play important roles in providing a hormonal milieu that contributes to normal lacrimal gland function.
Collapse
Affiliation(s)
- L Oprea
- Service d'Ophtalmologie III, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris
| | | | | | | |
Collapse
|
19
|
Urashima H, Okamoto T, Takeji Y, Shinohara H, Fujisawa S. Rebamipide increases the amount of mucin-like substances on the conjunctiva and cornea in the N-acetylcysteine-treated in vivo model. Cornea 2004; 23:613-9. [PMID: 15257002 DOI: 10.1097/01.ico.0000126436.25751.fb] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Rebamipide increases the amount of mucin-like substances in the stomach. We aimed to determine the effects of rebamipide on the amount of mucin-like substances in the conjunctiva and cornea of N-acetylcysteine-treated eyes. Furthermore, we attempted to evaluate the effects of rebamipide on the wound healing of N-acetylcysteine-treated eyes. METHODS The model was created by instilling 10% N-acetylcysteine solutions into rabbit eyes. Rebamipide was then applied on the day following the completion of N-acetylcysteine treatment. The amount of mucin-like substances on the conjunctiva and cornea was measured using the Alcian-blue binding method. The degree of damage was evaluated using scores based on the areas and densities of the cornea and conjunctival after staining using a rose Bengal solution under blind conditions. RESULTS Rebamipide increased the level of mucin-like substances on the conjunctiva of N-acetylcysteine-treated eyes when instilled at concentrations of 0.3% or higher, and 1% rebamipide increased the amount of mucin-like substances covering the cornea. Moreover, 1% rebamipide improved the rose Bengal scores of the cornea and conjunctiva in N-acetylcysteine-treated eyes. CONCLUSIONS Rebamipide increased mucin-like substances on the cornea and conjunctiva of N-acetylcysteine-treated eyes. In accordance with the mucin-increasing effects, rebamipide improved the rose Bengal scores for the cornea and conjunctiva of N-acetylcysteine-treated eyes. However, the relevance of these findings to dry eyes is unclear because it is not known whether the change in mucus expression in the N-acetylcysteine model is similar to what occurs in aqueous tear deficiency. Consequently, it may be worth trying on an animal model of keratoconjunctivitis sicca.
Collapse
Affiliation(s)
- Hiroki Urashima
- Ako Research Institute, Division of Dermatologicals and Ophthalmologicals, Otsuka Pharmaceutical Co, Ltd, Hyogo 678-0207, Japan.
| | | | | | | | | |
Collapse
|
20
|
Calonge M, Diebold Y, Sáez V, Enríquez de Salamanca A, García-Vázquez C, Corrales RM, Herreras JM. Impression cytology of the ocular surface: a review. Exp Eye Res 2004; 78:457-72. [PMID: 15106925 DOI: 10.1016/j.exer.2003.09.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To historically review the technique of impression cytology as a minimally invasive diagnostic tool for ocular surface pathology. METHODS A comprehensive review of published literature cited in PubMed since the first description of impression cytology in 1977 up to date has been undertaken. RESULTS A wide range of processing methods have been adapted to the technique of impression cytology (from conjunctiva, cornea or limbus): regular light microscopy with different stainings, transmission and scanning electron microscopy, immunofluorescence, immunocytochemistry, polymerase chain reaction analysis, immunoblotting analyses, or flow cytometry. At present, it is widely used as a non-invasive alternative to the full-thickness biopsy for the obtention of epithelial cells from the ocular surface. CONCLUSIONS Impression cytology represents a non- or minimally invasive biopsy of the ocular surface epithelium with no side effects or contraindications. It has demonstrated to be a useful diagnostic aid for a wide variety of processes involving the ocular surface. In addition, and mainly during the last decade, its use as a research tool has experienced an enormous growth and has greatly contributed to the understanding of ocular surface pathology.
Collapse
Affiliation(s)
- Margarita Calonge
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), University of Valladolid, Ramón y Cajal, 7, E-47005 Valladolid, Spain.
| | | | | | | | | | | | | |
Collapse
|
21
|
Nakamura Y, Yokoi N, Tokushige H, Kinoshita S. Sialic acid in normal and dry eye tear fluid. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 506:347-51. [PMID: 12613932 DOI: 10.1007/978-1-4615-0717-8_50] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yo Nakamura
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | |
Collapse
|
22
|
Malet F, Karsenti D, Pouliquen P. Preservative-free ocular hydrating agents in symptomatic contact lens wearers: saline versus PVP solution. Eye Contact Lens 2003; 29:38-43. [PMID: 12769155 DOI: 10.1097/00140068-200301000-00010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To compare two preservative-free hydrating agents, in multidose (ABAK) bottles, in contact lens wearers experiencing symptoms of ocular dryness. METHODS The endpoint of this 4-week multicenter, randomized, double-blind, parallel-group study comparing a 2% polyvinylpyrrolidone (PVP) solution with a 0.9% NaCl solution was to assess ocular discomfort using a visual analog scale. A biomicroscopic examination and a test of tolerability on instillation were also performed, and adverse events were recorded. RESULTS Thirty-nine subjects were enrolled (23 PVP; 16 NaCl). The average age was 30; subjects were predominantly female, and mostly wore frequent-replacement contact lenses. They were all exposed to environmental factors such as routine use of video monitors or air conditioning. The two groups were similar at baseline (D0). Both PVP and NaCl improved the comfort of contact lens wear (P = 0.0003), with no difference between them (P = 0.25). The mean daily duration of lens wear and the daily number of instillations to relieve discomfort (4.2 +/- 2.0 for PVP ABAK; 4.6 +/- 1.9 for NaCl ABAK) were comparable. However, PVP use led to more favorable evolution of fluorescein-staining corneal punctuations (P = 0.028). Safety was good, with minimal adverse events considered unrelated to the products. Lens wettability was excellent, and there were no clinically relevant deposits. Most subjects also found the ABAK bottles convenient. CONCLUSIONS Ocular hydration improves comfort in contact lens wearers. NaCl is an appropriate first-line treatment, but for subjects with fluorescein-staining punctuations, lubrication with PVP is preferable.
Collapse
Affiliation(s)
- Florence Malet
- Clinique Ophtalmologique, Hôpital Pellegrin CHU, Bordeaux, France.
| | | | | |
Collapse
|
23
|
Kurpakus Wheater M, Kernacki KA, Hazlett LD. Corneal cell proteins and ocular surface pathology. Biotech Histochem 1999; 74:146-59. [PMID: 10416788 DOI: 10.3109/10520299909047967] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cornea is a transparent and avascular tissue that functions as the major refractive structure for the eye. A wide variety of growth factors, chemokines, cytokines and their receptors are synthesized by corneal epithelial and stromal cells, and are found in tears. These molecules function in corneal wound healing and in inflammatory responses. Proteoglycans and glycoproteins are essential for normal corneal function, both at the air-epithelial interface and within the extracellular matrix. The ocular MUC mucins may play roles in forming the mucus layer of the tear film, in regulating tear film spread, and in inhibiting the adhesion of pathogens to the ocular surface. Lumican, keratocan and mimecan are the major keratan sulfate proteoglycans of the corneal stroma. They are essential, along with other proteoglycans and interfibrillar proteins, including collagens type VI and XII, for the maintenance of corneal transparency. Corneal epithelial cells interact with a specialized extracellular matrix structure, the basement membrane, composed of a specific subset of collagen type IV and laminin isoforms in addition to ubiquitous extracellular matrix molecules. Matrix metalloprotein-ases have been identified in normal corneal tissue and cells and may play a role in the development of ulcerative corneal diseases. Changes in extracellular matrix molecule localization and synthesis have been noted in other types of corneal diseases as well, including bullous keratopathy and keratoconus.
Collapse
Affiliation(s)
- M Kurpakus Wheater
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|