1
|
Iseri E, Kosta P, Pollalis D, Lo PA, Tew BY, Louie S, Salhia B, Humayun M, Lazzi G. Characterization of Induced Current Density During Transcorneal Electrical Stimulation to Promote Neuroprotection in the Degenerating Retina. IEEE Trans Biomed Eng 2024; 71:3221-3231. [PMID: 38861449 PMCID: PMC11511633 DOI: 10.1109/tbme.2024.3412814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
OBJECTIVE Transcorneal electrical stimulation (TES) is a promising approach to delay retinal degeneration by inducing extracellular electric field-driven neuroprotective effects within photoreceptors. Although achieving precise electric field control is feasible in vitro, characterizing these fields becomes intricate and largely unexplored in vivo due to uneven distribution in the heterogeneous body. In this paper, we investigate and characterize electric fields within the retina during TES to assess the potential for therapeutic approaches Methods: We developed a computational model of a rat's head, enabling us to generate predictive simulations of the voltage and current density induced in the retina. Subsequently, an in vivo experimental setup involving Royal College of Surgeon (RCS) rats was implemented to measure the voltage across the retina using identical electrode configurations as employed in the simulations. RESULTS A stimulation amplitude of 0.2-0.3 mA may be necessary during TES in rats to induce a current density of at least 20 A/[Formula: see text] in the retina, which is the lower limit for triggering neuroprotective effects according to culture studies on neural cells. Measurement taken from cadaveric pigs' eyes revealed that a stimulation amplitude of 1 mA is necessary for achieving the same current density. CONCLUSION The computational modeling approach presented in this study was validated with experimental data and can be leveraged for predictive simulations to optimize the electrode design and stimulation parameters of TES. SIGNIFICANCE Once validated, the flexibility and low research cost of computational models are valuable in optimization studies where testing on live subjects is not feasible.
Collapse
|
2
|
Wu Y, Li X, Fu X, Huang X, Zhang S, Zhao N, Ma X, Saiding Q, Yang M, Tao W, Zhou X, Huang J. Innovative Nanotechnology in Drug Delivery Systems for Advanced Treatment of Posterior Segment Ocular Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403399. [PMID: 39031809 PMCID: PMC11348104 DOI: 10.1002/advs.202403399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/29/2024] [Indexed: 07/22/2024]
Abstract
Funduscopic diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), significantly impact global visual health, leading to impaired vision and irreversible blindness. Delivering drugs to the posterior segment of the eye remains a challenge due to the presence of multiple physiological and anatomical barriers. Conventional drug delivery methods often prove ineffective and may cause side effects. Nanomaterials, characterized by their small size, large surface area, tunable properties, and biocompatibility, enhance the permeability, stability, and targeting of drugs. Ocular nanomaterials encompass a wide range, including lipid nanomaterials, polymer nanomaterials, metal nanomaterials, carbon nanomaterials, quantum dot nanomaterials, and so on. These innovative materials, often combined with hydrogels and exosomes, are engineered to address multiple mechanisms, including macrophage polarization, reactive oxygen species (ROS) scavenging, and anti-vascular endothelial growth factor (VEGF). Compared to conventional modalities, nanomedicines achieve regulated and sustained delivery, reduced administration frequency, prolonged drug action, and minimized side effects. This study delves into the obstacles encountered in drug delivery to the posterior segment and highlights the progress facilitated by nanomedicine. Prospectively, these findings pave the way for next-generation ocular drug delivery systems and deeper clinical research, aiming to refine treatments, alleviate the burden on patients, and ultimately improve visual health globally.
Collapse
Affiliation(s)
- Yue Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Xin Li
- Wenzhou Medical UniversityWenzhouZhejiang325035China
| | - Xueyu Fu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Xiaomin Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | | | - Nan Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Xiaowei Ma
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMA02115USA
| | - Mei Yang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Wei Tao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMA02115USA
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| |
Collapse
|
3
|
Zaydon YA, Tsang SH. The ABCs of Stargardt disease: the latest advances in precision medicine. Cell Biosci 2024; 14:98. [PMID: 39060921 PMCID: PMC11282698 DOI: 10.1186/s13578-024-01272-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Stargardt disease (STGD) is the most common form of inherited juvenile macular dystrophy and is caused by sequence variants in the ABCA4 gene. Due to its genetic complexity and phenotypic variability, STGD poses significant therapeutic challenges. In the past decade, a lot of progress has been made regarding our understanding of the molecular and clinical aspects of STGD, along with its mechanisms. This has led to the development of new therapies, and there are human clinical trials currently ongoing. This paper evaluates the emergence of pharmacological approaches targeting the visual cycle to mitigate retinal damage, the role of gene therapy in correcting specific genetic defects, and the use of stem cell therapies aimed at retinal regeneration by showcasing the latest clinical trials and precision medicine approaches.
Collapse
Affiliation(s)
- Yasmine A Zaydon
- Departments of Ophthalmology, Pathology and Cell Biology, Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Stephen H Tsang
- Departments of Ophthalmology, Pathology and Cell Biology, Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
- Department of Pathology and Cell Biology, The Herbert Irving Comprehensive Cancer Center, Institute of Human Nutrition, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Evans JR, Lawrenson JG. Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration. Cochrane Database Syst Rev 2023; 9:CD000254. [PMID: 37702300 PMCID: PMC10498493 DOI: 10.1002/14651858.cd000254.pub5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a degenerative condition of the back of the eye that occurs in people over the age of 50 years. Antioxidants may prevent cellular damage in the retina by reacting with free radicals that are produced in the process of light absorption. Higher dietary levels of antioxidant vitamins and minerals may reduce the risk of progression of AMD. This is the third update of the review. OBJECTIVES To assess the effects of antioxidant vitamin and mineral supplements on the progression of AMD in people with AMD. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, one other database, and three trials registers, most recently on 29 November 2022. SELECTION CRITERIA We included randomised controlled trials (RCTs) that compared antioxidant vitamin or mineral supplementation to placebo or no intervention, in people with AMD. DATA COLLECTION AND ANALYSIS We used standard methods expected by Cochrane. MAIN RESULTS We included 26 studies conducted in the USA, Europe, China, and Australia. These studies enroled 11,952 people aged 65 to 75 years and included slightly more women (on average 56% women). We judged the studies that contributed data to the review to be at low or unclear risk of bias. Thirteen studies compared multivitamins with control in people with early and intermediate AMD. Most evidence came from the Age-Related Eye Disease Study (AREDS) in the USA. People taking antioxidant vitamins were less likely to progress to late AMD (odds ratio (OR) 0.72, 95% confidence interval (CI) 0.58 to 0.90; 3 studies, 2445 participants; moderate-certainty evidence). In people with early AMD, who are at low risk of progression, this means there would be approximately four fewer cases of progression to late AMD for every 1000 people taking vitamins (one fewer to six fewer cases). In people with intermediate AMD at higher risk of progression, this corresponds to approximately 78 fewer cases of progression for every 1000 people taking vitamins (26 fewer to 126 fewer). AREDS also provided evidence of a lower risk of progression for both neovascular AMD (OR 0.62, 95% CI 0.47 to 0.82; moderate-certainty evidence) and geographic atrophy (OR 0.75, 95% CI 0.51 to 1.10; moderate-certainty evidence), and a lower risk of losing 3 or more lines of visual acuity (OR 0.77, 95% CI 0.62 to 0.96; moderate-certainty evidence). Low-certainty evidence from one study of 110 people suggested higher quality of life scores (measured with the Visual Function Questionnaire) in treated compared with non-treated people after 24 months (mean difference (MD) 12.30, 95% CI 4.24 to 20.36). In exploratory subgroup analyses in the follow-on study to AREDS (AREDS2), replacing beta-carotene with lutein/zeaxanthin gave hazard ratios (HR) of 0.82 (95% CI 0.69 to 0.96), 0.78 (95% CI 0.64 to 0.94), 0.94 (95% CI 0.70 to 1.26), and 0.88 (95% CI 0.75 to 1.03) for progression to late AMD, neovascular AMD, geographic atrophy, and vision loss, respectively. Six studies compared lutein (with or without zeaxanthin) with placebo and one study compared a multivitamin including lutein/zeaxanthin with multivitamin alone. The duration of supplementation and follow-up ranged from six months to five years. Most evidence came from the AREDS2 study in the USA; almost all participants in AREDS2 also took the original AREDS supplementation formula. People taking lutein/zeaxanthin may have similar or slightly reduced risk of progression to late AMD (RR 0.94, 95% CI 0.87 to 1.01), neovascular AMD (RR 0.92, 95% CI 0.84 to 1.02), and geographic atrophy (RR 0.92, 95% CI 0.80 to 1.05) compared with control (1 study, 4176 participants, 6891 eyes; low-certainty evidence). A similar risk of progression to visual loss of 15 or more letters was seen in the lutein/zeaxanthin and control groups (RR 0.98, 95% CI 0.91 to 1.05; 6656 eyes; low-certainty evidence). Quality of life (Visual Function Questionnaire) was similar between groups (MD 1.21, 95% CI -2.59 to 5.01; 2 studies, 308 participants; moderate-certainty evidence). One study in Australia randomised 1204 people to vitamin E or placebo with four years of follow-up; 19% of participants had AMD. The number of late AMD events was low (N = 7) and the estimate of effect was uncertain (RR 1.36, 95% CI 0.31 to 6.05; very low-certainty evidence). There was no evidence of any effect of treatment on visual loss (RR 1.04, 95% CI 0.74 to 1.47; low-certainty evidence). There were no data on neovascular AMD, geographic atrophy, or quality of life. Five studies compared zinc with placebo. Evidence largely drawn from the largest study (AREDS) found a lower progression to late AMD over six years (OR 0.83, 95% CI 0.70 to 0.98; 3 studies, 3790 participants; moderate-certainty evidence), neovascular AMD (OR 0.76, 95% CI 0.62 to 0.93; moderate-certainty evidence), geographic atrophy (OR 0.84, 95% CI 0.64 to 1.10; moderate-certainty evidence), or visual loss (OR 0.87, 95% CI 0.75 to 1.00; 2 studies, 3791 participants; moderate-certainty evidence). There were no data on quality of life. Gastrointestinal symptoms were the main reported adverse effect. In AREDS, zinc was associated with a higher risk of genitourinary problems in men, but no difference was seen between high- and low-dose zinc groups in AREDS2. Most studies were too small to detect rare adverse effects. Data from larger studies (AREDS/AREDS2) suggested there may be little or no effect on mortality with multivitamin (HR 0.87, 95% CI 0.60 to 1.25; low-certainty evidence) or lutein/zeaxanthin supplementation (HR 1.06, 95% CI 0.87 to 1.31; very low-certainty evidence), but confirmed the increased risk of lung cancer with beta-carotene, mostly in former smokers. AUTHORS' CONCLUSIONS Moderate-certainty evidence suggests that antioxidant vitamin and mineral supplementation (AREDS: vitamin C, E, beta-carotene, and zinc) probably slows down progression to late AMD. People with intermediate AMD have a higher chance of benefiting from antioxidant supplements because their risk of progression is higher than people with early AMD. Although low-certainty evidence suggested little effect with lutein/zeaxanthin alone compared with placebo, exploratory subgroup analyses from one large American study support the view that lutein/zeaxanthin may be a suitable replacement for the beta-carotene used in the original AREDS formula.
Collapse
Affiliation(s)
- Jennifer R Evans
- Centre for Public Health, International Centre for Eye Health, London School of Hygiene & Tropical Medicine, Belfast, UK
| | - John G Lawrenson
- Centre for Applied Vision Research, School of Health Sciences, City University of London, London, UK
| |
Collapse
|
5
|
Khalili H, Kashkoli HH, Weyland DE, Pirkalkhoran S, Grabowska WR. Advanced Therapy Medicinal Products for Age-Related Macular Degeneration; Scaffold Fabrication and Delivery Methods. Pharmaceuticals (Basel) 2023; 16:620. [PMID: 37111377 PMCID: PMC10146656 DOI: 10.3390/ph16040620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Retinal degenerative diseases such as age-related macular degeneration (AMD) represent a leading cause of blindness, resulting in permanent damage to retinal cells that are essential for maintaining normal vision. Around 12% of people over the age of 65 have some form of retinal degenerative disease. Whilst antibody-based drugs have revolutionised treatment of neovascular AMD, they are only effective at an early stage and cannot prevent eventual progression or allow recovery of previously lost vision. Hence, there is a clear unmet need to find innovative treatment strategies to develop a long-term cure. The replacement of damaged retinal cells is thought to be the best therapeutic strategy for the treatment of patients with retinal degeneration. Advanced therapy medicinal products (ATMPs) are a group of innovative and complex biological products including cell therapy medicinal products, gene therapy medicinal products, and tissue engineered products. Development of ATMPs for the treatment of retinal degeneration diseases has become a fast-growing field of research because it offers the potential to replace damaged retinal cells for long-term treatment of AMD. While gene therapy has shown encouraging results, its effectiveness for treatment of retinal disease may be hampered by the body's response and problems associated with inflammation in the eye. In this mini-review, we focus on describing ATMP approaches including cell- and gene-based therapies for treatment of AMD along with their applications. We also aim to provide a brief overview of biological substitutes, also known as scaffolds, that can be used for delivery of cells to the target tissue and describe biomechanical properties required for optimal delivery. We describe different fabrication methods for preparing cell-scaffolds and explain how the use of artificial intelligence (AI) can aid with the process. We predict that combining AI with 3D bioprinting for 3D cell-scaffold fabrication could potentially revolutionise retinal tissue engineering and open up new opportunities for developing innovative platforms to deliver therapeutic agents to the target tissues.
Collapse
Affiliation(s)
- Hanieh Khalili
- School of Biomedical Science, University of West London, London W5 5RF, UK
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | | | | | - Sama Pirkalkhoran
- School of Biomedical Science, University of West London, London W5 5RF, UK
| | | |
Collapse
|
6
|
Boyer DD, Ko YP, Podos SD, Cartwright ME, Gao X, Wiles JA, Huang M. Danicopan, an Oral Complement Factor D Inhibitor, Exhibits High and Sustained Exposure in Ocular Tissues in Preclinical Studies. Transl Vis Sci Technol 2022; 11:37. [DOI: 10.1167/tvst.11.10.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Ya-Ping Ko
- Alexion, AstraZeneca Rare Disease, New Haven, CT, USA
| | | | | | - Xiang Gao
- Alexion, AstraZeneca Rare Disease, New Haven, CT, USA
| | | | - Mingjun Huang
- Alexion, AstraZeneca Rare Disease, New Haven, CT, USA
| |
Collapse
|
7
|
Rim PHH, de Vasconcellos JPC, de Melo MB, Medina FMC, Sacconi DPD, Lana TP, Hirata FE, Magna LA, Marques-de-Faria AP. Correlation between genetic and environmental risk factors for age-related macular degeneration in Brazilian patients. PLoS One 2022; 17:e0268795. [PMID: 35657810 PMCID: PMC9165864 DOI: 10.1371/journal.pone.0268795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To analyze the correlations between age-related macular degeneration (AMD) and genetic and environmental risk factors for in a Brazilian population. DESIGN Cross-sectional study with a control group. METHODS We collected data on 236 participants 50 years of age or older (141 with AMD and 95 controls without the disease). Data was obtained using a questionnaire and included information on demographics, ocular and medical history, family history of AMD, lifestyle, and smoking and drinking habits. Genetic evaluations included direct sequencing for the LOC387715 (rs10490924) variant, as well as PCR and enzymatic digestion for the CFH Y402H (rs1061170) and HTRA1 (rs11200638) variants. We performed a risk assessment of environmental risk factors and genetic variants associated with AMD and determined correlations between AMD and the data collected using multiple linear regression analysis. RESULTS Of the 141 AMD cases, 99 (70%) had advanced AMD in at least one eye (57% neovascular AMD and 13% geographic atrophy), and 42 (30%) had not-advanced AMD. Family history of AMD (OR: 6.58; 95% CI: 1.94-22.31), presence of cardiovascular disease (CVD) (OR: 2.39; 95% CI: 1.08-5.28), low physical activity level (OR: 1.39; 95% CI: 0.82-2.37), and high serum cholesterol (OR: 1.49; 95% CI: 0.84-2.65) were associated with an increased risk for AMD. There was a significant association between CVD and incidence of advanced AMD (OR: 2.29; 95% CI 0.81-6.44). The OR for the risk allele of the LOC387715 gene, the CFH gene and the HTRA1 gene were 2.21 (95% CI: 1.47-3.35), 2.27 (95% CI: 1.52-3.37), and 2.76 (95% CI: 1.89-4.03), respectively. In the stepwise multiple linear regression analyses, the HTRA1 and CFH risk alleles, family history of AMD, the LOC387715 risk allele, and CVD were associated with an increased risk of AMD for a total of 25.6% contribution to the AMD phenotype. CONCLUSIONS The analysis correlating environmental and genetic risk factors such as family history of AMD, and CVD and the variants of HTRA1, CFH, and LOC387715 genes showed an expressive contribution for the development of AMD among this admixed population.
Collapse
Affiliation(s)
- Priscila H. H. Rim
- Department of Ophthalmology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José Paulo C. de Vasconcellos
- Department of Ophthalmology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mônica B. de Melo
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Flavio M. C. Medina
- Department of Ophthalmology, School of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniela P. D. Sacconi
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Tamires P. Lana
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fabio E. Hirata
- Department of Ophthalmology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luis A. Magna
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Antonia P. Marques-de-Faria
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
8
|
Kim MJ, Kim DH, Kwak HS, Yu IS, Um MY. Protective Effect of Chrysanthemum boreale Flower Extracts against A2E-Induced Retinal Damage in ARPE-19 Cell. Antioxidants (Basel) 2022; 11:antiox11040669. [PMID: 35453354 PMCID: PMC9024556 DOI: 10.3390/antiox11040669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
In age-related macular degeneration, N-retinylidene-N-retinylethanolamine (A2E) accumulates in retinal pigment epithelium (RPE) cells and generates oxidative stress, which further induces cell death. Polyphenols are well known for their antioxidant and beneficial effects on vision. Chrysanthemum boreale Makino (CB) flowers, which contain flavonoids, have antioxidant activity. We hypothesized that polyphenols in ethanolic extracts of CB (CBE) and its fractions suppressed A2E-mediated ARPE-19 cell damage, a human RPE cell line. CBE is rich in polyphenols, shows antioxidant activity, and suppresses intracellular accumulation of A2E and cell death induced by A2E. Among the five fractions, the polyphenol content and antioxidant effect were in the order of the ethyl acetate fraction (EtOAc) > butanol fraction (BuOH) > hexane fraction (Hex) > dichloromethane fraction (CH2Cl2) > water fraction (H2O). In contrast, the inhibitory ability of A2E accumulation and A2E-induced cell death was highest in H2O, followed by BuOH. In the correlation analysis, polyphenols in the H2O and BuOH fractions had a significant positive correlation with antioxidant effects, but no significant correlation with cell damage caused by A2E. Our findings suggest that substances other than polyphenols present in CBE can suppress the effects of A2E, and further research is needed.
Collapse
Affiliation(s)
- Min Jung Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (I.-S.Y.); (M.Y.U.)
- Correspondence: ; Tel.: +82-63-219-9380
| | - Dong Hee Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (I.-S.Y.); (M.Y.U.)
| | - Han Sub Kwak
- Research Division of Food Convergence, Korea Food Research Institute, Wanju 55365, Korea;
| | - In-Sun Yu
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (I.-S.Y.); (M.Y.U.)
| | - Min Young Um
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (I.-S.Y.); (M.Y.U.)
| |
Collapse
|
9
|
Synthetic anti-angiogenic genomic therapeutics for treatment of neovascular age-related macular degeneration. Asian J Pharm Sci 2021; 16:623-632. [PMID: 34849167 PMCID: PMC8609386 DOI: 10.1016/j.ajps.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/22/2022] Open
Abstract
In light of the intriguing potential of anti-angiogenic approach in suppressing choroidal neovascularization, we attempted to elaborate synthetic gene delivery systems encapsulating anti-angiogenic plasmid DNA as alternatives of clinical antibody-based therapeutics. Herein, block copolymer of cyclic Arg-Gly-Asp-poly(ethylene glycol)-poly(lysine-thiol) [RGD-PEG-PLys(thiol)] with multifunctional components was tailored in manufacture of core-shell DNA delivery nanoparticulates. Note that the polycationic PLys segments were electrostatically complexed with anionic plasmid DNA into nanoscaled core, and the tethered biocompatible PEG segments presented as the spatial shell (minimizing non-specific reactions in biological milieu). Furthermore, the aforementioned self-assembly was introduced with redox-responsive disulfide crosslinking due to the thiol coupling. Hence, reversible stabilities, namely stable in extracellular milieu but susceptible to disassemble for liberation of the DNA payloads in intracellular reducing microenvironment, were verified to facilitate transcellular gene transportation. In addition, RGD was installed onto the surface of the proposed self-assemblies with aim of targeted accumulation and internalization into angiogenic endothelial cells given that RGD receptors were specifically overexpressed on their cytomembrane surface. The proposed anti-angiogenic DNA therapeutics were validated to exert efficient expression of anti-angiogenic proteins in endothelial cells and elicit potent inhibition of ocular neovasculature post intravitreous administration. Hence, the present study approved the potential of gene therapy in treatment of choroidal neovascularization. In light of sustainable gene expression properties of DNA therapeutics, our proposed synthetic gene delivery system inspired prosperous potentials in long-term treatment of choroidal neovascularization, which should be emphasized to develop further towards clinical translations.
Collapse
|
10
|
Hyttinen J, Blasiak J, Tavi P, Kaarniranta K. Therapeutic potential of PGC-1α in age-related macular degeneration (AMD) - the involvement of mitochondrial quality control, autophagy, and antioxidant response. Expert Opin Ther Targets 2021; 25:773-785. [PMID: 34637373 DOI: 10.1080/14728222.2021.1991913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Age-related macular degeneration (AMD) is the leading, cause of sight loss in the elderly in the Western world. Most patients remain still without any treatment options. The targeting of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a transcription co-factor, is a putative therapy against AMD. AREAS COVERED The characteristics of AMD and their possible connection with PGC-1α as well as the transcriptional and post-transcriptional control of PGC-1α are discussed. The PGC-1α-driven control of mitochondrial functions, and its involvement in autophagy and antioxidant responses are also examined. Therapeutic possibilities via drugs and epigenetic approaches to enhance PGC-1α expression are discussed. Authors conducted a search of literature mainly from the recent decade from the PubMed database. EXPERT OPINION Therapy options in AMD could include PGC-1α activation or stabilization. This could be achieved by a direct elevation of PGC-1α activity, a stabilization or modification of its upstream activators and inhibitors by chemical compounds, like 5-Aminoimidazole-4-carboxamide riboside, metformin, and resveratrol. Furthermore, manipulations with epigenetic modifiers of PGC-1α expression, including miRNAs, e.g. miR-204, are considered. A therapy aimed at PGC-1α up-regulation may be possible in other disorders besides AMD, if they are associated with disturbances in the mitochondria-antioxidant response-autophagy axis.
Collapse
Affiliation(s)
- Juha Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Sciences, University of Lodz, Lodz, Poland
| | - Pasi Tavi
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
11
|
Complement Inhibitors in Age-Related Macular Degeneration: A Potential Therapeutic Option. J Immunol Res 2021; 2021:9945725. [PMID: 34368372 PMCID: PMC8346298 DOI: 10.1155/2021/9945725] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial disease, which can culminate in irreversible vision loss and blindness in elderly. Nowadays, there is a big gap between dry AMD and wet AMD on treatment. Accounting for nearly 90% of AMD, dry AMD still lacks effective treatment. Numerous genetic and molecular researches have confirmed the significant role of the complement system in the pathogenesis of AMD, leading to a deeper exploration of complement inhibitors in the treatment of AMD. To date, at least 14 different complement inhibitors have been or are being explored in AMD in almost 40 clinical trials. While most complement inhibitors fail to treat AMD successfully, two of them are effective in inhibiting the rate of GA progression in phase II clinical trials, and both of them successfully entered phase III trials. Furthermore, recently emerging complement gene therapy and combination therapy also offer new opportunities to treat AMD in the future. In this review, we aim to introduce genetic and molecular associations between the complement system and AMD, provide the updated progress in complement inhibitors in AMD on clinical trials, and discuss the challenges and prospects of complement therapeutic strategies in AMD.
Collapse
|
12
|
Wade A, Rallabandi R, Lucas S, Oberg C, Gorusupudi A, Bernstein PS, Rainier JD. The synthesis of the very long chain polyunsaturated fatty acid (VLC-PUFA) 32:6 n-3. Org Biomol Chem 2021; 19:5563-5566. [PMID: 34080605 DOI: 10.1039/d1ob00491c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This article describes the synthesis of VLC-PUFA 32:6 n-3, D2-labeled 32:6 n-3, and the uptake of 32:6 n-3 into mouse retinal tissue.
Collapse
Affiliation(s)
- Alexander Wade
- Department of Chemistry, University of Utah, 315 South, 1400 East, Salt Lake City, UT 84112, USA.
| | - Rameshu Rallabandi
- Department of Chemistry, University of Utah, 315 South, 1400 East, Salt Lake City, UT 84112, USA.
| | - Steven Lucas
- Department of Chemistry, University of Utah, 315 South, 1400 East, Salt Lake City, UT 84112, USA.
| | - Catrina Oberg
- Department of Chemistry, University of Utah, 315 South, 1400 East, Salt Lake City, UT 84112, USA.
| | - Aruna Gorusupudi
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA
| | - Jon D Rainier
- Department of Chemistry, University of Utah, 315 South, 1400 East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
13
|
Asahi MG, Avaylon J, Wallsh J, Gallemore RP. Emerging biological therapies for the treatment of age-related macular degeneration. Expert Opin Emerg Drugs 2021; 26:193-207. [PMID: 34030572 DOI: 10.1080/14728214.2021.1931120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Age-related macular degeneration (AMD) is the leading cause of blindness in individuals over age 50 in developed countries. Current therapy for nonexudative AMD (neAMD) is aimed at modifying risk factors and vitamin supplementation to slow progression, while intravitreal anti-vascular endothelial factor (VEGF) injections are the mainstay for treatment of choroidal neovascularization in exudative AMD (eAMD). AREAS COVERED Over the past decade, promising therapies have emerged that aim to improve the current standard of care for both diseases. Clinical trials for neAMD are investigating targets in the complement cascade, vitamin A metabolism, metformin, and tetracycline, whereas clinical trials for eAMD are aiming to decrease treatment burden through novel port delivery systems, increasing drug half-life, and targeting new sites of the VEGF cascade. Stem cell and gene therapy are also being evaluated for treatment of neAMD and eAMD. EXPERT OPINION With an aging population, the need for effective, long term, low burden treatment options for AMD will be in increasingly high demand. Current investigations aim to address the shortcomings of current treatment options with breakthrough treatment approaches. Therapeutics in the pipeline hold promise for improving the treatment of AMD, and are on track for widespread use within the next decade.
Collapse
Affiliation(s)
- Masumi G Asahi
- Department of Ophthalmology, George Washington University, Washington, DC, USA
| | - Jaycob Avaylon
- California Northstate University, College of Medicine, Elk Grove, CA, USA
| | - Josh Wallsh
- Department of Ophthalmology, Albany Medical College, Albany, NY, USA
| | - Ron P Gallemore
- Retina Macula Institute, Torrance, CA, USA.,Jules Eye Institute, University of California, Los Angeles, Los Angeles, USA
| |
Collapse
|
14
|
Romdhoniyyah DF, Harding SP, Cheyne CP, Beare NAV. Metformin, A Potential Role in Age-Related Macular Degeneration: A Systematic Review and Meta-Analysis. Ophthalmol Ther 2021; 10:245-260. [PMID: 33846958 PMCID: PMC8079568 DOI: 10.1007/s40123-021-00344-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Currently, no generally approved medical treatment can delay the onset of age-related macular degeneration (AMD) or slow the progression of degenerative changes. Repurposing drugs with beneficial effects on AMD pathophysiology offers a route to new treatments which is faster, cost-effective, and safer for patients. Recent studies indicate a potential role for metformin in delaying AMD development and progression. In this context, we conducted a systematic review and meta-analysis to look for beneficial associations between metformin and AMD. METHODS We systematically searched Medline and Embase (via Ovid), Web of Science, and ClinicalTrials.gov databases for clinical studies in humans that examined the associations between metformin treatment and AMD published from inception to February 2021. We calculated pooled odds ratio (OR) with 95% confidence interval (CI) considering a random effect model in the meta-analysis. RESULTS Five retrospective studies met the inclusion criteria. There are no prospective studies that have reported the effect of metformin in AMD. The meta-analysis showed that people taking metformin were less likely to have AMD although statistical significance was not met (pooled adjusted OR = 0.80, 95% CI 0.54-1.05, I2 = 98.8%). Subgroup analysis of the association between metformin and early and late AMD could not be performed since the data was not available from the included studies. CONCLUSIONS Analysis of retrospective data suggests a signal that metformin may be associated with decreased risk of any AMD. It should be interpreted with caution because of the failure to meet statistical significance, the small number of studies, and the limitation of routine record data. However prospective studies are warranted in generalizable populations without diabetes, of varied ethnicities, and AMD stages. Clinical trials are needed to determine if metformin has efficacy in treating early and late-stage AMD.
Collapse
Affiliation(s)
- Dewi Fathin Romdhoniyyah
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| | - Simon P Harding
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- St. Paul's Eye Unit, Liverpool University Hospitals NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool, UK
| | - Christopher P Cheyne
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Nicholas A V Beare
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- St. Paul's Eye Unit, Liverpool University Hospitals NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool, UK
| |
Collapse
|
15
|
Demirs JT, Yang J, Crowley MA, Twarog M, Delgado O, Qiu Y, Poor S, Rice DS, Dryja TP, Anderson K, Liao SM. Differential and Altered Spatial Distribution of Complement Expression in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2021; 62:26. [PMID: 34160562 PMCID: PMC8237111 DOI: 10.1167/iovs.62.7.26] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 05/19/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose Dysregulation of the alternative complement pathway is a major pathogenic mechanism in age-related macular degeneration. We investigated whether locally synthesized complement components contribute to AMD by profiling complement expression in postmortem eyes with and without AMD. Methods AMD severity grade 1 to 4 was determined by analysis of postmortem acquired fundus images and hematoxylin and eosin stained histological sections. TaqMan (donor eyes n = 39) and RNAscope/in situ hybridization (n = 10) were performed to detect complement mRNA. Meso scale discovery assay and Western blot (n = 31) were used to measure complement protein levels. Results The levels of complement mRNA and protein expression were approximately 15- to 100-fold (P < 0.0001-0.001) higher in macular retinal pigment epithelium (RPE)/choroid tissue than in neural retina, regardless of AMD grade status. Complement mRNA and protein levels were modestly elevated in vitreous and the macular neural retina in eyes with geographic atrophy (GA), but not in eyes with early or intermediate AMD, compared to normal eyes. Alternative and classical pathway complement mRNAs (C3, CFB, CFH, CFI, C1QA) identified by RNAscope were conspicuous in areas of atrophy; in those areas C3 mRNA was observed in a subset of IBA1+ microglia or macrophages. Conclusions We verified that RPE/choroid contains most ocular complement; thus RPE/choroid rather than the neural retina or vitreous is likely to be the key site for complement inhibition to treat GA or earlier stage of the disease. Outer retinal local production of complement mRNAs along with evidence of increased complement activation is a feature of GA.
Collapse
Affiliation(s)
- John T. Demirs
- Department of Ophthalmology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States
| | - Junzheng Yang
- Department of Ophthalmology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States
| | - Maura A. Crowley
- Department of Ophthalmology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States
| | - Michael Twarog
- Department of Ophthalmology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States
| | - Omar Delgado
- Department of Ophthalmology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States
| | - Yubin Qiu
- Department of Ophthalmology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States
| | - Stephen Poor
- Department of Ophthalmology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States
| | - Dennis S. Rice
- Department of Ophthalmology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States
| | | | | | - Sha-Mei Liao
- Department of Ophthalmology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States
| |
Collapse
|
16
|
Daiber A, Hahad O, Andreadou I, Steven S, Daub S, Münzel T. Redox-related biomarkers in human cardiovascular disease - classical footprints and beyond. Redox Biol 2021; 42:101875. [PMID: 33541847 PMCID: PMC8113038 DOI: 10.1016/j.redox.2021.101875] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Global epidemiological studies show that chronic non-communicable diseases such as atherosclerosis and metabolic disorders represent the leading cause of premature mortality and morbidity. Cardiovascular disease such as ischemic heart disease is a major contributor to the global burden of disease and the socioeconomic health costs. Clinical and epidemiological data show an association of typical oxidative stress markers such as lipid peroxidation products, 3-nitrotyrosine or oxidized DNA/RNA bases with all major cardiovascular diseases. This supports the concept that the formation of reactive oxygen and nitrogen species by various sources (NADPH oxidases, xanthine oxidase and mitochondrial respiratory chain) represents a hallmark of the leading cardiovascular comorbidities such as hyperlipidemia, hypertension and diabetes. These reactive oxygen and nitrogen species can lead to oxidative damage but also adverse redox signaling at the level of kinases, calcium handling, inflammation, epigenetic control, circadian clock and proteasomal system. The in vivo footprints of these adverse processes (redox biomarkers) are discussed in the present review with focus on their clinical relevance, whereas the details of their mechanisms of formation and technical aspects of their detection are only briefly mentioned. The major categories of redox biomarkers are summarized and explained on the basis of suitable examples. Also the potential prognostic value of redox biomarkers is critically discussed to understand what kind of information they can provide but also what they cannot achieve.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Omar Hahad
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Sebastian Steven
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany
| | - Steffen Daub
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
17
|
Dong S, Zhen F, Xu H, Li Q, Wang J. Leukemia inhibitory factor protects photoreceptor cone cells against oxidative damage through activating JAK/STAT3 signaling. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:152. [PMID: 33569454 PMCID: PMC7867898 DOI: 10.21037/atm-20-8040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background The present study aimed to investigate the protective role of leukemia inhibitory factor (LIF) against oxidative damage in photoreceptor cone cells. Methods In vivo, dark-adapted mice were injected with LIF or phosphate-buffered saline (PBS) intravitreously prior to being exposed to 5,000 lux bright light to determine the protective effect of LIF against light damage in cone cells. Oxidative damage to cone cells was analyzed using electroretinograms, immunostaining, Western blotting and reverse transcription quantitative polymerase chain reaction (RT-qPCR). In vitro, 661W cells were pretreated with 5 ng/mL of LIF with or without 50 µM of signal transducer and activator of transcription 3 (STAT3) inhibitor S3I201 for 1 h prior to treatment with 1 mM H2O2; cell survival, apoptosis, the oxidative stress index, and the activation of STAT3, extracellular signal-regulated kinase (ERK1/2), and AKT were subsequently determined. Results In vivo, light induction damaged the function and morphology of cone cells, and LIF was observed to protect cone cells from this light damage. Moreover, the activation of the Janus tyrosine kinase (JAK)/STAT3 signaling pathway and the subsequent changes in apoptosis and proliferation-related genes were found to be involved in the protective effect of LIF against light-induced retinal damage. In the H2O2-induced 661W cell model, H2O2 increased cellular apoptosis rates, the expression levels of Bcl-2–associated X-protein (BAX) and cleaved caspase 3, reactive oxygen species (ROS) production, and malondialdehyde content, while decreasing the cell viability, and Bcl-2, superoxide dismutase, catalase, and glutathione peroxidase activity. LIF was observed to block these events; however, the administration of the STAT3 inhibitor S3I201 reversed the beneficial effects of LIF on H2O2-triggered apoptosis and ROS production. Conclusions In conclusion, the present study suggested that LIF may relieve oxidative damage in cone cells through suppressing apoptosis and oxidative stress by targeting the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Shuqian Dong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
| | - Fangyuan Zhen
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
| | - Huizhuo Xu
- Department of Ophthalmology, Xiangya Hospital of Central South University, Changsha, China
| | - Qiuming Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
| | - Jiajia Wang
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
18
|
Kent MR, Kara N, Patton JG. Inhibition of GABA A-ρ receptors induces retina regeneration in zebrafish. Neural Regen Res 2021; 16:367-374. [PMID: 32859800 PMCID: PMC7896201 DOI: 10.4103/1673-5374.286972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A potential treatment for retinal diseases is to induce an endogenous Müller glia (MG)-derived regenerative response to replace damaged neurons. In contrast to mammalian MG, zebrafish MG are capable of mediating spontaneous regeneration. We seek to define the mechanisms that enable retina regeneration in zebrafish in order to identify therapeutic targets to induce mammalian retina regeneration. We previously used pharmacological and genetic methods to inhibit gamma aminobutyric acid A (GABAA) receptors in undamaged zebrafish retinas and showed that such inhibition could induce initiation of retina regeneration, as measured by the dedifferentiation of MG and the appearance of MG-derived proliferating progenitor cells. Here, we show that inhibition of a pharmacologically distinct subset of GABAA receptors (GABAA-ρ) can also induce retina regeneration. Dual inhibition of both GABA receptor subtypes led to enhanced retina regeneration. Gene expression analyses indicate that inhibition of GABAA-ρ receptors induces a canonical retinal regenerative response. Our results support a model in which decreased levels of GABA, such as would occur after retinal cell death or damage, induce dedifferentiation of MG and the generation of proliferating progenitor cells during zebrafish retina regeneration. Animal experiments were approved by the Vanderbilt's Institutional Animal Care and Use Committee (Protocol M1800200) on January 29, 2019.
Collapse
Affiliation(s)
- Matthew R Kent
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Nergis Kara
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
19
|
Yeong JL, Loveman E, Colquitt JL, Royle P, Waugh N, Lois N. Visual cycle modulators versus placebo or observation for the prevention and treatment of geographic atrophy due to age-related macular degeneration. Cochrane Database Syst Rev 2020; 12:CD013154. [PMID: 33331670 PMCID: PMC10726984 DOI: 10.1002/14651858.cd013154.pub2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a highly prevalent condition in an ever-increasing elderly population. Although insidious in the early stages, advanced AMD (neovascular and atrophic forms) can cause significant visual disability and economic burden on health systems worldwide. The most common form, geographic atrophy, has no effective treatment to date, whereas neovascular AMD can be treated with intravitreal anti-vascular endothelial growth factor (anti-VEGF) injections. Geographic atrophy has a slow disease progression and patients tend to have preserved central vision until the final stages. This tendency, coupled with the use of modern imaging modalities, provides a large window of opportunity to intervene with validated methods to assess treatment efficacy. As geographic atrophy is an increasingly common condition with no effective intervention, many treatments are under investigation, one of which is visual cycle modulators. These medications have been shown to reduce lipofuscin accumulation in pre-clinical studies that have led to several clinical trials, reviewed herein. OBJECTIVES To assess the efficacy and safety of visual cycle modulators for the prevention and treatment of geographic atrophy secondary to AMD. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Trials Register) (2020, Issue 1); MEDLINE Ovid; Embase Ovid; Web of Science Core Collection; Scopus; Association for Research in Vision and Ophthalmology (ARVO) website; ClinicalTrials.gov and the WHO ICTRP to 11 January 2020 with no language restrictions. We also searched using the reference lists of reviews and existing studies and the Cited Reference Search function in Web of Science to identify further relevant studies. SELECTION CRITERIA We included randomised controlled trials (RCTs) and quasi-randomised clinical studies (if available) that compared visual cycle modulators to placebo or no treatment (observation) in people diagnosed with AMD (early, intermediate or geographic atrophy). DATA COLLECTION AND ANALYSIS Two authors independently assessed risk of bias in the included studies and extracted data. Both authors entered data into RevMan 5. We resolved discrepancies through discussion. We graded the certainty of the evidence using the GRADE approach. MAIN RESULTS We included three RCTs from the USA; one of these had clinical sites in Germany. Two studies compared emixustat to placebo while the other compared fenretinide to placebo. All assigned one study eye per participant and, combined, have a total of 821 participants with a majority white ethnicity (97.6%). All participants were diagnosed with geographic atrophy due to AMD based on validated imaging modalities. All three studies have high risk of attrition bias mainly due to ocular adverse effects of emixustat and fenretinide. We considered only one study to be adequately conducted and reported with high risk of bias in only one domain (attrition bias). We considered the other two studies to be poorly reported and to have high risk of attrition bias and reporting bias. People with geographic atrophy treated with emixustat may not experience a clinically important change in best-corrected visual acuity (BCVA) between baseline and 24 months compared to people treated with placebo (mean difference (MD) 1.9 Early Treatment Diabetic Retinopathy Study (ETDRS) letters, 95% confidence interval (CI) -2.34 to 6.14, low-certainty evidence). Emixustat may also result in little or no difference in loss of 15 ETDRS letters or more of BCVA compared with placebo at 24 months (16.4% versus 18%) (risk ratio (RR) 0.91, 95% CI 0.59 to 1.4, low-certainty evidence). In terms of disease progression, emixustat may result in little or no difference in the annual growth rate of geographic atrophy compared with placebo (mean difference MD 0.09 mm2/year (95% CI -0.26 to 0.44, low-certainty evidence). All three studies reported adverse events of both drugs (emixustat: moderate-certainty evidence; fenretinide: low-certainty evidence). The main adverse events were ocular in nature and associated with the mechanism of action of the drugs. Delayed dark adaptation (emixustat: 54.5%; fenretinide: 39.3%) and chromatopsia (emixustat: 22.6%; fenretinide: 25.2%) were the most common adverse events reported, and were the most prevalent reasons for study dropout in emixustat trials. These effects were dose-dependent and resolved after drug cessation. No specific systemic adverse events were considered related to emixustat; only pruritus and rash were considered to be due to fenretinide. One emixustat study reported six deaths, none deemed related to the drug. None of the included RCTs reported the other pre-specified outcomes, including proportion of participants losing 10 letters or more, and mean change in macular sensitivity. We planned to investigate progression to advanced AMD (geographic atrophy or neovascular AMD) in prevention studies, including participants with early or intermediate AMD, but we identified no such studies. Two of the included studies reported an additional outcome - incidence of choroidal neovascularisation (CNV) - that was not in our published protocol. CNV onset may be reduced in those treated with emixustat but the evidence was uncertain (risk ratio (RR) 0.67, 95% CI 0.27 to 1.65, low-certainty evidence), or fenretinide (RR 0.5, 95% CI 0.26 to 0.98, low-certainty evidence) compared to placebo. A dose-dependent relationship was observed with emixustat. AUTHORS' CONCLUSIONS There is limited evidence to support the use of visual cycle modulators (emixustat and fenretinide) for the treatment of established geographic atrophy due to AMD. The possible reduction in the incidence of CNV observed with fenretinide, and to a lesser extent, emixustat, requires formal assessment in focused studies.
Collapse
Affiliation(s)
- Jian Lee Yeong
- Belfast and Social Care Trust, Royal Victoria Hospital, Belfast, UK
| | | | | | - Pamela Royle
- Warwick Evidence, Health Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry, UK
| | - Norman Waugh
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Noemi Lois
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| |
Collapse
|
20
|
An exploratory study to evaluate visual function endpoints in non-advanced age-related macular degeneration. BMC Ophthalmol 2020; 20:424. [PMID: 33092549 PMCID: PMC7579935 DOI: 10.1186/s12886-020-01683-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background To prevent irreversible vision loss in age-related macular degeneration (AMD), it is critical to detect retinal dysfunction before permanent structural loss occurs. In the current study we evaluated a series of visual function tests to identify potential endpoints to detect visual dysfunction in non-advanced AMD. Methods A series of visual function tests were performed on 23 non-advanced AMD subjects (AREDS grade 1–4 on simplified scale) and 34 age-matched normals (AREDS grade 0). Tests included some commonly used endpoints such as ETDRS visual acuity (VA), low luminance (LL) 2.0ND ETDRS VA, MNREAD as well as newly developed tests such as the Ora-VCF™ test, Ora-tablet reading test, color sensitivity etc. Differences between the two groups were compared for each test. Test-retest repeatability and reproducibility was assessed on a subset of subjects and percent agreement was calculated. Results There was no difference in standard ETDRS VA between non-advanced AMD (0.06 ± 0.02 logMAR) and normal groups (0.04 ± 0.02 logMAR) (p = 0.57). LL 2.0 ETDRS VA and MNREAD showed no difference between the groups (p > 0.05). Ora-VCF™ test was significantly worse in the non-advanced AMD group compared to normals (0.67 ± 0.07 in AMD; 0.45 ± 0.04 in normals, p = 0.005). Non-advanced AMD subjects also had significantly worse reading performance using the Ora-tablet with LL 2.0ND (114.55 ± 11.22 wpm in AMD; 145.17 ± 9.55 wpm in normals p = 0.049). No significant difference between the groups was noted using other tests. Repeatability was 82% for Ora-VCF™ test and 92% for Ora-tablet LL 2.0ND reading. Reproducibility was 89% for both Ora-VCF™ test and Ora-tablet LL 2.0ND reading. Conclusion While there was no significant difference between non-advanced AMD and normal groups using some current common endpoints such as ETDRS VA, LL 2.0 ETDRS VA or MNREAD, Ora-VCF™ test and Ora-tablet LL 2.0ND reading tests were able to identify significant visual dysfunction in non-advanced AMD subjects. These tests show promise as endpoints for AMD studies.
Collapse
|
21
|
Portnow J, Badie B, Suzette Blanchard M, Kilpatrick J, Tirughana R, Metz M, Mi S, Tran V, Ressler J, D'Apuzzo M, Aboody KS, Synold TW. Feasibility of intracerebrally administering multiple doses of genetically modified neural stem cells to locally produce chemotherapy in glioma patients. Cancer Gene Ther 2020; 28:294-306. [PMID: 32895489 PMCID: PMC8843788 DOI: 10.1038/s41417-020-00219-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/04/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
Neural stem cells (NSCs) are tumor tropic and can be genetically modified to produce anti-cancer therapies locally in the brain. In a prior first-in-human study we demonstrated that a single dose of intracerebrally administered allogeneic NSCs, which were retrovirally transduced to express cytosine deaminase (CD), tracked to glioma sites and converted oral 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU). The next step in the clinical development of this NSC-based anti-cancer strategy was to assess the feasibility of administering multiple intracerebral doses of CD-expressing NSCs (CD-NSCs) in patients with recurrent high grade gliomas. CD-NSCs were given every 2 weeks using an indwelling brain catheter, followed each time by a 7-day course of oral 5-FC (and leucovorin in the final patient cohort). Fifteen evaluable patients received a median of 4 (range 2–10) intracerebral CD-NSC doses; doses were escalated from 50 x 106 to 150 x 106 CD-NSCs. Neuropharmacokinetic data confirmed that CD-NSCs continuously produced 5-FU in the brain during the course of 5-FC. There were no clinical signs of immunogenicity, and only three patients developed anti-NSC antibodies. Our results suggest intracerebral administration of serial doses of CD-NSCs is safe and feasible and identified a recommended dose for phase II testing of 150 x 106 CD-NSCs.
Collapse
Affiliation(s)
- Jana Portnow
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA.
| | - Behnam Badie
- Department of Surgery, Division of Neurosurgery, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - M Suzette Blanchard
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Julie Kilpatrick
- Department of Clinical Research, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Revathiswari Tirughana
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.,Office of IND Development and Regulatory Affairs, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Marianne Metz
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Shu Mi
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Vivi Tran
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Julie Ressler
- Department of Diagnostic Radiology, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Massimo D'Apuzzo
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Karen S Aboody
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Timothy W Synold
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| |
Collapse
|
22
|
Cheng KJ, Hsieh CM, Nepali K, Liou JP. Ocular Disease Therapeutics: Design and Delivery of Drugs for Diseases of the Eye. J Med Chem 2020; 63:10533-10593. [PMID: 32482069 DOI: 10.1021/acs.jmedchem.9b01033] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ocular drug discovery field has evidenced significant advancement in the past decade. The FDA approvals of Rhopressa, Vyzulta, and Roclatan for glaucoma, Brolucizumab for wet age-related macular degeneration (wet AMD), Luxturna for retinitis pigmentosa, Dextenza (0.4 mg dexamethasone intracanalicular insert) for ocular inflammation, ReSure sealant to seal corneal incisions, and Lifitegrast for dry eye represent some of the major developments in the field of ocular therapeutics. A literature survey also indicates that gene therapy, stem cell therapy, and target discovery through genomic research represent significant promise as potential strategies to achieve tissue repair or regeneration and to attain therapeutic benefits in ocular diseases. Overall, the emergence of new technologies coupled with first-in-class entries in ophthalmology are highly anticipated to restructure and boost the future trends in the field of ophthalmic drug discovery. This perspective focuses on various aspects of ocular drug discovery and the recent advances therein. Recent medicinal chemistry campaigns along with a brief overview of the structure-activity relationships of the diverse chemical classes and developments in ocular drug delivery (ODD) are presented.
Collapse
Affiliation(s)
- Kuei-Ju Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan.,Department of Pharmacy, Taipei Municipal Wanfang Hospital, Taipei Medical University, No. 111, Section 3, Xing-Long Road, Taipei 11696, Taiwan
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
23
|
Gao L, Liu J, Zhang P, Ma J, Wang H. Clinical outcomes of 1 + PRN and 3 + Q3M regimens of intravitreal conbercept injection for exudative age-related macular degeneration. Sci Rep 2020; 10:8010. [PMID: 32409739 PMCID: PMC7224199 DOI: 10.1038/s41598-020-65000-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 04/21/2020] [Indexed: 11/13/2022] Open
Abstract
This retrospective study aimed to analyze the clinical outcomes of two regimens of intravitreal injections of conbercept [1+pro re nata (PRN) and 3 + Q3M] for the therapy of exudative age-related macular degeneration (AMD). In total, 105 eyes diagnosed with exudative AMD were enrolled. The eyes in the 1+PRN group (n = 51) received intravitreal injection of conbercept one time, followed by PRN retreatment. The eyes in the 3 + Q3M group (n = 54) received intravitreal injection of conbercept on three consecutive monthly, subsequently, once every three months for three times. After treatment, patients were followed up for 12 months. The best-corrected visual acuity (BCVA), central retinal thickness (CRT), and choroidal neovascularization (CNV) leakage area were compared before and after treatment. Moreover, the number of injections and adverse reactions were recorded. Compared with the 1+PRN group, BCVA was significantly improved and CRT was remarkably decreased in the 3 + Q3M group at 3, 6 and 12 months after operation. The disappeared or reduced CNV leakage area (93%) of the 3 + Q3M group was higher than that of the 1 + PRN group at the last follow-up. Moreover, the mean numbers of conbercept injections of the 1 + PRN group were less than the 3 + Q3M group. During the follow-up, there were no serious adverse reactions or ocular complications. This study reveals that intravitreal injection of conbercept using 3 + Q3M regimen has certain advantages than 1 + PRN regimen in extending drug delivery interval, improving patient’s vision, and reducing CRT.
Collapse
Affiliation(s)
- Lei Gao
- Department of Ophthalmology, Jinan 2nd People's Hospital, Shandong Province, Jinan, 250001, China
| | - Jian Liu
- Department of Ophthalmology, Jinan 2nd People's Hospital, Shandong Province, Jinan, 250001, China
| | - Peng Zhang
- Department of Ophthalmology, Jinan 2nd People's Hospital, Shandong Province, Jinan, 250001, China
| | - Jianhua Ma
- Department of Ophthalmology, Shandong Invalids General Hospital, Shandong Province, Jinan, 250001, China
| | - Hong Wang
- Department of Ophthalmology, Qilu Hospital, Shandong University, Shandong Province, Jinan, 250001, China.
| |
Collapse
|
24
|
Shaw LT, Mackin A, Shah R, Jain S, Jain P, Nayak R, Hariprasad SM. Risuteganib-a novel integrin inhibitor for the treatment of non-exudative (dry) age-related macular degeneration and diabetic macular edema. Expert Opin Investig Drugs 2020; 29:547-554. [PMID: 32349559 DOI: 10.1080/13543784.2020.1763953] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Non-exudative (dry) age-related macular degeneration (AMD) and diabetic macular edema (DME) are leading causes of vision loss worldwide. Besides age-related eye disease study (AREDS) vitamin supplements, there are no efficacious pharmaceutical interventions for dry AMD available. While numerous pharmacologics are available to treat diabetic macular edema (DME), many patients respond suboptimally to existing therapies. Risuteganib is a novel anti-integrin peptide that targets the multiple integrin heterodimers involved in the pathophysiology of dry AMD and DME. Inhibiting these selected integrin heterodimers may benefit patients with these conditions. AREAS COVERED This article offers a brief overview of current pharmaceuticals available for dry AMD and DME. The proposed role of integrins in AMD and DME is reviewed and later, risuteganib, a novel anti-integrin peptide is introduced. The data from initial Phase 1 and Phase 2 risuteganib clinical trials are discussed in the latter part of the paper. EXPERT OPINION While there are currently limited treatment options for dry AMD, more data are needed before we can truly evaluate the benefits of adopting risuteganib into the clinic. Conversely, several effective treatment options exist for DME; hence, risuteganib must show that it can add to these results, especially in those with refractory disease, before retina specialists adopt risuteganib into their treatment regimens.
Collapse
Affiliation(s)
- Lincoln T Shaw
- Department of Ophthalmology and Visual Science, University of Chicago , Chicago, IL, USA
| | - Anna Mackin
- Department of Ophthalmology and Visual Science, University of Chicago , Chicago, IL, USA
| | | | - Siona Jain
- Phillips Exeter Academy , Exeter, NH, USA
| | | | - Ravi Nayak
- University of Chicago , Chicago, IL, USA
| | - Seenu M Hariprasad
- Department of Ophthalmology and Visual Science, University of Chicago , Chicago, IL, USA
| |
Collapse
|
25
|
Singh MS, Park SS, Albini TA, Canto-Soler MV, Klassen H, MacLaren RE, Takahashi M, Nagiel A, Schwartz SD, Bharti K. Retinal stem cell transplantation: Balancing safety and potential. Prog Retin Eye Res 2020; 75:100779. [PMID: 31494256 PMCID: PMC7056514 DOI: 10.1016/j.preteyeres.2019.100779] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022]
Abstract
Stem cell transplantation holds great promise as a potential treatment for currently incurable retinal degenerative diseases that cause poor vision and blindness. Recently, safety data have emerged from several Phase I/II clinical trials of retinal stem cell transplantation. These clinical trials, usually run in partnership with academic institutions, are based on sound preclinical studies and are focused on patient safety. However, reports of serious adverse events arising from cell therapy in other poorly regulated centers have now emerged in the lay and scientific press. While progress in stem cell research for blindness has been greeted with great enthusiasm by patients, scientists, doctors and industry alike, these adverse events have raised concerns about the safety of retinal stem cell transplantation and whether patients are truly protected from undue harm. The aim of this review is to summarize and appraise the safety of human retinal stem cell transplantation in the context of its potential to be developed into an effective treatment for retinal degenerative diseases.
Collapse
Affiliation(s)
- Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Susanna S Park
- Department of Ophthalmology & Vision Science, University of California-Davis Eye Center, Sacramento, CA, 95817, USA
| | - Thomas A Albini
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - M Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Henry Klassen
- Gavin Herbert Eye Institute and Stem Cell Research Center, Irvine, CA, 92697, USA
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford and Oxford University Eye Hospital, NHS Foundation Trust, NIHR Biomedical Research Centre, Oxford, OX3 9DU, UK
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, Center for Biosystems Dynamics Research, RIKEN, Kobe, Hyogo, 650-0047, Japan
| | - Aaron Nagiel
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA; USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90007, USA
| | - Steven D Schwartz
- Stein Eye Institute, University of California Los Angeles Geffen School of Medicine, Los Angeles, CA, 90095, USA; Edythe and Eli Broad Stem Cell Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kapil Bharti
- National Eye Institute, National Institutes of Health, Bethesda, MD, 90892, USA
| |
Collapse
|
26
|
Murphy AR, Truong YB, O'Brien CM, Glattauer V. Bio-inspired human in vitro outer retinal models: Bruch's membrane and its cellular interactions. Acta Biomater 2020; 104:1-16. [PMID: 31945506 DOI: 10.1016/j.actbio.2020.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/17/2022]
Abstract
Retinal degenerative disorders, such as age-related macular degeneration (AMD), are one of the leading causes of blindness worldwide, however, treatments to completely stop the progression of these debilitating conditions are non-existent. Researchers require sophisticated models that can accurately represent the native structure of human retinal tissue to study these disorders. Current in vitro models used to study the retina are limited in their ability to fully recapitulate the structure and function of the retina, Bruch's membrane and the underlying choroid. Recent developments in the field of induced pluripotent stem cell technology has demonstrated the capability of retinal pigment epithelial cells to recapitulate AMD-like pathology. However, such studies utilise unsophisticated, bio-inert membranes to act as Bruch's membrane and support iPSC-derived retinal cells. This review presents a concise summary of the properties and function of the Bruch's membrane-retinal pigment epithelium complex, the initial pathogenic site of AMD as well as the current status for materials and fabrication approaches used to generate in vitro models of this complex tissue. Finally, this review explores required advances in the field of in vitro retinal modelling. STATEMENT OF SIGNIFICANCE: Retinal degenerative disorders such as age-related macular degeneration are worldwide leading causes of blindness. Previous attempts to model the Bruch's membrane-retinal pigment epithelial complex, the initial pathogenic site of age-related macular degeneration, have lacked the sophistication to elucidate valuable insights into disease mechanisms. Here we provide a detailed account of the morphological, physical and chemical properties of Bruch's membrane which may aid the fabrication of more sophisticated and physiologically accurate in vitro models of the retina, as well as various fabrication techniques to recreate this structure. This review also further highlights some recent advances in some additional challenging aspects of retinal tissue modelling including integrated fluid flow and photoreceptor alignment.
Collapse
Affiliation(s)
- Ashley R Murphy
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | - Yen B Truong
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia
| | - Carmel M O'Brien
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and Innovation Precinct (STRIP), Monash University, Clayton Campus, Wellington Road, Clayton, VIC 3800, Australia
| | | |
Collapse
|
27
|
Liefers B, Colijn JM, González-Gonzalo C, Verzijden T, Wang JJ, Joachim N, Mitchell P, Hoyng CB, van Ginneken B, Klaver CCW, Sánchez CI. A Deep Learning Model for Segmentation of Geographic Atrophy to Study Its Long-Term Natural History. Ophthalmology 2020; 127:1086-1096. [PMID: 32197912 DOI: 10.1016/j.ophtha.2020.02.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/17/2020] [Accepted: 02/07/2020] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To develop and validate a deep learning model for the automatic segmentation of geographic atrophy (GA) using color fundus images (CFIs) and its application to study the growth rate of GA. DESIGN Prospective, multicenter, natural history study with up to 15 years of follow-up. PARTICIPANTS Four hundred nine CFIs of 238 eyes with GA from the Rotterdam Study (RS) and Blue Mountain Eye Study (BMES) for model development, and 3589 CFIs of 376 eyes from the Age-Related Eye Disease Study (AREDS) for analysis of GA growth rate. METHODS A deep learning model based on an ensemble of encoder-decoder architectures was implemented and optimized for the segmentation of GA in CFIs. Four experienced graders delineated, in consensus, GA in CFIs from the RS and BMES. These manual delineations were used to evaluate the segmentation model using 5-fold cross-validation. The model was applied further to CFIs from the AREDS to study the growth rate of GA. Linear regression analysis was used to study associations between structural biomarkers at baseline and the GA growth rate. A general estimate of the progression of GA area over time was made by combining growth rates of all eyes with GA from the AREDS set. MAIN OUTCOME MEASURES Automatically segmented GA and GA growth rate. RESULTS The model obtained an average Dice coefficient of 0.72±0.26 on the BMES and RS set while comparing the automatically segmented GA area with the graders' manual delineations. An intraclass correlation coefficient of 0.83 was reached between the automatically estimated GA area and the graders' consensus measures. Nine automatically calculated structural biomarkers (area, filled area, convex area, convex solidity, eccentricity, roundness, foveal involvement, perimeter, and circularity) were significantly associated with growth rate. Combining all growth rates indicated that GA area grows quadratically up to an area of approximately 12 mm2, after which growth rate stabilizes or decreases. CONCLUSIONS The deep learning model allowed for fully automatic and robust segmentation of GA on CFIs. These segmentations can be used to extract structural characteristics of GA that predict its growth rate.
Collapse
Affiliation(s)
- Bart Liefers
- Diagnostic Image Analysis Group, Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Johanna M Colijn
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cristina González-Gonzalo
- Diagnostic Image Analysis Group, Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Timo Verzijden
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jie Jin Wang
- Centre for Vision Research, Department of Ophthalmology, The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia; Health Services and Systems Research, Duke-NUS Medical School, National University of Singapore, Singapore, Republic of Singapore
| | - Nichole Joachim
- Centre for Vision Research, Department of Ophthalmology, The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Paul Mitchell
- Centre for Vision Research, Department of Ophthalmology, The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Carel B Hoyng
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bram van Ginneken
- Diagnostic Image Analysis Group, Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands; Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Clara I Sánchez
- Diagnostic Image Analysis Group, Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Parfitt A, Boxell E, Amoaku WM, Bradley C. Patient-reported reasons for delay in diagnosis of age-related macular degeneration: a national survey. BMJ Open Ophthalmol 2019; 4:e000276. [PMID: 31750395 PMCID: PMC6830468 DOI: 10.1136/bmjophth-2019-000276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 08/08/2019] [Accepted: 09/09/2019] [Indexed: 12/01/2022] Open
Abstract
Objectives To investigate whether people with age-related macular degeneration (AMD) are able to self-detect symptoms and, if so, what symptoms they experience, from whom they first seek help, whether help is sought within the 1 week recommended by the Royal College of Ophthalmologists’ guidelines and reasons for any delay. Methods and analysis A retrospective, cross-sectional survey design. Postal surveys were sent to 4000 members of the UK Macular Society. Inclusion criteria were participants aged >50 years at diagnosis of AMD with diagnosis after August 2008; criteria were met by 621 respondents. The main outcome was reasons for delays in diagnosis for wet AMD. Data were analysed using χ2 and conventional content analysis. Results Only one third (n=199; 32%) of respondents were able to self-detect symptoms. In line with national guidance, over half (n=131; 64%) of those self-detecting symptoms sought help promptly. For those whose initial diagnosis was delayed more than 1 week, 27% had potentially treatable wet AMD requiring urgent treatment to prevent vision loss. Reasons for delay reflected individual & service-related issues, including AMD not being detected in the initial consultation, and individuals not perceiving the urgency for symptom investigation. Conclusion In practice most patients sought help within 1 week; however, potentially sight-damaging delays occurred from symptom onset to diagnosis. Suggestions for reducing delay include increasing population awareness of AMD symptoms, the need for urgent detection and close monitoring for AMD and signposting patients to appropriate support services to ensure prompt detection of any future signs of wet AMD.
Collapse
Affiliation(s)
- Alice Parfitt
- Health Psychology Research Unit, Royal Holloway University of London, Egham, UK.,Health Psychology Research Ltd, Royal Holloway University of London, Egham, UK
| | - Emily Boxell
- Health Psychology Research Unit, Royal Holloway University of London, Egham, UK
| | - Winfried M Amoaku
- Academic Ophthalmology, University of Nottingham, Nottingham, UK.,'B' Floor Eye and ENT Centre, University Hospital, QMC, Nottingham, UK
| | - Clare Bradley
- Health Psychology Research Ltd, Royal Holloway University of London, Egham, UK
| |
Collapse
|
29
|
Zhang T, Kho AM, Srinivasan VJ. Improving visible light OCT of the human retina with rapid spectral shaping and axial tracking. BIOMEDICAL OPTICS EXPRESS 2019; 10:2918-2931. [PMID: 31259062 PMCID: PMC6583340 DOI: 10.1364/boe.10.002918] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 05/23/2023]
Abstract
Visible light optical coherence tomography (OCT) theoretically provides finer axial resolution than near-infrared OCT for a given wavelength bandwidth. To realize this potential in the human retina in vivo, the unique technical challenges of visible light OCT must be addressed. We introduce three advances to further the performance of visible light OCT in the human retina. First, we incorporate a grating light valve spatial light modulator (GLV-SLM) spectral shaping stage to modify the source spectrum. This enables comfortable subject alignment with a red light spectrum, and image acquisition with a broad "white light" spectrum, shaped to minimize sidelobes. Second, we develop a novel, Fourier transform-free, software axial motion tracking algorithm with fast, magnetically actuated stage to maintain near-optimal axial resolution and sensitivity in the presence of eye motion. Third, we implement spatially dependent numerical dispersion compensation for the first time in the human eye in vivo. In vivo human retinal OCT images clearly show that the inner plexiform layer consists of 3 hyper-reflective bands and 2 hypo-reflective bands, corresponding with the standard anatomical division of the IPL. Wavelength-dependent images of the outer retina suggest that, beyond merely improving the axial resolution, shorter wavelength visible light may also provide unique advantages for visualizing Bruch's membrane.
Collapse
Affiliation(s)
- Tingwei Zhang
- Biomedical Engineering Department, University of California Davis, Davis, California, 95616, USA
| | - Aaron M. Kho
- Biomedical Engineering Department, University of California Davis, Davis, California, 95616, USA
| | - Vivek J. Srinivasan
- Biomedical Engineering Department, University of California Davis, Davis, California, 95616, USA
- Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, California, 95817, USA
| |
Collapse
|
30
|
Lin CH, Wu MR, Huang WJ, Chow DSL, Hsiao G, Cheng YW. Low-Luminance Blue Light-Enhanced Phototoxicity in A2E-Laden RPE Cell Cultures and Rats. Int J Mol Sci 2019; 20:ijms20071799. [PMID: 30979028 PMCID: PMC6480556 DOI: 10.3390/ijms20071799] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/30/2019] [Accepted: 04/08/2019] [Indexed: 12/28/2022] Open
Abstract
N-retinylidene-N-retinylethanolamine (A2E) and other bisretinoids are components of lipofuscin and accumulate in retinal pigment epithelial (RPE) cells—these adducts are recognized in the pathogenesis of retinal degeneration. Further, blue light-emitting diode (LED) light (BLL)-induced retinal toxicity plays an important role in retinal degeneration. Here, we demonstrate that low-luminance BLL enhances phototoxicity in A2E-laden RPE cells and rats. RPE cells were subjected to synthetic A2E, and the effects of BLL on activation of apoptotic biomarkers were examined by measuring the levels of cleaved caspase-3. BLL modulates the protein expression of zonula-occludens 1 (ZO-1) and paracellular permeability in A2E-laden RPE cells. Early inflammatory and angiogenic genes were also screened after short-term BLL exposure. In this study, we developed a rat model for A2E treatment with or without BLL exposure for 21 days. BLL exposure caused fundus damage, decreased total retinal thickness, and caused neuron transduction injury in the retina, which were consistent with the in vitro data. We suggest that the synergistic effects of BLL and A2E accumulation in the retina increase the risk of retinal degeneration. These outcomes help elucidate the associations between BLL/A2E and angiogenic/apoptotic mechanisms, as well as furthering therapeutic strategies.
Collapse
Affiliation(s)
- Cheng-Hui Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Man-Ru Wu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Diana Shu-Lian Chow
- Institute of Drug Education and Research, College of Pharmacy, University of Houston, Texas 77004, USA.
| | - George Hsiao
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
31
|
Waugh N, Loveman E, Colquitt J, Royle P, Yeong JL, Hoad G, Lois N. Treatments for dry age-related macular degeneration and Stargardt disease: a systematic review. Health Technol Assess 2019; 22:1-168. [PMID: 29846169 DOI: 10.3310/hta22270] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the leading cause of visual loss in older people. Advanced AMD takes two forms, neovascular (wet) and atrophic (dry). Stargardt disease (STGD) is the commonest form of inherited macular dystrophy. OBJECTIVE To carry out a systematic review of treatments for dry AMD and STGD, and to identify emerging treatments where future NIHR research might be commissioned. DESIGN Systematic review. METHODS We searched MEDLINE, EMBASE, Web of Science and The Cochrane Library from 2005 to 13 July 2017 for reviews, journal articles and meeting abstracts. We looked for studies of interventions that aim to preserve or restore vision in people with dry AMD or STGD. The most important outcomes are those that matter to patients: visual acuity (VA), contrast sensitivity, reading speed, ability to drive, adverse effects of treatment, quality of life, progression of disease and patient preference. However, visual loss is a late event and intermediate predictors of future decline were accepted if there was good evidence that they are strong predictors of subsequent visual outcomes. These include changes detectable by investigation, but not necessarily noticed by people with AMD or STGD. ClinicalTrials.gov, the World Health Organization search portal and the UK Clinical Trials gateway were searched for ongoing and recently completed clinical trials. RESULTS The titles and abstracts of 7948 articles were screened for inclusion. The full text of 398 articles were obtained for further screening and checking of references and 112 articles were included in the final report. Overall, there were disappointingly few good-quality studies (including of sufficient size and duration) reporting useful outcomes, particularly in STGD. However we did identify a number of promising research topics, including drug treatments, stem cells, new forms of laser treatment, and implantable intraocular lens telescopes. In many cases, research is already under way, funded by industry or governments. LIMITATIONS In AMD, the main limitation came from the poor quality of much of the evidence. Many studies used VA as their main outcome despite not having sufficient duration to observe changes. The evidence on treatments for STGD is sparse. Most studies tested interventions with no comparison group, were far too short term, and the quality of some studies was poor. FUTURE WORK We think that the topics on which the Health Technology Assessment (HTA) and Efficacy Mechanism and Evaluation (EME) programmes might consider commissioning primary research are in STGD, a HTA trial of fenretinide (ReVision Therapeutics, San Diego, CA, USA), a visual cycle inhibitor, and EME research into the value of lutein and zeaxanthin supplements, using short-term measures of retinal function. In AMD, we suggest trials of fenretinide and of a potent statin. There is epidemiological evidence from the USA that the drug, levodopa, used for treating Parkinson's disease, may reduce the incidence of AMD. We suggest that similar research should be carried out using the large general practice databases in the UK. Ideally, future research should be at earlier stages in both diseases, before vision is impaired, using sensitive measures of macular function. This may require early detection of AMD by screening. STUDY REGISTRATION This study is registered as PROSPERO CRD42016038708. FUNDING The National Institute for Health Research HTA programme.
Collapse
Affiliation(s)
- Norman Waugh
- Division of Health Sciences, University of Warwick, Coventry, UK
| | | | | | - Pamela Royle
- Division of Health Sciences, University of Warwick, Coventry, UK
| | | | | | - Noemi Lois
- Ophthalmology, Royal Victoria Hospital, Belfast, UK.,Wellcome-Wolfson Centre for Experimental Medicine, Queens University, Belfast, UK
| |
Collapse
|
32
|
Nebbioso M, Lambiase A, Cerini A, Limoli PG, La Cava M, Greco A. Therapeutic Approaches with Intravitreal Injections in Geographic Atrophy Secondary to Age-Related Macular Degeneration: Current Drugs and Potential Molecules. Int J Mol Sci 2019; 20:ijms20071693. [PMID: 30987401 PMCID: PMC6479480 DOI: 10.3390/ijms20071693] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 01/22/2023] Open
Abstract
The present review focuses on recent clinical trials that analyze the efficacy of intravitreal therapeutic agents for the treatment of dry age-related macular degeneration (AMD), such as neuroprotective drugs, and complement inhibitors, also called immunomodulatory or anti-inflammatory agents. A systematic literature search was performed to identify randomized controlled trials published prior to January 2019. Patients affected by dry AMD treated with intravitreal therapeutic agents were included. Changes in the correct visual acuity and reduction in geographic atrophy progression were evaluated. Several new drugs have shown promising results, including those targeting the complement cascade and neuroprotective agents. The potential action of the two groups of drugs is to block complement cascade upregulation of immunomodulating agents, and to prevent the degeneration and apoptosis of ganglion cells for the neuroprotectors, respectively. Our analysis indicates that finding treatments for dry AMD will require continued collaboration among researchers to identify additional molecular targets and to fully interrogate the utility of pluripotent stem cells for personalized therapy.
Collapse
Affiliation(s)
- Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| | - Alessandro Lambiase
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| | - Alberto Cerini
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| | | | - Maurizio La Cava
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| | - Antonio Greco
- Department of Sense Organs, Faculty of Medicine and Odontology, Umberto I Policlinic, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
33
|
Flynn OJ, Cukras CA, Jeffrey BG. Characterization of Rod Function Phenotypes Across a Range of Age-Related Macular Degeneration Severities and Subretinal Drusenoid Deposits. Invest Ophthalmol Vis Sci 2019; 59:2411-2421. [PMID: 29847647 PMCID: PMC5958305 DOI: 10.1167/iovs.17-22874] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose To examine spatial changes in rod-mediated function in relationship to local structural changes across the central retina in eyes with a spectrum of age-related macular degeneration (AMD) disease severity. Methods Participants were categorized into five AMD severity groups based on fundus features. Scotopic thresholds were measured at 14 loci spanning ±18° along the vertical meridian from one eye of each of 42 participants (mean = 71.7 ± 9.9 years). Following a 30% bleach, dark adaptation was measured at eight loci (±12°). Rod intercept time (RIT) was defined from the time to detect a -3.1 log cd/m2 stimulus. RITslope was defined from the linear fit of RIT with decreasing retinal eccentricity. The presence of subretinal drusenoid deposits (SDD), ellipsoid (EZ) band disruption, and drusen at the test loci was evaluated using optical coherence tomography. Results Scotopic thresholds indicated greater rod function loss in the macula, which correlated with increasing AMD group severity. RITslope, which captures the spatial change in the rate of dark adaptation, increased with AMD severity (P < 0.0001). Three rod function phenotypes emerged: RF1, normal rod function; RF2, normal scotopic thresholds but slowed dark adaptation; and RF3, elevated scotopic thresholds with slowed dark adaptation. Dark adaptation was slowed at all loci with SDD or EZ band disruption, and at 32% of loci with no local structural changes. Conclusions Three rod function phenotypes were defined from combined measurement of scotopic threshold and dark adaptation. Spatial changes in dark adaptation across the macula were captured with RITslope, which may be a useful outcome measure for functional studies of AMD.
Collapse
Affiliation(s)
- Oliver J Flynn
- Ophthlamic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Catherine A Cukras
- Division of Epidemiology and Clinical Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Brett G Jeffrey
- Ophthlamic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
34
|
Mustari MJ. Nonhuman Primate Studies to Advance Vision Science and Prevent Blindness. ILAR J 2018; 58:216-225. [PMID: 28575309 DOI: 10.1093/ilar/ilx009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/03/2017] [Indexed: 02/05/2023] Open
Abstract
Most primate behavior is dependent on high acuity vision. Optimal visual performance in primates depends heavily upon frontally placed eyes, retinal specializations, and binocular vision. To see an object clearly its image must be placed on or near the fovea of each eye. The oculomotor system is responsible for maintaining precise eye alignment during fixation and generating eye movements to track moving targets. The visual system of nonhuman primates has a similar anatomical organization and functional capability to that of humans. This allows results obtained in nonhuman primates to be applied to humans. The visual and oculomotor systems of primates are immature at birth and sensitive to the quality of binocular visual and eye movement experience during the first months of life. Disruption of postnatal experience can lead to problems in eye alignment (strabismus), amblyopia, unsteady gaze (nystagmus), and defective eye movements. Recent studies in nonhuman primates have begun to discover the neural mechanisms associated with these conditions. In addition, genetic defects that target the retina can lead to blindness. A variety of approaches including gene therapy, stem cell treatment, neuroprosthetics, and optogenetics are currently being used to restore function associated with retinal diseases. Nonhuman primates often provide the best animal model for advancing fundamental knowledge and developing new treatments and cures for blinding diseases.
Collapse
Affiliation(s)
- Michael J Mustari
- Washington National Primate Research Center, University of Washington, Seattle, WA.,Department of Ophthalmology, University of Washington, Seattle, WA
| |
Collapse
|
35
|
Cheng QE, Gao J, Kim BJ, Ying GS. Design Characteristics of Geographic Atrophy Treatment Trials: Systematic Review of Registered Trials in ClinicalTrials.gov. ACTA ACUST UNITED AC 2018; 2:518-525. [DOI: 10.1016/j.oret.2017.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/20/2017] [Accepted: 08/16/2017] [Indexed: 01/24/2023]
|
36
|
Lin B, McLelland BT, Mathur A, Aramant RB, Seiler MJ. Sheets of human retinal progenitor transplants improve vision in rats with severe retinal degeneration. Exp Eye Res 2018; 174:13-28. [PMID: 29782826 DOI: 10.1016/j.exer.2018.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/13/2018] [Accepted: 05/17/2018] [Indexed: 01/22/2023]
Abstract
Loss of photoreceptors and other retinal cells is a common endpoint in retinal degenerate (RD) diseases that cause blindness. Retinal transplantation is a potential therapy to replace damaged retinal cells and improve vision. In this study, we examined the development of human fetal retinal sheets with or without their retinal pigment epithelium (RPE) transplanted to immunodeficient retinal degenerate rho S334ter-3 rats. Sheets were dissected from fetal human eyes (11-15.7 weeks gestation) and then transplanted to the subretinal space of 24-31 d old RD nude rats. Every month post surgery, eyes were imaged by high-resolution spectral-domain optical coherence tomography (SD-OCT). SD-OCT showed that transplants were placed into the subretinal space and developed laminated areas or rosettes, with clear development of plexiform layers first seen in OCT at 3 months post surgery. Several months later, as could be expected by the much slower development of human cells compared to rat cells, transplant photoreceptors developed inner and later outer segments. Retinal sections were analyzed by immunohistochemistry for human and retinal markers and confirmed the formation of several retinal subtypes within the retinal layers. Transplant cells extended processes and a lot of the cells could also be seen migrating into the host retina. At 5.8-8.6 months post surgery, selected rats were exposed to light flashes and recorded for visual responses in superior colliculus, (visual center in midbrain). Four of seven rats with transplants showed responses to flashes of light in a limited area of superior colliculus. No response with the same dim light intensity was found in age-matched RD controls (non-surgery or sham surgery). In summary, our data showed that human fetal retinal sheets transplanted to the severely disturbed subretinal space of RD nude rats develop mature photoreceptors and other retinal cells, integrate with the host and induce vision improvement.
Collapse
Affiliation(s)
- Bin Lin
- Stem Cell Research Center, University of CalifoArnia, Irvine, United States
| | - Bryce T McLelland
- Stem Cell Research Center, University of CalifoArnia, Irvine, United States
| | - Anuradha Mathur
- Stem Cell Research Center, University of CalifoArnia, Irvine, United States
| | - Robert B Aramant
- Stem Cell Research Center, University of CalifoArnia, Irvine, United States
| | - Magdalene J Seiler
- Stem Cell Research Center, University of CalifoArnia, Irvine, United States; Department of Physical Medicine & Rehabilitation, University of California, Irvine, United States.
| |
Collapse
|
37
|
Kivinen N. The role of autophagy in age-related macular degeneration. Acta Ophthalmol 2018; 96 Suppl A110:1-50. [PMID: 29633521 DOI: 10.1111/aos.13753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Niko Kivinen
- Department of Ophthalmology; University of Eastern Finland; Kuopio Finland
| |
Collapse
|
38
|
Bian ZM, Field MG, Elner SG, Elner VM. Expression and regulation of alarmin cytokine IL-1α in human retinal pigment epithelial cells. Exp Eye Res 2018; 172:10-20. [PMID: 29551335 DOI: 10.1016/j.exer.2018.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 02/08/2023]
Abstract
Human retinal pigment epithelial (hRPE) cells play important immune-regulatory roles in a variety of retinal pathologic processes, including the production of inflammatory cytokines that are essential mediators of the innate immune response within the ocular microenvironment. The pro-inflammatory "alarmin" cytokine IL-1α has been implicated in both infectious and non-infectious retinal diseases, but its regulation in the retina is poorly understood. The purpose of this study was to elucidate the expression and regulation of IL-1α within hRPE cells. To do this, IL-1α mRNA and protein in hRPE cells was assessed by RT-PCR, qPCR, ELISA, Western blot, and immunofluorescence following treatment with a variety of stimuli and inhibitors. ER stress, LPS, IL-1β, and TLR2 activation all significantly increased intracellular IL-1α protein. Increasing intracellular calcium synergized both LPS- and Pam3CSK4-induced IL-1α protein production. Accordingly, blocking calcium signaling and calpain activity strongly suppressed IL-1α protein expression. Significant but more moderate inhibition occurred following blockage of TLR4, caspase-4, or caspase-1. Neutralizing antibodies to IL-1β and TLR2 partially eliminated LPS- and TLR2 ligand Pam3CSK4-stimulated IL-1α protein production. IFN-β induced caspase-4 expression and activation, and also potentiated LPS-induced IL-1α expression, but IFN-β alone had no effect on IL-1α protein production. Interestingly, all inhibitors targeting the PI3K/Akt pathway, with the exception of Ly294002, strongly increased IL-1α protein expression. This study improves understanding of the complex mechanisms regulating IL-1α protein expression in hRPE cells by demonstrating that TLR4 and TLR2 stimulation and exposure to IL-1β, ER stress and intracellular calcium all induce hRPE cells to produce intracellular IL-1α, which is negatively regulated by the PI3K/Akt pathway. Additionally, the non-canonical inflammasome pathway was shown to be involved in LPS-induced hRPE IL-1α expression through caspase-4 signaling.
Collapse
Affiliation(s)
- Zong-Mei Bian
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Matthew G Field
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI, 48105, United States.
| | - Susan G Elner
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Victor M Elner
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI, 48105, United States
| |
Collapse
|
39
|
Vottonen P. Anti-vascular endothelial growth factors treatment of wet age-related macular degeneration: from neurophysiology to cost-effectiveness. Acta Ophthalmol 2018; 96 Suppl A109:1-46. [PMID: 29468838 DOI: 10.1111/aos.13706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Pasi Vottonen
- Department of Ophthalmology; Kuopio University Hospital; University of Eastern Finland; Kuopio Finland
| |
Collapse
|
40
|
Age-Related Macular Degeneration: New Paradigms for Treatment and Management of AMD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8374647. [PMID: 29484106 PMCID: PMC5816845 DOI: 10.1155/2018/8374647] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 12/06/2017] [Indexed: 12/03/2022]
Abstract
Age-related macular degeneration (AMD) is a well-characterized and extensively studied disease. It is currently considered the leading cause of visual disability among patients over 60 years. The hallmark of early AMD is the formation of drusen, pigmentary changes at the macula, and mild to moderate vision loss. There are two forms of AMD: the “dry” and the “wet” form that is less frequent but is responsible for 90% of acute blindness due to AMD. Risk factors have been associated with AMD progression, and they are taking relevance to understand how AMD develops: (1) advanced age and the exposition to environmental factors inducing high levels of oxidative stress damaging the macula and (2) this damage, which causes inflammation inducing a vicious cycle, altogether causing central vision loss. There is neither a cure nor treatment to prevent AMD. However, there are some treatments available for the wet form of AMD. This article will review some molecular and cellular mechanisms associated with the onset of AMD focusing on feasible treatments for each related factor in the development of this pathology such as vascular endothelial growth factor, oxidative stress, failure of the clearance of proteins and organelles, and glial cell dysfunction in AMD.
Collapse
|
41
|
Subfoveal choroidal thickness predicts macular atrophy in age-related macular degeneration: results from the TREX-AMD trial. Graefes Arch Clin Exp Ophthalmol 2018; 256:511-518. [PMID: 29374796 DOI: 10.1007/s00417-017-3888-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Our purpose was to evaluate the relationship between subfoveal choroidal thickness (SCT) and development of macular atrophy (MA) in eyes with age-related macular degeneration (AMD). METHODS This was a prospective, multicenter study. Sixty participants (120 eyes) in the TREX-AMD trial (NCT01648292) with treatment-naïve neovascular AMD (NVAMD) in at least one eye were included. SCT was measured by certified reading center graders at baseline using spectral domain optical coherence tomography (SDOCT). The baseline SCT was correlated with the presence of MA at baseline and development of incident MA by month 18. Generalized estimating equations were used to account for information from both eyes. RESULTS Baseline SCT in eyes with MA was statistically significantly less than in those without MA in both the dry AMD (DAMD) (P = 0.04) and NVAMD (P = 0.01) groups. Comparison of baseline SCT between MA developers and non-MA developers revealed a statistically significant difference (P = 0.03). Receiver operating characteristic curve (ROC) analysis showed the cut-off threshold of SCT for predicting the development of MA in cases without MA at baseline was 124 μm (AUC = 0.772; Sensitivity = 0.923; Specificity = 0.5). Among eyes without MA at baseline, those with baseline SCT ≤124 μm were 4.3 times more likely to develop MA (Odds ratio: 4.3, 95% confidence interval: 1.6-12, P = 0.005) than those with baseline SCT >124 μm. CONCLUSIONS Eyes with AMD and MA had less SCT than those without MA. Eyes with less baseline SCT also appear to be at higher risk to develop MA within 18 months.
Collapse
|
42
|
Farnoodian M, Sorenson CM, Sheibani N. Negative Regulators of Angiogenesis, Ocular Vascular Homeostasis, and Pathogenesis and Treatment of Exudative AMD. J Ophthalmic Vis Res 2018; 13:470-486. [PMID: 30479719 PMCID: PMC6210860 DOI: 10.4103/jovr.jovr_67_18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing capillaries, is very tightly regulated and normally does not occur except during developmental and reparative processes. This tight regulation is maintained by a balanced production of positive and negative regulators, and alterations under pathological conditions such as retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration can lead to growth of new and abnormal blood vessels. Although the role of proangiogenic factors such as vascular endothelial growth factor has been extensively studied, little is known about the roles of negative regulators of angiogenesis in the pathogenesis of these diseases. Here, we will discuss the role of thrombospondin-1 (TSP1), one of the first known endogenous inhibitors of angiogenesis, in ocular vascular homeostasis, and how its alterations may contribute to the pathogenesis of age-related macular degeneration and choroidal neovascularization. We will also discuss its potential utility as a therapeutic target for treatment of ocular diseases with a neovascular component.
Collapse
Affiliation(s)
- Mitra Farnoodian
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA
| | - Christine M Sorenson
- Department of Pediatrics, University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA.,McPherson Eye Research Institute, University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA.,McPherson Eye Research Institute, University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA.,Department of Cell and Regenerative Biology, University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
43
|
Chang CH, Chiu HF, Han YC, Chen IH, Shen YC, Venkatakrishnan K, Wang CK. Photoprotective effects of cranberry juice and its various fractions against blue light-induced impairment in human retinal pigment epithelial cells. PHARMACEUTICAL BIOLOGY 2017; 55:571-580. [PMID: 27937080 PMCID: PMC6130735 DOI: 10.1080/13880209.2016.1263344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 11/07/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Cranberry has numerous biological activities, including antioxidation, anticancer, cardioprotection, as well as treatment of urinary tract infection (UTI), attributed to abundant phenolic contents. OBJECTIVE The current study focused on the effect of cranberry juice (CJ) on blue light exposed human retinal pigment epithelial (ARPE-19) cells which mimic age-related macular degeneration (AMD). MATERIALS AND METHODS Preliminary phytochemical and HPLC analysis, as well as total antioxidant capacity and scavenging activity of cranberry ethyl acetate extract and different CJ fractions (condensed tannins containing fraction), were evaluated. In cell line model, ARPE-19 were irradiated with blue light at 450 nm wavelength for 10 h (mimic AMD) and treated with different fractions of CJ extract at different doses (5-50 μg/mL) by assessing the cell viability or proliferation rate using MTT assay (repairing efficacy). RESULTS Phytochemical and HPLC analysis reveals the presence of several phenolic compounds (flavonoids, proanthocyanidin, quercetin) in ethyl acetate extract and different fractions of CJ. However, the condensed tannin containing fraction of ethyl acetate extract of CJ displayed the greater (p < 0.05) scavenging activity especially at the dose of 1 mg/mL. Similarly, the condensed tannin containing fraction at 50 μg/mL presented better (p < 0.05) repairing ability (increased cell viability). Furthermore, the oligomeric condensed tannin containing fraction display the best (p < 0.05) repairing efficiency at 50 μg/mL. DISCUSSION AND CONCLUSION In conclusion, this study distinctly proved that condensed tannin containing fraction of CJ probably exhibits better free radicals scavenging activity and thereby effectively protected the ARPE-19 cells and thus, hampers the progress of AMD.
Collapse
Affiliation(s)
- Chi-Huang Chang
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health and Well-being, Taichung, Taiwan, ROC
| | - Yi-Chun Han
- School of Nutrition, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - I-Hsien Chen
- School of Nutrition, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - You-Cheng Shen
- School of Health Diet and Industry Management, Chung Shan Medical University, Taichung, Taiwan, ROC
| | | | - Chin-Kun Wang
- School of Nutrition, Chung Shan Medical University, Taichung, Taiwan, ROC
| |
Collapse
|
44
|
Kandasamy R, Wickremasinghe S, Guymer R. New Treatment Modalities for Geographic Atrophy. Asia Pac J Ophthalmol (Phila) 2017; 6:508-513. [PMID: 28905539 DOI: 10.22608/apo.2017262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Age‑related macular degeneration (AMD) is a significant cause of global visual morbidity and is projected to affect 288 million people by the year 2040. The advent of treatment with anti‒vascular endothelial growth factor (anti‑VEGF) drugs has revolutionized the treatment of neovascular AMD (nAMD) but there have been no similar breakthroughs for the treatment of geographic atrophy (GA) to retard its progression. The advancements in imaging and new understanding of disease mechanisms, based on molecular and genetic models, have paved the way for the development of novel experimental treatment options for GA that aim to cater to a thus far largely unmet need. This review paper focuses on the recent clinical trials of new treatment options for slowing GA progression rates with emphasis on the agents that are currently undergoing, or have already undergone, significant clinical trial testing. Several new groups of drugs, including those targeting the complement cascade and agents considered as neuroprotective, have shown some promising results and could potentially pave the way forward in the treatment of this devastating disease.
Collapse
Affiliation(s)
- Rathika Kandasamy
- Centre for Eye Research Australia, Department of Surgery (Ophthalmology), University of Melbourne, Royal Victorian Eye and Ear, Hospital, Melbourne, Australia
| | - Sanjeewa Wickremasinghe
- Centre for Eye Research Australia, Department of Surgery (Ophthalmology), University of Melbourne, Royal Victorian Eye and Ear, Hospital, Melbourne, Australia
| | - Robyn Guymer
- Centre for Eye Research Australia, Department of Surgery (Ophthalmology), University of Melbourne, Royal Victorian Eye and Ear, Hospital, Melbourne, Australia
| |
Collapse
|
45
|
Cammalleri M, Dal Monte M, Locri F, Lardner E, Kvanta A, Rusciano D, André H, Bagnoli P. Efficacy of a Fatty Acids Dietary Supplement in a Polyethylene Glycol-Induced Mouse Model of Retinal Degeneration. Nutrients 2017; 9:nu9101079. [PMID: 28961167 PMCID: PMC5691696 DOI: 10.3390/nu9101079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/18/2017] [Accepted: 09/27/2017] [Indexed: 01/07/2023] Open
Abstract
Current knowledge of the benefits of nutrition supplements for eye pathologies is based largely on the use of appropriate animal models, together with defined dietary supplementation. Here, C57BL6 mice were subretinally injected with polyethylene glycol (PEG)-400, an established model of retinal degeneration with a dry age-related macular degeneration (AMD)-like phenotype, an eye pathology that lacks treatment. In response to PEG-400, markers of the complement system, angiogenesis, inflammation, gliosis, and macrophage infiltration were upregulated in both retinas and retinal pigment epithelium (RPE)/choroids, whereas dietary supplementation with a mixture based on fatty acids counteracted their upregulation. Major effects include a reduction of inflammation, in both retinas and RPE/choroids, and an inhibition of macrophage infiltration in the choroid, yet not in the retina, suggesting a targeted action through the choroidal vasculature. Histological analysis revealed a thinning of the outer nuclear layer (ONL), together with dysregulation of the epithelium layer in response to PEG-400. In addition, immunohistofluorescence demonstrated Müller cell gliosis and macrophage infiltration into subretinal tissues supporting the molecular findings. Reduced ONL thickness, gliosis, and macrophage infiltration were counteracted by the diet supplement. The present data suggest that fatty acids may represent a useful form of diet supplementation to prevent or limit the progression of dry AMD.
Collapse
Affiliation(s)
- Maurizio Cammalleri
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| | - Filippo Locri
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
- Section of Eye and Vision, Department of Clinical Neurosciences, St Erik Hospital, Karolinska Institutet, Polhemsgatan 50, SE-112 82 Stockholm, Sweden.
| | - Emma Lardner
- Section of Eye and Vision, Department of Clinical Neurosciences, St Erik Hospital, Karolinska Institutet, Polhemsgatan 50, SE-112 82 Stockholm, Sweden.
| | - Anders Kvanta
- Section of Eye and Vision, Department of Clinical Neurosciences, St Erik Hospital, Karolinska Institutet, Polhemsgatan 50, SE-112 82 Stockholm, Sweden.
| | - Dario Rusciano
- Sooft Fidia Pharma, Contrada Molino 17, 63833 Montegiorgio (FM), Italy.
| | - Helder André
- Section of Eye and Vision, Department of Clinical Neurosciences, St Erik Hospital, Karolinska Institutet, Polhemsgatan 50, SE-112 82 Stockholm, Sweden.
| | - Paola Bagnoli
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
| |
Collapse
|
46
|
Kearns VR, Tasker J, Akhtar R, Bachhuka A, Vasilev K, Sheridan CM, Williams RL. The formation of a functional retinal pigment epithelium occurs on porous polytetrafluoroethylene substrates independently of the surface chemistry. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:124. [PMID: 28707136 PMCID: PMC5509835 DOI: 10.1007/s10856-017-5926-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
Subretinal transplantation of functioning retinal pigment epithelial (RPE) cells may have the potential to preserve or restore vision in patients affected by blinding diseases such as age-related macular degeneration (AMD). One of the critical steps in achieving this is the ability to grow a functioning retinal pigment epithelium, which may need a substrate on which to grow and to aid transplantation. Tailoring the physical and chemical properties of the substrate should help the engineered tissue to function in the long term. The purpose of the study was to determine whether a functioning monolayer of RPE cells could be produced on expanded polytetrafluoroethylene substrates modified by either an ammonia plasma treatment or an n-Heptylamine coating, and whether the difference in surface chemistries altered the extracellular matrix the cells produced. Primary human RPE cells were able to form a functional, cobblestone monolayer on both substrates, but the formation of an extracellular matrix to exhibit a network structure took months, whereas on non-porous substrates with the same surface chemistry, a similar appearance was observed after a few weeks. This study suggests that the surface chemistry of these materials may not be the most critical factor in the development of growth of a functional monolayer of RPE cells as long as the cells can attach and proliferate on the surface. This has important implications in the design of strategies to optimise the clinical outcomes of subretinal transplant procedures.
Collapse
Affiliation(s)
- Victoria R Kearns
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
| | - Jack Tasker
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool, UK
| | - Riaz Akhtar
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool, UK
| | - Akash Bachhuka
- School of Engineering, University of South Australia, Mawson Lakes, Adelaide, SA, 5095, Australia
| | - Krasimir Vasilev
- School of Engineering, University of South Australia, Mawson Lakes, Adelaide, SA, 5095, Australia
| | - Carl M Sheridan
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Rachel L Williams
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
47
|
Evans JR, Lawrenson JG. Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration. Cochrane Database Syst Rev 2017; 7:CD000254. [PMID: 28756618 PMCID: PMC6483465 DOI: 10.1002/14651858.cd000254.pub4] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND It has been proposed that antioxidants may prevent cellular damage in the retina by reacting with free radicals that are produced in the process of light absorption. Higher dietary levels of antioxidant vitamins and minerals may reduce the risk of progression of age-related macular degeneration (AMD). OBJECTIVES The objective of this review was to assess the effects of antioxidant vitamin or mineral supplementation on the progression of AMD in people with AMD. SEARCH METHODS We searched CENTRAL (2017, Issue 2), MEDLINE Ovid (1946 to March 2017), Embase Ovid (1947 to March 2017), AMED (1985 to March 2017), OpenGrey (System for Information on Grey Literature in Europe, the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 29 March 2017. SELECTION CRITERIA We included randomised controlled trials (RCTs) that compared antioxidant vitamin or mineral supplementation (alone or in combination) to placebo or no intervention, in people with AMD. DATA COLLECTION AND ANALYSIS Both review authors independently assessed risk of bias in the included studies and extracted data. One author entered data into RevMan 5; the other author checked the data entry. We graded the certainty of the evidence using GRADE. MAIN RESULTS We included 19 studies conducted in USA, Europe, China, and Australia. We judged the trials that contributed data to the review to be at low or unclear risk of bias.Nine studies compared multivitamins with placebo (7 studies) or no treatment (2 studies) in people with early and moderate AMD. The duration of supplementation and follow-up ranged from nine months to six years; one trial followed up beyond two years. Most evidence came from the Age-Related Eye Disease Study (AREDS) in the USA. People taking antioxidant vitamins were less likely to progress to late AMD (odds ratio (OR) 0.72, 95% confidence interval (CI) 0.58 to 0.90; 2445 participants; 3 RCTs; moderate-certainty evidence). In people with very early signs of AMD, who are at low risk of progression, this would mean that there would be approximately 4 fewer cases of progression to late AMD for every 1000 people taking vitamins (1 fewer to 6 fewer cases). In people at high risk of progression (i.e. people with moderate AMD) this would correspond to approximately 8 fewer cases of progression for every 100 people taking vitamins (3 fewer to 13 fewer). In one study of 1206 people, there was a lower risk of progression for both neovascular AMD (OR 0.62, 95% CI 0.47 to 0.82; moderate-certainty evidence) and geographic atrophy (OR 0.75, 95% CI 0.51 to 1.10; moderate-certainty evidence) and a lower risk of losing 3 or more lines of visual acuity (OR 0.77, 95% CI 0.62 to 0.96; 1791 participants; moderate-certainty evidence). Low-certainty evidence from one study of 110 people suggested higher quality of life scores (National Eye Institute Visual Function Questionnaire) in treated compared with the non-treated people after 24 months (mean difference (MD) 12.30, 95% CI 4.24 to 20.36). Six studies compared lutein (with or without zeaxanthin) with placebo. The duration of supplementation and follow-up ranged from six months to five years. Most evidence came from the AREDS2 study in the USA. People taking lutein or zeaxanthin may have similar or slightly reduced risk of progression to late AMD (RR 0.94, 95% CI 0.87 to 1.01; 6891 eyes; low-certainty evidence), neovascular AMD (RR 0.92, 95% CI 0.84 to 1.02; 6891 eyes; low-certainty evidence), and geographic atrophy (RR 0.92, 95% CI 0.80 to 1.05; 6891 eyes; low-certainty evidence). A similar risk of progression to visual loss of 15 or more letters was seen in the lutein and control groups (RR 0.98, 95% CI 0.91 to 1.05; 6656 eyes; low-certainty evidence). Quality of life (measured with Visual Function Questionnaire) was similar between groups in one study of 108 participants (MD 1.48, 95% -5.53 to 8.49, moderate-certainty evidence). One study, conducted in Australia, compared vitamin E with placebo. This study randomised 1204 people to vitamin E or placebo, and followed up for four years. Participants were enrolled from the general population; 19% had AMD. The number of late AMD events was low (N = 7) and the estimate of effect was uncertain (RR 1.36, 95% CI 0.31 to 6.05, very low-certainty evidence). There were no data on neovascular AMD or geographic atrophy.There was no evidence of any effect of treatment on visual loss (RR 1.04, 95% CI 0.74 to 1.47, low-certainty evidence). There were no data on quality of life. Five studies compared zinc with placebo. The duration of supplementation and follow-up ranged from six months to seven years. People taking zinc supplements may be less likely to progress to late AMD (OR 0.83, 95% CI 0.70 to 0.98; 3790 participants; 3 RCTs; low-certainty evidence), neovascular AMD (OR 0.76, 95% CI 0.62 to 0.93; 2442 participants; 1 RCT; moderate-certainty evidence), geographic atrophy (OR 0.84, 95% CI 0.64 to 1.10; 2442 participants; 1 RCT; moderate-certainty evidence), or visual loss (OR 0.87, 95% CI 0.75 to 1.00; 3791 participants; 2 RCTs; moderate-certainty evidence). There were no data reported on quality of life.Very low-certainty evidence was available on adverse effects because the included studies were underpowered and adverse effects inconsistently reported. AUTHORS' CONCLUSIONS People with AMD may experience some delay in progression of the disease with multivitamin antioxidant vitamin and mineral supplementation. This finding was largely drawn from one large trial, conducted in a relatively well-nourished American population. We do not know the generalisability of these findings to other populations. Although generally regarded as safe, vitamin supplements may have harmful effects. A systematic review of the evidence on harms of vitamin supplements is needed. Supplements containing lutein and zeaxanthin are heavily marketed for people with age-related macular degeneration but our review shows they may have little or no effect on the progression of AMD.
Collapse
Affiliation(s)
- Jennifer R Evans
- London School of Hygiene & Tropical MedicineCochrane Eyes and Vision, ICEHKeppel StreetLondonUKWC1E 7HT
| | - John G Lawrenson
- City University of LondonCentre for Applied Vision Research, School of Health SciencesNorthampton SquareLondonUKEC1V 0HB
| | | |
Collapse
|
48
|
Biswal MR, Han P, Zhu P, Wang Z, Li H, Ildefonso CJ, Lewin AS. Timing of Antioxidant Gene Therapy: Implications for Treating Dry AMD. Invest Ophthalmol Vis Sci 2017; 58:1237-1245. [PMID: 28241311 PMCID: PMC5338629 DOI: 10.1167/iovs.16-21272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose To investigate whether antioxidant gene therapy protects the structure and function of retina in a murine model of RPE atrophy, and to determine whether antioxidant gene therapy can prevent degeneration once it has begun. Methods We induced mitochondrial oxidative stress in RPE by conditional deletion of Sod2, the gene for manganese superoxide dismutase (MnSOD). These mice exhibited localized atrophy of the RPE and overlying photoreceptors. We restored Sod2 to the RPE of one eye using adeno-associated virus (AAV) by subretinal injection at an early (6 weeks) and a late stage (6 months), injecting the other eye with an AAV vector expressing green fluorescent protein (GFP). Retinal degeneration was monitored over a period of 9 months by electroretinography (ERG) and spectral-domain optical coherence tomography (SD-OCT). Immunohistochemical and histologic analyses were conducted to measure oxidative stress markers and to visualize retinal structure. Results One month after delivery, the AAV-Sod2 injection resulted in production of MnSod in the RPE and negligible expression in the neural retina. Electroretinography and OCT suggested no adverse effects due to increased expression of MnSOD or subretinal injection. Decrease in the ERG response and thinning retinal thickness was significantly delayed in eyes with early treatment with the Sod2 vector, but treatment at 6 months of age did not affect the ERG decline seen in these mice. Conclusions We conclude that antioxidant gene therapy may be effective in preventing the detrimental effects of oxidative stress, but may not be beneficial once substantial tissue damage has occurred.
Collapse
Affiliation(s)
- Manas R Biswal
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Pingyang Han
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Ping Zhu
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Zhaoyang Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, China
| | - Hong Li
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Cristhian J Ildefonso
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, United States
| |
Collapse
|
49
|
Valembois S, Krall J, Frølund B, Steffansen B. Imidazole-4-acetic acid, a new lead structure for interaction with the taurine transporter in outer blood-retinal barrier cells. Eur J Pharm Sci 2017; 103:77-84. [DOI: 10.1016/j.ejps.2017.02.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 10/20/2022]
|
50
|
Chen XD, Su MY, Chen TT, Hong HY, Han AD, Li WS. Oxidative stress affects retinal pigment epithelial cell survival through epidermal growth factor receptor/AKT signaling pathway. Int J Ophthalmol 2017; 10:507-514. [PMID: 28503420 DOI: 10.18240/ijo.2017.04.02] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/28/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the cross-talk between oxidative stress and the epidermal growth factor receptor (EGFR)/AKT signaling pathway in retinal pigment epithelial (RPE) cells. METHODS Human RPE cell lines (ARPE-19 cell) were treated with different doses of epidermal growth factor (EGF) and hydrogen peroxide (H2O2). Cell viability was determined by a methyl thiazolyl tetrazolium assay. Cell proliferation was examined by a bromodeoxyuridine (BrdU) incorporation assay. EGFR/AKT signaling was detected by Western blot. EGFR localization was also detected by immunofluorescence. In addition, EGFR/AKT signaling was intervened upon by EGFR inhibitor (erlotinib), PI3K inhibitor (A66) and AKT inhibitor (MK-2206), respectively. H2O2-induced oxidative stress was blocked by antioxidant N-acetylcysteine (NAC). RESULTS EGF treatment increased ARPE-19 cell viability and proliferation through inducing phosphorylation of EGFR and AKT. H2O2 inhibited ARPE-19 cell viability and proliferation and also suppressed EGF-stimulated increase of RPE cell viability and proliferation by affecting the EGFR/AKT signaling pathway. EGFR inhibitor erlotinib blocked EGF-induced phosphorylation of EGFR and AKT, while A66 and MK-2206 only blocked EGF-induced phosphorylation of AKT. EGF-induced phosphorylation and endocytosis of EGFR were also affected by H2O2 treatment. In addition, antioxidant NAC attenuated H2O2-induced inhibition of ARPE-19 cell viability through alleviating reduction of EGFR, and phosphorylated and total AKT proteins. CONCLUSION Oxidative stress affects RPE cell viability and proliferation through interfering with the EGFR/AKT signaling pathway. The EGFR/AKT signaling pathway may be an important target in oxidative stress-induced RPE cell dysfunction.
Collapse
Affiliation(s)
- Xiao-Dong Chen
- Xiamen Eye Center of Xiamen University, Xiamen University, Xiamen 361003, Fujian Province, China.,Department of Ophthalmology, Xi'an No.1 Hospital, Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Laboratory of Ophthalmology, Xi'an 710002, Shaanxi Province, China.,State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiang'an Campus, Xiamen University, Xiang'an District, Xiamen 361102, Fujian Province, China
| | - Ming-Yang Su
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiang'an Campus, Xiamen University, Xiang'an District, Xiamen 361102, Fujian Province, China
| | - Tao-Tao Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiang'an Campus, Xiamen University, Xiang'an District, Xiamen 361102, Fujian Province, China
| | - Hai-Yan Hong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiang'an Campus, Xiamen University, Xiang'an District, Xiamen 361102, Fujian Province, China
| | - Ai-Dong Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiang'an Campus, Xiamen University, Xiang'an District, Xiamen 361102, Fujian Province, China
| | - Wen-Sheng Li
- Xiamen Eye Center of Xiamen University, Xiamen University, Xiamen 361003, Fujian Province, China
| |
Collapse
|