1
|
Curro KR, van Nispen RMA, den Braber A, van de Giessen EM, van de Kreeke JA, Tan HS, Visser PJ, Bouwman FH, Verbraak FD. Longitudinal Assessment of Retinal Microvasculature in Preclinical Alzheimer's Disease. Invest Ophthalmol Vis Sci 2024; 65:2. [PMID: 39361291 PMCID: PMC11451830 DOI: 10.1167/iovs.65.12.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024] Open
Abstract
Purpose To investigate if changes in vessel density (VD) and the foveal avascular zone (FAZ) occur in the preclinical phase of Alzheimer's disease (pAD) over time. Methods Optical coherence tomography angiography (OCTA) was used to image VD and FAZ at baseline and for a follow-up period of 2 years. Positron emission tomography (PET) was used to determine the amyloid beta (Aβ) status of participants. Results The VD and FAZ of 148 participants (54% female) were analyzed at baseline and follow-up (mean time between measurements, 2.24 ± 0.35 years). The mean age of the participants was 68.3 ± 6.0 years at baseline and 70.3 ± 5.9 years at follow-up. Participants were divided into three groups: control group, participants who had negative Aβ status at both measurements (Aβ-, n = 116); converter group, participants who transitioned from negative to positive between baseline and follow-up (Aβ-+, n = 18); and participants who were consistently positive at both visits (Aβ++, n = 14). The VD of both Aβ+ groups demonstrated non-significant increases over time in both macula and optic nerve head (ONH) regions. The Aβ- group was found to be significantly higher in both ONH and macular regions. The VD of the Aβ++ group was significantly higher in the macula inner and outer rings compared to the Aβ-+ and Aβ- groups. No significant change was found in FAZ values over time. Conclusions Alterations in VD seem to manifest already in pAD, exhibiting distinct variations between the ONH and macula. Further longitudinal studies with a longer follow-up design and known amyloid pathology should be undertaken to validate these observations.
Collapse
Affiliation(s)
- Katie R. Curro
- Department of Ophthalmology, Amsterdam UMC, Amsterdam, The Netherlands
- Quality of Care, Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ruth M. A. van Nispen
- Department of Ophthalmology, Amsterdam UMC, Amsterdam, The Netherlands
- Quality of Care, Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Anouk den Braber
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | | - H. Stevie Tan
- Department of Ophthalmology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Pieter-Jelle Visser
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Femke H. Bouwman
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frank D. Verbraak
- Department of Ophthalmology, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Sampani K, Ness S, Tuz-Zahra F, Aytan N, Spurlock EE, Alluri S, Chen X, Siegel NH, Alosco ML, Xia W, Tripodis Y, Stein TD, Subramanian ML. Neurodegenerative biomarkers in different chambers of the eye relative to plasma: an agreement validation study. Alzheimers Res Ther 2024; 16:192. [PMID: 39187891 PMCID: PMC11346268 DOI: 10.1186/s13195-024-01556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Protein biomarkers have been broadly investigated in cerebrospinal fluid and blood for the detection of neurodegenerative diseases, yet a clinically useful diagnostic test to detect early, pre-symptomatic Alzheimer's disease (AD) remains elusive. We conducted this study to quantify Aβ40, Aβ42, total Tau (t-Tau), hyperphosphorylated Tau (ptau181), glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) in eye fluids relative to blood. METHODS In this cross-sectional study we collected vitreous humor, aqueous humor, tear fluid and plasma in patients undergoing surgery for eye disease. All six biomarkers were quantitatively measured by digital immunoassay. Spearman and Bland-Altman correlation analyses were performed to assess the agreement of levels between ocular fluids and plasma. RESULTS Seventy-nine adults underwent pars-plana vitrectomy in at least one eye. Of the 79, there were 77 vitreous, 67 blood, 56 tear fluid, and 51 aqueous samples. All six biomarkers were quantified in each bio-sample, except GFAP and NfL in tear fluid due to low sample volume. All six biomarkers were elevated in vitreous humor compared to plasma samples. T-Tau, ptau181, GFAP and NfL were higher in aqueous than in plasma, and t-Tau and ptau181 concentrations were higher in tear fluid than in plasma. Significant correlations were found between Aβ40 in plasma and tears (r = 0.5; p = 0.019), t-Tau in plasma and vitreous (r = 0.4; p = 0.004), NfL in plasma and vitreous (r = 0.3; p = 0.006) and plasma and aqueous (r = 0.5; p = 0.004). No significant associations were found for Aβ42, ptau181 and GFAP among ocular fluids relative to plasma. Bland-Altman analysis showed aqueous humor had the closest agreement to plasma across all biomarkers. Biomarker levels in ocular fluids revealed statistically significant associations between vitreous and aqueous for t-Tau (r = 0.5; p = 0.001), GFAP (r = 0.6; p < 0.001) and NfL (r = 0.7; p < 0.001). CONCLUSION AD biomarkers are detectable in greater quantities in eye fluids than in plasma and show correlations with levels in plasma. Future studies are needed to assess the utility of ocular fluid biomarkers as diagnostic and prognostic markers for AD, especially in those at risk with eye disease.
Collapse
Affiliation(s)
- Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Steven Ness
- Department of Ophthalmology, Boston Medical Center, Boston, MA, 02118, USA
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Fatima Tuz-Zahra
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Nurgul Aytan
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Elizabeth E Spurlock
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sreevardhan Alluri
- Department of Ophthalmology, Boston Medical Center, Boston, MA, 02118, USA
| | - Xuejing Chen
- Department of Ophthalmology, Boston Medical Center, Boston, MA, 02118, USA
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Nicole H Siegel
- Department of Ophthalmology, Boston Medical Center, Boston, MA, 02118, USA
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Weiming Xia
- Department of Pharmacology and Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Geriatric Research Education and Clinical Center, Bedford Veterans Affairs Medical Center, Bedford, MA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA.
- Department of Veterans Affairs Medical Center, VA Boston Healthcare System, Boston, MA, USA.
- Department of Veterans Affairs Medical Center, VA Bedford Healthcare System, Bedford, MA, USA.
| | - Manju L Subramanian
- Department of Ophthalmology, Boston Medical Center, Boston, MA, 02118, USA.
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
3
|
Bermudez C, Lesnick TG, More SS, Ramanan VK, Knopman DS, Rabinstein AA, Cogswell PM, Jack CR, Vemuri P, Petersen RC, Graff-Radford J, Chen JJ. Optical Coherence Tomography Angiography Retinal Imaging Associations With Burden of Small Vessel Disease and Amyloid Positivity in the Brain. J Neuroophthalmol 2024:00041327-990000000-00691. [PMID: 39085998 DOI: 10.1097/wno.0000000000002230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
BACKGROUND Alzheimer disease (AD) and other dementias are associated with vascular changes and amyloid deposition, which may be reflected as density changes in the retinal capillaries. These changes may can be directly visualized and quantified with optical coherence tomography angiography (OCTA), making OCTA a potential noninvasive preclinical biomarker of small vessel disease and amyloid positivity. Our objective was to investigate the feasibility of retinal imaging metrics as noninvasive biomarkers of small vessel disease and amyloid positivity in the brain. METHODS We investigated associations between OCTA and neuroimaging and cognitive metrics in 41 participants without dementia from the Mayo Clinic Study of Aging and Alzheimer's Disease Research Center. OCTA metrics included superficial, deep, and full retina capillary density of the fovea, parafovea, and macula as well as the area of the foveal avascular zone (FAZ). Neuroimaging metrics included a high burden of white matter hyperintensity (WMH), presence of cerebral microbleeds (CMB), lacunar infarcts, and amyloid positivity as evidenced on positron emission tomography (PET), whereas cognitive metrics included mini-mental status examination (MMSE) score. We performed generalized estimating equations to account for measurements in each eye while controlling for age and sex to estimate associations between OCTA metrics and neuroimaging and cognitive scores. RESULTS Associations between OCTA and neuroimaging metrics were restricted to the fovea. OCTA showed decreased capillary density with high burden of WMH in both the superficial (P = 0.003), deep (P = 0.004), and full retina (P = 0.01) in the fovea but not the parafovea or whole macula. Similarly, participants with amyloid PET positivity had significantly decreased capillary density in the superficial fovea (P = 0.027) and deep fovea (P = 0.03) but higher density in the superficial parafovea (P = 0.038). Participants with amyloid PET positivity also had a significantly larger FAZ (P = 0.031), whereas in those with high WMH burden the difference did not reach statistical significance (P = 0.075). There was also a positive association between MMSE and capillary density of the full retina within the fovea (P = 0.037) and in the superficial parafovea (P = 0.046). No associations were found between OCTA metrics and presence of CMB or presence of lacunar infarcts. CONCLUSION The associations of lower foveal capillary density with cerebral WMH and amyloid positivity suggest that further research is warranted to evaluate for shared mechanisms of disease between small vessel disease and AD pathologies.
Collapse
Affiliation(s)
- Camilo Bermudez
- Department of Neurology (CB, VKR, DSK, AAR, RCP, JG-R, JJC), Mayo Clinic, Rochester, Minnesota; Center for Drug Design (SSM), College of Pharmacy, University of Minnesota, Minneapolis, Minnesota; Departments of Radiology (PMC, CRJ, PV) and Ophthalmology (JJC), Mayo Clinic, Rochester, Minnesota; and Department of Quantitative Health Sciences (TGL), Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Gaire BP, Koronyo Y, Fuchs DT, Shi H, Rentsendorj A, Danziger R, Vit JP, Mirzaei N, Doustar J, Sheyn J, Hampel H, Vergallo A, Davis MR, Jallow O, Baldacci F, Verdooner SR, Barron E, Mirzaei M, Gupta VK, Graham SL, Tayebi M, Carare RO, Sadun AA, Miller CA, Dumitrascu OM, Lahiri S, Gao L, Black KL, Koronyo-Hamaoui M. Alzheimer's disease pathophysiology in the Retina. Prog Retin Eye Res 2024; 101:101273. [PMID: 38759947 PMCID: PMC11285518 DOI: 10.1016/j.preteyeres.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
The retina is an emerging CNS target for potential noninvasive diagnosis and tracking of Alzheimer's disease (AD). Studies have identified the pathological hallmarks of AD, including amyloid β-protein (Aβ) deposits and abnormal tau protein isoforms, in the retinas of AD patients and animal models. Moreover, structural and functional vascular abnormalities such as reduced blood flow, vascular Aβ deposition, and blood-retinal barrier damage, along with inflammation and neurodegeneration, have been described in retinas of patients with mild cognitive impairment and AD dementia. Histological, biochemical, and clinical studies have demonstrated that the nature and severity of AD pathologies in the retina and brain correspond. Proteomics analysis revealed a similar pattern of dysregulated proteins and biological pathways in the retina and brain of AD patients, with enhanced inflammatory and neurodegenerative processes, impaired oxidative-phosphorylation, and mitochondrial dysfunction. Notably, investigational imaging technologies can now detect AD-specific amyloid deposits, as well as vasculopathy and neurodegeneration in the retina of living AD patients, suggesting alterations at different disease stages and links to brain pathology. Current and exploratory ophthalmic imaging modalities, such as optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy, and hyperspectral imaging, may offer promise in the clinical assessment of AD. However, further research is needed to deepen our understanding of AD's impact on the retina and its progression. To advance this field, future studies require replication in larger and diverse cohorts with confirmed AD biomarkers and standardized retinal imaging techniques. This will validate potential retinal biomarkers for AD, aiding in early screening and monitoring.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ron Danziger
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jean-Philippe Vit
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jonah Doustar
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ousman Jallow
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Filippo Baldacci
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | | | - Ernesto Barron
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia; Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Roxana O Carare
- Department of Clinical Neuroanatomy, University of Southampton, Southampton, UK
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Carol A Miller
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Shouri Lahiri
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Liang Gao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Dumitrascu OM, Doustar J, Fuchs DT, Koronyo Y, Sherman DS, Miller MS, Johnson KO, Carare RO, Verdooner SR, Lyden PD, Schneider JA, Black KL, Koronyo-Hamaoui M. Retinal peri-arteriolar versus peri-venular amyloidosis, hippocampal atrophy, and cognitive impairment: exploratory trial. Acta Neuropathol Commun 2024; 12:109. [PMID: 38943220 PMCID: PMC11212356 DOI: 10.1186/s40478-024-01810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/02/2024] [Indexed: 07/01/2024] Open
Abstract
The relationship between amyloidosis and vasculature in cognitive impairment and Alzheimer's disease (AD) pathogenesis is increasingly acknowledged. We conducted a quantitative and topographic assessment of retinal perivascular amyloid plaque (AP) distribution in individuals with both normal and impaired cognition. Using a retrospective dataset of scanning laser ophthalmoscopy fluorescence images from twenty-eight subjects with varying cognitive states, we developed a novel image processing method to examine retinal peri-arteriolar and peri-venular curcumin-positive AP burden. We further correlated retinal perivascular amyloidosis with neuroimaging measures and neurocognitive scores. Our study unveiled that peri-arteriolar AP counts surpassed peri-venular counts throughout the entire cohort (P < 0.0001), irrespective of the primary, secondary, or tertiary vascular branch location, with a notable increase among cognitively impaired individuals. Moreover, secondary branch peri-venular AP count was elevated in the cognitively impaired (P < 0.01). Significantly, peri-venular AP count, particularly in secondary and tertiary venules, exhibited a strong correlation with clinical dementia rating, Montreal cognitive assessment score, hippocampal volume, and white matter hyperintensity count. In conclusion, our exploratory analysis detected greater peri-arteriolar versus peri-venular amyloidosis and a marked elevation of amyloid deposition in secondary branch peri-venular regions among cognitively impaired subjects. These findings underscore the potential feasibility of retinal perivascular amyloid imaging in predicting cognitive decline and AD progression. Larger longitudinal studies encompassing diverse populations and AD-biomarker confirmation are warranted to delineate the temporal-spatial dynamics of retinal perivascular amyloid deposition in cognitive impairment and the AD continuum.
Collapse
Affiliation(s)
- Oana M Dumitrascu
- Departments of Neurology, Mayo Clinic, AZ, 13400 E. Shea Blvd, Scottsdale, AZ, 85259, USA.
| | - Jonah Doustar
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Dale S Sherman
- Department of Physical Medicine and Rehabilitation, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Michelle Shizu Miller
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
- Department of Neurosurgery, Tulane University School of Medicine, 1415 Tulane Ave, New Orleans, LA, 70112, USA
| | - Kenneth O Johnson
- NeuroVision Imaging LLC, 1395 Garden Hwy, Sacramento, CA, 95833, USA
| | - Roxana O Carare
- Department of Clinical Neuroanatomy, University of Southampton, University Road Southampton, Southampton, SO17 1BJ, UK
| | | | - Patrick D Lyden
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo St, Los Angeles, CA, 90033, USA
| | - Julie A Schneider
- Department of Pathology, Department of Neurological Sciences, Alzheimer's Disease Research Center, Rush Medical College, Rush University, 600 S. Paulina St., Chicago, IL, 60612, USA
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine Dunitz Neurosurgical Institute, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.
- Department of Neurology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.
| |
Collapse
|
6
|
Di Pippo M, Cipollini V, Giubilei F, Scuderi G, Abdolrahimzadeh S. Retinal and Choriocapillaris Vascular Changes in Early Alzheimer Disease Patients Using Optical Coherence Tomography Angiography. J Neuroophthalmol 2024; 44:184-189. [PMID: 37351953 DOI: 10.1097/wno.0000000000001907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
BACKGROUND Alzheimer disease (AD) is a neurodegenerative disorder characterized by ß-amyloid accumulation in the brain. A simple and reliable biomarker for AD that is not invasive is urgently needed, particularly in the preclinical and early stages of the disease. The retina shares with the brain, the same embryologic origins and it is affected by similar vascular changes. The aim of this study was to analyze the characteristics of the retinal and choriocapillaris vascular structure through optical coherence tomography-angiography (OCTA) evaluation in patients with early AD. METHODS Eighteen patients with early AD (study group) and 18 healthy age-matched subjects (control group) were enrolled in the study. All patients underwent full neurologic and ophthalmologic examination, and OCTA scans. RESULTS We found a significant reduction in flow area of choriocapillaris in the study group compared with the control group ( P -value: 0.006), suggesting an impairment of choriocapillaris circulation in patients with early AD. CONCLUSIONS OCTA provides accumulative evidence on the microvasculature changes of the retina and choriocapillaris in patients with AD. Further studies and improved OCTA software are necessary to better evaluate the role of vascular changes shown with OCTA as potential biomarkers in early disease.
Collapse
Affiliation(s)
- Mariachiara Di Pippo
- Neurosciences, Mental Health, and Sense Organs (NESMOS) Department (MDP, VC, FG, GS, SA), Faculty of Medicine and Psychology, University of Rome Sapienza, Rome, Italy; Neurology Unit (FG), and Ophthalmology Unit (GS, SA), St. Andrea Hospital, Rome, Italy
| | | | | | | | | |
Collapse
|
7
|
Daneshvar R, Naghib M, Fayyazi Bordbar MR, Faridhosseini F, Fotouhi M, Motamed Shariati M. Optic nerve head neurovascular assessments in patients with schizophrenia: A cross-sectional study. Health Sci Rep 2024; 7:e2100. [PMID: 38725558 PMCID: PMC11079145 DOI: 10.1002/hsr2.2100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/06/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Objective The retina is a protrusion of the brain, so researchers have recently proposed retinal changes as a new marker for studying central nervous system diseases. To investigate optic nerve head neurovascular structure assessed by optical coherence tomography angiography (OCTA) in schizophrenia compared to healthy subjects. Methods The study was conducted from 2019 to 2021 at the Ibn Sina Psychiatric Hospital in Mashhad, Iran. We enrolled 22 hospitalized known cases of schizophrenia, treated with risperidone as an antipsychotic drug, and 22 healthy subjects. The two groups were matched in age and gender. In the schizophrenic group, the positive and negative syndrome scale test was used to assess the illness severity. All subjects underwent complete ophthalmic evaluations and OCTA imaging. Results We found that the cup/disc area ratio, vertical cup/disc ratio, and horizontal cup/disc ratio are significantly higher in patients with schizophrenia than in healthy subjects (with p-values of 0.019, 0.015, and 0.022, respectively). No statistically significant difference in the peripapillary retinal nerve fiber layer and vascular parameters of the optic nerve head was observed between schizophrenia and healthy groups. Conclusion We found evidence regarding the difference in the optic nerve head tomographic properties in schizophrenia compared to healthy subjects. However, ONH vascular parameters showed no significant difference. More studies are needed for a definite conclusion.
Collapse
Affiliation(s)
- Ramin Daneshvar
- Eye Research CenterMashhad University of Medical SciencesMashhadIran
| | - Maryam Naghib
- Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
| | | | - Farhad Faridhosseini
- Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
| | - Marziyeh Fotouhi
- Eye Research CenterMashhad University of Medical SciencesMashhadIran
| | | |
Collapse
|
8
|
Owsley C, McGwin G, Swain TA, Clark ME, Thomas TN, Goerdt L, Sloan KR, Trittschuh EH, Jiang Y, Owen JP, Lee CS, Curcio CA. Outer Retinal Thickness Is Associated With Cognitive Function in Normal Aging to Intermediate Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:16. [PMID: 38717425 PMCID: PMC11090140 DOI: 10.1167/iovs.65.5.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/25/2024] [Indexed: 05/15/2024] Open
Abstract
Purpose Research on Alzheimer's disease (AD) and precursor states demonstrates a thinner retinal nerve fiber layer (NFL) compared to age-similar controls. Because AD and age-related macular degeneration (AMD) both impact older adults and share risk factors, we asked if retinal layer thicknesses, including NFL, are associated with cognition in AMD. Methods Adults ≥ 70 years with normal retinal aging, early AMD, or intermediate AMD per Age-Related Eye Disease Study (AREDS) nine-step grading of color fundus photography were enrolled in a cross-sectional study. Optical coherence tomography (OCT) volumes underwent 11-line segmentation and adjustments by a trained operator. Evaluated thicknesses reflect the vertical organization of retinal neurons and two vascular watersheds: NFL, ganglion cell layer-inner plexiform layer complex (GCL-IPL), inner retina, outer retina (including retinal pigment epithelium-Bruch's membrane), and total retina. Thicknesses were area weighted to achieve mean thickness across the 6-mm-diameter Early Treatment of Diabetic Retinopathy Study (ETDRS) grid. Cognitive status was assessed by the National Institutes of Health Toolbox cognitive battery for fluid and crystallized cognition. Correlations estimated associations between cognition and thicknesses, adjusting for age. Results Based on 63 subjects (21 per group), thinning of the outer retina was significantly correlated with lower cognition scores (P < 0.05). No other retinal thickness variables were associated with cognition. Conclusions Only the outer retina (photoreceptors, supporting glia, retinal pigment epithelium, Bruch's membrane) is associated with cognition in aging to intermediate AMD; NFL was not associated with cognition, contrary to AD-associated condition reports. Early and intermediate AMD constitute a retinal disease whose earliest, primary impact is in the outer retina. Our findings hint at a unique impact on the brain from the outer retina in persons with AMD.
Collapse
Affiliation(s)
- Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Thomas A. Swain
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Mark E. Clark
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Tracy N. Thomas
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Lukas Goerdt
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Emily H. Trittschuh
- VA Puget Sound Geriatric Research Education and Clinical Center, Seattle, Washington, United States
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, Washington, United States
| | - Yu Jiang
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, Washington, United States
- The Roger and Angie Karalis Johnson Retina Center, Seattle, Washington, United States
| | - Julia P. Owen
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, Washington, United States
- The Roger and Angie Karalis Johnson Retina Center, Seattle, Washington, United States
| | - Cecilia S. Lee
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, Washington, United States
- The Roger and Angie Karalis Johnson Retina Center, Seattle, Washington, United States
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
9
|
Dumitrascu OM, Doustar J, Fuchs DT, Koronyo Y, Sherman DS, Miller MS, Johnson KO, Carare RO, Verdooner SR, Lyden PD, Schneider JA, Black KL, Koronyo-Hamaoui M. Distinctive retinal peri-arteriolar versus peri-venular amyloid plaque distribution correlates with the cognitive performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.580733. [PMID: 38464292 PMCID: PMC10925252 DOI: 10.1101/2024.02.27.580733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Introduction The vascular contribution to Alzheimer's disease (AD) is tightly connected to cognitive performance across the AD continuum. We topographically describe retinal perivascular amyloid plaque (AP) burden in subjects with normal or impaired cognition. Methods Using scanning laser ophthalmoscopy, we quantified retinal peri-arteriolar and peri-venular curcumin-positive APs in the first, secondary and tertiary branches in twenty-eight subjects. Perivascular AP burden among cognitive states was correlated with neuroimaging and cognitive measures. Results Peri-arteriolar exceeded peri-venular AP count (p<0.0001). Secondary branch AP count was significantly higher in cognitively impaired (p<0.01). Secondary small and tertiary peri-venular AP count strongly correlated with clinical dementia rating, hippocampal volumes, and white matter hyperintensity count. Discussion Our topographic analysis indicates greater retinal amyloid accumulation in the retinal peri-arteriolar regions overall, and distal peri-venular regions in cognitively impaired individuals. Larger longitudinal studies are warranted to understand the temporal-spatial relationship between vascular dysfunction and perivascular amyloid deposition in AD. Highlights Retinal peri-arteriolar region exhibits more amyloid compared with peri-venular regions.Secondary retinal vascular branches have significantly higher perivascular amyloid burden in subjects with impaired cognition, consistent across sexes.Cognitively impaired individuals have significantly greater retinal peri-venular amyloid deposits in the distal small branches, that correlate with CDR and hippocampal volumes.
Collapse
|
10
|
Goerdt L, Holz FG, Finger RP. [Retinal optical coherence tomography biomarkers in dementia]. DIE OPHTHALMOLOGIE 2024; 121:84-92. [PMID: 37847375 DOI: 10.1007/s00347-023-01947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Due to the general aging of society, the prevalence and incidence of dementia are expected to increase considerably. In order to timely identify patients and assess their need for treatment and/or supportive measures, comprehensive and easy access screening methods are required, which, however, are yet to be developed. To date, several biomarkers for the presence of dementia on high-resolution spectral domain optical coherence tomography (OCT) and OCT angiography (OCT-A) images were identified. AIM To summarize previously identified OCT biomarkers in dementia and to assess their suitability for comprehensive screening examinations. MATERIAL AND METHODS A literature search was conducted on PubMed until March 2023 for the keywords "dementia", "mild cognitive impairment", "OCT", "OCT angiography" and "retinal biomarkers". Relevant publications were identified and summarized. RESULTS Numerous unspecific alterations on OCT imaging and OCT‑A were identified in patients with (predementia) dementia according to many population and clinical studies. These include a reduced thickness of the peripapillary retinal nerve fiber layer, the ganglion cell complex and the central retinal region. Additionally, a reduced vascular density and an enlarged foveal avascular zone (FAZ) were identified on OCT‑A imaging. CONCLUSION The currently known OCT biomarkers are too unspecific, and there is to date no OCT or OCT-A-based signature distinguishing between different types of dementia. Further longitudinal studies with larger sample sizes are warranted to develop and evaluate such distinct OCT signatures for different types of dementia and their respective early disease stages and to assess their prognostic value. Only then is the inclusion in comprehensive screening investigations feasible.
Collapse
Affiliation(s)
- L Goerdt
- Universitäts-Augenklinik Bonn, Ernst-Abbe-Str. 2, 53127, Bonn, Deutschland.
| | - F G Holz
- Universitäts-Augenklinik Bonn, Ernst-Abbe-Str. 2, 53127, Bonn, Deutschland
| | - R P Finger
- Universitäts-Augenklinik Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Deutschland
| |
Collapse
|
11
|
Shen Z, Zhang S, Yu W, Yue M, Hong C. Optical Coherence Tomography Angiography: Revolutionizing Clinical Diagnostics and Treatment in Central Nervous System Disease. Aging Dis 2024:AD.2024.0112. [PMID: 38300645 DOI: 10.14336/ad.2024.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Optical coherence tomography angiography (OCTA), as a new generation of non-invasive and efficient fundus imaging technology, can provide non-invasive assessment of vascular lesions in the retina and choroid. In terms of anatomy and development, the retina is referred to as an extension of the central nervous system (CNS). CNS diseases are closely related to changes in fundus structure and blood vessels, and direct visualization of fundus structure and blood vessels provides an effective "window" for CNS research. This has important practical significance for identifying the characteristic changes of various CNS diseases on OCTA in the future, and plays a key role in promoting early screening, diagnosis, and monitoring of disease progression in CNS diseases. This article reviews relevant fundus studies by comparing and summarizing the unique advantages and existing limitations of OCTA in various CNS disease patients, in order to demonstrate the clinical significance of OCTA in the diagnosis and treatment of CNS diseases.
Collapse
Affiliation(s)
- Zeqi Shen
- Postgraduate training base Alliance of Wenzhou Medical University (Affiliated People's Hospital), Hangzhou, Zhejiang, China
| | - Sheng Zhang
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weitao Yu
- The Second School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mengmeng Yue
- Postgraduate training base Alliance of Wenzhou Medical University (Affiliated People's Hospital), Hangzhou, Zhejiang, China
| | - Chaoyang Hong
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Li R, Hui Y, Zhang X, Zhang S, Lv B, Ni Y, Li X, Liang X, Yang L, Lv H, Yin Z, Li H, Yang Y, Liu G, Li J, Xie G, Wu S, Wang Z. Ocular biomarkers of cognitive decline based on deep-learning retinal vessel segmentation. BMC Geriatr 2024; 24:28. [PMID: 38184539 PMCID: PMC10770952 DOI: 10.1186/s12877-023-04593-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 12/13/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND The current literature shows a strong relationship between retinal neuronal and vascular alterations in dementia. The purpose of the study was to use NFN+ deep learning models to analyze retinal vessel characteristics for cognitive impairment (CI) recognition. METHODS We included 908 participants from a community-based cohort followed for over 15 years (the prospective KaiLuan Study) who underwent brain magnetic resonance imaging (MRI) and fundus photography between 2021 and 2022. The cohort consisted of both cognitively healthy individuals (N = 417) and those with cognitive impairment (N = 491). We employed the NFN+ deep learning framework for retinal vessel segmentation and measurement. Associations between Retinal microvascular parameters (RMPs: central retinal arteriolar / venular equivalents, arteriole to venular ratio, fractal dimension) and CI were assessed by Pearson correlation. P < 0.05 was considered statistically significant. The correlation between the CI and RMPs were explored, then the correlation coefficients between CI and RMPs were analyzed. Random Forest nonlinear classification model was used to predict whether one having cognitive decline or not. The assessment criterion was the AUC value derived from the working characteristic curve. RESULTS The fractal dimension (FD) and global vein width were significantly correlated with the CI (P < 0.05). Age (0.193), BMI (0.154), global vein width (0.106), retinal vessel FD (0.099), and CRAE (0.098) were the variables in this model that were ranked in order of feature importance. The AUC values of the model were 0.799. CONCLUSIONS Establishment of a predictive model based on the extraction of vascular features from fundus images has a high recognizability and predictive power for cognitive function and can be used as a screening method for CI.
Collapse
Affiliation(s)
- Rui Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ying Hui
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | | - Shun Zhang
- Department of Psychiatry, Kailuan Mental Health Centre, Hebei province, Tangshan, China
| | - Bin Lv
- Ping An Healthcare Technology, Beijing, China
| | - Yuan Ni
- Ping An Healthcare Technology, Beijing, China
| | - Xiaoshuai Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoliang Liang
- Department of Psychiatry, Kailuan Mental Health Centre, Hebei province, Tangshan, China
| | - Ling Yang
- School of Public Health, North China University of Science and Technology, Hebei province, Tangshan, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhiyu Yin
- Longzhen Senior Care, Beijing, China
| | - Hongyang Li
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingping Yang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangfeng Liu
- Department of Ophthalmology, Peking University International Hospital, Beijing, China
| | - Jing Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Guotong Xie
- Ping An Healthcare Technology, Beijing, China.
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, 57 Xinhua E Rd, Tangshan, China.
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Corradetti G, Oncel D, Kadomoto S, Arakaki X, Kloner RA, Sadun AA, Sadda SR, Chan JW. Choriocapillaris and Retinal Vascular Alterations in Presymptomatic Alzheimer's Disease. Invest Ophthalmol Vis Sci 2024; 65:47. [PMID: 38294804 PMCID: PMC10839815 DOI: 10.1167/iovs.65.1.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Purpose To compare optical coherence tomography angiography (OCTA) retina metrics between cognitively healthy subjects with pathological versus normal cerebrospinal fluid (CSF) Aβ42/tau ratios. Methods Swept-source OCTA scans were collected using the Zeiss PLEX Elite 9000 and analyzed on 23 cognitively healthy (CH) subjects who had previously undergone CSF analysis. Thirteen subjects had a pathological Aβ42/tau (PAT) ratio of <2.7132, indicative of presymptomatic Alzheimer's disease (AD), and 10 had a normal Aβ42/tau (NAT) ratio of ≥2.7132. OCTA en face images of the superficial vascular complex (SVC) and deep vascular complex were binarized and skeletonized to quantify the perfusion density (PD), vessel length density (VLD), and fractal dimension (FrD). The foveal avascular zone (FAZ) area was calculated using the SVC slab. Choriocapillaris flow deficits (CCFDs) were computed from the en face OCTA slab of the CC. The above parameters were compared between CH-PATs and CH-NATs. Results Compared to CH-NATs, CH-PATs showed significantly decreased PD, VLD, and FrD in the SVC, with a significantly increased FAZ area and CCFDs. Conclusions Swept-source OCTA analysis of the SVC and CC suggests a significant vascular loss at the CH stage of pre-AD that might be an indicator of a neurodegenerative process initiated by the impaired clearance of Aβ42 in the blood vessel wall and by phosphorylated tau accumulation in the perivascular spaces, a process that most likely mirrors that in the brain. If confirmed in larger longitudinal studies, OCTA retinal and inner choroidal metrics may be important biomarkers for assessing presymptomatic AD.
Collapse
Affiliation(s)
- Giulia Corradetti
- Doheny Eye Institute, Pasadena, California, United States
- Department of Ophthalmology David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States
| | - Deniz Oncel
- Doheny Eye Institute, Pasadena, California, United States
| | - Shin Kadomoto
- Doheny Eye Institute, Pasadena, California, United States
| | - Xianghong Arakaki
- Cognition and Brain Integration Laboratory, Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, California, United States
| | - Robert A. Kloner
- Clinical Neuroscience, Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, California, United States
- Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, California, United States
- Cardiovascular Division, Department of Medicine Keck School of Medicine of University of Southern California, Los Angeles, California, United States
| | - Alfredo A. Sadun
- Doheny Eye Institute, Pasadena, California, United States
- Department of Ophthalmology David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States
| | - SriniVas R. Sadda
- Doheny Eye Institute, Pasadena, California, United States
- Department of Ophthalmology David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States
| | - Jane W. Chan
- Doheny Eye Institute, Pasadena, California, United States
- Department of Ophthalmology David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States
| |
Collapse
|
14
|
Poudel P, Frost SM, Eslick S, Sohrabi HR, Taddei K, Martins RN, Hone E. Hyperspectral Retinal Imaging as a Non-Invasive Marker to Determine Brain Amyloid Status. J Alzheimers Dis 2024; 100:S131-S152. [PMID: 39121128 DOI: 10.3233/jad-240631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Background As an extension of the central nervous system (CNS), the retina shares many similarities with the brain and can manifest signs of various neurological diseases, including Alzheimer's disease (AD). Objective To investigate the retinal spectral features and develop a classification model to differentiate individuals with different brain amyloid levels. Methods Sixty-six participants with varying brain amyloid-β protein levels were non-invasively imaged using a hyperspectral retinal camera in the wavelength range of 450-900 nm in 5 nm steps. Multiple retina features from the central and superior views were selected and analyzed to identify their variability among individuals with different brain amyloid loads. Results The retinal reflectance spectra in the 450-585 nm wavelengths exhibited a significant difference in individuals with increasing brain amyloid. The retinal features in the superior view showed higher inter-subject variability. A classification model was trained to differentiate individuals with varying amyloid levels using the spectra of extracted retinal features. The performance of the spectral classification model was dependent upon retinal features and showed 0.758-0.879 accuracy, 0.718-0.909 sensitivity, 0.764-0.912 specificity, and 0.745-0.891 area under curve for the right eye. Conclusions This study highlights the spectral variation of retinal features associated with brain amyloid loads. It also demonstrates the feasibility of the retinal hyperspectral imaging technique as a potential method to identify individuals in the preclinical phase of AD as an inexpensive alternative to brain imaging.
Collapse
Affiliation(s)
- Purna Poudel
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Shaun M Frost
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Kensington, WA, Australia
- Australian e-Health Research Centre, Floreat, WA, Australia
| | - Shaun Eslick
- Lifespan Health and Wellbeing Research Centre, Macquarie Medical School, Macquarie University, Macquarie Park, NSW, Australia
| | - Hamid R Sohrabi
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, WA, Australia
| | - Kevin Taddei
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Lions Alzheimer's Foundation, Perth, WA, Australia
| | - Ralph N Martins
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Lifespan Health and Wellbeing Research Centre, Macquarie Medical School, Macquarie University, Macquarie Park, NSW, Australia
- Lions Alzheimer's Foundation, Perth, WA, Australia
| | - Eugene Hone
- Alzheimer's Research Australia, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Lions Alzheimer's Foundation, Perth, WA, Australia
| |
Collapse
|
15
|
Li C, Zhu X, Yang K, Ju Y, Shi K, Xiao Y, Su B, Lu F, Cui L, Li M. Relationship of retinal capillary plexus and ganglion cell complex with mild cognitive impairment and dementia. Eye (Lond) 2023; 37:3743-3750. [PMID: 37270614 PMCID: PMC10698172 DOI: 10.1038/s41433-023-02592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 06/05/2023] Open
Abstract
OBJECTIVE To investigate relationship of the retinal capillary plexus (RCP) and ganglion cell complex (GCC) with mild cognitive impairment (MCI) and dementia in a community-based study1. METHODS This cross-sectional study incorporated the participants of the Jidong Eye Cohort Study. Optical coherence tomography angiography was performed to obtain RCP vessel density and GCC thickness with detailed segments. The Mini-mental State Examination and Montreal Cognitive Assessment were used to assess cognitive status by professional neuropsychologists. Participants were thus divided into three groups: normal, mild cognitive impairment, and dementia. Multivariable analysis was used to measure relationship of ocular parameters with cognitive impairment. RESULTS Of the 2678 participants, the mean age was 44.1 ± 11.7 years. MCI and dementia occurred in 197 (7.4%) and 80 (3%) participants, respectively. Compared to the normal group, the adjusted odds ratio (OR) with the 95% confidence interval was 0.76 (0.65-0.90) for the correlation of lower deep RCP with MCI. We found the following items significantly associated with dementia compared with the normal group: a superficial (OR, 0.68 [0.54-0.86]) and deep (OR, 0.75 [0.57-0.99]) RCP, as well as the GCC (OR, 0.68 [0.54-0.85]). Compared to the MCI group, those with dementia had decreased GCC (OR, 0.75 [0.58-0.97]). CONCLUSIONS Decreased deep RCP density was associated with MCI. Decreased superficial and deep RCP and the thin GCC were correlated with dementia. These implied that the retinal microvasculature may develop into a promising non-invasive imaging marker to predict severity of cognitive impairment.
Collapse
Affiliation(s)
- Chunmei Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoxuan Zhu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Kai Yang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ying Ju
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Keai Shi
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yunfan Xiao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Binbin Su
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Fan Lu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Lele Cui
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Ming Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
16
|
Santos-Ortega Á, Alba-Linero C, Urbinati F, Rocha-de-Lossada C, Orti R, Reyes-Bueno JA, Garzón-Maldonado FJ, Serrano V, de Rojas-Leal C, de la Cruz-Cosme C, España-Contreras M, Rodríguez-Calvo-de-Mora M, García-Casares N. Structural and Functional Retinal Changes in Patients with Mild Cognitive Impairment with and without Diabetes. J Clin Med 2023; 12:7035. [PMID: 38002648 PMCID: PMC10672424 DOI: 10.3390/jcm12227035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Our objective is to analyze retinal changes using optical coherence tomography angiography (OCT-A) in patients with mild cognitive impairment (MCI) to characterize structural and vascular alterations. This cross-sectional study involved 117 eyes: 39 eyes from patients with MCI plus diabetes (DM-MCI), 39 eyes from patients with MCI but no diabetes (MCI); and 39 healthy control eyes (C). All patients underwent a visual acuity measurement, a structural OCT, an OCT-A, and a neuropsychological examination. Our study showed a thinning of retinal nerve fiber layer thickness (RNFL) and a decrease in macular thickness when comparing the MCI-DM group to the C group (p = 0.008 and p = 0.016, respectively). In addition, an increase in arteriolar thickness (p = 0.016), a reduction in superficial capillary plexus density (p = 0.002), and a decrease in ganglion cell thickness (p = 0.027) were found when comparing the MCI-DM group with the MCI group. Diabetes may exacerbate retinal vascular changes when combined with mild cognitive impairment.
Collapse
Affiliation(s)
| | - Carmen Alba-Linero
- Department of Ophthalmology, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- Department of Ophthalmology, Faculty of Medicine, University of Malaga, 29016 Malaga, Spain;
| | - Facundo Urbinati
- Department of Ophthalmology, Hospital Regional Universitario, 29011 Malaga, Spain; (F.U.); (C.R.-d.-L.); (M.E.-C.); (M.R.-C.-d.-M.)
| | - Carlos Rocha-de-Lossada
- Department of Ophthalmology, Hospital Regional Universitario, 29011 Malaga, Spain; (F.U.); (C.R.-d.-L.); (M.E.-C.); (M.R.-C.-d.-M.)
- Qvision, Opththalmology Department, VITHAS Almería Hospital, 04120 Almería, Spain
- Ophthalmology Department, VITHAS Málaga, 29016 Malaga, Spain
- Department of Surgery, Faculty of Medicine, Ophthalmology Area Doctor Fedriani, University of Sevilla, 41004 Sevilla, Spain
| | - Rafael Orti
- Department of Ophthalmology, Faculty of Medicine, University of Malaga, 29016 Malaga, Spain;
| | | | - Francisco Javier Garzón-Maldonado
- Department of Neurology, Hospital Virgen de la Victoria, 29010 Malaga, Spain; (F.J.G.-M.); (V.S.); (C.d.R.-L.); (C.d.l.C.-C.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain;
| | - Vicente Serrano
- Department of Neurology, Hospital Virgen de la Victoria, 29010 Malaga, Spain; (F.J.G.-M.); (V.S.); (C.d.R.-L.); (C.d.l.C.-C.)
| | - Carmen de Rojas-Leal
- Department of Neurology, Hospital Virgen de la Victoria, 29010 Malaga, Spain; (F.J.G.-M.); (V.S.); (C.d.R.-L.); (C.d.l.C.-C.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain;
| | - Carlos de la Cruz-Cosme
- Department of Neurology, Hospital Virgen de la Victoria, 29010 Malaga, Spain; (F.J.G.-M.); (V.S.); (C.d.R.-L.); (C.d.l.C.-C.)
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain;
| | - Manuela España-Contreras
- Department of Ophthalmology, Hospital Regional Universitario, 29011 Malaga, Spain; (F.U.); (C.R.-d.-L.); (M.E.-C.); (M.R.-C.-d.-M.)
| | - Marina Rodríguez-Calvo-de-Mora
- Department of Ophthalmology, Hospital Regional Universitario, 29011 Malaga, Spain; (F.U.); (C.R.-d.-L.); (M.E.-C.); (M.R.-C.-d.-M.)
- Qvision, Opththalmology Department, VITHAS Almería Hospital, 04120 Almería, Spain
- Ophthalmology Department, VITHAS Málaga, 29016 Malaga, Spain
| | - Natalia García-Casares
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain;
- Department of Medicine, Faculty of Medicine, University of Malaga, 29016 Malaga, Spain
- Centro de Investigaciones Médico-Sanitarias (CIMES), University of Malaga, 29016 Malaga, Spain
| |
Collapse
|
17
|
Arthur E, Ravichandran S, Snyder PJ, Alber J, Strenger J, Bittner AK, Khankan R, Adams SL, Putnam NM, Lypka KR, Piantino JA, Sinoff S. Retinal mid-peripheral capillary free zones are enlarged in cognitively unimpaired older adults at high risk for Alzheimer's disease. Alzheimers Res Ther 2023; 15:172. [PMID: 37828548 PMCID: PMC10568786 DOI: 10.1186/s13195-023-01312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Compared to standard neuro-diagnostic techniques, retinal biomarkers provide a probable low-cost and non-invasive alternative for early Alzheimer's disease (AD) risk screening. We have previously quantified the periarteriole and perivenule capillary free zones (mid-peripheral CFZs) in cognitively unimpaired (CU) young and older adults as novel metrics of retinal tissue oxygenation. There is a breakdown of the inner retinal blood barrier, pericyte loss, and capillary non-perfusion or dropout in AD leading to potential enlargement of the mid-peripheral CFZs. We hypothesized the mid-peripheral CFZs will be enlarged in CU older adults at high risk for AD compared to low-risk individuals. METHODS 20 × 20° optical coherence tomography angiography images consisting of 512 b-scans, 512 A-scans per b-scan, 12-µm spacing between b-scans, and 5 frames averaged per each b-scan location of the central fovea and of paired major arterioles and venules with their surrounding capillaries inferior to the fovea of 57 eyes of 37 CU low-risk (mean age: 66 years) and 50 eyes of 38 CU high-risk older adults (mean age: 64 years; p = 0.24) were involved in this study. High-risk participants were defined as having at least one APOE e4 allele and a positive first-degree family history of AD while low-risk participants had neither of the two criteria. All participants had Montreal Cognitive Assessment scores ≥ 26. The mid-peripheral CFZs were computed in MATLAB and compared between the two groups. RESULTS The periarteriole CFZ of the high-risk group (75.8 ± 9.19 µm) was significantly larger than that of the low-risk group (71.3 ± 7.07 µm), p = 0.005, Cohen's d = 0.55. The perivenule CFZ of the high-risk group (60.4 ± 8.55 µm) was also significantly larger than that of the low-risk group (57.3 ± 6.40 µm), p = 0.034, Cohen's d = 0.42. There were no significant differences in foveal avascular zone (FAZ) size, FAZ effective diameter, and vessel density between the two groups, all p > 0.05. CONCLUSIONS Our results show larger mid-peripheral CFZs in CU older adults at high risk for AD, with the potential for the periarteriole CFZ to serve as a novel retinal vascular biomarker for early AD risk detection.
Collapse
Affiliation(s)
- Edmund Arthur
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Swetha Ravichandran
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Peter J Snyder
- Department of Neurology, Alpert Medical School of Brown University, Providence, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Jessica Alber
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Butler Hospital Memory & Aging Program, Providence, RI, USA
| | - Jennifer Strenger
- Butler Hospital Memory & Aging Program, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Ava K Bittner
- Department of Ophthalmology, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Rima Khankan
- Southern California College of Optometry, Marshall B. Ketchum University, Fullerton, CA, USA
| | | | - Nicole M Putnam
- State University of New York College of Optometry, New York, NY, USA
| | - Karin R Lypka
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Juan A Piantino
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | | |
Collapse
|
18
|
Ashraf G, McGuinness M, Khan MA, Obtinalla C, Hadoux X, van Wijngaarden P. Retinal imaging biomarkers of Alzheimer's disease: A systematic review and meta-analysis of studies using brain amyloid beta status for case definition. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12421. [PMID: 37250908 PMCID: PMC10210353 DOI: 10.1002/dad2.12421] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 05/31/2023]
Abstract
Introduction We performed a systematic review and meta-analysis of the association between retinal imaging parameters and Alzheimer's disease (AD). Methods PubMed, EMBASE, and Scopus were systematically searched for prospective and observational studies. Included studies had AD case definition based on brain amyloid beta (Aβ) status. Study quality assessment was performed. Random-effects meta-analyses of standardized mean difference, correlation, and diagnostic accuracy were conducted. Results Thirty-eight studies were included. There was weak evidence of peripapillary retinal nerve fiber layer thinning on optical coherence tomography (OCT) (p = 0.14, 11 studies, n = 828), increased foveal avascular zone area on OCT-angiography (p = 0.18, four studies, n = 207), and reduced arteriole and venule vessel fractal dimension on fundus photography (p < 0.001 and p = 0.08, respectively, three studies, n = 297) among AD cases. Discussion Retinal imaging parameters appear to be associated with AD. Small study sizes and heterogeneity in imaging methods and reporting make it difficult to determine utility of these changes as AD biomarkers. Highlights We performed a systematic review on retinal imaging and Alzheimer's disease (AD).We only included studies in which cases were based on brain amyloid beta status.Several retinal biomarkers were associated with AD but clinical utility is uncertain.Studies should focus on biomarker-defined AD and use standardized imaging methods.
Collapse
Affiliation(s)
- Gizem Ashraf
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVictoriaAustralia
| | - Myra McGuinness
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Muhammad Azaan Khan
- Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Czarina Obtinalla
- Discipline of OrthopticsSchool of Allied HealthHuman Services & SportCollege of ScienceHealth & EngineeringLa Trobe UniversityMelbourneVictoriaAustralia
| | - Xavier Hadoux
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
| | - Peter van Wijngaarden
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVictoriaAustralia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
19
|
Retinal Neurodegeneration Measured With Optical Coherence Tomography and Neuroimaging in Alzheimer Disease: A Systematic Review. J Neuroophthalmol 2023; 43:116-125. [PMID: 36255105 DOI: 10.1097/wno.0000000000001673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Optical coherence tomography (OCT) has enabled several retinal alterations to be detected in patients with Alzheimer disease (AD), alterations that could be potential biomarkers. However, the relationship between the retina and other biomarkers of AD has been underresearched. We gathered and analyzed the literature about the relationship between retinal and cerebral alterations detected via neuroimaging in patients with AD, mild cognitive impairment (MCI), and preclinical AD. METHODS This systematic review followed the PRISMA Statement guidelines through the 27 items on its checklist. We searched in PubMed, BVS, Scopus, and the Cochrane Library, using the keywords: Alzheimer's disease, optical coherence tomography, white matter, cortex, atrophy, cortical thickness, neuroimaging, magnetic resonance imaging, and positron emission tomography. We included articles that studied the retina in relation to neuroimaging in patients with AD, MCI, and preclinical AD. We excluded studies without OCT, without neuroimaging, clinical cases, opinion articles, systematic reviews, and animal studies. RESULTS Of a total of 35 articles found, 23 were finally included. Although mixed results were found, most of these corroborate the relationship between retinal and brain disorders. CONCLUSIONS More rigorous research is needed in the field, including homogenized, longitudinal, and prolonged follow-up studies, as well as studies that include all stages of AD. This will enable better understanding of the retina and its implications in AD, leading to the discovery of retinal biomarkers that reflect brain alterations in AD patients in an accessible and noninvasive manner.
Collapse
|
20
|
Moon S, Jeon S, Seo SK, Kim DE, Jung NY, Kim SJ, Lee MJ, Lee J, Kim EJ. Comparison of Retinal Structural and Neurovascular Changes between Patients with and without Amyloid Pathology. J Clin Med 2023; 12:jcm12041310. [PMID: 36835845 PMCID: PMC9964845 DOI: 10.3390/jcm12041310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
To evaluate whether an impaired anterior visual pathway (retinal structures with microvasculature) is associated with underlying beta-amyloid (Aβ) pathologies in patients with Alzheimer's disease dementia (ADD) and mild cognitive impairment (MCI), we compared retinal structural and vascular factors in each subgroup with positive or negative amyloid biomarkers. Twenty-seven patients with dementia, thirty-five with MCI, and nine with cognitively unimpaired (CU) controls were consecutively recruited. All participants were divided into positive Aβ (A+) or negative Aβ (A-) pathology based on amyloid positron emission tomography or cerebrospinal fluid Aβ. The retinal circumpapillary retinal nerve fiber layer thickness (cpRNFLT), macular ganglion cell/inner plexiform layer thickness (mGC/IPLT), and microcirculation of the macular superficial capillary plexus were measured using optical coherence tomography (OCT) and OCT angiography. One eye of each participant was included in the analysis. Retinal structural and vascular factors significantly decreased in the following order: dementia < MCI < CU controls. The A+ group had significantly lower microcirculation in the para- and peri-foveal temporal regions than did the A-. However, the structural and vascular parameters did not differ between the A+ and A- with dementia. The cpRNFLT was unexpectedly greater in the A+ than in the A- with MCI. mGC/IPLT was lower in the A+ CU than in the A- CU. Our findings suggest that retinal structural changes may occur in the preclinical and early stages of dementia but are not highly specific to AD pathophysiology. In contrast, decreased temporal macula microcirculation may be used as a biomarker for the underlying Aβ pathology.
Collapse
Affiliation(s)
- Sangwoo Moon
- Department of Ophthalmology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan 49241, Republic of Korea
| | - Sumin Jeon
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan 49241, Republic of Korea
| | - Sook Kyeong Seo
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan 49241, Republic of Korea
| | - Da Eun Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan 49241, Republic of Korea
| | - Na-Yeon Jung
- Department of Neurology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Seung Joo Kim
- Department of Neurology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon 51472, Republic of Korea
| | - Myung Jun Lee
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan 49241, Republic of Korea
| | - Jiwoong Lee
- Department of Ophthalmology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan 49241, Republic of Korea
- Correspondence: (J.L.); (E.-J.K.)
| | - Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan 49241, Republic of Korea
- Correspondence: (J.L.); (E.-J.K.)
| |
Collapse
|
21
|
Currant H, Fitzgerald TW, Patel PJ, Khawaja AP, Webster AR, Mahroo OA, Birney E. Sub-cellular level resolution of common genetic variation in the photoreceptor layer identifies continuum between rare disease and common variation. PLoS Genet 2023; 19:e1010587. [PMID: 36848389 PMCID: PMC9997913 DOI: 10.1371/journal.pgen.1010587] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 03/09/2023] [Accepted: 12/20/2022] [Indexed: 03/01/2023] Open
Abstract
Photoreceptor cells (PRCs) are the light-detecting cells of the retina. Such cells can be non-invasively imaged using optical coherence tomography (OCT) which is used in clinical settings to diagnose and monitor ocular diseases. Here we present the largest genome-wide association study of PRC morphology to date utilising quantitative phenotypes extracted from OCT images within the UK Biobank. We discovered 111 loci associated with the thickness of one or more of the PRC layers, many of which had prior associations to ocular phenotypes and pathologies, and 27 with no prior associations. We further identified 10 genes associated with PRC thickness through gene burden testing using exome data. In both cases there was a significant enrichment for genes involved in rare eye pathologies, in particular retinitis pigmentosa. There was evidence for an interaction effect between common genetic variants, VSX2 involved in eye development and PRPH2 known to be involved in retinal dystrophies. We further identified a number of genetic variants with a differential effect across the macular spatial field. Our results suggest a continuum between common and rare variation which impacts retinal structure, sometimes leading to disease.
Collapse
Affiliation(s)
- Hannah Currant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tomas W. Fitzgerald
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | - Praveen J. Patel
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Anthony P. Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | | | - Andrew R. Webster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Omar A. Mahroo
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- Section of Ophthalmology, King’s College London, St Thomas’ Hospital Campus, London, United Kingdom
- Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (OAM); (EB)
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
- * E-mail: (OAM); (EB)
| |
Collapse
|
22
|
Moussa M, Falfoul Y, Nasri A, El Matri K, Kacem I, Mrabet S, Chebil A, Gharbi A, Gouider R, El Matri L. Optical coherence tomography and angiography in Alzheimer's disease and other cognitive disorders. Eur J Ophthalmol 2023:11206721221148952. [PMID: 36617984 DOI: 10.1177/11206721221148952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIMS The aims of this study were to analyze retinal and choroidal changes on optical coherence tomography (OCT) and OCT-Angiography (OCT-A) in Alzheimer's disease (AD) patients and compare them to other forms of major dementia. We also aimed to analyze the correlation between clinical severity of global cognitive deficiency assessed by the mini-mental state exam (MMSE) score and OCT/OCT-A parameters. METHODS Retrospective cross-sectional evaluative study of AD, and age-and gender-matched patients with other dementias. Fundus examination, OCT and OCT-A were compared. RESULTS Ninety-one eyes of AD patients and 53 eyes of patients with other dementias were included. Retinal deposits were found in 6.59% of AD cases. OCT highlighted the presence of hyperreflective deposits and localized areas of outer retina and ellipsoid zone disruption, respectively in 20.87% and 15.38% of AD cases. Hyperreflective foci were noted within inner retinal layers in 4.39% of AD cases. Quantitative analysis revealed a thicker nasal retinal nerve fiber layer (p = 0.001) and ganglion cell complex in superior (p = 0.011) and temporal quadrants (p = 0.009) in eyes of AD patients, compared to other dementias. OCT-A showed a significantly higher fractal dimension of both superficial and deep capillary plexus (p = 0.005), with lower choriocapillaris density (p = 0.003) in AD patients. CONCLUSIONS Structural OCT could highlight the presence of hyperreflective deposits in AD, probably reflecting beta-amyloid deposits, associated to outer retinal disruptions. Quantitative OCT analysis showed structural differences between AD patients and other dementias, and combined OCT-A could identify microvascular changes in AD patients representing new potential differential diagnosis criteria.
Collapse
Affiliation(s)
- Mohamed Moussa
- Department of Ophthalmology B, 383447Hedi Raies Institute of Ophthalmology, Tunis, Tunisia
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
| | - Yousra Falfoul
- Department of Ophthalmology B, 383447Hedi Raies Institute of Ophthalmology, Tunis, Tunisia
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
| | - Amina Nasri
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
- Department of Neurology, LR18SP03, Clinical Investigation Center "Neurosciences and Mental Health", Razi University Hospital, Tunis, Manouba, Tunisia
| | - Khaled El Matri
- Department of Ophthalmology B, 383447Hedi Raies Institute of Ophthalmology, Tunis, Tunisia
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
| | - Imen Kacem
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
- Department of Neurology, LR18SP03, Clinical Investigation Center "Neurosciences and Mental Health", Razi University Hospital, Tunis, Manouba, Tunisia
| | - Saloua Mrabet
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
- Department of Neurology, LR18SP03, Clinical Investigation Center "Neurosciences and Mental Health", Razi University Hospital, Tunis, Manouba, Tunisia
| | - Ahmed Chebil
- Department of Ophthalmology B, 383447Hedi Raies Institute of Ophthalmology, Tunis, Tunisia
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
| | - Alya Gharbi
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
- Department of Neurology, LR18SP03, Clinical Investigation Center "Neurosciences and Mental Health", Razi University Hospital, Tunis, Manouba, Tunisia
| | - Riadh Gouider
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
- Department of Neurology, LR18SP03, Clinical Investigation Center "Neurosciences and Mental Health", Razi University Hospital, Tunis, Manouba, Tunisia
| | - Leila El Matri
- Department of Ophthalmology B, 383447Hedi Raies Institute of Ophthalmology, Tunis, Tunisia
- Faculty of Medicine of Tunis, 37964University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
23
|
Chaitanuwong P, Jariyakosol S, Apinyawasisuk S, Hirunwiwatkul P, Lawanlattanagul H, Hemrungrojn S, Chongpison Y. Changes in Ocular Biomarkers from Normal Cognitive Aging to Alzheimer's Disease: A Pilot Study. Eye Brain 2023; 15:15-23. [PMID: 36891125 PMCID: PMC9986468 DOI: 10.2147/eb.s391608] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Purpose To identify ophthalmic findings in Alzheimer's type dementia (ATD) compared to normal subjects. Patients and Methods This comparative descriptive study included participants from the institution's cognitive fitness center. Complete ophthalmic examinations were performed. Optical coherence tomography (OCT) and OCT angiography (OCTA) were used to analyze retinal thickness and vascular density. The Ocular Surface Disease Index (OSDI) score and tear breakup time (TBUT) were used to assess dry eye. The blink rate was counted by a well-trained observer. Cognitive function was evaluated using the Thai Mental State Examination (TMSE) score. Correlation analysis was performed to compare OCT, OCTA parameters, and TMSE. Results We included 24 ATD patients and 39 normal participants as a control group by age and sex-matched. The prevalence of dry eye using the Asia Dry Eye Society criteria was 15% and 13% in normal and ATD patients, respectively. The differences in OSDI scores, TBUT, and blink rate between the two groups were not statistically significant. The parafoveal and perifoveal macular thickness of the ATD group were significantly lower than that of the control group (p<0.01). All parameters of the vessel density of the ATD group were significantly lower than in the control group, including the whole macular vessel density (p<0.01), optic disc vessel density at the nerve head level (p<0.01), and optic disc vessel density at the radial peripapillary capillary level (p<0.05). After age adjustment, there were no statistically significant differences in all the OCT and OCTA parameters. There was a positive correlation between retinal thickness and vessel density in the macular and optic disc region and TMSE scores. Conclusion Perifoveal and parafoveal retinal thickness might be more sensitive than peripapillary RNFL thickness to detect neurodegenerative changes in patients with ATD. Macular thickness and vessel density reduction were also positively correlated with cognitive decline.
Collapse
Affiliation(s)
- Pareena Chaitanuwong
- Ophthalmology Department, Rajavithi Hospital, Ministry of Public Health, Bangkok, Thailand.,Department of Ophthalmology, Faculty of Medicine, Rangsit University, Bangkok, Thailand
| | - Supharat Jariyakosol
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Ophthalmology Department, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Supanut Apinyawasisuk
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Ophthalmology Department, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Parima Hirunwiwatkul
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Ophthalmology Department, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Hathairat Lawanlattanagul
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Ophthalmology Department, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Solaphat Hemrungrojn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Cognitive Fitness and Biopsychiatry Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yuda Chongpison
- Biostatistics Excellence Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
24
|
Ma X, Xie Z, Wang H, Tian Z, Bi Y, Li Y, Zhang L. A cross-sectional study of retinal vessel changes based on optical coherence tomography angiography in Alzheimer's disease and mild cognitive impairment. Front Aging Neurosci 2023; 15:1101950. [PMID: 37113575 PMCID: PMC10126258 DOI: 10.3389/fnagi.2023.1101950] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Background The involvement of retina and its vasculature has been recently described in Alzheimer's disease (AD). Optical coherence tomography angiography (OCTA) is noninvasively used to assess the retinal blood flow. Objective This study was to compare vessel density (VD) and blood perfusion density (PD) of the macular in AD patients, mild cognitive impairment (MCI) patients and healthy controls by OCTA, which may provide new ideas for diagnosis of AD or MCI. Methods AD patients, MCI patients and healthy controls underwent a comprehensive ophthalmic and neurological evaluations, including cognitive function assessments as well as visual acuity, intraocular pressure (IOP), slit lamp examinations, and OCTA. General demographic data, cognitive function, retinal VD and PD were compared among three groups. The correlations among retinal VD, PD and cognitive function, amyloid-beta (Aβ) protein and phosphorylated Tau (p-Tau) protein were further evaluated. The correlations between retinal superficial capillary plexus and cognitive function, Aβ protein and p-Tau protein were also explored. Results A total of 139 participants were recruited into this study, including 43 AD patients, 62 MCI patients, and 34 healthy controls. After adjusting for sex, age, history of smoking, history of alcohol intake, hypertension, hyperlipidemia, best corrected visual acuity, and IOP, VD and PD in the nasal and inferior regions of the inner ring, superior and inferior regions of outer ring in the AD group were significantly lower than in the control group (p < 0.05). PD in nasal region of outer ring also significantly decreased in the AD group. VD and PD in superior and inferior regions of inner ring, superior and temporal regions of outer ring in the MCI group were markedly lower than in the control group (p < 0.05). After adjusting for sex and age, VD and PD were correlated with Montreal Cognitive Assessment Basic score, Mini-mental State Examination score, visuospatial function and executive function (p < 0.05), while Aβ protein and p-Tau protein had no relationship with VD and PD. Conclusion Our findings suggest that superficial retinal VD and PD in macula may be potential non-invasive biomarkers for AD and MCI, and these vascular parameters correlate with cognitive function.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zengmai Xie
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huan Wang
- Clinical Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhongping Tian
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanlong Bi
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yanlong Bi,
| | - Yunxia Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Yunxia Li,
| | - Li Zhang
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Li Zhang,
| |
Collapse
|
25
|
Marquié M, García-Sánchez A, Alarcón-Martín E, Martínez J, Castilla-Martí M, Castilla-Martí L, Orellana A, Montrreal L, de Rojas I, García-González P, Puerta R, Olivé C, Cano A, Hernández I, Rosende-Roca M, Vargas L, Tartari JP, Esteban-De Antonio E, Bojaryn U, Ricciardi M, Ariton DM, Pytel V, Alegret M, Ortega G, Espinosa A, Pérez-Cordón A, Sanabria Á, Muñoz N, Lleonart N, Aguilera N, Tárraga L, Valero S, Ruiz A, Boada M. Macular vessel density in the superficial plexus is not associated to cerebrospinal fluid core biomarkers for Alzheimer's disease in individuals with mild cognitive impairment: The NORFACE cohort. Front Neurosci 2023; 17:1076177. [PMID: 36908784 PMCID: PMC9995931 DOI: 10.3389/fnins.2023.1076177] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Background Optical coherence tomography angiography (OCT-A) is a novel method in the dementia field that allows the detection of retinal vascular changes. The comparison of OCT-A measures with established Alzheimer's disease (AD)-related biomarkers is essential to validate the former as a marker of cerebrovascular impairment in the AD continuum. We aimed to investigate the association of macular vessel density (VD) in the superficial plexus quantified by OCT-A with the AT(N) classification based on cerebrospinal fluid (CSF) Aβ1-42, p181-tau and t-tau measurements in individuals with mild cognitive impairment (MCI). Materials and methods Clinical, demographic, ophthalmological, OCT-A and CSF core biomarkers for AD data from the Neuro-ophthalmology Research at Fundació ACE (NORFACE) project were analyzed. Differences in macular VD in four quadrants (superior, nasal, inferior, and temporal) among three AT(N) groups [Normal, Alzheimer and Suspected non-Alzheimer pathology (SNAP)] were assessed in a multivariate regression model, adjusted for age, APOE ε4 status, hypertension, diabetes mellitus, dyslipidemia, heart disease, chronic obstructive pulmonary disease and smoking habit, using the Normal AT(N) group as the reference category. Results The study cohort comprised 144 MCI participants: 66 Normal AT(N), 45 Alzheimer AT(N) and 33 SNAP AT(N). Regression analysis showed no significant association of the AT(N) groups with any of the regional macular VD measures (all, p > 0.16). The interaction between sex and AT(N) groups had no effect on differentiating VD. Lastly, CSF Aβ1-42, p181-tau and t-tau measures were not correlated to VD (all r < 0.13; p > 0.13). Discussion Our study showed that macular VD measures were not associated with the AT(N) classification based on CSF biomarkers in patients with MCI, and did not differ between AD and other underlying causes of cognitive decline in our cohort.
Collapse
Affiliation(s)
- Marta Marquié
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ainhoa García-Sánchez
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Emilio Alarcón-Martín
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Joan Martínez
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Miguel Castilla-Martí
- Clínica Oftalmológica Dr. Castilla, Barcelona, Spain.,Vista Alpina Eye Clinic, Visp, Switzerland
| | - Luis Castilla-Martí
- Ph.D. Programme in Surgery and Morphological Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain.,Hôpital Ophtalmique Jules-Gonin, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Adelina Orellana
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Montrreal
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo García-González
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Puerta
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Clàudia Olivé
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Amanda Cano
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Hernández
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Maitée Rosende-Roca
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Liliana Vargas
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Juan Pablo Tartari
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | | | - Urszula Bojaryn
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Mario Ricciardi
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Diana M Ariton
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Vanesa Pytel
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Montserrat Alegret
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Ortega
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Espinosa
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Pérez-Cordón
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Ángela Sanabria
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Nathalia Muñoz
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Núria Lleonart
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Núria Aguilera
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Lluís Tárraga
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergi Valero
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Agustín Ruiz
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
26
|
Xia X, Qin Q, Peng Y, Wang M, Yin Y, Tang Y. Retinal Examinations Provides Early Warning of Alzheimer's Disease. J Alzheimers Dis 2022; 90:1341-1357. [PMID: 36245377 DOI: 10.3233/jad-220596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with Alzheimer's disease have difficulty maintaining independent living abilities as the disease progresses, causing an increased burden of care on family caregivers and the healthcare system and related financial strain. This patient group is expected to continue to expand as life expectancy climbs. Current diagnostics for Alzheimer's disease are complex, unaffordable, and invasive without regard to diagnosis quality at early stages, which urgently calls for more technical improvements for diagnosis specificity. Optical coherence tomography or tomographic angiography has been shown to identify retinal thickness loss and lower vascular density present earlier than symptom onset in these patients. The retina is an extension of the central nervous system and shares anatomic and functional similarities with the brain. Ophthalmological examinations can be an efficient tool to offer a window into cerebral pathology with the merit of easy operation. In this review, we summarized the latest observations on retinal pathology in Alzheimer's disease and discussed the feasibility of retinal imaging in diagnostic prediction, as well as limitations in current retinal examinations for Alzheimer's disease diagnosis.
Collapse
Affiliation(s)
- Xinyi Xia
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yankun Peng
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Meng Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yunsi Yin
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Chiara C, Gilda C, Daniela M, Antonio C, Miriana M, Marcello M, Elena S, Roberta L, Ciro C, Vincenzo BM. A two-year longitudinal study of retinal vascular impairment in patients with amnestic mild cognitive impairment. Front Aging Neurosci 2022; 14:993621. [PMID: 36420311 PMCID: PMC9678013 DOI: 10.3389/fnagi.2022.993621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
ObjectiveTo evaluate the relation between retinal vascular impairment and cognitive decline in patients with amnestic mild cognitive impairment (aMCI) over time.MethodsSpectral domain-optical coherence tomography (SD-OCT) and OCT angiography study was performed in aMCI patients over 2 years follow-up and compared to baseline.ResultsThirty-eight eyes from 19 aMCI patients were evaluated. Structural and vascular OCT measures were reduced at follow-up except for vessel density (VD) of the choriocapillaris, unchanged, and foveal avascular zone, which was increased; no changes in any parameter were found in 18 age-matched healthy controls. Overall, these findings were confirmed when patients were evaluated separately according to progression to dementia. Only non-converters to dementia showed significant VD reduction in the deep capillary plexuses (coeff. β = −4.20; p < 0.001), may be for an initial massive VD depletion becoming less evident with progression of the disease. MMSE reduction was associated with a higher ganglion cell complex reduction (coeff. β = 0.10; p = 0.04) and a higher VD reduction in the radial peripapillary capillary (RPC) plexus (coeff. β = 0.14; p = 0.02) in the whole patient group, while it was associated with a higher VD reduction only in RPC plexus in converters (coeff. β = 0.21; p < 0.001).ConclusionOur data shows vascular impairment progression in the inner retina of aMCI patients and support the hypothesis that vascular changes may contribute to the onset and progression of Alzheimer’s disease. Other follow-up studies, with a larger number of patients, are needed to better define VD as a potential biomarker.
Collapse
|
28
|
Vij R, Arora S. A systematic survey of advances in retinal imaging modalities for Alzheimer's disease diagnosis. Metab Brain Dis 2022; 37:2213-2243. [PMID: 35290546 DOI: 10.1007/s11011-022-00927-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/04/2022] [Indexed: 01/06/2023]
Abstract
Recent advances in retinal imaging pathophysiology have shown a new function for biomarkers in Alzheimer's disease diagnosis and prognosis. The significant improvements in Optical coherence tomography (OCT) retinal imaging have led to significant clinical translation, particularly in Alzheimer's disease detection. This systematic review will provide a comprehensive overview of retinal imaging in clinical applications, with a special focus on biomarker analysis for use in Alzheimer's disease detection. Articles on OCT retinal imaging in Alzheimer's disease diagnosis were identified in PubMed, Google Scholar, IEEE Xplore, and Research Gate databases until March 2021. Those studies using simultaneous retinal imaging acquisition were chosen, while those using sequential techniques were rejected. "Alzheimer's disease" and "Dementia" were searched alone and in combination with "OCT" and "retinal imaging". Approximately 1000 publications were searched, and after deleting duplicate articles, 145 relevant studies focused on the diagnosis of Alzheimer's disease utilizing retinal imaging were chosen for study. OCT has recently been demonstrated to be a valuable technique in clinical practice as according to this survey, 57% of the researchers employed optical coherence tomography, 19% used ocular fundus imaging, 13% used scanning laser ophthalmoscopy, and 11% have used multimodal imaging to diagnose Alzheimer disease. Retinal imaging has become an important diagnostic technique for Alzheimer's disease. Given the scarcity of available literature, it is clear that future prospective trials involving larger and more homogeneous groups are necessary, and the work can be expanded by evaluating its significance utilizing a machine-learning platform rather than simply using statistical methodologies.
Collapse
Affiliation(s)
- Richa Vij
- School of Computer Science & Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Sakshi Arora
- School of Computer Science & Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India.
| |
Collapse
|
29
|
Ceylan S, Özalp O, Atalay E. A peek at the window from the eye into the brain: potential use of OCT angiography in dementia. EXPERT REVIEW OF OPHTHALMOLOGY 2022. [DOI: 10.1080/17469899.2022.2131541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Semih Ceylan
- Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Onur Özalp
- Devrek State Hospital, Zonguldak, Turkey
| | - Eray Atalay
- Department of Ophthalmology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
30
|
Wang X, Wang Y, Liu H, Zhu X, Hao X, Zhu Y, Xu B, Zhang S, Jia X, Weng L, Liao X, Zhou Y, Tang B, Zhao R, Jiao B, Shen L. Macular Microvascular Density as a Diagnostic Biomarker for Alzheimer’s Disease. J Alzheimers Dis 2022; 90:139-149. [DOI: 10.3233/jad-220482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Some previous studies showed abnormal pathological and vascular changes in the retina of patients with Alzheimer’s disease (AD). However, whether retinal microvascular density is a diagnostic indicator for AD remains unclear. Objective: This study evaluated the macular vessel density (m-VD) in the superficial capillary plexus and fovea avascular zone (FAZ) area in AD, explored their correlations with clinical parameters, and finally confirmed an optimal machine learning model for AD diagnosis. Methods: 77 patients with AD and 145 healthy controls (HCs) were enrolled. The m-VD and the FAZ area were measured using optical coherence tomography angiography (OCTA) in all participants. Additionally, AD underwent neuropsychological assessment, brain magnetic resonance imaging scan, cerebrospinal fluid (CSF) biomarker detection, and APOE ɛ4 genotyping. Finally, the performance of machine learning algorithms based on the OCTA measurements was evaluated by Python programming language. Results: The m-VD was noticeably decreased in AD compared with HCs. Moreover, m-VD in the fovea, superior inner, inferior inner, nasal inner subfields, and the whole inner ring declined significantly in mild AD, while it was more serious in moderate/severe AD. However, no significant difference in the FAZ was noted between AD and HCs. Furthermore, we found that m-VD exhibited a significant correlation with cognitive function, medial temporal atrophy and Fazekas scores, and APOE ɛ4 genotypes. No significant correlations were observed between m-VD and CSF biomarkers. Furthermore, results revealed the Adaptive boosting algorithm exhibited the best diagnostic performance for AD. Conclusion: Macular vascular density could serve as a diagnostic biomarker for AD.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurology, Xiangya Hospital, CentralSouth University, Changsha, China
| | - Yaqin Wang
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, CentralSouth University, Changsha, China
| | - Xiangyu Zhu
- Department of Neurology, Xiangya Hospital, CentralSouth University, Changsha, China
| | - Xiaoli Hao
- Department of Neurology, Xiangya Hospital, CentralSouth University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, CentralSouth University, Changsha, China
| | - Bei Xu
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
| | - Sizhe Zhang
- Department of Neurology, Xiangya Hospital, CentralSouth University, Changsha, China
| | - Xiaoliang Jia
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital, CentralSouth University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province inNeurodegenerative Disorders, Central South University, Changsha, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province inNeurodegenerative Disorders, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province inNeurodegenerative Disorders, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, CentralSouth University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province inNeurodegenerative Disorders, Central South University, Changsha, China
| | - Rongchang Zhao
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, CentralSouth University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province inNeurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, CentralSouth University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province inNeurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
31
|
Kim DS, Shon YS, Hong RK, Oh MK, Cho HY. Microvascular Changes of the Non-surgical Eye after General Anesthesia in Optical Coherence Tomography Angiography. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2022. [DOI: 10.3341/jkos.2022.63.8.669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Purpose: To investigate chorioretinal vascular changes in the non-surgical eyes of patients who underwent vitreoretinal surgery under general anesthesia using optical coherence tomography angiography (OCTA).Methods: Data from 40 patients who underwent retinal surgery were retrospectively analyzed. Ophthalmologic examinations (including OCTA) were performed in the morning before and after surgery. The presence of intraoperative hypotension (IOH; mean arterial pressure <70 mmHg) was determined based on medical records. The vessel density of superficial and deep retinal capillary plexus layers, choriocapillaris void features, and thickness of the choroid and retina were quantified after image processing. Associations between retinal OCTA parameters and anesthesia profiles were also assessed.Results: DCP vessel density was increased after general anesthesia (p < 0.05). Among the patients who experienced IOH, there was no statistical difference in chorioretinal vessel parameters before and after general anesthesia. Also, we did not observe a difference in chorioretinal vessel parameters after general anesthesia between healthy patients and patients with chronic disease, including hypertension and diabetes (p > 0.05). The duration of anesthesia and average size of the choriocapillaris void (p < 0.05, r = -0.32), and the intraoperative mean arterial pressure (MAP) fluctuation and DCP, showed statistically significant negative linear correlations (p < 0.05, r = -0.38). The choriocapillaris void size and intraoperative MAP fluctuation also displayed a significant negative correlation (p < 0.05, r = -0.37), while the average size signal void showed a weak positive linear correlation (p < 0.01, r = 0.41; and p < 0.01, r = 0.44, respectively).Conclusions: This is the first study to assess the effects of general anesthesia on chorioretinal vessels using OCTA. The Vessel density of the DCP was significantly increased in the non-surgical eye after total vitrectomy under general anesthesia. Furthermore, we found a correlation between MAP fluctuation and choriocapillaris void features. More studies are needed to confirm and expand on these observations.
Collapse
|
32
|
Altered retinal cerebral vessel oscillation frequencies in Alzheimer's disease compatible with impaired amyloid clearance. Neurobiol Aging 2022; 120:117-127. [DOI: 10.1016/j.neurobiolaging.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022]
|
33
|
Ma JP, Robbins CB, Lee JM, Soundararajan S, Stinnett SS, Agrawal R, Plassman BL, Lad EM, Whitson H, Grewal DS, Fekrat S. Longitudinal Analysis of the Retina and Choroid in Cognitively Normal Individuals at Higher Genetic Risk of Alzheimer Disease. Ophthalmol Retina 2022; 6:607-619. [PMID: 35283324 PMCID: PMC9271592 DOI: 10.1016/j.oret.2022.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE To assess the baseline differences and longitudinal rate of change in retinal and choroidal imaging parameters between apolipoprotein ε4 (APOE ε4) carriers and noncarriers with normal cognition. DESIGN Prospective study. SUBJECTS Four hundred thirteen eyes of 218 individuals with normal cognition aged ≥ 55 years with known APOE status (98 APOE ε4 carriers and 120 noncarriers). The exclusion criteria included diabetes mellitus, uncontrolled hypertension, glaucoma, and vitreoretinal or neurodegenerative disease. METHODS OCT and OCT angiography (OCTA) were performed at baseline and 2 years (Zeiss Cirrus HD-OCT 5000 with AngioPlex; Zeiss Meditec). The groups were compared using sex- and age-adjusted generalized estimating equations. MAIN OUTCOME MEASURES OCT parameters: retinal nerve fiber layer thickness, macular ganglion cell-inner plexiform layer thickness, central subfield thickness (CST), and choroidal vascularity index. OCT angiography parameters: foveal avascular zone area, perfusion density (PD), vessel density, peripapillary capillary PD (CPD), and capillary flux index (CFI). The rate of change per year was calculated. RESULTS At the baseline, the APOE ε4 carriers had lower CST (P = 0.018), PD in the 6-mm ETDRS circle (P = 0.049), and temporal CFI (P = 0.047). Seventy-one APOE ε4 carriers and 78 noncarriers returned at 2 years; at follow-up, the 6-mm ETDRS circle (P = 0.05) and outer ring (P = 0.049) showed lower PD in the APOE ε4 carriers, with no differences in the rates of change between the groups (all P > 0.05). CONCLUSIONS There was exploratory evidence of differences in the CST, PD, and peripapillary CFI between the APOE ε4 carriers and noncarriers with normal cognition. Larger and longer-term studies may help further elucidate the potential prognostic value of these findings.
Collapse
Affiliation(s)
- Justin P Ma
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina; Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Cason B Robbins
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina; Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Jia Min Lee
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Srinath Soundararajan
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina; Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Sandra S Stinnett
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina; Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Rupesh Agrawal
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Singapore Eye Research Institute, Singapore, Singapore; Duke NUS Medical School, Singapore, Singapore
| | - Brenda L Plassman
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina; Departments of Psychiatry and Neurology, Duke University School of Medicine, Durham, North Carolina
| | - Eleonora M Lad
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Heather Whitson
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Dilraj S Grewal
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina; Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Sharon Fekrat
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina; Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
34
|
López-Cuenca I, Salobrar-García E, Sánchez-Puebla L, Espejel E, García del Arco L, Rojas P, Elvira-Hurtado L, Fernández-Albarral JA, Ramírez-Toraño F, Barabash A, Salazar JJ, Ramírez JM, de Hoz R, Ramírez AI. Retinal Vascular Study Using OCTA in Subjects at High Genetic Risk of Developing Alzheimer's Disease and Cardiovascular Risk Factors. J Clin Med 2022; 11:3248. [PMID: 35683633 PMCID: PMC9181641 DOI: 10.3390/jcm11113248] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 02/01/2023] Open
Abstract
In 103 subjects with a high genetic risk of developing Alzheimer's disease (AD), family history (FH) of AD and ApoE ɛ4 characterization (ApoE ɛ4) were analyzed for changes in the retinal vascular network by OCTA (optical coherence tomography angiography), and AngioTool and Erlangen-Angio-Tool (EA-Tool) as imaging analysis software. Retinal vascularization was analyzed by measuring hypercholesterolemia (HCL) and high blood pressure (HBP). Angio-Tool showed a statistically significant higher percentage of area occupied by vessels in the FH+ ApoE ɛ4- group vs. in the FH+ ApoE ɛ4+ group, and EA-Tool showed statistically significant higher vascular densities in the C3 ring in the FH+ ApoE ɛ4+ group when compared with: i)FH- ApoE ɛ4- in sectors H3, H4, H10 and H11; and ii) FH+ ApoE ɛ4- in sectors H4 and H12. In participants with HCL and HBP, statistically significant changes were found, in particular using EA-Tool, both in the macular area, mainly in the deep plexus, and in the peripapillary area. In conclusion, OCTA in subjects with genetic risk factors for the development of AD showed an apparent increase in vascular density in some sectors of the retina, which was one of the first vascular changes detectable. These changes constitute a promising biomarker for monitoring the progression of pathological neuronal degeneration.
Collapse
Affiliation(s)
- Inés López-Cuenca
- Ramon Castroviejo Institute of Ophthalmologic Research, Group UCM 920105, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (E.S.-G.); (L.S.-P.); (E.E.); (L.G.d.A.); (P.R.); (L.E.-H.); (J.A.F.-A.); (J.J.S.); (J.M.R.)
| | - Elena Salobrar-García
- Ramon Castroviejo Institute of Ophthalmologic Research, Group UCM 920105, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (E.S.-G.); (L.S.-P.); (E.E.); (L.G.d.A.); (P.R.); (L.E.-H.); (J.A.F.-A.); (J.J.S.); (J.M.R.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Institute of Ophthalmologic Research, Group UCM 920105, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (E.S.-G.); (L.S.-P.); (E.E.); (L.G.d.A.); (P.R.); (L.E.-H.); (J.A.F.-A.); (J.J.S.); (J.M.R.)
| | - Eva Espejel
- Ramon Castroviejo Institute of Ophthalmologic Research, Group UCM 920105, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (E.S.-G.); (L.S.-P.); (E.E.); (L.G.d.A.); (P.R.); (L.E.-H.); (J.A.F.-A.); (J.J.S.); (J.M.R.)
| | - Lucía García del Arco
- Ramon Castroviejo Institute of Ophthalmologic Research, Group UCM 920105, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (E.S.-G.); (L.S.-P.); (E.E.); (L.G.d.A.); (P.R.); (L.E.-H.); (J.A.F.-A.); (J.J.S.); (J.M.R.)
| | - Pilar Rojas
- Ramon Castroviejo Institute of Ophthalmologic Research, Group UCM 920105, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (E.S.-G.); (L.S.-P.); (E.E.); (L.G.d.A.); (P.R.); (L.E.-H.); (J.A.F.-A.); (J.J.S.); (J.M.R.)
- Madrid Eye Institute, Gregorio Marañón General University Hospital, 28007 Madrid, Spain
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Institute of Ophthalmologic Research, Group UCM 920105, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (E.S.-G.); (L.S.-P.); (E.E.); (L.G.d.A.); (P.R.); (L.E.-H.); (J.A.F.-A.); (J.J.S.); (J.M.R.)
| | - José A. Fernández-Albarral
- Ramon Castroviejo Institute of Ophthalmologic Research, Group UCM 920105, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (E.S.-G.); (L.S.-P.); (E.E.); (L.G.d.A.); (P.R.); (L.E.-H.); (J.A.F.-A.); (J.J.S.); (J.M.R.)
| | - Federico Ramírez-Toraño
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Technical University of Madrid, 28233 Madrid, Spain;
- Department of Experimental Psychology, Complutense University of Madrid, 28223 Madrid, Spain
| | - Ana Barabash
- Department of Endocrinology and Nutrition, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
- Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre, Carlos III Health Institute, 28029 Madrid, Spain
- Department of Medicine II, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan J. Salazar
- Ramon Castroviejo Institute of Ophthalmologic Research, Group UCM 920105, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (E.S.-G.); (L.S.-P.); (E.E.); (L.G.d.A.); (P.R.); (L.E.-H.); (J.A.F.-A.); (J.J.S.); (J.M.R.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Institute of Ophthalmologic Research, Group UCM 920105, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (E.S.-G.); (L.S.-P.); (E.E.); (L.G.d.A.); (P.R.); (L.E.-H.); (J.A.F.-A.); (J.J.S.); (J.M.R.)
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Institute of Ophthalmologic Research, Group UCM 920105, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (E.S.-G.); (L.S.-P.); (E.E.); (L.G.d.A.); (P.R.); (L.E.-H.); (J.A.F.-A.); (J.J.S.); (J.M.R.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
| | - Ana I. Ramírez
- Ramon Castroviejo Institute of Ophthalmologic Research, Group UCM 920105, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Complutense University of Madrid, 28040 Madrid, Spain; (I.L.-C.); (E.S.-G.); (L.S.-P.); (E.E.); (L.G.d.A.); (P.R.); (L.E.-H.); (J.A.F.-A.); (J.J.S.); (J.M.R.)
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain
| |
Collapse
|
35
|
Zhang J, Shi L, Shen Y. The retina: A window in which to view the pathogenesis of Alzheimer's disease. Ageing Res Rev 2022; 77:101590. [PMID: 35192959 DOI: 10.1016/j.arr.2022.101590] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/14/2022] [Accepted: 02/12/2022] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is the most familiar type of dementia affecting elderly populations worldwide. Studies of AD patients and AD transgenic mice have revealed alterations in the retina similar to alterations which occur in the AD brain. Moreover, AD retinal pathology occurs even earlier than AD brain pathology. Importantly, non-invasive imaging techniques can be utilized for retinal observation due to the unique optical transparency of the eye, which acts as a convenient window in which preclinical pathology in the AD brain can be monitored. In this review, we overview the existing literature covering different forms of AD retinal pathology and propose a basis for the clinical application of using the retina as a window to view AD during preclinical and clinical stages.
Collapse
Affiliation(s)
- Jie Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disorder Research Center, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Lei Shi
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disorder Research Center, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disorder Research Center, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
36
|
Yeh TC, Kuo CT, Chou YB. Retinal Microvascular Changes in Mild Cognitive Impairment and Alzheimer's Disease: A Systematic Review, Meta-Analysis, and Meta-Regression. Front Aging Neurosci 2022; 14:860759. [PMID: 35572135 PMCID: PMC9096234 DOI: 10.3389/fnagi.2022.860759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/14/2022] [Indexed: 01/03/2023] Open
Abstract
Background The remarkable increase in prevalence and significant morbidity of neurodegenerative diseases pose a tremendous burden for the health care system. Changes in retinal microvasculature metrics associated with Alzheimer's disease (AD) and mild cognitive impairment (MCI) may provide opportunities for early diagnosis and intervention. However, the role of retinal vascular biomarkers remains controversial. We aim to perform a systematic review, meta-analysis and meta-regression to evaluate the comprehensive retinal microvasculature changes in patients with AD and MCI. Methods We conducted a literature search on PubMed, MEDLINE, and EMBASE to identify studies published before May 2021 which assessed the measurements of optical coherence tomography angiography (OCTA) between AD, MCI with healthy control eyes, including foveal avascular zone (FAZ), vessel density (VD) of peripapillary, superficial and deep capillary plexus, and choroidal thickness using a random-effect model. We also performed meta-regression and subgroup analysis and assessed heterogeneity and publication bias to evaluate potential sources of bias. Results Compared with control eyes, VD of superficial capillary plexus was significantly lower in AD [standardized mean difference (SMD): −0.48; 95% CI (−0.70 to −0.27); p = 0.04] and MCI eyes [SMD: −0.42; 95% CI (−0.81 to −0.03); p = 0.03], as well as reduced VD of deep capillary plexus [SMD: −1.19; 95% CI (−2.00 to −0.38]; p < 0.001], [SMD: −0.53; 95% CI (−0.85 to −0.22); p < 0.001]. FAZ was significantly enlarged in AD eyes [SMD: 0.54; 95% CI (0.09 to 0.99); p = 0.02]. The meta-regression analysis showed that the OCTA machine type and macular scan size significantly influenced the variation of VD and FAZ between AD and control eyes (p < 0.05). Conclusion Our results highlight the potential of OCTA as a biomarker to detect early microvasculature deficits in AD and MCI. Notably, the macular scan size and different OCTA machine type could explain the heterogeneity observed in literatures. This information might be useful for future longitudinal study design to evaluate the role of OCTA in monitoring disease progression and treatment efficacy.
Collapse
Affiliation(s)
- Tsai-Chu Yeh
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Tung Kuo
- Institute of Health Behaviors and Community Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Bai Chou
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- *Correspondence: Yu-Bai Chou
| |
Collapse
|
37
|
Yang K, Cui L, Chen X, Yang C, Zheng J, Zhu X, Xiao Y, Su B, Li C, Shi K, Lu F, Qu J, Li M. Decreased Vessel Density in Retinal Capillary Plexus and Thinner Ganglion Cell Complex Associated With Cognitive Impairment. Front Aging Neurosci 2022; 14:872466. [PMID: 35557840 PMCID: PMC9087336 DOI: 10.3389/fnagi.2022.872466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTo determine the association of the retinal capillary plexus (RCP) and ganglion cell complex (GCC) with cognitive impairment using optical coherence tomography angiography (OCTA).MethodsA cross-sectional, community-based study utilizing data from the participants enrolled between August 2019 and January 2020 in the Jidong Eye Cohort Study. We assessed the vessel density in RCP and GCC thickness using OCTA, and cognitive testing using the Montreal Cognitive Assessment (MoCA). Cognitive impairment in this study was defined as MoCA score < 24. We used multivariable analysis to evaluate the association of RCP and GCC with cognitive impairment after adjusting for confounders.ResultsThis study analyzed 1555 participants. The mean age of participants was 52.3 (8.4) years, and 861 (55.4%) were women. Cognitive impairment was observed in 268 (17.2%) participants. The adjusted odds ratio (OR) with 95% confidence interval (95% CI) for parafovea vessel density in the deep RCP with cognitive impairment was 1.20 (1.03–1.39). For vessel area and length density surrounding foveal avascular zone with cognitive impairment, the ORs with 95% CIs were 1.23 (1.07–1.41) and 1.30 (1.13–1.49), respectively. For thickness in the superior GCC with cognitive impairment, the OR with 95% CI was 1.16 (1.01–1.32).ConclusionLower vessel density in the RCP and thinner GCC were associated with cognitive impairment. Our results suggest that alterations in the RCP and GCC could provide further evidence when assessing the cognitive function and may even be potentially useful biomarkers in the detection of cognitive impairment.
Collapse
Affiliation(s)
- Kai Yang
- Eye Hospital and School of Ophthalmology and Optometry, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Lele Cui
- Eye Hospital and School of Ophthalmology and Optometry, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Xueyu Chen
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuang Yang
- Department of Mental Health, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingwei Zheng
- Eye Hospital and School of Ophthalmology and Optometry, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Xiaoxuan Zhu
- Eye Hospital and School of Ophthalmology and Optometry, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Yunfan Xiao
- Eye Hospital and School of Ophthalmology and Optometry, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Binbin Su
- Eye Hospital and School of Ophthalmology and Optometry, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Chunmei Li
- Eye Hospital and School of Ophthalmology and Optometry, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Keai Shi
- Eye Hospital and School of Ophthalmology and Optometry, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Fan Lu
- Eye Hospital and School of Ophthalmology and Optometry, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Jia Qu
- Eye Hospital and School of Ophthalmology and Optometry, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jia Qu,
| | - Ming Li
- Eye Hospital and School of Ophthalmology and Optometry, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
- Ming Li,
| |
Collapse
|
38
|
Differentiating Degenerative from Vascular Dementia with the Help of Optical Coherence Tomography Angiography Biomarkers. Healthcare (Basel) 2022; 10:healthcare10030539. [PMID: 35327019 PMCID: PMC8955832 DOI: 10.3390/healthcare10030539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease and vascular dementia account for the majority of cases of cognitive decline in elderly people. These two main forms of dementia, under which various subtypes fall, are often overlapping and, in some cases, definitive diagnosis may only be possible post-mortem. This has implications for the quality of care and the design of individualized interventions for these patients. Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality used to visualize the retinal layers and vessels which shows encouraging results in the study of various neurological conditions, including dementia. This review aims to succinctly sum up the present state of knowledge and provide critical insight into emerging patterns of OCTA biomarker values in Alzheimer’s disease and vascular dementia. According to the current literature, vessel density seems to be a common biomarker for both forms; inner retinal layer thickness might represent a biomarker preferentially affected in degenerative dementia including Alzheimer’s, while, in contrast, the outer-layer thickness as a whole justifies attention as a potential vascular dementia biomarker. Radial peripapillary capillary density should also be further studied as a biomarker specifically linked to vascular dementia.
Collapse
|
39
|
Fisher RA, Miners JS, Love S. Pathological changes within the cerebral vasculature in Alzheimer's disease: New perspectives. Brain Pathol 2022; 32:e13061. [PMID: 35289012 PMCID: PMC9616094 DOI: 10.1111/bpa.13061] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Cerebrovascular disease underpins vascular dementia (VaD), but structural and functional changes to the cerebral vasculature contribute to disease pathology and cognitive decline in Alzheimer's disease (AD). In this review, we discuss the contribution of cerebral amyloid angiopathy and non‐amyloid small vessel disease in AD, and the accompanying changes to the density, maintenance and remodelling of vessels (including alterations to the composition and function of the cerebrovascular basement membrane). We consider how abnormalities of the constituent cells of the neurovascular unit – particularly of endothelial cells and pericytes – and impairment of the blood‐brain barrier (BBB) impact on the pathogenesis of AD. We also discuss how changes to the cerebral vasculature are likely to impair Aβ clearance – both intra‐periarteriolar drainage (IPAD) and transport of Aβ peptides across the BBB, and how impaired neurovascular coupling and reduced blood flow in relation to metabolic demand increase amyloidogenic processing of APP and the production of Aβ. We review the vasoactive properties of Aβ peptides themselves, and the probable bi‐directional relationship between vascular dysfunction and Aβ accumulation in AD. Lastly, we discuss recent methodological advances in transcriptomics and imaging that have provided novel insights into vascular changes in AD, and recent advances in assessment of the retina that allow in vivo detection of vascular changes in the early stages of AD.
Collapse
Affiliation(s)
- Robert A Fisher
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - J Scott Miners
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - Seth Love
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| |
Collapse
|
40
|
Peng Q, Tseng RMWW, Tham YC, Cheng CY, Rim TH. Detection of Systemic Diseases From Ocular Images Using Artificial Intelligence: A Systematic Review. Asia Pac J Ophthalmol (Phila) 2022; 11:126-139. [PMID: 35533332 DOI: 10.1097/apo.0000000000000515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Despite the huge investment in health care, there is still a lack of precise and easily accessible screening systems. With proven associations to many systemic diseases, the eye could potentially provide a credible perspective as a novel screening tool. This systematic review aims to summarize the current applications of ocular image-based artificial intelligence on the detection of systemic diseases and suggest future trends for systemic disease screening. METHODS A systematic search was conducted on September 1, 2021, using 3 databases-PubMed, Google Scholar, and Web of Science library. Date restrictions were not imposed and search terms covering ocular images, systemic diseases, and artificial intelligence aspects were used. RESULTS Thirty-three papers were included in this systematic review. A spectrum of target diseases was observed, and this included but was not limited to cardio-cerebrovascular diseases, central nervous system diseases, renal dysfunctions, and hepatological diseases. Additionally, one- third of the papers included risk factor predictions for the respective systemic diseases. CONCLUSIONS Ocular image - based artificial intelligence possesses potential diagnostic power to screen various systemic diseases and has also demonstrated the ability to detect Alzheimer and chronic kidney diseases at early stages. Further research is needed to validate these models for real-world implementation.
Collapse
Affiliation(s)
- Qingsheng Peng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Clinical and Translational Sciences Program, Duke-NUS Medical School, Singapore
| | | | - Yih-Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Tyler Hyungtaek Rim
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| |
Collapse
|
41
|
Abstract
ABSTRACT Alzheimer disease (AD) is a significant cause of morbidity and mortality worldwide, with limited treatment options and considerable diagnostic challenges. Identification and validation of retinal changes that correlate with clinicopathologic features of AD could provide a noninvasive method of screening and monitoring progression of disease, with notable implications for developing new therapies, particularly in its preclinical stages. Retinal biomarkers that have been studied to date include structural changes in neurosensory retinal layers, alterations in vascular architecture and function, and pathologic deposition of proteins within the retina, which have all demonstrated variable correlation with the presence of preclinical or clinical AD. Evolution of specialized retinal imaging modalities and advances in artificial intelligence hold great promise for future study in this burgeoning field. The current status of research in retinal biomarkers, and some of the challenges that will need to be addressed in future work, are reviewed herein.
Collapse
Affiliation(s)
- Yuan Amy
- Department of Ophthalmology, University of Washington, Seattle WA, US
| | - Cecilia S. Lee
- Department of Ophthalmology, University of Washington, Seattle WA, US
- Karalis Johnson Retina Center, Seattle WA, US
| |
Collapse
|
42
|
Alzheimer's Disease Seen through the Eye: Ocular Alterations and Neurodegeneration. Int J Mol Sci 2022; 23:ijms23052486. [PMID: 35269629 PMCID: PMC8910735 DOI: 10.3390/ijms23052486] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s Disease (AD) is one of the main neurodegenerative diseases worldwide. Unfortunately, AD shares many similarities with other dementias at early stages, which impedes an accurate premortem diagnosis. Therefore, it is urgent to find biomarkers to allow for early diagnosis of the disease. There is increasing scientific evidence highlighting the similarities between the eye and other structures of the CNS, suggesting that knowledge acquired in eye research could be useful for research and diagnosis of AD. For example, the retina and optic nerve are considered part of the central nervous system, and their damage can result in retrograde and anterograde axon degeneration, as well as abnormal protein aggregation. In the anterior eye segment, the aqueous humor and tear film may be comparable to the cerebrospinal fluid. Both fluids are enriched with molecules that can be potential neurodegenerative biomarkers. Indeed, the pathophysiology of AD, characterized by cerebral deposits of amyloid-beta (Aβ) and tau protein, is also present in the eyes of AD patients, besides numerous structural and functional changes observed in the structure of the eyes. Therefore, all this evidence suggests that ocular changes have the potential to be used as either predictive values for AD assessment or as diagnostic tools.
Collapse
|
43
|
Bannai D, Adhan I, Katz R, Kim LA, Keshavan M, Miller JB, Lizano P. Quantifying Retinal Microvascular Morphology in Schizophrenia Using Swept-Source Optical Coherence Tomography Angiography. Schizophr Bull 2022; 48:80-89. [PMID: 34554256 PMCID: PMC8781445 DOI: 10.1093/schbul/sbab111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Retinovascular changes are reported on fundus imaging in schizophrenia (SZ). This is the first study to use swept-source optical coherence tomography angiography (OCT-A) to comprehensively examine retinal microvascular changes in SZ. METHODS This study included 30 patients with SZ/schizoaffective disorder (8 early and 15 chronic) and 22 healthy controls (HCs). All assessments were performed at Beth Israel Deaconess Medical Center and Massachusetts Eye and Ear. All participants underwent swept-source OCT-A of right (oculus dextrus [OD]) and left (oculus sinister [OS]) eye, clinical, and cognitive assessments. Macular OCT-A images (6 × 6 mm) were collected with the DRI Topcon Triton for superficial, deep, and choriocapillaris vascular regions. Microvasculature was quantified using vessel density (VD), skeletonized vessel density (SVD), fractal dimension (FD), and vessel diameter index (VDI). RESULTS Twenty-one HCs and 26 SZ subjects were included. Compared to HCs, SZ patients demonstrated higher overall OD superficial SVD, OD choriocapillaris VD, and OD choriocapillaris SVD, which were primarily observed in the central, central and outer superior, and central and outer inferior/superior, respectively. Early-course SZ subjects had significantly higher OD superficial VD, OD choriocapillaris SVD, and OD choriocapillaris FD compared to matched HCs. Higher bilateral (OU) superficial VD correlated with lower Positive and Negative Syndrome Scale (PANSS) positive scores, and higher OU deep VDI was associated with higher PANSS negative scores. CONCLUSIONS AND RELEVANCE These results suggest the presence of microvascular dysfunction associated with early-stage SZ. Clinical associations with microvascular alterations further implicate this hypothesis, with higher measures being associated with worse symptom severity and functioning in early stages and with lower symptom severity and better functioning in later stages.
Collapse
Affiliation(s)
- Deepthi Bannai
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Iniya Adhan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Raviv Katz
- Harvard Retinal Imaging Lab, Massachusetts Eye and Ear, Boston, MA, USA
| | - Leo A Kim
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - John B Miller
- Harvard Retinal Imaging Lab, Massachusetts Eye and Ear, Boston, MA, USA
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Age dependence of retinal vascular plexus attenuation in the triple transgenic mouse model of Alzheimer's disease. Exp Eye Res 2021; 214:108879. [PMID: 34896306 PMCID: PMC10155044 DOI: 10.1016/j.exer.2021.108879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022]
Abstract
The influence of Alzheimer's disease (AD) progression and severity on the structural and functional integrity of the cerebral vasculature is well recognized. The retina is an extension of the brain; thus, changes in retinal vascular features may serve as markers of AD cerebrovascular pathologies. However, differentiating normal aging-versus AD-induced retinal vascular changes is unresolved. Therefore, we compared and quantified changes in superficial (SVP), intermediate (IVP), and deep (DVP) retinal vascular plexuses in young, middle-age, and old triple transgenic mouse model of AD (3xT-AD) to the changes that occur in age-matched controls (C57BL/6j). We used immunostaining combined with a novel tissue optical clearing approach along with a computational tool for quantitative analysis of vascular network alterations (vessel length and density) in SVP, IVP, and DVP. All three layers had comparable structural features and densities in young 3xTg-AD and control animals. In controls, IVP and DVP densities decreased with aging (-14% to -32% change from young to old, p < 0.05), while no changes were observed in SVP. In contrast, vascular parameters in the transgenic group decreased in all three layers with aging (-12% to -49% change from young to old, p < 0.05). Furthermore, in the old group, SVP and DVP vascular parameters were lower in the transgenics compared to age-matched controls (p < 0.05). Our analysis demonstrates that normal aging and progression of AD lead to various degrees of vascular alterations in the retina. Specifically, compared to normal aging, changes in vascular features of SVP and DVP regions of the retina are accelerated during AD progression. Considering recent advances in the field of depth-resolved imaging of retinal capillary network and microangiography, noninvasive quantitative monitoring of changes in retinal vascular network parameters of SVP and DVP may serve as markers for diagnosis and staging of Alzheimer's disease and discriminating AD-induced vascular attenuation from age-related vasculopathy.
Collapse
|
45
|
Peng SY, Wu IW, Sun CC, Lee CC, Liu CF, Lin YZ, Yeung L. Investigation of Possible Correlation Between Retinal Neurovascular Biomarkers and Early Cognitive Impairment in Patients With Chronic Kidney Disease. Transl Vis Sci Technol 2021; 10:9. [PMID: 34902002 PMCID: PMC8684295 DOI: 10.1167/tvst.10.14.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose To investigate the association between retinal neurovascular biomarkers and early cognitive impairment among patients with chronic kidney disease (CKD). Methods Patients with CKD stage ≥3 were evaluated using the standardized Mini-Mental State Examination (MMSE). Patients were classified as having a low (<24), middle (24 to 27), and high (>27) MMSE level. Retinal nerve fiber layer thickness, ganglion cell complex (GCC) thickness, GCC global loss volume, and GCC focal loss volume were measured using optical coherence tomography (OCT). Superficial vascular plexus vessel density, deep vascular plexus vessel density (DVP-VD), and size of the foveal avascular zone were obtained by OCT angiography. Results The study enrolled 177 patients with a mean ± SD age of 64.7 ± 6.6 years. The mean ± SD MMSE score was 27.25 ± 2.30. Thirteen, 65, and 99 patients were classified as having a low, middle, and high MMSE level, respectively. The patients with a high MMSE level were younger, had more years of education, had less severe CKD, and had higher DVP-VD than patients with a low MMSE level. The multivariable regression revealed that age (coefficient, 0.294; 95% confidence interval [CI], 0.195–0.393; P = 0.041), years of education (coefficient, 0.294; 95% CI, 0.195–0.393; P < 0.001), estimated glomerular filtration rate (coefficient, 0.019; 95% CI, 0.004–0.035; P = 0.016), and DVP-VD (coefficient, 0.109; 95% CI, 0.007–0.212; P = 0.037) were independent factors associated with MMSE score. Conclusions Retinal DVP-VD was associated with early cognitive impairment among patients with CKD. Translational Relevance DVP-VD measured by OCT angiography may facilitate early detection of cognitive impairment.
Collapse
Affiliation(s)
- Shu-Yen Peng
- Department of Ophthalmology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Ophthalmology, Jen-Ai Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - I-Wen Wu
- Department of Nephrology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chi-Chin Sun
- Department of Ophthalmology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chin-Chan Lee
- Department of Nephrology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Fu Liu
- Department of Ophthalmology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Zi Lin
- Department of Ophthalmology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Ling Yeung
- Department of Ophthalmology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
46
|
Abrishami M, Daneshvar R, Emamverdian Z, Shoeibi N, Sedighi S, Rezvani TS, Saeedian N, Eslami S. Optic Nerve Head Optical Coherence Tomography Angiography Findings after Coronavirus Disease. J Ophthalmic Vis Res 2021; 16:592-601. [PMID: 34840682 PMCID: PMC8593550 DOI: 10.18502/jovr.v16i4.9749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/23/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose To quantify the microvasculature density of the optic nerve head (ONH) using optical coherence tomography angiography (OCTA) analysis in patients recovered from Coronavirus Disease 2019 (COVID-19). Methods In a comparative cross-sectional, observational study, patients recovered from COVID-19 whose initial diagnosis was confirmed by a rRT-PCR of a nasopharyngeal sample were included in this study. OCTA of ONH was performed in included patients and normal controls. Vascular density (VD) of the all vessels (AV) and small vessels (SV) inside the disc and radial peripapillary capillary (RPC) network density were measured in COVID-19 recovered patients and compared with similar parameters in an age-matched group of normal controls. Results Twenty-five COVID-19 patients and twenty-two age-matched normal controls were enrolled in the study and one eye per participant was evaluated. The mean whole image SV VD in the COVID-19 group (49.31 ± 1.93) was not statistically significantly different from that in the control group (49.94 ±. 2.22; P = 0.308). A decrease in RPC VD was found in all AV and SV VD measured, which became statistically significant in whole peripapillary SV VD, peripapillary inferior nasal SV VD, peripapillary inferior temporal SV VD, peripapillary superior nasal SV VD, and grid-based AV VD inferior sector (P< 0.05). Inside disc SV VD in the COVID-19 group (49.43 ± 4.96) was higher than in the control group (45.46 ± 6.22) which was statistically significant (P = 0.021). Conclusion Unremarkable decrease was found in ONH microvasculature in patients who had recovered from COVID-19. These patients may be at risk of ONH vascular complications. Increase in inner disc SV VD may be an indicator of ONH hyperemia and edema.
Collapse
Affiliation(s)
- Mojtaba Abrishami
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Daneshvar
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Emamverdian
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nasser Shoeibi
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Sedighi
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, Jacksonville, FL, USA
| | - Talieh Saeidi Rezvani
- Department of Education and Psychology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Neda Saeedian
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Eslami
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Informatics, Amsterdam Public Health, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
47
|
Dumitrascu OM, Rosenberry R, Sherman DS, Khansari MM, Sheyn J, Torbati T, Sherzai A, Sherzai D, Johnson KO, Czeszynski AD, Verdooner S, Black KL, Frautschy S, Lyden PD, Shi Y, Cheng S, Koronyo Y, Koronyo-Hamaoui M. Retinal Venular Tortuosity Jointly with Retinal Amyloid Burden Correlates with Verbal Memory Loss: A Pilot Study. Cells 2021; 10:cells10112926. [PMID: 34831149 PMCID: PMC8616417 DOI: 10.3390/cells10112926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/21/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction: Retinal imaging is a non-invasive tool to study both retinal vasculature and neurodegeneration. In this exploratory retinal curcumin-fluorescence imaging (RFI) study, we sought to determine whether retinal vascular features combined with retinal amyloid burden correlate with the neurocognitive status. Methods: We used quantitative RFI in a cohort of patients with cognitive impairment to automatically compute retinal amyloid burden. Retinal blood vessels were segmented, and the vessel tortuosity index (VTI), inflection index, and branching angle were quantified. We assessed the correlations between retinal vascular and amyloid parameters, and cognitive domain Z-scores using linear regression models. Results: Thirty-four subjects were enrolled and twenty-nine (55% female, mean age 64 ± 6 years) were included in the combined retinal amyloid and vascular analysis. Eleven subjects had normal cognition and 18 had impaired cognition. Retinal VTI was discriminated among cognitive scores. The combined proximal mid-periphery amyloid count and venous VTI index exhibited significant differences between cognitively impaired and cognitively normal subjects (0.49 ± 1.1 vs. 0.91 ± 1.4, p = 0.006), and correlated with both the Wechsler Memory Scale-IV and SF-36 mental component score Z-scores (p < 0.05). Conclusion: This pilot study showed that retinal venular VTI combined with the proximal mid-periphery amyloid count could predict verbal memory loss. Future research is needed to finesse the clinical application of this retinal imaging-based technology.
Collapse
Affiliation(s)
- Oana M. Dumitrascu
- Department of Neurology, Mayo Clinic, Scottsdale, AZ 85251, USA
- Correspondence: (O.M.D.); (M.K.-H.); Tel.: +480-301-8100 (O.M.D.); Fax: +480-301-9494 (O.M.D.)
| | - Ryan Rosenberry
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.R.); (S.C.)
| | - Dale S. Sherman
- Department of Neuropsychology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Maziyar M. Khansari
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90007, USA; (M.M.K.); (Y.S.)
| | - Julia Sheyn
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.S.); (T.T.); (K.L.B.); (Y.K.)
| | - Tania Torbati
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.S.); (T.T.); (K.L.B.); (Y.K.)
| | - Ayesha Sherzai
- Department of Neurology, Loma Linda University, Loma Linda, CA 92350, USA; (A.S.); (D.S.)
| | - Dean Sherzai
- Department of Neurology, Loma Linda University, Loma Linda, CA 92350, USA; (A.S.); (D.S.)
| | - Kenneth O. Johnson
- NeuroVision Imaging Inc., Sacramento, CA 95833, USA; (K.O.J.); (A.D.C.); (S.V.)
| | - Alan D. Czeszynski
- NeuroVision Imaging Inc., Sacramento, CA 95833, USA; (K.O.J.); (A.D.C.); (S.V.)
| | - Steven Verdooner
- NeuroVision Imaging Inc., Sacramento, CA 95833, USA; (K.O.J.); (A.D.C.); (S.V.)
| | - Keith L. Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.S.); (T.T.); (K.L.B.); (Y.K.)
| | - Sally Frautschy
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Patrick D. Lyden
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Yonggang Shi
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90007, USA; (M.M.K.); (Y.S.)
| | - Susan Cheng
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.R.); (S.C.)
| | - Yosef Koronyo
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.S.); (T.T.); (K.L.B.); (Y.K.)
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (J.S.); (T.T.); (K.L.B.); (Y.K.)
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Correspondence: (O.M.D.); (M.K.-H.); Tel.: +480-301-8100 (O.M.D.); Fax: +480-301-9494 (O.M.D.)
| |
Collapse
|
48
|
Arrigo A, Aragona E, Saladino A, Arrigo D, Fantaguzzi F, Battaglia Parodi M, Bandello F. Cognitive Dysfunctions in Glaucoma: An Overview of Morpho-Functional Mechanisms and the Impact on Higher-Order Visual Function. Front Aging Neurosci 2021; 13:747050. [PMID: 34690746 PMCID: PMC8526892 DOI: 10.3389/fnagi.2021.747050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Glaucoma is a chronic, vision-threatening disease, and a major cause of legal blindness. The current view is no longer limited to the progressive optic nerve injury, since growing evidence strongly support the interpretation of glaucoma as a complex neurodegenerative disease. However, the precise pathogenic mechanisms leading to the onset and progression of central nervous system (CNS) impairment, and the functional consequences of this damage, are still partially understood. The main aim of this review is to provide a complete and updated overview of the current knowledge regarding the CNS involvement in glaucoma, and the possible therapeutic perspectives. Methods: We made a careful survey of the current literature reporting all the relevant findings related to the cognitive dysfunctions occurring in glaucoma, with specific remarks dedicated on the higher-order visual function impairment and the possible employment of neuroprotective agents. Results: The current literature strongly support the interpretation of glaucoma as a multifaceted chronic neurodegenerative disease, widely affecting the CNS. The cognitive impairment may vary in terms of higher-order functions involvement and in the severity of the degeneration. Although several neuroprotective agents are currently available, the development of new molecules represents a major topic of investigation for future clinical trials. Conclusions: Glaucoma earned the right to be fully considered a neurodegenerative disease. Glaucomatous patients may experience a heterogeneous set of visual and cognitive symptoms, progressively deteriorating the quality of life. Neuroprotection is nowadays a necessary therapeutic goal and a future promising way to preserve visual and cognitive functions, thus improving patients' quality of life.
Collapse
Affiliation(s)
- Alessandro Arrigo
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Emanuela Aragona
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Davide Arrigo
- School of Medicine, University of Messina, Messina, Italy
| | - Federico Fantaguzzi
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | | | - Francesco Bandello
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| |
Collapse
|
49
|
Majeed A, Marwick B, Yu H, Fadavi H, Tavakoli M. Ophthalmic Biomarkers for Alzheimer's Disease: A Review. Front Aging Neurosci 2021; 13:720167. [PMID: 34566623 PMCID: PMC8461312 DOI: 10.3389/fnagi.2021.720167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by neuronal loss, extracellular amyloid-β (Aβ) plaques, and intracellular neurofibrillary tau tangles. A diagnosis is currently made from the presenting symptoms, and the only definitive diagnosis can be done post-mortem. Over recent years, significant advances have been made in using ocular biomarkers to diagnose various neurodegenerative diseases, including AD. As the eye is an extension of the central nervous system (CNS), reviewing changes in the eye's biology could lead to developing a series of non-invasive, differential diagnostic tests for AD that could be further applied to other diseases. Significant changes have been identified in the retinal nerve fiber layer (RNFL), cornea, ocular vasculature, and retina. In the present paper, we review current research and assess some ocular biomarkers' accuracy and reliability that could potentially be used for diagnostic purposes. Additionally, we review the various imaging techniques used in the measurement of these biomarkers.
Collapse
Affiliation(s)
- Ayesha Majeed
- Medical School, University of Exeter, Exeter, United Kingdom
| | - Ben Marwick
- Medical School, University of Exeter, Exeter, United Kingdom
| | - Haoqing Yu
- Medical School, University of Exeter, Exeter, United Kingdom
| | | | - Mitra Tavakoli
- Medical School, University of Exeter, Exeter, United Kingdom
- Exeter Centre of Excellence for Diabetes Research, University of Exeter, Exeter, United Kingdom
- National Institute for Health Research, Exeter Clinical Research Facility, Exeter, United Kingdom
| |
Collapse
|
50
|
Abraham AG, Guo X, Arsiwala LT, Dong Y, Sharrett AR, Huang D, You Q, Liu L, Lujan BJ, Tomlinson A, Mosley T, Coresh J, Jia Y, Mihailovic A, Ramulu PY. Cognitive decline in older adults: What can we learn from optical coherence tomography (OCT)-based retinal vascular imaging? J Am Geriatr Soc 2021; 69:2524-2535. [PMID: 34009667 PMCID: PMC8440348 DOI: 10.1111/jgs.17272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Accumulated vascular damage contributes to the onset and progression of vascular dementia and possibly to Alzheimer's disease. Here we evaluate the feasibility and utility of using retinal imaging of microvascular markers to identify older adults at risk of cognitive disease. METHODS The "Eye Determinants of Cognition" (EyeDOC) study recruited a biracial, population-based sample of participants from two sites: Jackson, MS, and Washington Co, MD. Optical coherence tomographic angiography (OCTA) was used to capture vessel density (VD) from a 6 × 6 mm scan of the macula in several vascular layers from 2017 to 2019. The foveal avascular zone (FAZ) area was also estimated. Image quality was assessed by trained graders at a reading center. A neurocognitive battery of 10 tests was administered at three time points from 2011 to 2019 and incident mild cognitive impairement (MCI)/dementia cases were ascertained. Linear mixed-effects models were used to evaluate associations of retinal vascular markers with cognitive factor score change over time. RESULTS Nine-hundred and seventy-six older adults (mean age of 78.7 (± 4.4) years, 44% black) were imaged. Gradable images were obtained in 55% (535/976), with low signal strength (66%) and motion artifact (22%) being the largest contributors to poor quality. Among the 297 participants with both high-quality images and no clinically significant retinal pathology, the average decline in global cognitive function factor score was -0.03 standard deviations per year. In adjusted analyses, no associations of VD or FAZ with longitudinal changes in either global cognitive function or with incident MCI/dementia were found. CONCLUSIONS In this large biracial community sample of older adults representative of the target population for retinal screening of cognitive risk, we found that obtaining high-quality OCTA scans was infeasible in a nearly half of older adults. Among the select sample of healthier older adults with scans, OCTA markers were not predictive of cognitive impairment.
Collapse
Affiliation(s)
- Alison G. Abraham
- Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Denver, CO
- Department of Ophthalmology, University of Colorado, Anschutz Medical Campus, Denver, CO
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xinxing Guo
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lubaina T. Arsiwala
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - YaNan Dong
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - A Richey Sharrett
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David Huang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Qisheng You
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Liang Liu
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Brandon J Lujan
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Alexander Tomlinson
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Thomas Mosley
- The MIND Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Josef Coresh
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yali Jia
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Aleksandra Mihailovic
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pradeep Y. Ramulu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|