1
|
Mao W, Zimmerman A, Urli Hodges E, Ortiz E, Dods G, Taylor A, Udayakumar K. Comparing research and development, launch, and scale up timelines of 18 vaccines: lessons learnt from COVID-19 and implications for other infectious diseases. BMJ Glob Health 2023; 8:e012855. [PMID: 37696544 PMCID: PMC10496705 DOI: 10.1136/bmjgh-2023-012855] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/30/2023] [Indexed: 09/13/2023] Open
Abstract
Over the next decade, millions of deaths could be prevented by increasing access to vaccines in low-income and middle-income countries (LMICs). The COVID-19 pandemic has demonstrated that the research and development (R&D), launch and scale up timelines of vaccines can be drastically shortened. This study compares such timelines for eighteen vaccines and identifies lessons and implications for accelerating the R&D, launch and scale up process for other vaccine candidates. To replicate the rapid R&D process of the COVID-19 vaccines, future vaccine R&D should capitalise on public-private knowledge sharing partnerships to promote technology innovation, establish regional clinical trial centres and data sharing networks to optimise clinical trial efficiency, and create a funding mechanism to support research into novel vaccine platforms that may prove valuable to quickly developing vaccine candidates in future global health emergencies. To accelerate the launch timeline, future efforts to bring safe and efficacious vaccines to market should include LMICs in the decision-making processes of global procurement and delivery alliances to optimise launch in these countries, strengthen the WHO prequalification and Emergency Use Listing programs to ensure LMICs have a robust and transparent regulatory system to rely on, and invest in LMIC regulatory and manufacturing capacity to ensure these countries are vaccine self-sufficient. Lastly, efforts to accelerate scale up of vaccines should include the creation of regional pooled procurement mechanisms between LMICs to increase purchasing power among these countries and an open line of clear communication with the public regarding pertinent vaccine information to combat misinformation and vaccine hesitancy.
Collapse
Affiliation(s)
- Wenhui Mao
- Duke Global Health Innovation Center, Duke Global Health Institute, Durham, North Carolina, USA
- Innovations in Healthcare, Durham, North Carolina, USA
| | - Armand Zimmerman
- Duke Global Health Innovation Center, Duke Global Health Institute, Durham, North Carolina, USA
- Center for Policy Impact in Global Health, Duke Global Health Institute, Durham, North Carolina, USA
| | - Elina Urli Hodges
- Duke Global Health Innovation Center, Duke Global Health Institute, Durham, North Carolina, USA
- Innovations in Healthcare, Durham, North Carolina, USA
| | - Ernesto Ortiz
- Duke Global Health Innovation Center, Duke Global Health Institute, Durham, North Carolina, USA
- Innovations in Healthcare, Durham, North Carolina, USA
| | - Galen Dods
- Science and Society, Duke University, Durham, North Carolina, USA
| | - Andrea Taylor
- Duke Global Health Innovation Center, Duke Global Health Institute, Durham, North Carolina, USA
- Innovations in Healthcare, Durham, North Carolina, USA
| | - Krishna Udayakumar
- Duke Global Health Innovation Center, Duke Global Health Institute, Durham, North Carolina, USA
- Innovations in Healthcare, Durham, North Carolina, USA
| |
Collapse
|
2
|
Portnoy A, Arcand JL, Clark RA, Weerasuriya CK, Mukandavire C, Bakker R, Patouillard E, Gebreselassie N, Zignol M, Jit M, White RG, Menzies NA. The potential impact of novel tuberculosis vaccine introduction on economic growth in low- and middle-income countries: A modeling study. PLoS Med 2023; 20:e1004252. [PMID: 37432972 PMCID: PMC10335702 DOI: 10.1371/journal.pmed.1004252] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Most individuals developing tuberculosis (TB) are working age adults living in low- and middle-income countries (LMICs). The resulting disability and death impact economic productivity and burden health systems. New TB vaccine products may reduce this burden. In this study, we estimated the impact of introducing novel TB vaccines on gross domestic product (GDP) growth in 105 LMICs. METHODS AND FINDINGS We adapted an existing macroeconomic model to simulate country-level GDP trends between 2020 and 2080, comparing scenarios for introduction of hypothetical infant and adolescent/adult vaccines to a no-new-vaccine counterfactual. We parameterized each scenario using estimates of TB-related mortality, morbidity, and healthcare spending from linked epidemiological and costing models. We assumed vaccines would be introduced between 2028 and 2047 and estimated incremental changes in GDP within each country from introduction to 2080, in 2020 US dollars. We tested the robustness of results to alternative analytic specifications. Both vaccine scenarios produced greater cumulative GDP in the modeled countries over the study period, equivalent to $1.6 (95% uncertainty interval: $0.8, 3.0) trillion for the adolescent/adult vaccine and $0.2 ($0.1, 0.4) trillion for the infant vaccine. These GDP gains were substantially lagged relative to the time of vaccine introduction, particularly for the infant vaccine. GDP gains resulting from vaccine introduction were concentrated in countries with higher current TB incidence and earlier vaccine introduction. Results were sensitive to secular trends in GDP growth but relatively robust to other analytic assumptions. Uncertain projections of GDP could alter these projections and affect the conclusions drawn by this analysis. CONCLUSIONS Under a range of assumptions, introducing novel TB vaccines would increase economic growth in LMICs.
Collapse
Affiliation(s)
- Allison Portnoy
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, United States of America
- Center for Health Decision Science, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Jean-Louis Arcand
- Department of International Economics, The Graduate Institute of International and Development Studies, Geneva, Switzerland
- Fondation pour les études et recherches sur le développement international (FERDI), Clermont-Ferrand, France
- Global Development Network, New Delhi, India
- Université Mohammed VI Polytechnique, Rabat, Morocco
| | - Rebecca A. Clark
- TB Modelling Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Chathika K. Weerasuriya
- TB Modelling Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Roel Bakker
- TB Modelling Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- KNCV Tuberculosis Foundation, The Hague, the Netherlands
| | - Edith Patouillard
- Department of Health Systems Governance and Financing, World Health Organization, Geneva, Switzerland
| | | | - Matteo Zignol
- Global TB Programme, World Health Organization, Geneva, Switzerland
| | - Mark Jit
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- School of Public Health, University of Hong Kong, Hong Kong SAR, China
| | - Richard G. White
- TB Modelling Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nicolas A. Menzies
- Center for Health Decision Science, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Hotez PJ, Gilbert S, Saville M, Privor-Dumm L, Abdool-Karim S, Thompson D, Excler JL, Kim JH. COVID-19 vaccines and the pandemic: lessons learnt for other neglected diseases and future threats. BMJ Glob Health 2023; 8:bmjgh-2023-011883. [PMID: 37277196 DOI: 10.1136/bmjgh-2023-011883] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/09/2023] [Indexed: 06/07/2023] Open
Abstract
Through the experiences gained by accelerating new vaccines for both Ebola virus infection and COVID-19 in a public health emergency, vaccine development has benefited from a 'multiple shots on goal' approach to new vaccine targets. This approach embraces simultaneous development of candidates with differing technologies, including, when feasible, vesicular stomatitis virus or adenovirus vectors, messenger RNA (mRNA), whole inactivated virus, nanoparticle and recombinant protein technologies, which led to multiple effective COVID-19 vaccines. The challenge of COVID-19 vaccine inequity, as COVID-19 spread globally, created a situation where cutting-edge mRNA technologies were preferentially supplied by multinational pharmaceutical companies to high-income countries while low and middle-income countries (LMICs) were pushed to the back of the queue and relied more heavily on adenoviral vector, inactivated virus and recombinant protein vaccines. To prevent this from occurring in future pandemics, it is essential to expand the scale-up capacity for both traditional and new vaccine technologies at individual or simultaneous hubs in LMICs. In parallel, a process of tech transfer of new technologies to LMIC producers needs to be facilitated and funded, while building LMIC national regulatory capacity, with the aim of several reaching 'stringent regulator' status. Access to doses is an essential start but is not sufficient, as healthcare infrastructure for vaccination and combating dangerous antivaccine programmes both require support. Finally, there is urgency to establish an international framework through a United Nations Pandemic Treaty to promote, support and harmonise a more robust, coordinated and effective global response.
Collapse
Affiliation(s)
- Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Sarah Gilbert
- Nuffield Department of Medicine, Oxford University, Oxford, UK
| | | | - Lois Privor-Dumm
- International Vaccine Access Center, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Salim Abdool-Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA) and Department of Epidemiology, Columbia University, New York, New York, USA
| | | | | | - Jerome H Kim
- International Vaccine Institute, Seoul, South Korea
| |
Collapse
|
4
|
Alghamdi S. The role of vaccines in combating antimicrobial resistance (AMR) bacteria. Saudi J Biol Sci 2021; 28:7505-7510. [PMID: 34867055 PMCID: PMC8626314 DOI: 10.1016/j.sjbs.2021.08.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/08/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Most pathogens have developed an intrinsic capacity to thrive by developing resistance to antimicrobial compounds utilized in treatment. Antimicrobial resistance arises when microbial agents such as bacteria, viruses, fungi, and parasites alter their behaviour to make current conventional medicines inefficient. Vaccination is one of the most effective strategies to fight antimicrobial resistance. Vaccines, unlike drugs, are less likely to produce resistance since they are precise to their target illnesses. Vaccines against infectious agents such as Streptococcus pneumoniae and Haemophilus influenzae have already been shown to reduce tolerance to antimicrobial medications; however, vaccines against some antimicrobial-resistant pathogens such as Vibrio cholerae, Salmonella typhi, Escherichia coli, nosocomial infections, and pulmonary and diarrheal disease viruses require more research and development. This paper describes vaccine roles in combatting antimicrobial resistance, quantifies the overall advantages of vaccination as an anti-antimicrobial resistance approach, analyzes existing antimicrobial vaccines and those currently under development, and emphasizes some of the obstacles and prospects of vaccine research and development.
Collapse
Affiliation(s)
- Saad Alghamdi
- Laboratory Medicne Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|