1
|
Muhammad F, Weber KA, Bédard S, Haynes G, Smith L, Khan AF, Hameed S, Gray K, McGovern K, Rohan M, Ding L, Van Hal M, Dickson D, Tamimi MA, Parrish T, Dhaher Y, Smith ZA. Cervical spinal cord morphometrics in degenerative cervical myelopathy: quantification using semi-automated normalized technique and correlation with neurological dysfunctions. Spine J 2024; 24:2045-2057. [PMID: 39038658 PMCID: PMC11527586 DOI: 10.1016/j.spinee.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND CONTEXT Degenerative cervical myelopathy (DCM) is characterized by spinal cord atrophy. Accurate estimation of spinal cord atrophy is key to the understanding of neurological diseases, including DCM. However, its clinical application is hampered by difficulties in its precise and consistent estimation due to significant variability in spinal cord morphometry along the cervical spine, both within and between individuals. PURPOSE To characterize morphometrics of the compressed spinal cord in DCM patients. We employed our semiautomated analysis framework that incorporates the Spinal Cord Toolbox (SCT) and a normalization approach to effectively address the challenges posed by cord compression in these patients. Additionally, we examined the clinical relevance of these morphometric measures to enhance our understanding of DCM pathophysiology. STUDY DESIGN Prospective study. PATIENT SAMPLE This study investigated 36 DCM patients and 31 healthy controls (HCs). OUTCOME MEASURES Clinical scores including 9-hole peg test for hand dexterity, hand grip strength, balance, gait speed, modified Japanese Orthopaedic Association (mJOA) score, and imaging-based spinal cord morphometrics. METHOD Using the generic spine acquisition protocol and our semiautomated analysis pipeline, spinal cord morphometrics, including cross-sectional area (CSA), anterior-posterior (AP) and transverse (RL) diameters, eccentricity, and solidity, were estimated from sagittal T2w magnetic resonance imaging (MRI) images using the Spinal Cord Toolbox (SCT). Normalized metrics were extracted from the C1 to C7 vertebral levels and compared between DCM patients and HC. Morphometric data at regions of maximum spinal cord compression (MSCC) were correlated with the clinical scores. A subset of participants underwent follow-up scans at 6 months to monitor longitudinal changes in spinal cord atrophy. RESULTS Spinal cord morphometric data were normalized against the healthy population morphometry (PAM50 database) and extracted for all participants. DCM patients showed a notable reduction in CSA, AP, and RL diameter across all vertebral levels compared to HC. MSCC metrics correlated significantly with clinical scores like dexterity, grip strength, and mJOA scores. Longitudinal analysis indicated a decrease in CSA and worsening clinical scores in DCM patients. CONCLUSION Our processing pipeline offers a reliable method for assessing spinal cord compression in DCM patients. Normalized spinal cord morphometrics, particularly the CSA could have potential for monitoring DCM disease severity and progression, guiding treatment decisions. Furthermore, to our knowledge our study is the first to apply the generic spinal cord acquisition protocol, ensuring consistent imaging across different MRI scanners and settings. Coupled with our semiautomated analysis pipeline, this protocol is key for the detailed morphometric characterization of compressed spinal cords in patients with DCM, a disease that is both complex and heterogenous. This study was funded by the National Institute of Neurological Disorders and Stroke (NINDS) (K23:NS091430) and (R01: NS129852-01A1).
Collapse
Affiliation(s)
- Fauziyya Muhammad
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Kenneth A Weber
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford School of Medicine, Palo Alto, CA, USA
| | - Sandrine Bédard
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada
| | - Grace Haynes
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Lonnie Smith
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ali F Khan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sanaa Hameed
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kathyrn Gray
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kathleen McGovern
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Rohan
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Lei Ding
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada
| | - Michael Van Hal
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Douglas Dickson
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mazin Al Tamimi
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Todd Parrish
- Department of Radiology, Fienberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Yasin Dhaher
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zachary A Smith
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
2
|
Vidal PM, Brockie S, Farkas C, Hong J, Zhou C, Fehlings MG. Neuromotor decline is associated with gut dysbiosis following surgical decompression for Degenerative Cervical Myelopathy. Neurobiol Dis 2024; 200:106640. [PMID: 39159895 DOI: 10.1016/j.nbd.2024.106640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Abstract
Degenerative cervical myelopathy (DCM) describes a spectrum of disorders that cause progressive and chronic cervical spinal cord compression. The clinical presentation can be complex and can include locomotor impairment, hand and upper extremity dysfunction, pain, loss of bladder and bowel function, as well as gastrointestinal dysfunction. Once diagnosed, surgical decompression is the recommended treatment for DCM patients with moderate to severe impairment. Our body is composed of a large community of microorganisms, known as the microbiota. Traumatic and non-traumatic spinal cord injuries (SCIs) can induce changes in the gut microbiota and gut microbiota derived metabolites. These changes have been reported as important disease-modifying factors after injury. However, whether gut dysbiosis is associated with functional neurological recovery after surgical decompression has not been examined to date. Here, DCM was induced in C57BL/6 mice by implanting an aromatic polyether material underneath the C5-6 laminae. The extent of gut dysbiosis was assessed by gas chromatography and 16S rRNA sequencing from fecal samples before and after decompression. Neuromotor activity was assessed using the Catwalk test. Our results show that DCM pre- and post- surgical decompression is associated with gut dysbiosis, without altering short chain fatty acids (SCFAs) levels. Significant differences in Clostridia, Verrumicrobiae, Lachnospiracea, Firmicutes, Bacteroidales, and Clostridiaceae were observed between the DCM group (before decompression) and after surgical decompression (2 and 5 weeks). The changes in gut microbiota composition correlated with locomotor features of the Catwalk. For example, a longer duration of ground contact and dysfunctional swing in the forelimbs, were positively correlated with gut dysbiosis. These results show for the first time an association between gut dysbiosis and locomotor deterioration after delayed surgical decompression. Thus, providing a better understanding of the extent of changes in microbiota composition in the setting of DCM pre- and post- surgical decompression.
Collapse
Affiliation(s)
- Pia M Vidal
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile.
| | - Sydney Brockie
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Carlos Farkas
- Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - James Hong
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Cindy Zhou
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Michael G Fehlings
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada; Spinal Program, University Health Network, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
3
|
Al-Shawwa A, Ost K, Anderson D, Cho N, Evaniew N, Jacobs WB, Martin AR, Gaekwad R, Tripathy S, Bouchard J, Casha S, Cho R, duPlessis S, Lewkonia P, Nicholls F, Salo PT, Soroceanu A, Swamy G, Thomas KC, Yang MMH, Cohen-Adad J, Cadotte DW. Advanced MRI metrics improve the prediction of baseline disease severity for individuals with degenerative cervical myelopathy. Spine J 2024; 24:1605-1614. [PMID: 38679077 DOI: 10.1016/j.spinee.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND CONTEXT Degenerative cervical myelopathy (DCM) is the most common form of atraumatic spinal cord injury globally. Degeneration of spinal discs, bony osteophyte growth and ligament pathology results in physical compression of the spinal cord contributing to damage of white matter tracts and grey matter cellular populations. This results in an insidious neurological and functional decline in patients which can lead to paralysis. Magnetic resonance imaging (MRI) confirms the diagnosis of DCM and is a prerequisite to surgical intervention, the only known treatment for this disorder. Unfortunately, there is a weak correlation between features of current commonly acquired MRI scans ("community MRI, cMRI") and the degree of disability experienced by a patient. PURPOSE This study examines the predictive ability of current MRI sequences relative to "advanced MRI" (aMRI) metrics designed to detect evidence of spinal cord injury secondary to degenerative myelopathy. We hypothesize that the utilization of higher fidelity aMRI scans will increase the effectiveness of machine learning models predicting DCM severity and may ultimately lead to a more efficient protocol for identifying patients in need of surgical intervention. STUDY DESIGN/SETTING Single institution analysis of imaging registry of patients with DCM. PATIENT SAMPLE A total of 296 patients in the cMRI group and 228 patients in the aMRI group. OUTCOME MEASURES Physiologic measures: accuracy of machine learning algorithms to detect severity of DCM assessed clinically based on the modified Japanese Orthopedic Association (mJOA) scale. METHODS Patients enrolled in the Canadian Spine Outcomes Research Network registry with DCM were screened and 296 cervical spine MRIs acquired in cMRI were compared with 228 aMRI acquisitions. aMRI acquisitions consisted of diffusion tensor imaging, magnetization transfer, T2-weighted, and T2*-weighted images. The cMRI group consisted of only T2-weighted MRI scans. Various machine learning models were applied to both MRI groups to assess accuracy of prediction of baseline disease severity assessed clinically using the mJOA scale for cervical myelopathy. RESULTS Through the utilization of Random Forest Classifiers, disease severity was predicted with 41.8% accuracy in cMRI scans and 73.3% in the aMRI scans. Across different predictive model variations tested, the aMRI scans consistently produced higher prediction accuracies compared to the cMRI counterparts. CONCLUSIONS aMRI metrics perform better in machine learning models at predicting disease severity of patients with DCM. Continued work is needed to refine these models and address DCM severity class imbalance concerns, ultimately improving model confidence for clinical implementation.
Collapse
Affiliation(s)
- Abdul Al-Shawwa
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N4N1, Canada
| | - Kalum Ost
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N4N1, Canada
| | - David Anderson
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, HMRB 231, 3330 Hospital Drive NW, Calgary, Alberta, T2N4N1, Canada
| | - Newton Cho
- Department of Neurosurgery, University of Toronto,149 College Street, 5th Floor, Toronto, Ontario, M5T1P5, Canada
| | - Nathan Evaniew
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, 1409 29 Street NW, Calgary, Alberta, T2N2T9, Canada; Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, 1403 29 Street NW, T2N2T9, Calgary, Alberta, T2N2T9, Canada
| | - W Bradley Jacobs
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, 1409 29 Street NW, Calgary, Alberta, T2N2T9, Canada; Department of Clinical Neurosciences, Section of Neurosurgery, Cumming School of Medicine, University of Calgary, 1403 29th Street NW, Calgary, Alberta, T2N2T9, Canada
| | - Allan R Martin
- Department of Neurological Surgery, University of California - Davis, 3301 C Street, Suite 1500, Sacramento, CA, 95816, USA
| | - Ranjeet Gaekwad
- Department of Clinical Neurosciences, Section of Neurosurgery, Cumming School of Medicine, University of Calgary, 1403 29th Street NW, Calgary, Alberta, T2N2T9, Canada
| | - Saswati Tripathy
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, 1409 29 Street NW, Calgary, Alberta, T2N2T9, Canada
| | - Jacques Bouchard
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, 1409 29 Street NW, Calgary, Alberta, T2N2T9, Canada; Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, 1403 29 Street NW, T2N2T9, Calgary, Alberta, T2N2T9, Canada
| | - Steve Casha
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, 1409 29 Street NW, Calgary, Alberta, T2N2T9, Canada; Department of Clinical Neurosciences, Section of Neurosurgery, Cumming School of Medicine, University of Calgary, 1403 29th Street NW, Calgary, Alberta, T2N2T9, Canada
| | - Roger Cho
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, 1409 29 Street NW, Calgary, Alberta, T2N2T9, Canada; Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, 1403 29 Street NW, T2N2T9, Calgary, Alberta, T2N2T9, Canada
| | - Stephen duPlessis
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, 1409 29 Street NW, Calgary, Alberta, T2N2T9, Canada; Department of Clinical Neurosciences, Section of Neurosurgery, Cumming School of Medicine, University of Calgary, 1403 29th Street NW, Calgary, Alberta, T2N2T9, Canada
| | - Peter Lewkonia
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, 1409 29 Street NW, Calgary, Alberta, T2N2T9, Canada; Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, 1403 29 Street NW, T2N2T9, Calgary, Alberta, T2N2T9, Canada
| | - Fred Nicholls
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, 1409 29 Street NW, Calgary, Alberta, T2N2T9, Canada; Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, 1403 29 Street NW, T2N2T9, Calgary, Alberta, T2N2T9, Canada
| | - Paul T Salo
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, 1409 29 Street NW, Calgary, Alberta, T2N2T9, Canada; Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, 1403 29 Street NW, T2N2T9, Calgary, Alberta, T2N2T9, Canada
| | - Alex Soroceanu
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, 1409 29 Street NW, Calgary, Alberta, T2N2T9, Canada; Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, 1403 29 Street NW, T2N2T9, Calgary, Alberta, T2N2T9, Canada
| | - Ganesh Swamy
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, 1409 29 Street NW, Calgary, Alberta, T2N2T9, Canada; Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, 1403 29 Street NW, T2N2T9, Calgary, Alberta, T2N2T9, Canada
| | - Kenneth C Thomas
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, 1409 29 Street NW, Calgary, Alberta, T2N2T9, Canada; Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, 1403 29 Street NW, T2N2T9, Calgary, Alberta, T2N2T9, Canada
| | - Michael M H Yang
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, 1409 29 Street NW, Calgary, Alberta, T2N2T9, Canada; Department of Clinical Neurosciences, Section of Neurosurgery, Cumming School of Medicine, University of Calgary, 1403 29th Street NW, Calgary, Alberta, T2N2T9, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Pavillon Lassonde 2700 Ch de la Tour, Montreal, Quebec, H3T1N8, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, 4565 Queen Mary Rd, Montreal, Quebec, H3W1W5, Canada; Mila - Quebec AI Institute, 6666 Saint-Urbain Street, #200, Montreal, Quebec, H2S3H1, Canada
| | - David W Cadotte
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N4N1, Canada; Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, 1409 29 Street NW, Calgary, Alberta, T2N2T9, Canada; Department of Clinical Neurosciences, Section of Neurosurgery, Cumming School of Medicine, University of Calgary, 1403 29th Street NW, Calgary, Alberta, T2N2T9, Canada.
| |
Collapse
|
4
|
Xu B, Yin H, Feng M. Toward a personalized approach: the promising horizon of degenerative cervical myelopathy. Int J Surg 2024; 110:5276-5277. [PMID: 38716921 PMCID: PMC11325900 DOI: 10.1097/js9.0000000000001569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 08/16/2024]
Affiliation(s)
- Bo Xu
- Department of Spine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | | | | |
Collapse
|
5
|
Valošek J, Cohen-Adad J. Reproducible Spinal Cord Quantitative MRI Analysis with the Spinal Cord Toolbox. Magn Reson Med Sci 2024; 23:307-315. [PMID: 38479843 PMCID: PMC11234946 DOI: 10.2463/mrms.rev.2023-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
The spinal cord plays a pivotal role in the central nervous system, providing communication between the brain and the body and containing critical motor and sensory networks. Recent advancements in spinal cord MRI data acquisition and image analysis have shown a potential to improve the diagnostics, prognosis, and management of a variety of pathological conditions. In this review, we first discuss the significance of standardized spinal cord MRI acquisition protocol in multi-center and multi-manufacturer studies. Then, we cover open-access spinal cord MRI datasets, which are important for reproducible science and validation of new methods. Finally, we elaborate on the recent advances in spinal cord MRI data analysis techniques implemented in the open-source software package Spinal Cord Toolbox (SCT).
Collapse
Affiliation(s)
- Jan Valošek
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Department of Neurosurgery, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
6
|
Ishaque AH, Alvi MA, Pedro K, Fehlings MG. Imaging protocols for non-traumatic spinal cord injury: current state of the art and future directions. Expert Rev Neurother 2024; 24:691-709. [PMID: 38879824 DOI: 10.1080/14737175.2024.2363839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Non-traumatic spinal cord injury (NTSCI) is a term used to describe damage to the spinal cord from sources other than trauma. Neuroimaging techniques such as computerized tomography (CT) and magnetic resonance imaging (MRI) have improved our ability to diagnose and manage NTSCIs. Several practice guidelines utilize MRI in the diagnostic evaluation of traumatic and non-traumatic SCI to direct surgical intervention. AREAS COVERED The authors review practices surrounding the imaging of various causes of NTSCI as well as recent advances and future directions for the use of novel imaging modalities in this realm. The authors also present discussions around the use of simple radiographs and advanced MRI modalities in clinical settings, and briefly highlight areas of active research that seek to advance our understanding and improve patient care. EXPERT OPINION Although several obstacles must be overcome, it appears highly likely that novel quantitative imaging features and advancements in artificial intelligence (AI) as well as machine learning (ML) will revolutionize degenerative cervical myelopathy (DCM) care by providing earlier diagnosis, accurate localization, monitoring for deterioration and neurological recovery, outcome prediction, and standardized practice. Some intriguing findings in these areas have been published, including the identification of possible serum and cerebrospinal fluid biomarkers, which are currently in the early phases of translation.
Collapse
Affiliation(s)
- Abdullah H Ishaque
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, University Health Network, Toronto, ON, Canada
| | - Mohammed Ali Alvi
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Karlo Pedro
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, University Health Network, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Al-Shawwa A, Craig M, Ost K, Anderson D, Jacobs WB, Evaniew N, Tripathy S, Bouchard J, Casha S, Cho R, du Plessis S, Lewkonia P, Nicholls F, Salo PT, Soroceanu A, Swamy G, Thomas KC, Yang MMH, Cadotte DW. Focal compression of the cervical spinal cord alone does not indicate high risk of neurological deterioration in patients with a diagnosis of mild degenerative cervical myelopathy. J Neurol Sci 2024; 461:123042. [PMID: 38788286 DOI: 10.1016/j.jns.2024.123042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Degenerative Cervical Myelopathy (DCM) is the functional derangement of the spinal cord resulting from vertebral column spondylotic degeneration. Typical neurological symptoms of DCM include gait imbalance, hand/arm numbness, and upper extremity dexterity loss. Greater spinal cord compression is believed to lead to a higher rate of neurological deterioration, although clinical experience suggests a more complex mechanism involving spinal canal diameter (SCD). In this study, we utilized machine learning clustering to understand the relationship between SCD and different patterns of cord compression (i.e. compression at one disc level, two disc levels, etc.) to identify patient groups at risk of neurological deterioration. 124 MRI scans from 51 non-operative DCM patients were assessed through manual scoring of cord compression and SCD measurements. Dimensionality reduction techniques and k-means clustering established patient groups that were then defined with their unique risk criteria. We found that the compression pattern is unimportant at SCD extremes (≤14.5 mm or > 15.75 mm). Otherwise, severe spinal cord compression at two disc levels increases deterioration likelihood. Notably, if SCD is normal and cord compression is not severe at multiple levels, deterioration likelihood is relatively reduced, even if the spinal cord is experiencing compression. We elucidated five patient groups with their associated risks of deterioration, according to both SCD range and cord compression pattern. Overall, SCD and focal cord compression alone do not reliably predict an increased risk of neurological deterioration. Instead, the specific combination of narrow SCD with multi-level focal cord compression increases the likelihood of neurological deterioration in mild DCM patients.
Collapse
Affiliation(s)
- Abdul Al-Shawwa
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mike Craig
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Kalum Ost
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - David Anderson
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - W Bradley Jacobs
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, AB T2N 2T9, Canada; Department of Clinical Neurosciences, Section of Neurosurgery, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Nathan Evaniew
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, AB T2N 2T9, Canada; Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Saswati Tripathy
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Jacques Bouchard
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, AB T2N 2T9, Canada; Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Steve Casha
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, AB T2N 2T9, Canada; Department of Clinical Neurosciences, Section of Neurosurgery, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Roger Cho
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, AB T2N 2T9, Canada; Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Stephen du Plessis
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, AB T2N 2T9, Canada; Department of Clinical Neurosciences, Section of Neurosurgery, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Peter Lewkonia
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, AB T2N 2T9, Canada; Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Fred Nicholls
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, AB T2N 2T9, Canada; Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Paul T Salo
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, AB T2N 2T9, Canada; Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Alex Soroceanu
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, AB T2N 2T9, Canada; Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Ganesh Swamy
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, AB T2N 2T9, Canada; Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Kenneth C Thomas
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, AB T2N 2T9, Canada; Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Michael M H Yang
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, AB T2N 2T9, Canada; Department of Clinical Neurosciences, Section of Neurosurgery, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - David W Cadotte
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, AB T2N 2T9, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Clinical Neurosciences, Section of Neurosurgery, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada.
| |
Collapse
|
8
|
Hameed S, Muhammad F, Haynes G, Smith L, Khan AF, Smith ZA. Early neurological changes in aging cervical spine: insights from PROMIS mobility assessment. GeroScience 2024; 46:3123-3134. [PMID: 38198027 PMCID: PMC11009195 DOI: 10.1007/s11357-023-01050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Many studies have shown that the prevalence of degenerative spinal cord compression increases with age. However, most cases at early stages are asymptomatic, and their diagnosis remains challenging. Asymptomatic cervical spinal cord compression (ASCC) patients are more likely to experience annular tears, herniated disks, and later develop symptomatic compression. Asymptomatic individuals do not typically undergo spinal cord imaging; therefore, an assessment test that is both sensitive and specific in diagnosing ASCC may be helpful. It has been demonstrated that the Patient Reported Outcome Measure Information System (PROMIS) mobility test is sensitive in detecting degenerative cervical myelopathy (DCM) symptoms. We investigated the use of the PROMIS mobility test in assessing clinical dysfunction in ASCC. In this study, 51 DCM patients and 42 age-matched healthy control (HC) were enrolled. The degree of cervical spinal cord compression was assessed using the high-resolution cervical spinal cord T2 Weighted (T2w) MRIs, which were available for 14 DCM patients. Measurements of the spinal cords anterior-posterior (AP) diameter at the region(s) that were visibly compressed as well as at different cervical spine levels were used to determine the degree of compression. The age-matched HC cohort had a similar MRI to establish the normal range for AP diameter. Twelve (12) participants in the HC cohort had MRI evidence of cervical spinal cord compression; these individuals were designated as the ASCC cohort. All participants completed the PROMIS mobility, PROMIS pain interference (PI), PROMIS upper extremity (UE), modified Japanese orthopedic association (mJOA), and neck disability index (NDI) scoring scales. We examined the correlation between the AP diameter measurements and the clinical assessment scores to determine their usefulness in the diagnosis of ASCC. Furthermore, we examine the sensitivity and specificity of PROMIS mobility test and mJOA. Compared to the HC group, the participants in the ASCC and DCM cohorts were significantly older (p = 0.006 and p < 0.0001, respectively). Age differences were not observed between ASCC and DCM (p > 0.999). Clinical scores between the ASCC and the HC group were not significantly different using the mJOA (p > 0.99), NDI (p > 0.99), PROMIS UE (p = 0.23), and PROMIS PI (p = 0.82). However, there were significant differences between the ASCC and HC in the PROMIS mobility score (p = 0.01). The spinal cord AP diameter and the PROMIS mobility score showed a significant correlation (r = 0.44, p = 0.002). Decreasing PROMIS mobility was significantly associated with a decrease in cervical spinal cord AP diameter independent of other assessment measures. PROMIS mobility score had a sensitivity of 77.3% and specificity of 79.4% compared to 59.1% and 88.2%, respectively, for mJOA in detecting cervical spinal cord compression. Certain elements of ASCC are not adequately captured with the traditional mJOA and NDI scales used in DCM evaluation. In contrast to other evaluation scales utilized in this investigation, PROMIS mobility score shows a significant association with the AP diameter of the cervical spinal cord, suggesting that it is a sensitive tool for identifying early disability associated with degenerative change in the aging spine. In a comparative analysis of PROMIS mobility test against the standard mJOA, the PROMIS mobility demonstrated higher sensitivity for detecting cervical spinal cord compression. These findings underscore the potential use of PROMIS mobility score in clinical evaluation of the aging spine.
Collapse
Affiliation(s)
- Sanaa Hameed
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 N. Lincoln Blvd, Oklahoma City, OK, 73104-3252, US
| | - Fauziyya Muhammad
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 N. Lincoln Blvd, Oklahoma City, OK, 73104-3252, US.
| | - Grace Haynes
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 N. Lincoln Blvd, Oklahoma City, OK, 73104-3252, US
| | - Lonnie Smith
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 N. Lincoln Blvd, Oklahoma City, OK, 73104-3252, US
| | - Ali F Khan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 N. Lincoln Blvd, Oklahoma City, OK, 73104-3252, US
| | - Zachary A Smith
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 N. Lincoln Blvd, Oklahoma City, OK, 73104-3252, US
| |
Collapse
|
9
|
Karabacak M, Jagtiani P, Zipser CM, Tetreault L, Davies B, Margetis K. Mapping the Degenerative Cervical Myelopathy Research Landscape: Topic Modeling of the Literature. Global Spine J 2024:21925682241256949. [PMID: 38760664 DOI: 10.1177/21925682241256949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
STUDY DESIGN Topic modeling of literature. OBJECTIVES Our study has 2 goals: (i) to clarify key themes in degenerative cervical myelopathy (DCM) research, and (ii) to evaluate the current trends in the popularity or decline of these topics. Additionally, we aim to highlight the potential of natural language processing (NLP) in facilitating research syntheses. METHODS Documents were retrieved from Scopus, preprocessed, and modeled using BERTopic, an NLP-based topic modeling method. We specified a minimum topic size of 25 documents and 50 words per topic. After the models were trained, they generated a list of topics and corresponding representative documents. We utilized linear regression models to examine trends within the identified topics. In this context, topics exhibiting increasing linear slopes were categorized as "hot topics," while those with decreasing slopes were categorized as "cold topics". RESULTS Our analysis retrieved 3510 documents that were classified into 21 different topics. The 3 most frequently occurring topics were "OPLL" (ossification of the posterior longitudinal ligament), "Anterior Fusion," and "Surgical Outcomes." Trend analysis revealed the hottest topics of the decade to be "Animal Models," "DCM in the Elderly," and "Posterior Decompression" while "Morphometric Analyses," "Questionnaires," and "MEP and SSEP" were identified as being the coldest topics. CONCLUSIONS Our NLP methodology conducted a thorough and detailed analysis of DCM research, uncovering valuable insights into research trends that were otherwise difficult to discern using traditional techniques. The results provide valuable guidance for future research directions, policy considerations, and identification of emerging trends.
Collapse
Affiliation(s)
- Mert Karabacak
- Department of Neurosurgery, Mount Sinai Health System, New York, NY, USA
| | - Pemla Jagtiani
- School of Medicine, SUNY Downstate Health Sciences University, New York, NY, USA
| | - Carl Moritz Zipser
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Lindsay Tetreault
- Department of Neurology, New York University Langone, New York, NY, USA
| | - Benjamin Davies
- Department of Clinical Neurosurgery, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
10
|
Horak T, Horakova M, Kerkovsky M, Dostal M, Hlustik P, Valosek J, Svatkova A, Bednarik P, Vlckova E, Bednarik J. Evidence-based commentary on the diagnosis, management, and further research of degenerative cervical spinal cord compression in the absence of clinical symptoms of myelopathy. Front Neurol 2024; 15:1341371. [PMID: 38798708 PMCID: PMC11116587 DOI: 10.3389/fneur.2024.1341371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Degenerative cervical myelopathy (DCM) represents the final consequence of a series of degenerative changes in the cervical spine, resulting in cervical spinal canal stenosis and mechanical stress on the cervical spinal cord. This process leads to subsequent pathophysiological processes in the spinal cord tissues. The primary mechanism of injury is degenerative compression of the cervical spinal cord, detectable by magnetic resonance imaging (MRI), serving as a hallmark for diagnosing DCM. However, the relative resilience of the cervical spinal cord to mechanical compression leads to clinical-radiological discordance, i.e., some individuals may exhibit MRI findings of DCC without the clinical signs and symptoms of myelopathy. This degenerative compression of the cervical spinal cord without clinical signs of myelopathy, potentially serving as a precursor to the development of DCM, remains a somewhat controversial topic. In this review article, we elaborate on and provide commentary on the terminology, epidemiology, natural course, diagnosis, predictive value, risks, and practical management of this condition-all of which are subjects of ongoing debate.
Collapse
Affiliation(s)
- Tomas Horak
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Neurology, University Hospital Brno, Brno, Czechia
| | - Magda Horakova
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Neurology, University Hospital Brno, Brno, Czechia
| | - Milos Kerkovsky
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Brno, Czechia
| | - Marek Dostal
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Brno, Czechia
- Department of Biophysics, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petr Hlustik
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
- Department of Neurology, University Hospital Olomouc, Olomouc, Czechia
| | - Jan Valosek
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
- Department of Neurosurgery, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Mila—Quebec AI Institute, Montreal, QC, Canada
| | - Alena Svatkova
- Danish Research Center for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Radiology, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Petr Bednarik
- Danish Research Center for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Radiology, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Eva Vlckova
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Neurology, University Hospital Brno, Brno, Czechia
| | - Josef Bednarik
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Neurology, University Hospital Brno, Brno, Czechia
| |
Collapse
|
11
|
Labounek R, Bondy MT, Paulson AL, Bédard S, Abramovic M, Alonso-Ortiz E, Atcheson NT, Barlow LR, Barry RL, Barth M, Battiston M, Büchel C, Budde MD, Callot V, Combes A, De Leener B, Descoteaux M, de Sousa PL, Dostál M, Doyon J, Dvorak AV, Eippert F, Epperson KR, Epperson KS, Freund P, Finsterbusch J, Foias A, Fratini M, Fukunaga I, Gandini Wheeler-Kingshott CAM, Germani G, Gilbert G, Giove F, Grussu F, Hagiwara A, Henry PG, Horák T, Hori M, Joers JM, Kamiya K, Karbasforoushan H, Keřkovský M, Khatibi A, Kim JW, Kinany N, Kitzler H, Kolind S, Kong Y, Kudlička P, Kuntke P, Kurniawan ND, Kusmia S, Laganà MM, Laule C, Law CSW, Leutritz T, Liu Y, Llufriu S, Mackey S, Martin AR, Martinez-Heras E, Mattera L, O’Grady KP, Papinutto N, Papp D, Pareto D, Parrish TB, Pichiecchio A, Prados F, Rovira À, Ruitenberg MJ, Samson RS, Savini G, Seif M, Seifert AC, Smith AK, Smith SA, Smith ZA, Solana E, Suzuki Y, Tackley GW, Tinnermann A, Valošek J, Van De Ville D, Yiannakas MC, Weber KA, Weiskopf N, Wise RG, Wyss PO, Xu J, Cohen-Adad J, Lenglet C, Nestrašil I. Body size interacts with the structure of the central nervous system: A multi-center in vivo neuroimaging study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591421. [PMID: 38746371 PMCID: PMC11092490 DOI: 10.1101/2024.04.29.591421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on between-group matching or controlling for sources of biological variation such as subject's sex and age. However, corrections for body size (i.e. height and weight) are mostly lacking in clinical neuroimaging designs. This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267 healthy human adults (age 30.1±6.6 years old, 125 females). We show that body height correlated strongly or moderately with brain gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem volume, and cross-sectional area (CSA) of cervical SC white matter (CSA-WM; 0.44≤r≤0.62). In comparison, age correlated weakly with cortical GM volume, precentral GM volume, and cortical thickness (-0.21≥r≥-0.27). Body weight correlated weakly with magnetization transfer ratio in the SC WM, dorsal columns, and lateral corticospinal tracts (-0.20≥r≥-0.23). Body weight further correlated weakly with the mean diffusivity derived from diffusion tensor imaging (DTI) in SC WM (r=-0.20) and dorsal columns (-0.21), but only in males. CSA-WM correlated strongly or moderately with brain volumes (0.39≤r≤0.64), and weakly with precentral gyrus thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral corticospinal tracts (-0.22≥r≥-0.25). Linear mixture of sex and age explained 26±10% of data variance in brain volumetry and SC CSA. The amount of explained variance increased at 33±11% when body height was added into the mixture model. Age itself explained only 2±2% of such variance. In conclusion, body size is a significant biological variable. Along with sex and age, body size should therefore be included as a mandatory variable in the design of clinical neuroimaging studies examining SC and brain structure.
Collapse
Affiliation(s)
- René Labounek
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Monica T. Bondy
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Amy L. Paulson
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Sandrine Bédard
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Mihael Abramovic
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Eva Alonso-Ortiz
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Nicole T Atcheson
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Laura R. Barlow
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Robert L. Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, Massachusetts, USA
| | - Markus Barth
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
- School of Electrical Engineering and Computer Science, The University of Queensland, St Lucia, Australia
| | - Marco Battiston
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Christian Büchel
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthew D. Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Clement J. Zablocki Veteran’s Affairs Medical Center, Milwaukee, WI, USA
| | - Virginie Callot
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital Universitaire Timone, CEMEREM, Marseille, France
| | - Anna Combes
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Benjamin De Leener
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
- Department of Computer Engineering and Software Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science department, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Marek Dostál
- Department of Radiology and Nuclear Medicine, University Hospital Brno and Masaryk University, Czech Republic
- Department of Biophysics, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Julien Doyon
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Adam V. Dvorak
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Falk Eippert
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | | | - Patrick Freund
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Wellcome Trust Centre for Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Jürgen Finsterbusch
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandru Foias
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Michela Fratini
- Institute of Nanotechnology, CNR, Rome, Italy
- IRCCS Santa Lucia Foundation, Neuroimaging Laboratory, Rome, Italy
| | - Issei Fukunaga
- Department of Radiology, Juntendo University School of Medicine, 1-2-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
| | - Claudia A. M. Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - GianCarlo Germani
- Advanced Imaging and Artificial Intelligence Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Federico Giove
- IRCCS Santa Lucia Foundation, Neuroimaging Laboratory, Rome, Italy
- CREF - Museo storico della fisica e Centro studi e ricerche Enrico Fermi, Rome, Italy
| | - Francesco Grussu
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University School of Medicine, 1-2-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Tomáš Horák
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Neurology, University Hospital Brno, Brno, Czech Republic
- Multimodal and Functional Imaging Laboratory, Central European Institute of Technology, Brno, Czech Republic
| | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, 1-2-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - James M. Joers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Kouhei Kamiya
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Haleh Karbasforoushan
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Miloš Keřkovský
- Department of Radiology and Nuclear Medicine, University Hospital Brno and Masaryk University, Czech Republic
| | - Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- Institute for Mental Health, University of Birmingham, Birmingham, UK
| | - Joo-won Kim
- Biomedical Engineering and Imaging Institute, Department of Radiology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Psychiatry, Baylor College of Medicine, Houston, Texas, USA
| | - Nawal Kinany
- Neuro-X Institute, Ecole polytechnique fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland
| | - Hagen Kitzler
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and Carl Gustav Carus University Hospital, Technische Universität Dresden, Germany
| | - Shannon Kolind
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yazhuo Kong
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Science, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Petr Kudlička
- Multimodal and Functional Imaging Laboratory, Central European Institute of Technology, Brno, Czech Republic
- First Department of Neurology, St. Anne’s University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Paul Kuntke
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and Carl Gustav Carus University Hospital, Technische Universität Dresden, Germany
| | - Nyoman D. Kurniawan
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | | | | | - Cornelia Laule
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | | | - Tobias Leutritz
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, China
| | - Sara Llufriu
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic Barcelona, Fundació de Recerca Clínic Barcelona-IDIBAPS and Universitat de Barcelona. Barcelona, Spain
| | - Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Allan R. Martin
- Department of Neurological Surgery, University of California, Davis, CA, USA
| | - Eloy Martinez-Heras
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic Barcelona, Fundació de Recerca Clínic Barcelona-IDIBAPS and Universitat de Barcelona. Barcelona, Spain
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Loan Mattera
- Fondation Campus Biotech Geneva, Genève, Switzerland
| | - Kristin P. O’Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nico Papinutto
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Daniel Papp
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Todd B. Parrish
- Department of Radiology, Northwestern University, Chicago, IL 60611, USA
| | - Anna Pichiecchio
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Advanced Imaging and Artificial Intelligence Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Ferran Prados
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
- e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain
- Centre for Medical Image Computing, University College London, London, UK
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Marc J. Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Australia
| | - Rebecca S. Samson
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Giovanni Savini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele (MI), Italy
- Neuroradiology Unit, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089, Rozzano (MI), Italy
| | - Maryam Seif
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Alan C. Seifert
- Biomedical Engineering and Imaging Institute, Department of Radiology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alex K. Smith
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Seth A. Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - Zachary A. Smith
- Department of Neurosurgery, University of Oklahoma, Oklahoma City, OK, USA
| | - Elisabeth Solana
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic Barcelona, Fundació de Recerca Clínic Barcelona-IDIBAPS and Universitat de Barcelona. Barcelona, Spain
| | - Yuichi Suzuki
- The University of Tokyo Hospital, Radiology Center, Tokyo, Japan
| | - George W Tackley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, UK
| | - Alexandra Tinnermann
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Valošek
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Department of Neurosurgery, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Dimitri Van De Ville
- Neuro-X Institute, Ecole polytechnique fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland
| | - Marios C. Yiannakas
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Kenneth A. Weber
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Nikolaus Weiskopf
- Wellcome Trust Centre for Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| | - Richard G. Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, UK
- Department of Neurosciences, Imaging, and Clinical Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, ‘G. D’Annunzio’ University of Chieti-Pescara, Chieti, Italy
| | - Patrik O. Wyss
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Junqian Xu
- Biomedical Engineering and Imaging Institute, Department of Radiology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Psychiatry, Baylor College of Medicine, Houston, Texas, USA
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, Canada
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Igor Nestrašil
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
12
|
Davies B, Schaefer S, Rafati Fard A, Newcombe V, Sutcliffe M. Finite Element Analysis for Degenerative Cervical Myelopathy: Scoping Review of the Current Findings and Design Approaches, Including Recommendations on the Choice of Material Properties. JMIR BIOMEDICAL ENGINEERING 2024; 9:e48146. [PMID: 38875683 PMCID: PMC11041437 DOI: 10.2196/48146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/31/2023] [Accepted: 02/15/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Degenerative cervical myelopathy (DCM) is a slow-motion spinal cord injury caused via chronic mechanical loading by spinal degenerative changes. A range of different degenerative changes can occur. Finite element analysis (FEA) can predict the distribution of mechanical stress and strain on the spinal cord to help understand the implications of any mechanical loading. One of the critical assumptions for FEA is the behavior of each anatomical element under loading (ie, its material properties). OBJECTIVE This scoping review aims to undertake a structured process to select the most appropriate material properties for use in DCM FEA. In doing so, it also provides an overview of existing modeling approaches in spinal cord disease and clinical insights into DCM. METHODS We conducted a scoping review using qualitative synthesis. Observational studies that discussed the use of FEA models involving the spinal cord in either health or disease (including DCM) were eligible for inclusion in the review. We followed the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines. The MEDLINE and Embase databases were searched to September 1, 2021. This was supplemented with citation searching to retrieve the literature used to define material properties. Duplicate title and abstract screening and data extraction were performed. The quality of evidence was appraised using the quality assessment tool we developed, adapted from the Newcastle-Ottawa Scale, and shortlisted with respect to DCM material properties, with a final recommendation provided. A qualitative synthesis of the literature is presented according to the Synthesis Without Meta-Analysis reporting guidelines. RESULTS A total of 60 papers were included: 41 (68%) "FEA articles" and 19 (32%) "source articles." Most FEA articles (33/41, 80%) modeled the gray matter and white matter separately, with models typically based on tabulated data or, less frequently, a hyperelastic Ogden variant or linear elastic function. Of the 19 source articles, 14 (74%) were identified as describing the material properties of the spinal cord, of which 3 (21%) were considered most relevant to DCM. Of the 41 FEA articles, 15 (37%) focused on DCM, of which 9 (60%) focused on ossification of the posterior longitudinal ligament. Our aggregated results of DCM FEA indicate that spinal cord loading is influenced by the pattern of degenerative changes, with decompression alone (eg, laminectomy) sufficient to address this as opposed to decompression combined with other procedures (eg, laminectomy and fusion). CONCLUSIONS FEA is a promising technique for exploring the pathobiology of DCM and informing clinical care. This review describes a structured approach to help future investigators deploy FEA for DCM. However, there are limitations to these recommendations and wider uncertainties. It is likely that these will need to be overcome to support the clinical translation of FEA to DCM.
Collapse
Affiliation(s)
- Benjamin Davies
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Samuel Schaefer
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Amir Rafati Fard
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Virginia Newcombe
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michael Sutcliffe
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Forodighasemabadi A. Editorial for "Predictive Value of the Diffusion Magnetic Resonance Imaging Technique for the Postoperative Outcome of Cervical Spondylotic Myelopathy". J Magn Reson Imaging 2024; 59:611-612. [PMID: 37204111 DOI: 10.1002/jmri.28786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023] Open
|
14
|
Hohenhaus M, Klingler JH, Scholz C, Volz F, Hubbe U, Beck J, Reisert M, Würtemberger U, Kremers N, Wolf K. Automated signal intensity analysis of the spinal cord for detection of degenerative cervical myelopathy - a matched-pair MRI study. Neuroradiology 2023; 65:1545-1554. [PMID: 37386202 PMCID: PMC10497437 DOI: 10.1007/s00234-023-03187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE Detection of T2 hyperintensities in suspected degenerative cervical myelopathy (DCM) is done subjectively in clinical practice. To gain objective quantification for dedicated treatment, signal intensity analysis of the spinal cord is purposeful. We investigated fully automated quantification of the T2 signal intensity (T2-SI) of the spinal cord using a high-resolution MRI segmentation. METHODS Matched-pair analysis of prospective acquired cervical 3D T2-weighted sequences of 114 symptomatic patients and 88 healthy volunteers. Cervical spinal cord was segmented automatically through a trained convolutional neuronal network with subsequent T2-SI registration slice-by-slice. Received T2-SI curves were subdivided for each cervical level from C2 to C7. Additionally, all levels were subjectively classified concerning a present T2 hyperintensity. For T2-positive levels, corresponding T2-SI curves were compared to curves of age-matched volunteers at the identical level. RESULTS Forty-nine patients showed subjective T2 hyperintensities at any level. The corresponding T2-SI curves showed higher signal variabilities reflected by standard deviation (18.51 vs. 7.47 a.u.; p < 0.001) and range (56.09 vs. 24.34 a.u.; p < 0.001) compared to matched controls. Percentage of the range from the mean absolute T2-SI per cervical level, introduced as "T2 myelopathy index" (T2-MI), was correspondingly significantly higher in T2-positive segments (23.99% vs. 10.85%; p < 0.001). ROC analysis indicated excellent differentiation for all three parameters (AUC 0.865-0.920). CONCLUSION This fully automated T2-SI quantification of the spinal cord revealed significantly increased signal variability for DCM patients compared to healthy volunteers. This innovative procedure and the applied parameters showed sufficient diagnostic accuracy, potentially diagnosing radiological DCM more objective to optimize treatment recommendation. TRIAL REGISTRATION DRKS00012962 (17.01.2018) and DRKS00017351 (28.05.2019).
Collapse
Affiliation(s)
- Marc Hohenhaus
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Jan-Helge Klingler
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Scholz
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian Volz
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrich Hubbe
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Urs Würtemberger
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nico Kremers
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Wolf
- Department of Neurology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Hejrati N, Pedro K, Alvi MA, Quddusi A, Fehlings MG. Degenerative cervical myelopathy: Where have we been? Where are we now? Where are we going? Acta Neurochir (Wien) 2023; 165:1105-1119. [PMID: 37004568 DOI: 10.1007/s00701-023-05558-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/06/2023] [Indexed: 04/04/2023]
Abstract
Degenerative cervical myelopathy (DCM), a recently coined term, encompasses a group of age-related and genetically associated pathologies that affect the cervical spine, including cervical spondylotic myelopathy and ossification of the posterior longitudinal ligament (OPLL). Given the significant contribution of DCM to global disease and disability, there are worldwide efforts to promote research and innovation in this area. An AO Spine effort termed 'RECODE-DCM' was initiated to create an international multistakeholder consensus group, involving patients, caregivers, physicians and researchers, to focus on launching actionable discourse on DCM. In order to improve the management, treatment and results for DCM, the RECODE-DCM consensus group recently identified ten priority areas for translational research. The current article summarizes recent advancements in the field of DCM. We first discuss the comprehensive definition recently refined by the RECODE-DCM group, including steps taken to arrive at this definition and the supporting rationale. We then provide an overview of the recent advancements in our understanding of the pathophysiology of DCM and modalities to clinically assess and diagnose DCM. A focus will be set on advanced imaging techniques that may offer the opportunity to improve characterization and diagnosis of DCM. A summary of treatment modalities, including surgical and nonoperative options, is then provided along with future neuroprotective and neuroregenerative strategies. This review concludes with final remarks pertaining to the genetics involved in DCM and the opportunity to leverage this knowledge toward a personalized medicine approach.
Collapse
Affiliation(s)
- Nader Hejrati
- Division of Genetics and Development, Krembil Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Suite 4WW-449, Toronto, ON, M5T 2S8, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Karlo Pedro
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mohammed Ali Alvi
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ayesha Quddusi
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Suite 4WW-449, Toronto, ON, M5T 2S8, Canada.
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Davies B, Mowforth OD, Yordanov S, Alvarez-Berdugo D, Bond S, Nodale M, Kareclas P, Whitehead L, Bishop J, Chandran S, Lamb S, Bacon M, Papadopoulos MC, Starkey M, Sadler I, Smith L, Kalsi-Ryan S, Carpenter A, Trivedi RA, Wilby M, Choi D, Wilkinson IB, Fehlings MG, Hutchinson PJ, Kotter MRN. Targeting patient recovery priorities in degenerative cervical myelopathy: design and rationale for the RECEDE-Myelopathy trial-study protocol. BMJ Open 2023; 13:e061294. [PMID: 36882259 PMCID: PMC10008337 DOI: 10.1136/bmjopen-2022-061294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
INTRODUCTION Degenerative cervical myelopathy (DCM) is a common and disabling condition of symptomatic cervical spinal cord compression secondary to degenerative changes in spinal structures leading to a mechanical stress injury of the spinal cord. RECEDE-Myelopathy aims to test the disease-modulating activity of the phosphodiesterase 3/phosphodiesterase 4 inhibitor Ibudilast as an adjuvant to surgical decompression in DCM. METHODS AND ANALYSIS RECEDE-Myelopathy is a multicentre, double-blind, randomised, placebo-controlled trial. Participants will be randomised to receive either 60-100 mg Ibudilast or placebo starting within 10 weeks prior to surgery and continuing for 24 weeks after surgery for a maximum of 34 weeks. Adults with DCM, who have a modified Japanese Orthopaedic Association (mJOA) score 8-14 inclusive and are scheduled for their first decompressive surgery are eligible for inclusion. The coprimary endpoints are pain measured on a visual analogue scale and physical function measured by the mJOA score at 6 months after surgery. Clinical assessments will be undertaken preoperatively, postoperatively and 3, 6 and 12 months after surgery. We hypothesise that adjuvant therapy with Ibudilast leads to a meaningful and additional improvement in either pain or function, as compared with standard routine care. STUDY DESIGN Clinical trial protocol V.2.2 October 2020. ETHICS AND DISSEMINATION Ethical approval has been obtained from HRA-Wales.The results will be presented at an international and national scientific conferences and in a peer-reviewed journals. TRIAL REGISTRATION NUMBER ISRCTN Number: ISRCTN16682024.
Collapse
Affiliation(s)
- Benjamin Davies
- Department of Neurosurgery, Cambridge University, Cambridge, UK
| | | | - Stefan Yordanov
- Department of Neurosurgery, Cambridge University, Cambridge, UK
| | | | - Simon Bond
- Cambridge Clinical Trials Unit, Cambridge University Hospital, Cambridge, UK
| | - Marianna Nodale
- Cambridge Clinical Trials Unit, Cambridge University Hospital, Cambridge, UK
| | - Paula Kareclas
- Cambridge Clinical Trials Unit, Cambridge University Hospital, Cambridge, UK
| | - Lynne Whitehead
- Pharmacy Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jon Bishop
- Medical Statistician, NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham, UK
| | - Siddharthan Chandran
- Edinburgh Medical School & Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Sarah Lamb
- Institute of Health Research, University of Exeter, Exeter, UK
| | - Mark Bacon
- International Spinal Research Trust, London, UK
| | | | | | | | | | | | - Adrian Carpenter
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Rikin A Trivedi
- Department of Neurosurgery, Cambridge University, Cambridge, UK
| | - Martin Wilby
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - David Choi
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Ian B Wilkinson
- Cambridge Clinical Trials Unit, Cambridge University Hospital, Cambridge, UK
| | - Michael G Fehlings
- Department of Surgery, Toronto Western Hospital and University of Toronto, Toronto, Ontario, Canada
| | | | - Mark R N Kotter
- Department of Neurosurgery, Cambridge University, Cambridge, UK
| |
Collapse
|
17
|
Scalia G, Costanzo R, Brunasso L, Garufi G, Bonosi L, Ricciardo G, Graziano F, Nicoletti GF, Cardali SM, Iacopino DG, Maugeri R, Umana GE. Correlation between "Snake-Eyes" Sign and Role of Surgery with a Focus on Postoperative Outcome: A Systematic Review. Brain Sci 2023; 13:brainsci13020301. [PMID: 36831844 PMCID: PMC9954568 DOI: 10.3390/brainsci13020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
(1) Background: The "snake-eyes" sign represents a unique finding characterized by bilateral hyperintense symmetric, circular, or ovoid foci on T2-weighted MRI sequences in the anterior horn cells of the spinal cord. There are conflicting opinions as some authors affirm that it does not affect the prognosis of cervical myelopathy while other papers emphasize the opposite, stating how the "snake-eyes" sign constitutes an irreversible lesion and a predictor of poor prognosis. This systematic review evaluates the correlation between the "snake-eyes" sign and the prognosis of cervical myelopathy after surgery including anterior and/or posterior approaches; (2) Methods: A systematic literature review was conducted following the PRISMA statement and a total of seven papers were included; (3) Results: A total of 419 patients were evaluated, with a mean age of 55.72 ± 14.38 years. After surgery, 26.01% of patients experienced a significant clinical improvement, while in 61.81%, there was no significant improvement. In particular, 144 of 196 patients (73.5%) treated through an anterior approach and 114 of 223 (51.1%) that underwent a posterior approach, did not present a significant improvement. Furthermore, in 12.17% of patients, the postoperative outcome was not reported, leading to a high risk of bias in the assessment of the prognostic significance of the "snake-eyes" appearance; (4) Conclusions: The "snake-eyes" sign is usually considered as an unfavorable predictive marker for myelopathic surgical patients, but the pathophysiology is still unclear, and the results have not yet reached unified levels of evidence.
Collapse
Affiliation(s)
- Gianluca Scalia
- Neurosurgery Unit, Head and Neck Surgery Department, Garibaldi Hospital, 95123 Catania, Italy
- Correspondence: ; Tel.: +39-3470589736
| | - Roberta Costanzo
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy
| | - Lara Brunasso
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy
| | - Giada Garufi
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurosurgery, Azienda Ospedaliera Papardo, University of Messina, 98158 Messina, Italy
| | - Lapo Bonosi
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Ricciardo
- Department of Neurosurgery, Azienda Ospedaliera Papardo, University of Messina, 98158 Messina, Italy
| | - Francesca Graziano
- Neurosurgery Unit, Head and Neck Surgery Department, Garibaldi Hospital, 95123 Catania, Italy
| | | | - Salvatore Massimiliano Cardali
- Department of Neurosurgery, Azienda Ospedaliera Papardo, University of Messina, 98158 Messina, Italy
- Division of Neurosurgery, BIOMORF Department, University of Messina, 98125 Messina, Italy
| | - Domenico Gerardo Iacopino
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy
| | - Rosario Maugeri
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy
| | | |
Collapse
|
18
|
Kim MW, Kang CN, Choi SH. Update of the Natural History, Pathophysiology, and Treatment Strategies of Degenerative Cervical Myelopathy: A Narrative Review. Asian Spine J 2023; 17:213-221. [PMID: 36787787 PMCID: PMC9977993 DOI: 10.31616/asj.2022.0440] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
Cervical myelopathy is a clinical syndrome resulting in symptoms of neurologic deficits due to prolonged spinal cord compression or ischemia in the cervical spine. Spinal cord compression can be caused by ossification of the posterior longitudinal ligament and hypertrophy of ligamentun flavum in addition to degenerative cervical spondylosis, degenerative disc disease, and progressive cervical kyphosis. Degenerative cervical myelopathy (DCM) is a series of disease entities caused by spinal cord compression by various nontraumatic and non-infectious causes. The pathophysiology of DCM includes spinal cord structure and function abnormalities caused by both static and dynamic factors. Surgical decompression for patients with moderate to severe cervical myelopathy not only inhibits the progression of neurological deterioration, but also improves functional status, pain, and quality of life. However, the role of nonsurgical treatment in patients with mild spinal cord compression is controversial. In general, patients with cervical myelopathies who do not undergo surgery have a poor prognosis. Appropriate surgical treatment is recommended when spinal cord compression is confirmed on image study in patients with reasonable symptoms of cervical myelopathy. The patient's overall health, degree of compression, presence of concurrent cervical radiculopathy, and cervical spine alignment, in addition to lesion location and etiology, should be considered when determining an appropriate surgical procedure. This review covers the updated issues, including pathophysiology, clinical manifestations, differential diagnosis, and available treatments for DCM.
Collapse
Affiliation(s)
- Min Woo Kim
- Department of Orthopaedic Surgery, Busan Medical Center, Pusan,
Korea
| | - Chang-Nam Kang
- Department of Orthopaedic Surgery, Hanyang University College of Medicine, Seoul,
Korea
| | - Sung Hoon Choi
- Department of Orthopaedic Surgery, Hanyang University College of Medicine, Seoul,
Korea
| |
Collapse
|
19
|
Evaniew N, Coyle M, Rampersaud YR, Bailey CS, Jacobs WB, Cadotte DW, Thomas KC, Attabib N, Paquet J, Nataraj A, Christie SD, Weber MH, Phan P, Charest-Morin R, Fisher CG, Hall H, McIntosh G, Dea N. Timing of Recovery After Surgery for Patients With Degenerative Cervical Myelopathy: An Observational Study From the Canadian Spine Outcomes and Research Network. Neurosurgery 2023; 92:271-282. [PMID: 36637265 DOI: 10.1227/neu.0000000000002213] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/31/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The time course over which postoperative neurological recovery occurs after surgery for degenerative cervical myelopathy occurs is poorly understood. OBJECTIVE To determine the time point at which patients experience significant neurological improvement. METHODS We reviewed data from an ongoing prospective multicenter cohort study. We measured neurological function at 3 months, 1 year, and 2 years after surgery using the modified Japanese Orthopedic Association (mJOA) scale. We implemented minimal clinical important differences (MCIDs) to guide interpretation of mJOA scores, and we used 1-way analysis of variance to compare changes between follow-up intervals. RESULTS Among 330 patients, the mean overall mJOA improved from 12.9 (SD 2.6) to 14.6 (SD 2.4) at 3 months, 14.7 (SD 2.4) at 1 year, and 14.8 (SD 2.5) at 2 years. The difference in means was statistically significant (P < .01) at the interval from baseline to 3 months postoperatively, but not from 3 months to 1 year or 1 year to 2 years. The MCID was reached by 161 patients at 3 months, 32 more at 1 year, and 15 more at 2 years, with a statistically significant difference only at 3 months. Patients with moderate or severe disease reached the MCID more frequently than those with mild disease. CONCLUSION Among patients who underwent surgery for degenerative cervical myelopathy, most significant neurological improvement occurred by 3 months after surgery. These findings will facilitate valid discussions about postoperative expectations during shared clinical decision making between patients and their surgeons.
Collapse
Affiliation(s)
- Nathan Evaniew
- Spine Program, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Coyle
- Spine Program, University of Calgary, Calgary, Alberta, Canada
| | - Y Raja Rampersaud
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Christopher S Bailey
- London Health Science Centre Combined Orthopaedic and Neurosurgery Spine Program, Schulich School of Medicine, Western University, London, Ontario, Canada
| | | | - David W Cadotte
- Spine Program, University of Calgary, Calgary, Alberta, Canada
| | | | | | - Jérôme Paquet
- Department of Surgery, Université Laval, Québec, Québec, Canada
| | - Andrew Nataraj
- Division of Neurosurgery, University of Alberta, Edmonton, Alberta, Canada
| | - Sean D Christie
- Department of Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michael H Weber
- Division of Orthopaedics, McGill University, Montreal, Quebec, Canada
| | - Philippe Phan
- Division of Orthopaedic Surgery, University of Ottawa, Ottawa, Ontario, Canada
| | - Raphaële Charest-Morin
- Combined Neurosurgery and Orthopaedic Spine Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charles G Fisher
- Combined Neurosurgery and Orthopaedic Spine Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hamilton Hall
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | | | - Nicolas Dea
- Combined Neurosurgery and Orthopaedic Spine Program, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Wang C, Sanvito F, Oughourlian TC, Islam S, Salamon N, Holly LT, Ellingson BM. Structural Relationship between Cerebral Gray and White Matter Alterations in Degenerative Cervical Myelopathy. Tomography 2023; 9:315-327. [PMID: 36828377 PMCID: PMC9961386 DOI: 10.3390/tomography9010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Patients with degenerative cervical myelopathy (DCM) undergo adaptive supraspinal changes. However, it remains unknown how subcortical white matter changes reflect the gray matter loss. The current study investigated the interrelationship between gray matter and subcortical white matter alterations in DCM patients. Cortical thickness of gray matter, as well as the intra-cellular volume fraction (ICVF) of subcortical whiter matter, were assessed in a cohort of 44 patients and 17 healthy controls (HCs). The results demonstrated that cortical thinning of sensorimotor and pain related regions is associated with more severe DCM symptoms. ICVF values of subcortical white matter underlying the identified regions were significantly lower in study patients than in HCs. The left precentral gyrus (r = 0.5715, p < 0.0001), the left supramarginal gyrus (r = 0.3847, p = 0.0099), the left postcentral gyrus (r = 0.5195, p = 0.0003), the right superior frontal gyrus (r = 0.3266, p = 0.0305), and the right caudal (r = 0.4749, p = 0.0011) and rostral anterior cingulate (r = 0.3927, p = 0.0084) demonstrated positive correlations between ICVF and cortical thickness in study patients, but no significant correlations between ICVF and cortical thickness were observed in HCs. Results from the current study suggest that DCM may cause widespread gray matter alterations and underlying subcortical neurite loss, which may serve as potential imaging biomarkers reflecting the pathology of DCM.
Collapse
Affiliation(s)
- Chencai Wang
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
| | - Francesco Sanvito
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
- Unit of Radiology, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Talia C. Oughourlian
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
- Neuroscience Interdepartmental Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
| | - Sabah Islam
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
| | - Langston T. Holly
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
| | - Benjamin M. Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
| |
Collapse
|
21
|
Nozawa K, Maki S, Furuya T, Okimatsu S, Inoue T, Yunde A, Miura M, Shiratani Y, Shiga Y, Inage K, Eguchi Y, Ohtori S, Orita S. Magnetic resonance image segmentation of the compressed spinal cord in patients with degenerative cervical myelopathy using convolutional neural networks. Int J Comput Assist Radiol Surg 2023; 18:45-54. [PMID: 36342593 DOI: 10.1007/s11548-022-02783-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Spinal cord segmentation is the first step in atlas-based spinal cord image analysis, but segmentation of compressed spinal cords from patients with degenerative cervical myelopathy is challenging. We applied convolutional neural network models to segment the spinal cord from T2-weighted axial magnetic resonance images of DCM patients. Furthermore, we assessed the correlation between the cross-sectional area segmented by this network and the neurological symptoms of the patients. METHODS The CNN architecture was built using U-Net and DeepLabv3 + and PyTorch. The CNN was trained on 2762 axial slices from 174 patients, and an additional 517 axial slices from 33 patients were held out for validation and 777 axial slices from 46 patients for testing. The performance of the CNN was evaluated on a test dataset with Dice coefficients as the outcome measure. The ratio of CSA at the maximum compression level to CSA at the C2 level, as segmented by the CNN, was calculated. The correlation between the spinal cord CSA ratio and the Japanese Orthopaedic Association score in DCM patients from the test dataset was investigated using Spearman's rank correlation coefficient. RESULTS The best Dice coefficient was achieved when U-Net was used as the architecture and EfficientNet-b7 as the model for transfer learning. Spearman's rs between the spinal cord CSA ratio and the JOA score of DCM patients was 0.38 (p = 0.007), showing a weak correlation. CONCLUSION Using deep learning with magnetic resonance images of deformed spinal cords as training data, we were able to segment compressed spinal cords of DCM patients with a high concordance with expert manual segmentation. In addition, the spinal cord CSA ratio was weakly, but significantly, correlated with neurological symptoms. Our study demonstrated the first steps needed to implement automated atlas-based analysis of DCM patients.
Collapse
Affiliation(s)
- Kyohei Nozawa
- Department of Medical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Satoshi Maki
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan.
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan.
| | - Takeo Furuya
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Sho Okimatsu
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takaki Inoue
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Yunde
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masataka Miura
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yuki Shiratani
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasuhiro Shiga
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kazuhide Inage
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yawara Eguchi
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Sumihisa Orita
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
22
|
Zipser CM, Fehlings MG, Margetis K, Curt A, Betz M, Sadler I, Tetreault L, Davies BM. Proposing a Framework to Understand the Role of Imaging in Degenerative Cervical Myelopathy: Enhancement of MRI Protocols Needed for Accurate Diagnosis and Evaluation. Spine (Phila Pa 1976) 2022; 47:1259-1262. [PMID: 35857708 PMCID: PMC9365266 DOI: 10.1097/brs.0000000000004389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Carl M. Zipser
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Michael G. Fehlings
- Division of Neurosurgery and Spinal Program, University of Toronto and Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | | | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Michael Betz
- University Spine Center, Balgrist University Hospital, Zurich, Switzerland
| | - Iwan Sadler
- Myelopathy Support, Myelopathy.org, Cambridge, UK
| | - Lindsay Tetreault
- Department of Neurology, NYU Langone Health, Graduate Medical Education, New York, NY
| | | |
Collapse
|
23
|
Kobayashi H, Otani K, Nikaido T, Watanabe K, Kato K, Kobayashi Y, Yabuki S, Konno SI. Development of a Novel Diagnostic Support Tool for Degenerative Cervical Myelopathy Combining 10-s Grip and Release Test and Grip Strength: A Pilot Study. Diagnostics (Basel) 2022; 12:diagnostics12092108. [PMID: 36140509 PMCID: PMC9497574 DOI: 10.3390/diagnostics12092108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
Early diagnosis of degenerative cervical myelopathy (DCM) is desirable, as delayed treatment can cause irreversible spinal cord injury and subsequent activity of daily living (ADL) impairment. We attempted to develop a straightforward and accurate diagnostic tool for DCM by combining the grip and release test (GRT) and grip strength. As a pilot study, we measured the GRT and grip strength of patients with DCM (n = 247) and a control group (n = 721). Receiver operating characteristic analysis was performed using the lower left and right. The Youden index was used to set cutoff values by sex and age group. The diagnostic performance of each test varied by sex and age, and a diagnostic support tool was created to determine any abnormal results in a test. The calculated M/F cutoff values for GRT were as follows: 40–59 years, 21/18; 60–69 years, 17/17; 70–79 years, 15/15; and 80–89 years, 11/12. The calculated M/F cutoff values for grip strength 32/20, 29/13, 21/15, and 19/10. When either GRT or grip strength was judged as positive, the overall sensitivity was 88.2%, specificity was 78.1%, positive likelihood ratio was 4.03, and the negative likelihood ratio was 0.15. This novel diagnostic support tool was superior to using GRT and grip strength alone in the early DCM diagnosis. Future research to obtain age- and sex-specific data is necessary to validate and further improve the tool.
Collapse
|
24
|
Butler MB, Mowforth OD, Badran A, Starkey M, Boerger T, Sadler I, Tabrah J, Treanor C, Phys LCGD, Kalsi-Ryan S, Laing RJ, Davies BM, Kotter MRN. Provision and Perception of Physiotherapy in the Nonoperative Management of Degenerative Cervical Myelopathy (DCM): A Cross-Sectional Questionnaire of People Living With DCM. Global Spine J 2022; 12:638-645. [PMID: 33000656 PMCID: PMC9109573 DOI: 10.1177/2192568220961357] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
STUDY DESIGN Cross-sectional survey. OBJECTIVES Degenerative cervical myelopathy (DCM) is a common syndrome of acquired spinal cord impairment caused by canal stenosis secondary to arthritic changes of the spine. International guidelines consider physiotherapy an option for mild, stable DCM; however, few studies have been conducted on nonoperative management. The objective was to determine current usage and perceptions of nonoperative physiotherapy for DCM. METHODS Persons with DCM were recruited to a web-based survey. Participants with complete responses that had not received surgery were included (n = 167). Variables included symptom duration, treatment history, current disability, and demographic characteristics. RESULTS Disease and demographic characteristics were equivalent between those who did and did not receive physiotherapy. In all, 19.5% of physiotherapy recipients reported subjective benefit from physiotherapy. Those perceiving benefit had significantly higher mJOA (modified Japanese Orthopaedic Association) scores, lower neck pain scores, and shorter symptom duration. In multivariate logistic regression analysis, those with mild DCM were more likely to perceive benefit than those with severe DCM, as were those with moderate DCM (to a lesser extent). Individuals whose diagnosis was delayed 1 to 2 years were less likely to perceive benefit than those that waited 0 to 6 months. CONCLUSIONS The provision of nonoperative physiotherapy in the management of DCM is inconsistent and appears to differ from international guidelines. Few patients perceived benefit from physiotherapy; however, this was more likely in those with mild DCM and in those with shorter symptom durations. Further work is needed to establish the appropriate role of physiotherapy for this population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Benjamin M. Davies
- University of Cambridge, Cambridge,
UK,* Joint senior authors,Benjamin M. Davies, Division of
Neurosurgery, Department of Clinical Neurosciences, University of Cambridge,
Cambridge, CB2 0SZ, UK.
| | | |
Collapse
|
25
|
Valošek J, Bednařík P, Keřkovský M, Hluštík P, Bednařík J, Svatkova A. Quantitative MR Markers in Non-Myelopathic Spinal Cord Compression: A Narrative Review. J Clin Med 2022; 11:2301. [PMID: 35566426 PMCID: PMC9105390 DOI: 10.3390/jcm11092301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Degenerative spinal cord compression is a frequent pathological condition with increasing prevalence throughout aging. Initial non-myelopathic cervical spinal cord compression (NMDC) might progress over time into potentially irreversible degenerative cervical myelopathy (DCM). While quantitative MRI (qMRI) techniques demonstrated the ability to depict intrinsic tissue properties, longitudinal in-vivo biomarkers to identify NMDC patients who will eventually develop DCM are still missing. Thus, we aim to review the ability of qMRI techniques (such as diffusion MRI, diffusion tensor imaging (DTI), magnetization transfer (MT) imaging, and magnetic resonance spectroscopy (1H-MRS)) to serve as prognostic markers in NMDC. While DTI in NMDC patients consistently detected lower fractional anisotropy and higher mean diffusivity at compressed levels, caused by demyelination and axonal injury, MT and 1H-MRS, along with advanced and tract-specific diffusion MRI, recently revealed microstructural alterations, also rostrally pointing to Wallerian degeneration. Recent studies also disclosed a significant relationship between microstructural damage and functional deficits, as assessed by qMRI and electrophysiology, respectively. Thus, tract-specific qMRI, in combination with electrophysiology, critically extends our understanding of the underlying pathophysiology of degenerative spinal cord compression and may provide predictive markers of DCM development for accurate patient management. However, the prognostic value must be validated in longitudinal studies.
Collapse
Affiliation(s)
- Jan Valošek
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (J.V.); (P.H.)
- Department of Radiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic
- Department of Biomedical Engineering, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Petr Bednařík
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, 2650 Hvidovre, Denmark;
- Department of Radiology, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, 2650 Hvidovre, Denmark
| | - Miloš Keřkovský
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (M.K.); (J.B.)
- Department of Radiology and Nuclear Medicine, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Petr Hluštík
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (J.V.); (P.H.)
- Department of Neurology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Josef Bednařík
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (M.K.); (J.B.)
- Department of Neurology, University Hospital Brno, 625 00 Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Alena Svatkova
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, 2650 Hvidovre, Denmark;
- Department of Radiology, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, 2650 Hvidovre, Denmark
- Department of Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
26
|
Chen S, Wang Y, Wu X, Chang J, Jin W, Li W, Song P, Wu Y, Zhu J, Qian Y, Shen C, Yu Y, Dong F. Degeneration of the Sensorimotor Tract in Degenerative Cervical Myelopathy and Compensatory Structural Changes in the Brain. Front Aging Neurosci 2022; 14:784263. [PMID: 35444527 PMCID: PMC9014124 DOI: 10.3389/fnagi.2022.784263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/09/2022] [Indexed: 12/19/2022] Open
Abstract
Degenerative cervical myelopathy is a progressive neurodegenerative disease, that has become increasingly prevalent in the aging population worldwide. The current study determined the factors affecting degeneration in the sensorimotor tract with degenerative cervical myelopathy and its relationship with brain structure. We divided patients into hyperintensity (HS) and non-hyperintensity (nHS) groups and measured the fractional anisotropy and apparent diffusion coefficients of the lateral corticospinal tract (CST), fasciculus gracilis and fasciculus cuneatus (FGC). Voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) techniques were used to estimate brain structure changes. Correlation of the modified Japanese Orthopaedic Association (mJOA) score, light touch, pinprick, motor score, and fractional anisotropy (FA) ratios of the CST at different levels were analyzed. Compared to healthy controls, the FA ratios of CST in the HS and nHS groups were decreased at all levels, and the apparent diffusion coefficient (ADC) ratio was increased only at C4/5 levels in the HS group. The FA ratio of FGC was decreased at the C3/4 and C4/5 levels in the HS group and only decreased at the C4/5 level in the nHS group. The ADC ratio was decreased only at the C4/5 level in the HS group. VBM analysis revealed that the volume of the precentral gyrus, postcentral gyrus, and paracentral lobule increased in patients compared to controls. TBSS analysis found no statistical significance between the sensory and motor tracts in white matter. The volume of clusters in HS and nHS groups negatively correlated with the C1/2 FA ratio of the CST. The results showed that the degeneration distance of the CST was longer than the FGC, and the degeneration distance was related to the degree of compression and spinal cord damage. Structural compensation and the neurotrophin family may lead to enlargement of the brain.
Collapse
Affiliation(s)
- Senlin Chen
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Ying Wang
- Department of Radiology, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Xianyong Wu
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Jianchao Chang
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Weiming Jin
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Wei Li
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Peiwen Song
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Yuanyuan Wu
- Department of Medical Imaging, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Cailiang Shen
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Fulong Dong
- Department of Orthopedics, Department of Spine Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
- *Correspondence: Fulong Dong
| |
Collapse
|
27
|
Martin AR, Tetreault L, Nouri A, Curt A, Freund P, Rahimi-Movaghar V, Wilson JR, Fehlings MG, Kwon BK, Harrop JS, Davies BM, Kotter MRN, Guest JD, Aarabi B, Kurpad SN. Imaging and Electrophysiology for Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 9]. Global Spine J 2022; 12:130S-146S. [PMID: 34797993 PMCID: PMC8859711 DOI: 10.1177/21925682211057484] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
STUDY DESIGN Narrative review. OBJECTIVE The current review aimed to describe the role of existing techniques and emerging methods of imaging and electrophysiology for the management of degenerative cervical myelopathy (DCM), a common and often progressive condition that causes spinal cord dysfunction and significant morbidity globally. METHODS A narrative review was conducted to summarize the existing literature and highlight future directions. RESULTS Anatomical magnetic resonance imaging (MRI) is well established in the literature as the key imaging tool to identify spinal cord compression, disc herniation/bulging, and inbuckling of the ligamentum flavum, thus facilitating surgical planning, while radiographs and computed tomography (CT) provide complimentary information. Electrophysiology techniques are primarily used to rule out competing diagnoses. However, signal change and measures of cord compression on conventional MRI have limited utility to characterize the degree of tissue injury, which may be helpful for diagnosis, prognostication, and repeated assessments to identify deterioration. Early translational studies of quantitative imaging and electrophysiology techniques show potential of these methods to more accurately reflect changes in spinal cord microstructure and function. CONCLUSION Currently, clinical management of DCM relies heavily on anatomical MRI, with additional contributions from radiographs, CT, and electrophysiology. Novel quantitative assessments of microstructure, perfusion, and function have the potential to transform clinical practice, but require robust validation, automation, and standardization prior to uptake.
Collapse
Affiliation(s)
- Allan R Martin
- Department of Neurological Surgery, 8789University of California Davis, Davis, CA, USA
| | - Lindsay Tetreault
- Department of Neurology, 5894New York University, Langone Health, Graduate Medical Education, New York, NY, USA
| | - Aria Nouri
- Division of Neurosurgery, Geneva University Hospitals, 27230University of Geneva, Geneva, Switzerland
| | - Armin Curt
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Patrick Freund
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Vafa Rahimi-Movaghar
- Department of Neurosurgery, Sina Trauma and Surgery Research Center, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Jefferson R Wilson
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, Toronto, ON, Canada
| | - Brian K Kwon
- Vancouver Spine Surgery Institute, Department of Orthopedics, The University of British Columbia, Vancouver, BC, Canada
| | - James S Harrop
- Department of Neurological Surgery, 6529Thomas Jefferson University, Philadelphia, PA, USA
| | - Benjamin M Davies
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Mark R N Kotter
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - James D Guest
- Department of Neurosurgery and The Miami Project to Cure Paralysis, The Miller School of Medicine, 12235University of Miami, Miami, FL, USA
| | - Bizhan Aarabi
- Department of Neurosurgery, 1479University of Maryland, Baltimore, MD, USA
| | - Shekar N Kurpad
- Department of Neurosurgery, 5506Medical College of Wisconsin, Wauwatosa, WI, USA
| |
Collapse
|
28
|
Nouri A, Tessitore E, Molliqaj G, Meling T, Schaller K, Nakashima H, Yukawa Y, Bednarik J, Martin AR, Vajkoczy P, Cheng JS, Kwon BK, Kurpad SN, Fehlings MG, Harrop JS, Aarabi B, Rahimi-Movaghar V, Guest JD, Davies BM, Kotter MRN, Wilson JR. Degenerative Cervical Myelopathy: Development and Natural History [AO Spine RECODE-DCM Research Priority Number 2]. Global Spine J 2022; 12:39S-54S. [PMID: 35174726 PMCID: PMC8859703 DOI: 10.1177/21925682211036071] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
STUDY DESIGN Narrative review. OBJECTIVES To discuss the current understanding of the natural history of degenerative cervical myelopathy (DCM). METHODS Literature review summarizing current evidence pertaining to the natural history and risk factors of DCM. RESULTS DCM is a common condition in which progressive arthritic disease of the cervical spine leads to spinal cord compression resulting in a constellation of neurological symptoms, in particular upper extremity dysfunction and gait impairment. Anatomical factors including cord-canal mismatch, congenitally fused vertebrae and genetic factors may increase individuals' risk for DCM development. Non-myelopathic spinal cord compression (NMSCC) is a common phenomenon with a prevalence of 24.2% in the healthy population, and 35.3% among individuals >60 years of age. Clinical radiculopathy and/or electrophysiological signs of cervical cord dysfunction appear to be risk factors for myelopathy development. Radiological progression of incidental Ossification of the Posterior Longitudinal Ligament (OPLL) is estimated at 18.3% over 81-months and development of myelopathy ranges between 0-61.5% (follow-up ranging from 40 to 124 months between studies) among studies. In patients with symptomatic DCM undergoing non-operative treatment, 20-62% will experience neurological deterioration within 3-6 years. CONCLUSION Current estimates surrounding the natural history of DCM, particularly those individuals with mild or minimal impairment, lack precision. Clear predictors of clinical deterioration for those treated with non-operative care are yet to be identified. Future studies are needed on this topic to help improve treatment counseling and clinical prognostication.
Collapse
Affiliation(s)
- Aria Nouri
- Division of Neurosurgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Enrico Tessitore
- Division of Neurosurgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Granit Molliqaj
- Division of Neurosurgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Torstein Meling
- Division of Neurosurgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Karl Schaller
- Division of Neurosurgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Hiroaki Nakashima
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasutsugu Yukawa
- Department of Orthopedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - Josef Bednarik
- Department of Neurology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Allan R. Martin
- Department of Neurosurgery, University of California Davis, Sacramento, CA, USA
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité Universitätsmedizin, Berlin, Germany
| | - Joseph S. Cheng
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Brian K. Kwon
- Vancouver Spine Surgery Institute, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shekar N. Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Michael G. Fehlings
- Division of Neurosurgery and Spine Program, University of Toronto, Ontario, Canada
| | - James S. Harrop
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bizhan Aarabi
- Department of Neurosurgery, University of Maryland, Baltimore, MD, USA
| | - Vafa Rahimi-Movaghar
- Department of Neurosurgery, Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - James D. Guest
- Department of Neurosurgery and The Miami Project to Cure Paralysis, The Miller School of Medicine, University of Miami, FL, USA
| | - Benjamin M. Davies
- Department of Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Myelopathy.org, International Charity for Degenerative Cervical Myelopathy, United Kingdom
| | - Mark R. N. Kotter
- Department of Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Myelopathy.org, International Charity for Degenerative Cervical Myelopathy, United Kingdom
| | - Jefferson R. Wilson
- Division of Neurosurgery and Spine Program, University of Toronto, Ontario, Canada
| |
Collapse
|
29
|
Rodrigues-Pinto R, Montenegro TS, Davies BM, Kato S, Kawaguchi Y, Ito M, Zileli M, Kwon BK, Fehlings MG, Koljonen PA, Kurpad SN, Guest JD, Aarabi B, Rahimi-Movaghar V, Wilson JR, Kotter MRN, Harrop JS. Optimizing the Application of Surgery for Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 10]. Global Spine J 2022; 12:147S-158S. [PMID: 35174733 PMCID: PMC8859702 DOI: 10.1177/21925682211062494] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
STUDY DESIGN Literature Review (Narrative). OBJECTIVE To introduce the number 10 research priority for Degenerative Cervical Myelopathy: Individualizing Surgery. METHODS This article summarizes the current recommendations and indications for surgery, including how known prognostic factors such as injury time, age, disease severity, and associated comorbidities impact surgical outcome. It also considers key areas of uncertainty that should be the focus of future research. RESULTS While a small proportion of conservatively managed patients may remain stable, the majority will deteriorate over time. To date, surgical decompression is the mainstay of treatment, able to halt disease progression and improve neurologic function and quality of life for most patients. Whilst this recognition has led to recommendations on when to offer surgery, there remain many uncertainties including the type of surgery, or timing in milder and/or asymptomatic cases. Their clarification has the potential to transform outcomes, by ensuring surgery offers each individual its maximum benefit. CONCLUSION Developing the evidence to better guide surgical decision-making at the individual patient level is a research priority for Degenerative Cervical Myelopathy.
Collapse
Affiliation(s)
- Ricardo Rodrigues-Pinto
- Spinal Unit (UVM), Department of Orthopaedics, Centro Hospitalar Universitário do Porto - Hospital de Santo António, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Thiago S. Montenegro
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - So Kato
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | | | - Manabu Ito
- Department of Orthopaedic Surgery, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Mehmet Zileli
- Neurosurgery Department, Ege University, Bornova, Izmir, Turkey
| | - Brian K. Kwon
- Vancouver Spine Surgery Institute, Department of Orthopedics, The University of British Columbia, Vancouver, BC, Canada
| | - Michael G. Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, ON, Canada
| | - Paul A. Koljonen
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shekar N. Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - James D. Guest
- Department of Neurosurgery and The Miami Project to Cure Paralysis, The Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Bizhan Aarabi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vafa Rahimi-Movaghar
- Department of Neurosurgery, Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Iran
| | - Jefferson R. Wilson
- Division of Neurosurgery, Department of Surgery, University of Toronto, ON, Canada
| | | | - James S. Harrop
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
30
|
Davies BM, Mowforth O, Wood H, Karimi Z, Sadler I, Tetreault L, Milligan J, Wilson JRF, Kalsi-Ryan S, Furlan JC, Kawaguchi Y, Ito M, Zipser CM, Boerger TF, Vaccaro AR, Murphy RKJ, Hutton M, Rodrigues-Pinto R, Koljonen PA, Harrop JS, Aarabi B, Rahimi-Movaghar V, Kurpad SN, Guest JD, Wilson JR, Kwon BK, Kotter MRN, Fehlings MG. Improving Awareness Could Transform Outcomes in Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 1]. Global Spine J 2022; 12:28S-38S. [PMID: 35174734 PMCID: PMC8859708 DOI: 10.1177/21925682211050927] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
STUDY DESIGN Literature Review (Narrative). OBJECTIVE To introduce the number one research priority for Degenerative Cervical Myelopathy (DCM): Raising Awareness. METHODS Raising awareness has been recognized by AO Spine RECODE-DCM as the number one research priority. This article reviews the evidence that awareness is low, the potential drivers, and why this must be addressed. Case studies of success from other diseases are also reviewed, drawing potential parallels and opportunities for DCM. RESULTS DCM may affect as many as 1 in 50 adults, yet few will receive a diagnosis and those that do will wait many years for it. This leads to poorer outcomes from surgery and greater disability. DCM is rarely featured in healthcare professional training programs and has received relatively little research funding (<2% of Amyotrophic Lateral Sclerosis or Multiple Sclerosis over the last 25 years). The transformation of stroke and acute coronary syndrome services, from a position of best supportive care with occasional surgery over 50 years ago, to avoidable disability today, represents transferable examples of success and potential opportunities for DCM. Central to this is raising awareness. CONCLUSION Despite the devastating burden on the patient, recognition across research, clinical practice, and healthcare policy are limited. DCM represents a significant unmet need that must become an international public health priority.
Collapse
Affiliation(s)
- Benjamin M. Davies
- Myelopathy.org, International Charity for Degenerative Cervical Myelopathy, Cambridge, UK
- Department of Neurosurgery, University of Cambridge, Cambridge, UK
| | - Oliver Mowforth
- Myelopathy.org, International Charity for Degenerative Cervical Myelopathy, Cambridge, UK
- Department of Neurosurgery, University of Cambridge, Cambridge, UK
| | - Helen Wood
- Myelopathy.org, International Charity for Degenerative Cervical Myelopathy, Cambridge, UK
| | - Zahabiya Karimi
- Myelopathy.org, International Charity for Degenerative Cervical Myelopathy, Cambridge, UK
| | - Iwan Sadler
- Myelopathy.org, International Charity for Degenerative Cervical Myelopathy, Cambridge, UK
| | - Lindsay Tetreault
- Department of Neurology, Langone Health, Graduate Medical Education, New York University, New York, NY, USA
| | - Jamie Milligan
- Department of Family Medicine, McMaster University, Hamilton, ON, Canada
| | - Jamie R. F. Wilson
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sukhvinder Kalsi-Ryan
- KITE Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, ON, Canada
| | - Julio C. Furlan
- KITE Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, ON, Canada
| | | | - Manabu Ito
- Department of Orthopaedic Surgery, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Carl Moritz Zipser
- University Spine Center, Balgrist University Hospital, Zurich, Switzerland
| | - Timothy F Boerger
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Alexander R. Vaccaro
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rory K. J. Murphy
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mike Hutton
- Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Ricardo Rodrigues-Pinto
- Department of Orthopaedics, Spinal Unit (UVM), Centro Hospitalar Universitário Do Porto - Hospital de Santo António, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Paul A. Koljonen
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - James S. Harrop
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bizhan Aarabi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vafa Rahimi-Movaghar
- Department of Neurosurgery, Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shekar N Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - James D. Guest
- Department of Neurosurgery and The Miami Project to Cure Paralysis, The Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jefferson R. Wilson
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Brian K. Kwon
- Department of Orthopedics, Vancouver Spine Surgery Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Mark R. N. Kotter
- Myelopathy.org, International Charity for Degenerative Cervical Myelopathy, Cambridge, UK
- Department of Neurosurgery, University of Cambridge, Cambridge, UK
| | - Michael G. Fehlings
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Davies BM, Mowforth O, Gharooni AA, Tetreault L, Nouri A, Dhillon RS, Bednarik J, Martin AR, Young A, Takahashi H, Boerger TF, Newcombe VF, Zipser CM, Freund P, Koljonen PA, Rodrigues-Pinto R, Rahimi-Movaghar V, Wilson JR, Kurpad SN, Fehlings MG, Kwon BK, Harrop JS, Guest JD, Curt A, Kotter MRN. A New Framework for Investigating the Biological Basis of Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 5]: Mechanical Stress, Vulnerability and Time. Global Spine J 2022; 12:78S-96S. [PMID: 35174728 PMCID: PMC8859710 DOI: 10.1177/21925682211057546] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY DESIGN Literature Review (Narrative). OBJECTIVE To propose a new framework, to support the investigation and understanding of the pathobiology of DCM, AO Spine RECODE-DCM research priority number 5. METHODS Degenerative cervical myelopathy is a common and disabling spinal cord disorder. In this perspective, we review key knowledge gaps between the clinical phenotype and our biological models. We then propose a reappraisal of the key driving forces behind DCM and an individual's susceptibility, including the proposal of a new framework. RESULTS Present pathobiological and mechanistic knowledge does not adequately explain the disease phenotype; why only a subset of patients with visualized cord compression show clinical myelopathy, and the amount of cord compression only weakly correlates with disability. We propose that DCM is better represented as a function of several interacting mechanical forces, such as shear, tension and compression, alongside an individual's vulnerability to spinal cord injury, influenced by factors such as age, genetics, their cardiovascular, gastrointestinal and nervous system status, and time. CONCLUSION Understanding the disease pathobiology is a fundamental research priority. We believe a framework of mechanical stress, vulnerability, and time may better represent the disease as a whole. Whilst this remains theoretical, we hope that at the very least it will inspire new avenues of research that better encapsulate the full spectrum of disease.
Collapse
Affiliation(s)
- Benjamin M Davies
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Oliver Mowforth
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Aref-Ali Gharooni
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Lindsay Tetreault
- New York University, Langone Health, Graduate Medical Education, 5894Department of Neurology, New York, NY, USA
| | - Aria Nouri
- Division of Neurosurgery, Geneva University Hospitals, 27230University of Geneva, Genève, Switzerland
| | - Rana S Dhillon
- Department of Neurosurgery, 60078St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Josef Bednarik
- Department of Neurology, University Hospital Brno and Faculty of Medicine, 37748Masaryk University, Brno, Czech Republic
| | - Allan R Martin
- Department of Neurosurgery, 8789University of California Davis, Sacramento, CA, USA
| | - Adam Young
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, 12978Niigata University, Niigata, Japan
| | - Timothy F Boerger
- Department of Neurosurgery, 5506Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Virginia Fj Newcombe
- Division of Anaesthesia, Department of Medicine, 2152University of Cambridge, Cambridge, UK
| | - Carl Moritz Zipser
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Patrick Freund
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Paul Aarne Koljonen
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, 25809The University of Hong Kong, Hong Kong, China
| | - Ricardo Rodrigues-Pinto
- Spinal Unit (UVM), Department of Orthopaedics, 112085Centro Hospitalar Universitário do Porto - Hospital de Santo António, Porto, Portugal
- 89239Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Vafa Rahimi-Movaghar
- Department of Neurosurgery, Sina Trauma and Surgery Research Center, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Jefferson R Wilson
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, Toronto, ON, Canada
| | - Shekar N Kurpad
- Department of Neurosurgery, 5506Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, Toronto, ON, Canada
| | - Brian K Kwon
- Vancouver Spine Surgery Institute, Department of Orthopedics, The University of British Columbia, Vancouver, BC, Canada
| | - James S Harrop
- Department of Neurological Surgery, 6559Thomas Jefferson University, Philadelphia, PA, USA
| | - James D Guest
- Department of Neurosurgery and the Miami Project to Cure Paralysis, The Miller School of Medicine, 12235University of Miami, Miami, FL, USA
| | - Armin Curt
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Mark R N Kotter
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| |
Collapse
|
32
|
Zhang MZ, Ou-Yang HQ, Liu JF, Jin D, Wang CJ, Ni M, Liu XG, Lang N, Jiang L, Yuan HS. Predicting postoperative recovery in cervical spondylotic myelopathy: construction and interpretation of T 2*-weighted radiomic-based extra trees models. Eur Radiol 2022; 32:3565-3575. [PMID: 35024949 DOI: 10.1007/s00330-021-08383-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/21/2021] [Accepted: 10/04/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Conventional MRI may not be ideal for predicting cervical spondylotic myelopathy (CSM) prognosis. In this study, we used radiomics in predicting postoperative recovery in CSM. We aimed to develop and validate radiomic feature-based extra trees models. METHODS There were 151 patients with CSM who underwent preoperative T2-/ T2*-weighted imaging (WI) and surgery. They were divided into good/poor outcome groups based on the recovery rate. Datasets from multiple scanners were randomised into training and internal validation sets, while the dataset from an independent scanner was used for external validation. Radiomic features were extracted from the transverse spinal cord at the maximum compressed level. Threshold selection algorithm, collinearity removal, and tree-based feature selection were applied sequentially in the training set to obtain the optimal radiomic features. The classification of intramedullary increased signal on T2/T2*WI and compression ratio of the spinal cord on T2*WI were selected as the conventional MRI features. Clinical features were age, preoperative mJOA, and symptom duration. Four models were constructed: radiological, radiomic, clinical-radiological, and clinical-radiomic. An AUC significantly > 0.5 was considered meaningful predictive performance based on the DeLong test. The mean decrease in impurity was used to measure feature importance. p < 0.05 was considered statistically significant. RESULTS On internal and external validations, AUCs of the radiomic and clinical-radiomic models, and radiological and clinical-radiological models ranged from 0.71 to 0.81 (significantly > 0.5) and 0.40 to 0.55, respectively. Wavelet-LL first-order variance was the most important feature in the radiomic model. CONCLUSION Radiomic features, especially wavelet-LL first-order variance, contribute to meaningful predictive models for CSM prognosis. KEY POINTS • Conventional MRI features may not be ideal in predicting prognosis. • Radiomics provides greater predictive efficiency in the recovery from cervical spondylotic myelopathy.
Collapse
Affiliation(s)
- Meng-Ze Zhang
- Department of Radiology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, China
| | - Han-Qiang Ou-Yang
- Department of Orthopedics, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Jian-Fang Liu
- Department of Radiology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, China
| | - Dan Jin
- Department of Radiology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, China
| | - Chun-Jie Wang
- Department of Radiology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, China
| | - Ming Ni
- Department of Radiology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, China
| | - Xiao-Guang Liu
- Department of Orthopedics, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Ning Lang
- Department of Radiology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, China
| | - Liang Jiang
- Department of Orthopedics, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China.
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
| | - Hui-Shu Yuan
- Department of Radiology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, China.
| |
Collapse
|
33
|
David G, Vallotton K, Hupp M, Curt A, Freund P, Seif M. Extent of cord pathology in the lumbosacral enlargement in non-traumatic versus traumatic spinal cord injury. J Neurotrauma 2022; 39:639-650. [PMID: 35018824 DOI: 10.1089/neu.2021.0389] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study compares remote neurodegenerative changes caudal to a cervical injury in degenerative cervical myelopathy (DCM) (i.e., non-traumatic) and incomplete traumatic spinal cord injury (tSCI) patients, using MRI-based tissue area measurements and diffusion tensor imaging (DTI). Eighteen mild to moderate DCM patients with sensory impairments (mJOA score: 16.2±1.9), 14 incomplete tetraplegic tSCI patients (AIS C&D), and 20 healthy controls were recruited. All participants received DTI and T2*-weighted scans in the lumbosacral enlargement (caudal to injury) and at C2/C3 (rostral to injury). MRI readouts included DTI metrics in the white matter (WM) columns and cross-sectional WM and gray matter area. One-way ANOVA with Tukey's post-hoc comparison (p<0.05) was used to assess group differences. In the lumbosacral enlargement, compared to DCM, tSCI patients exhibited decreased fractional anisotropy in the lateral (tSCI vs. DCM, -11.9%, p=0.007) and ventral WM column (-8.0%, p=0.021), and showed trend toward lower values in the dorsal column (-8.9%, p=0.068). At C2/C3, compared to controls, fractional anisotropy was lower in both groups in the dorsal (DCM vs. controls, -7.9%, p=0.024; tSCI vs. controls, -10.0%, p=0.007) and in the lateral column (DCM: -6.2%, p=0.039; tSCI: -13.3%, p<0.001), while tSCI patients had lower fractional anisotropy than DCM patients in the lateral column (-7.6%, p=0.029). WM areas were not different between patient groups but were lower compared to controls in the lumbosacral enlargement (DCM: -16.9%, p<0.001; tSCI, -10.5%, p=0.043) and at C2/C3 (DCM: -16.0%, p<0.001; tSCI: -18.1%, p<0.001). In conclusion, mild to moderate DCM and incomplete tSCI lead to similar degree of degeneration of the dorsal and lateral columns at C2/C3, but tSCI results in more widespread white matter damage in the lumbosacral enlargement. These remote changes are likely to contribute to the patients' impairment and recovery. DTI is a sensitive tool to assess remote pathological changes in DCM and tSCI patients.
Collapse
Affiliation(s)
- Gergely David
- University of Zurich, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland.,University Medical Center Hamburg-Eppendorf, 37734, Department of Systems Neuroscience, Hamburg, Germany;
| | - Kevin Vallotton
- University of Zurich, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland;
| | - Markus Hupp
- University of Zurich, 27217, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland;
| | - Armin Curt
- University of Zurich, 27217, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland;
| | - Patrick Freund
- University of Zurich, 27217, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland.,UCL Institute of Neurology, 61554, Department of Brain Repair and Rehabilitation, London, United Kingdom of Great Britain and Northern Ireland.,UCL Institute of Neurology, 61554, Wellcome Trust Centre for Neuroimaging, London, United Kingdom of Great Britain and Northern Ireland.,Max Planck Institute for Human Cognitive and Brain Sciences, 27184, Department of Neurophysics, Leipzig, Germany;
| | - Maryam Seif
- University of Zurich, 27217, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland.,Max Planck Institute for Human Cognitive and Brain Sciences, 27184, Leipzig, Department of Neurophysics, Germany;
| |
Collapse
|
34
|
Abstract
Degenerative cervical myelopathy (DCM) is a recently coined term encompassing a variety of age-related and genetically associated pathologies, including cervical spondylotic myelopathy, degenerative disc disease, and ligamentous aberrations such as ossification of the posterior longitudinal ligament. All of these pathologies produce chronic compression of the spinal cord causing a clinical syndrome characterized by decreased hand dexterity, gait imbalance, and potential genitourinary or sensorimotor disturbances. Substantial variability in the underlying etiology of DCM and its natural history has generated heterogeneity in practice patterns. Ongoing debates in DCM management most commonly center around clinical decision-making, timing of intervention, and the ideal surgical approach. Pivotal basic science studies during the past two decades have deepened our understanding of the pathophysiologic mechanisms surrounding DCM. Growing knowledge of the key pathophysiologic processes will help us tailor personalized approaches in an increasingly heterogeneous patient population. This article focuses on summarizing the most exciting approaches in personalizing DCM patient treatments including biomarkers, factors affecting clinical decision-making, and choice of the optimal surgical approach. Throughout we provide a concise review on the conditions encompassing DCM and discuss the underlying pathophysiology of chronic spinal cord compression. We also provide an overview on clinical-radiologic diagnostic modalities as well as operative and nonoperative treatment strategies, thereby addressing knowledge gaps and controversies in the field of DCM.
Collapse
|
35
|
TO THE EDITOR. Spine (Phila Pa 1976) 2021; 46:E1067-E1068. [PMID: 34341322 DOI: 10.1097/brs.0000000000004187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
36
|
Cohen-Adad J, Alonso-Ortiz E, Abramovic M, Arneitz C, Atcheson N, Barlow L, Barry RL, Barth M, Battiston M, Büchel C, Budde M, Callot V, Combes AJE, De Leener B, Descoteaux M, de Sousa PL, Dostál M, Doyon J, Dvorak A, Eippert F, Epperson KR, Epperson KS, Freund P, Finsterbusch J, Foias A, Fratini M, Fukunaga I, Wheeler-Kingshott CAMG, Germani G, Gilbert G, Giove F, Gros C, Grussu F, Hagiwara A, Henry PG, Horák T, Hori M, Joers J, Kamiya K, Karbasforoushan H, Keřkovský M, Khatibi A, Kim JW, Kinany N, Kitzler H, Kolind S, Kong Y, Kudlička P, Kuntke P, Kurniawan ND, Kusmia S, Labounek R, Laganà MM, Laule C, Law CS, Lenglet C, Leutritz T, Liu Y, Llufriu S, Mackey S, Martinez-Heras E, Mattera L, Nestrasil I, O'Grady KP, Papinutto N, Papp D, Pareto D, Parrish TB, Pichiecchio A, Prados F, Rovira À, Ruitenberg MJ, Samson RS, Savini G, Seif M, Seifert AC, Smith AK, Smith SA, Smith ZA, Solana E, Suzuki Y, Tackley G, Tinnermann A, Valošek J, Van De Ville D, Yiannakas MC, Weber KA, Weiskopf N, Wise RG, Wyss PO, Xu J. Generic acquisition protocol for quantitative MRI of the spinal cord. Nat Protoc 2021; 16:4611-4632. [PMID: 34400839 PMCID: PMC8811488 DOI: 10.1038/s41596-021-00588-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 06/10/2021] [Indexed: 02/08/2023]
Abstract
Quantitative spinal cord (SC) magnetic resonance imaging (MRI) presents many challenges, including a lack of standardized imaging protocols. Here we present a prospectively harmonized quantitative MRI protocol, which we refer to as the spine generic protocol, for users of 3T MRI systems from the three main manufacturers: GE, Philips and Siemens. The protocol provides guidance for assessing SC macrostructural and microstructural integrity: T1-weighted and T2-weighted imaging for SC cross-sectional area computation, multi-echo gradient echo for gray matter cross-sectional area, and magnetization transfer and diffusion weighted imaging for assessing white matter microstructure. In a companion paper from the same authors, the spine generic protocol was used to acquire data across 42 centers in 260 healthy subjects. The key details of the spine generic protocol are also available in an open-access document that can be found at https://github.com/spine-generic/protocols . The protocol will serve as a starting point for researchers and clinicians implementing new SC imaging initiatives so that, in the future, inclusion of the SC in neuroimaging protocols will be more common. The protocol could be implemented by any trained MR technician or by a researcher/clinician familiar with MRI acquisition.
Collapse
Affiliation(s)
- Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada.
- Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, Quebec, Canada.
- Mila-Quebec AI Institute, Montreal, Quebec, Canada.
| | - Eva Alonso-Ortiz
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Mihael Abramovic
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Carina Arneitz
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Nicole Atcheson
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Laura Barlow
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert L Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Markus Barth
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Marco Battiston
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthew Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Virginie Callot
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital Universitaire Timone, CEMEREM, Marseille, France
| | - Anna J E Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Benjamin De Leener
- Department of Computer and Software Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
- CHU Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Maxime Descoteaux
- Centre de Recherche CHUS, CIMS, Sherbrooke, Quebec, Canada
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science department, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Marek Dostál
- UHB - University Hospital Brno and Masaryk University, Department of Radiology and Nuclear Medicine, Brno, Czech Republic
| | - Julien Doyon
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Adam Dvorak
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Falk Eippert
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Karla R Epperson
- Richard M. Lucas Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin S Epperson
- Richard M. Lucas Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Patrick Freund
- Spinal Cord Injury Center Balgrist, University of Zurich, Zurich, Switzerland
| | - Jürgen Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandru Foias
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Michela Fratini
- Institute of Nanotechnology, CNR, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | - Issei Fukunaga
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Giancarlo Germani
- Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Federico Giove
- IRCCS Santa Lucia Foundation, Rome, Italy
- CREF - Museo storico della fisica e Centro studi e ricerche Enrico Fermi, Rome, Italy
| | - Charley Gros
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Francesco Grussu
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Tomáš Horák
- Multimodal and functional imaging laboratory, Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Masaaki Hori
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - James Joers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Kouhei Kamiya
- Department of Radiology, the University of Tokyo, Tokyo, Japan
| | - Haleh Karbasforoushan
- Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Miloš Keřkovský
- UHB - University Hospital Brno and Masaryk University, Department of Radiology and Nuclear Medicine, Brno, Czech Republic
| | - Ali Khatibi
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Joo-Won Kim
- BioMedical Engineering and Imaging Institute (BMEII), Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nawal Kinany
- Institute of Bioengineering/Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Hagen Kitzler
- Institute of Diagnostic and Interventional Neuroradiology, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Shannon Kolind
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine (Neurology), University of British Columbia, Vancouver, British Columbia, Canada
| | - Yazhuo Kong
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Petr Kudlička
- Multimodal and functional imaging laboratory, Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Paul Kuntke
- Institute of Diagnostic and Interventional Neuroradiology, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Slawomir Kusmia
- CUBRIC, Cardiff University, Wales, UK
- Centre for Medical Image Computing (CMIC), Medical Physics and Biomedical Engineering Department, University College London, London, UK
- Epilepsy Society MRI Unit, Chalfont St Peter, UK
| | - René Labounek
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Departments of Neurology and Biomedical Engineering, University Hospital Olomouc, Olomouc, Czech Republic
| | | | - Cornelia Laule
- Departments of Radiology, Pathology & Laboratory Medicine, Physics & Astronomy; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Christine S Law
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Tobias Leutritz
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Sara Llufriu
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Eloy Martinez-Heras
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Loan Mattera
- Fondation Campus Biotech Genève, Geneva, Switzerland
| | - Igor Nestrasil
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Kristin P O'Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nico Papinutto
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Daniel Papp
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Deborah Pareto
- Neuroradiology Section, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Todd B Parrish
- Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anna Pichiecchio
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Ferran Prados
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing (CMIC), Medical Physics and Biomedical Engineering Department, University College London, London, UK
- E-health Centre, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Àlex Rovira
- Neuroradiology Section, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Rebecca S Samson
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Giovanni Savini
- Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Maryam Seif
- Spinal Cord Injury Center Balgrist, University of Zurich, Zurich, Switzerland
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alan C Seifert
- BioMedical Engineering and Imaging Institute (BMEII), Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alex K Smith
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zachary A Smith
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Elisabeth Solana
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Yuichi Suzuki
- Department of Radiology, the University of Tokyo, Tokyo, Japan
| | | | - Alexandra Tinnermann
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Valošek
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Dimitri Van De Ville
- Institute of Bioengineering/Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Marios C Yiannakas
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Kenneth A Weber
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Richard G Wise
- CUBRIC, Cardiff University, Wales, UK
- Institute for Advanced Biomedical Technologies, Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio University" of Chieti-Pescara, Chieti, Italy
| | - Patrik O Wyss
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Junqian Xu
- BioMedical Engineering and Imaging Institute (BMEII), Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
37
|
Valošek J, Labounek R, Horák T, Horáková M, Bednařík P, Keřkovský M, Kočica J, Rohan T, Lenglet C, Cohen-Adad J, Hluštík P, Vlčková E, Kadaňka Z, Bednařík J, Svatkova A. Diffusion magnetic resonance imaging reveals tract-specific microstructural correlates of electrophysiological impairments in non-myelopathic and myelopathic spinal cord compression. Eur J Neurol 2021; 28:3784-3797. [PMID: 34288268 PMCID: PMC8530898 DOI: 10.1111/ene.15027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND PURPOSE Non-myelopathic degenerative cervical spinal cord compression (NMDC) frequently occurs throughout aging and may progress to potentially irreversible degenerative cervical myelopathy (DCM). Whereas standard clinical magnetic resonance imaging (MRI) and electrophysiological measures assess compression severity and neurological dysfunction, respectively, underlying microstructural deficits still have to be established in NMDC and DCM patients. The study aims to establish tract-specific diffusion MRI markers of electrophysiological deficits to predict the progression of asymptomatic NMDC to symptomatic DCM. METHODS High-resolution 3 T diffusion MRI was acquired for 103 NMDC and 21 DCM patients compared to 60 healthy controls to reveal diffusion alterations and relationships between tract-specific diffusion metrics and corresponding electrophysiological measures and compression severity. Relationship between the degree of DCM disability, assessed by the modified Japanese Orthopaedic Association scale, and tract-specific microstructural changes in DCM patients was also explored. RESULTS The study identified diffusion-derived abnormalities in the gray matter, dorsal and lateral tracts congruent with trans-synaptic degeneration and demyelination in chronic degenerative spinal cord compression with more profound alterations in DCM than NMDC. Diffusion metrics were affected in the C3-6 area as well as above the compression level at C3 with more profound rostral deficits in DCM than NMDC. Alterations in lateral motor and dorsal sensory tracts correlated with motor and sensory evoked potentials, respectively, whereas electromyography outcomes corresponded with gray matter microstructure. DCM disability corresponded with microstructure alteration in lateral columns. CONCLUSIONS Outcomes imply the necessity of high-resolution tract-specific diffusion MRI for monitoring degenerative spinal pathology in longitudinal studies.
Collapse
Affiliation(s)
- Jan Valošek
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czechia.,Department of Biomedical Engineering, University Hospital, Olomouc, Czechia
| | - René Labounek
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czechia.,Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tomáš Horák
- Central European Institute of Technology, Masaryk University, Brno, Czechia.,Department of Neurology, University Hospital Brno, Brno, Czechia.,Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Magda Horáková
- Department of Neurology, University Hospital Brno, Brno, Czechia.,Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petr Bednařík
- Central European Institute of Technology, Masaryk University, Brno, Czechia.,High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Miloš Keřkovský
- Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Radiology and Nuclear Medicine, University Hospital Brno, Brno, Czechia
| | - Jan Kočica
- Department of Neurology, University Hospital Brno, Brno, Czechia.,Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Tomáš Rohan
- Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Radiology and Nuclear Medicine, University Hospital Brno, Brno, Czechia
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada.,Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, Quebec, Canada.,Mila - Quebec AI Institute, Montreal, Quebec, Canada
| | - Petr Hluštík
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czechia
| | - Eva Vlčková
- Department of Neurology, University Hospital Brno, Brno, Czechia.,Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Zdeněk Kadaňka
- Department of Neurology, University Hospital Brno, Brno, Czechia.,Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Josef Bednařík
- Central European Institute of Technology, Masaryk University, Brno, Czechia.,Department of Neurology, University Hospital Brno, Brno, Czechia.,Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Alena Svatkova
- Central European Institute of Technology, Masaryk University, Brno, Czechia.,Department of Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Vertigo in Patients with Degenerative Cervical Myelopathy. J Clin Med 2021; 10:jcm10112496. [PMID: 34200086 PMCID: PMC8201049 DOI: 10.3390/jcm10112496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Cervical vertigo (CV) represents a controversial entity, with a prevalence ranging from reported high frequency to negation of CV existence. (2) Objectives: To assess the prevalence and cause of vertigo in patients with a manifest form of severe cervical spondylosis-degenerative cervical myelopathy (DCM) with special focus on CV. (3) Methods: The study included 38 DCM patients. The presence and character of vertigo were explored with a dedicated questionnaire. The cervical torsion test was used to verify the role of neck proprioceptors, and ultrasound examinations of vertebral arteries to assess the role of arteriosclerotic stenotic changes as hypothetical mechanisms of CV. All patients with vertigo underwent a detailed diagnostic work-up to investigate the cause of vertigo. (4) Results: Symptoms of vertigo were described by 18 patients (47%). Causes of vertigo included: orthostatic dizziness in eight (22%), hypertension in five (14%), benign paroxysmal positional vertigo in four (11%) and psychogenic dizziness in one patient (3%). No patient responded positively to the cervical torsion test or showed significant stenosis of vertebral arteries. (5) Conclusions: Despite the high prevalence of vertigo in patients with DCM, the aetiology in all cases could be attributed to causes outside cervical spine and related nerve structures, thus confirming the assumption that CV is over-diagnosed.
Collapse
|
39
|
Therapeutic repetitive Transcranial Magnetic stimulation (rTMS) for neurological dysfunction in Degenerative cervical Myelopathy: An unexplored opportunity? Findings from a systematic review. J Clin Neurosci 2021; 90:76-81. [PMID: 34275584 DOI: 10.1016/j.jocn.2021.05.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/10/2021] [Indexed: 01/18/2023]
Abstract
Degenerative Cervical Myelopathy (DCM) is one of the commonest causes of non-traumatic Spinal Cord Injury (SCI) leading to significant neurological impairments and reduced health-related quality of life. Guidelines recommend surgical intervention to halt disease progression in moderate-to-severe cases, and whilst many do experience neurological recovery, this is incomplete leading to lifelong disability. A James Lind Alliance (JLA) research priority setting partnership for DCM highlighted novel therapies and rehabilitation as top 10 research priority in DCM. Neurological recovery following decompressive surgery in DCM has been attributed neuroplasticity, and therapies influencing neuroplasticity are of interest. Electrical neuromodulation interventions such as repetitive Transcranial Magnetic Stimulation (rTMS), are being increasingly explored in related fields such as spinal cord injury to improve recovery and symptoms. The aim of this systematic review was to determine the role and efficacy of rTMS as a therapeutic tool in managing neurological dysfunction in DCM. We searched the databases of Medline, EMBASE, CINAHIL and Cochrane Central Register of Controlled Trials (CENTRAL). No studies were identified that had investigated the therapeutic use of rTMS in DCM. A significant number of studies had explored TMS based neurophysiological assessments indicating its role as a screening and prognostication tool in DCM. Post-operative rehabilitation interventions including TMS and non-operative management of DCM is a field which requires further investigation, as required in the AO Spine JLA DCM research priorities. rTMS is a safe neuromodulatory intervention and may have a role in enhancing recovery in DCM. Further research in these fields are required.
Collapse
|
40
|
Smith SS, Stewart ME, Davies BM, Kotter MRN. The Prevalence of Asymptomatic and Symptomatic Spinal Cord Compression on Magnetic Resonance Imaging: A Systematic Review and Meta-analysis. Global Spine J 2021; 11:597-607. [PMID: 32677521 PMCID: PMC8119927 DOI: 10.1177/2192568220934496] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
STUDY DESIGN Systematic review and meta-analysis. OBJECTIVES Cervical spinal cord compression (SCC) due to degenerative changes of the spine is a frequent finding on magnetic resonance imaging (MRI). While most people remain asymptomatic, a proportion develop symptoms of degenerative cervical myelopathy (DCM). DCM is an often-progressive neurological disease that can cause quadriplegia. The epidemiology of SCC and DCM is poorly understood. We sought to estimate the prevalence of degenerative cervical SCC and DCM from cross-sectional cohorts undergoing MRI. METHODS We conducted a systematic review and meta-analysis of MRI reports on human subjects older than 16 years with degenerative SCC. A predetermined search strategy was used to identify relevant literature on MEDLINE. Title and abstract screenings were followed by full text screening. Data was extracted and analyzed by fixed or random-effects models. RESULTS The present search returned 1506 publications. Following our exclusion criteria, 19 studies were included. Subgroup analysis of 3786 individuals estimated the prevalence of asymptomatic SCC in a healthy population as 24.2% with a significantly higher prevalence of SCC in older populations compared with younger populations and American/European populations compared with Asian populations. Subgroup analysis of 1202 individuals estimated the prevalence of DCM in a healthy population as 2.3%. CONCLUSIONS We present the first estimates of the prevalence of asymptomatic SCC and DCM. Studies investigating the epidemiology of SCC are heterogeneous in methodology and results. These data indicate the need for more studies into the epidemiology of SCC and DCM performed with consistent methodologies.
Collapse
Affiliation(s)
| | | | | | - Mark R. N. Kotter
- University of Cambridge, Cambridge, UK,Mark R. N. Kotter, Department of Clinical
Neurosciences, Anne McLaren Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
41
|
Zhang X, Li Y, Liu Y, Tang SX, Liu X, Punithakumar K, Shi D. Automatic spinal cord segmentation from axial-view MRI slices using CNN with grayscale regularized active contour propagation. Comput Biol Med 2021; 132:104345. [PMID: 33780869 DOI: 10.1016/j.compbiomed.2021.104345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 11/29/2022]
Abstract
Accurate positioning of the responsible segment for patients with cervical spondylotic myelopathy (CSM) is clinically important not only to the surgery but also to reduce the incidence of surgical trauma and complications. Spinal cord segmentation is a crucial step in the positioning procedure. This study proposed a fully automated approach for spinal cord segmentation from 2D axial-view MRI slices of patients with CSM. The proposed method was trained and tested using clinical data from 20 CSM patients (359 images) acquired by the Peking University Third Hospital, with ground truth labeled by professional radiologists. The accuracy of the proposed method was evaluated using quantitative measures, the reliability metric as well as visual assessment. The proposed method yielded a Dice coefficient of 87.0%, Hausdorff distance of 9.7 mm, root-mean-square error of 5.9 mm. Higher conformance with ground truth was observed for the proposed method in comparison to the state-of-the-art algorithms. The results are also statistically significant with p-values calculated between state-of-the-art methods and the proposed methods.
Collapse
Affiliation(s)
- Xiaoran Zhang
- School of Automation, Beijing Institute of Technology, Beijing, 100081, China; Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, 90095-1594, USA.
| | - Yan Li
- Department of Orthopaedics, Peking University Third Hospital and the Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
| | - Yicun Liu
- School of Automation, Beijing Institute of Technology, Beijing, 100081, China.
| | - Shu-Xia Tang
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Xiaoguang Liu
- Department of Orthopaedics, Peking University Third Hospital and the Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
| | - Kumaradevan Punithakumar
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, 8440, Canada.
| | - Dawei Shi
- School of Automation, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
42
|
Kadanka Z, Kadanka Z, Skutil T, Vlckova E, Bednarik J. Walk and Run Test in Patients with Degenerative Compression of the Cervical Spinal Cord. J Clin Med 2021; 10:jcm10050927. [PMID: 33804299 PMCID: PMC7957594 DOI: 10.3390/jcm10050927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 01/26/2023] Open
Abstract
Impaired gait is one of the cardinal symptoms of degenerative cervical myelopathy (DCM) and frequently its initial presentation. Quantitative gait analysis is therefore a promising objective tool in the disclosure of early cervical cord impairment in patients with degenerative cervical compression. The aim of this cross-sectional observational cohort study was to verify whether an objective and easily-used walk and run test is capable of detecting early gait impairment in a practical proportion of non-myelopathic degenerative cervical cord compression (NMDCC) patients and of revealing any correlation with severity of disability in DCM. The study group consisted of 45 DCM patients (median age 58 years), 126 NMDCC subjects (59 years), and 100 healthy controls (HC) (55.5 years), all of whom performed a standardized 10-m walk and run test. Walking/running time/velocity, number of steps and cadence of walking/running were recorded; analysis disclosed abnormalities in 66.7% of NMDCC subjects. The DCM group exhibited significantly more pronounced abnormalities in all walk/run parameters when compared with the NMDCC group. These were apparent in 84.4% of the DCM group and correlated closely with disability as quantified by the modified Japanese Orthopaedic Association scale. A standardized 10-m walk/run test has the capacity to disclose locomotion abnormalities in NMDCC subjects who lack other clear myelopathic signs and may provide a means of classifying DCM patients according to their degree of disability.
Collapse
Affiliation(s)
- Zdenek Kadanka
- Department of Neurology, University Hospital, 625 00 Brno, Czech Republic; (Z.K.S.); (E.V.); (J.B.)
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
- Correspondence: ; Tel.: +420-532232354
| | - Zdenek Kadanka
- Department of Neurology, University Hospital, 625 00 Brno, Czech Republic; (Z.K.S.); (E.V.); (J.B.)
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
| | - Tomas Skutil
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
| | - Eva Vlckova
- Department of Neurology, University Hospital, 625 00 Brno, Czech Republic; (Z.K.S.); (E.V.); (J.B.)
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Josef Bednarik
- Department of Neurology, University Hospital, 625 00 Brno, Czech Republic; (Z.K.S.); (E.V.); (J.B.)
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
43
|
Ost K, Jacobs WB, Evaniew N, Cohen-Adad J, Anderson D, Cadotte DW. Spinal Cord Morphology in Degenerative Cervical Myelopathy Patients; Assessing Key Morphological Characteristics Using Machine Vision Tools. J Clin Med 2021; 10:jcm10040892. [PMID: 33672259 PMCID: PMC7926672 DOI: 10.3390/jcm10040892] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022] Open
Abstract
Despite Degenerative Cervical Myelopathy (DCM) being the most common form of spinal cord injury, effective methods to evaluate patients for its presence and severity are only starting to appear. Evaluation of patient images, while fast, is often unreliable; the pathology of DCM is complex, and clinicians often have difficulty predicting patient prognosis. Automated tools, such as the Spinal Cord Toolbox (SCT), show promise, but remain in the early stages of development. To evaluate the current state of an SCT automated process, we applied it to MR imaging records from 328 DCM patients, using the modified Japanese Orthopedic Associate scale as a measure of DCM severity. We found that the metrics extracted from these automated methods are insufficient to reliably predict disease severity. Such automated processes showed potential, however, by highlighting trends and barriers which future analyses could, with time, overcome. This, paired with findings from other studies with similar processes, suggests that additional non-imaging metrics could be added to achieve diagnostically relevant predictions. Although modeling techniques such as these are still in their infancy, future models of DCM severity could greatly improve automated clinical diagnosis, communications with patients, and patient outcomes.
Collapse
Affiliation(s)
- Kalum Ost
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - W. Bradley Jacobs
- Department of Clinical Neurosciences, Section of Neurosurgery, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Nathan Evaniew
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montrèal, Montrèal, QC H3T 1J4, Canada;
- Functional Neuroimaging Unit, CRIUGM, Universitè de Montrèal, Montrèal, QC H3T 1J4, Canada
- Mila-Quebec AI Institute, Montrèal, QC T2N 1N4, Canada
| | - David Anderson
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - David W. Cadotte
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Correspondence: ; Tel.: +403-944-3490
| |
Collapse
|
44
|
Hupp M, Pfender N, Vallotton K, Rosner J, Friedl S, Zipser CM, Sutter R, Klarhöfer M, Spirig JM, Betz M, Schubert M, Freund P, Farshad M, Curt A. The Restless Spinal Cord in Degenerative Cervical Myelopathy. AJNR Am J Neuroradiol 2021; 42:597-609. [PMID: 33541903 DOI: 10.3174/ajnr.a6958] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/12/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The spinal cord is subject to a periodic, cardiac-related movement, which is increased at the level of a cervical stenosis. Increased oscillations may exert mechanical stress on spinal cord tissue causing intramedullary damage. Motion analysis thus holds promise as a biomarker related to disease progression in degenerative cervical myelopathy. Our aim was characterization of the cervical spinal cord motion in patients with degenerative cervical myelopathy. MATERIALS AND METHODS Phase-contrast MR imaging data were analyzed in 55 patients (37 men; mean age, 56.2 [SD,12.0] years; 36 multisegmental stenoses) and 18 controls (9 men, P = .368; mean age, 62.2 [SD, 6.5] years; P = .024). Parameters of interest included the displacement and motion pattern. Motion data were pooled on the segmental level for comparison between groups. RESULTS In patients, mean craniocaudal oscillations were increased manifold at any level of a cervical stenosis (eg, C5 displacement: controls [n = 18], 0.54 [SD, 0.16] mm; patients [n = 29], monosegmental stenosis [n = 10], 1.86 [SD, 0.92] mm; P < .001) and even in segments remote from the level of the stenosis (eg, C2 displacement: controls [n = 18], 0.36 [SD, 0.09] mm; patients [n = 52]; stenosis: C3, n = 21; C4, n = 11; C5, n = 18; C6, n = 2; 0.85 [SD, 0.46] mm; P < .001). Motion at C2 differed with the distance to the next stenotic segment and the number of stenotic segments. The motion pattern in most patients showed continuous spinal cord motion throughout the cardiac cycle. CONCLUSIONS Patients with degenerative cervical myelopathy show altered spinal cord motion with increased and ongoing oscillations at and also beyond the focal level of stenosis. Phase-contrast MR imaging has promise as a biomarker to reveal mechanical stress to the cord and may be applicable to predict disease progression and the impact of surgical interventions.
Collapse
Affiliation(s)
- M Hupp
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - N Pfender
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - K Vallotton
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - J Rosner
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.).,Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - S Friedl
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - C M Zipser
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | | | - M Klarhöfer
- Siemens Healthcare AG (M.K.), Zurich, Switzerland
| | - J M Spirig
- University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - M Betz
- University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - M Schubert
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - P Freund
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - M Farshad
- University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - A Curt
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.).,University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Detection of cerebral reorganization associated with degenerative cervical myelopathy using diffusion spectral imaging (DSI). J Clin Neurosci 2021; 86:164-173. [PMID: 33775321 DOI: 10.1016/j.jocn.2021.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 11/09/2020] [Accepted: 01/07/2021] [Indexed: 11/23/2022]
Abstract
Degenerative Cervical Myelopathy (DCM) is a spinal cord disorder that causes significant physical disabilities in older patients. While most DCM research focuses on the spinal cord, widespread reorganization of the brain may occur to compensate for functional impairment. This observational study used diffusion spectrum imaging (DSI) to examine reorganization of cerebral white matter associated with neurological impairment as measured by the modified Japanese Orthopedic Association (mJOA), and severity of neck disability as measured by the Neck Disability Index (NDI) score. A total of 47 patients were included in the cervical spondylosis (CS) cohort: 38 patients with DCM (mean mJOA = 14.6, and mean NDI = 12.0), and 9 neurologically asymptomatic patients with spinal cord compression (mJOA = 18, and mean NDI = 7.0). 28 healthy volunteers (HCs) served as the control group. Lower generalized fractional anisotropy (GFA) was observed throughout much of the brain in patients compared to HCs (p < 0.05). Fiber pathways associated with somatosensory functions, such as the corpus callosum and corona radiata, showed increased quantitative anisotropy (QA) in patients compared to HCs. Correlation analyses further suggested that structural connectivity was enhanced to compensate for neurological dysfunction within sensorimotor regions, where fibers such as the posterior corona radiata had NQA values that were negatively associated with mJOA (p = 0.0020, R2 = 0.2935) and positively associated with NDI score (p = 0.0164, R2 = 0.1889). Altogether, these results suggest that DCM and neurologically asymptomatic spinal cord compression patients tend to have long-term reorganization within the brain, particularly in those regions responsible for the perception and integration of sensory information, motor regulation, and pain modulation.
Collapse
|
46
|
Mossa-Basha M, Peterson DJ, Hippe DS, Vranic JE, Hofstetter C, Reyes M, Bombardier C, Jarvik JG. Segmented quantitative diffusion tensor imaging evaluation of acute traumatic cervical spinal cord injury. Br J Radiol 2021; 94:20201000. [PMID: 33180553 DOI: 10.1259/bjr.20201000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES To evaluate segmented diffusion tensor imaging (DTI) white matter tract fractional anisotropy (FA) and mean diffusivity (MD) values in acute cervical spinal cord injury (CSCI). METHODS 15 patients with acute CSCI and 12 control subjects were prospectively recruited and underwent axial DTI as part of the spine trauma MRI. Datasets were put through a semi-automated probabilistic segmentation algorithm that analyzed white matter, motor and sensory tracts. FA and MD values were calculated for white matter, sensory (spinal lemniscal) and motor tracts (ventral/lateral corticospinal) at the level of clinical injury, levels remote from injury and in normal controls. RESULTS There were significant differences in FA between the level of injury and controls for total white matter (0.65 ± .09 vs 0.68 ± .07; p = .044), motor tracts (0.64 ± .07 vs 0.7 ± .09; p = .006), and combined motor/sensory tracts (0.63 ± .09 vs 0.69 ± .08; p = .022). In addition, there were significant FA differences between the level of injury and one level caudal to the injury for combined motor tracts (0.64 ± .07 vs 0.69 ± .05; p = .002) and combined motor/sensory tracts (0.63 ± .09 vs 0.7 ± .07; p = .011). There were no significant differences for MD between the level of injury and one level caudal to the injury or normal controls. CONCLUSION Abnormalities in DTI metrics of DTI-segmented white matter tracts were detected at the neurological level of injury relative to normal controls and levels remote from the injury site, confirming its value in CSCI assessment. ADVANCES IN KNOWLEDGE Segmented DTI analysis can help identify microstructural spinal cord abnormalities in the setting of traumatic cervical spinal cord injury.
Collapse
Affiliation(s)
| | | | - Daniel S Hippe
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Justin E Vranic
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Maria Reyes
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Charles Bombardier
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Jeffrey G Jarvik
- Department of Radiology, University of Washington, Seattle, WA, USA.,Department of Neurosurgery, University of Washington, Seattle, WA, USA.,Department of Health Services, University of Washington, Seattle, WA, USA
| |
Collapse
|
47
|
Irimia A, Van Horn JD. Mapping the rest of the human connectome: Atlasing the spinal cord and peripheral nervous system. Neuroimage 2021; 225:117478. [PMID: 33160086 PMCID: PMC8485987 DOI: 10.1016/j.neuroimage.2020.117478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/15/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
The emergence of diffusion, structural, and functional neuroimaging methods has enabled major multi-site efforts to map the human connectome, which has heretofore been defined as containing all neural connections in the central nervous system (CNS). However, these efforts are not structured to examine the richness and complexity of the peripheral nervous system (PNS), which arguably forms the (neglected) rest of the connectome. Despite increasing interest in an atlas of the spinal cord (SC) and PNS which is simultaneously stereotactic, interactive, electronically dissectible, scalable, population-based and deformable, little attention has thus far been devoted to this task of critical importance. Nevertheless, the atlasing of these complete neural structures is essential for neurosurgical planning, neurological localization, and for mapping those components of the human connectome located outside of the CNS. Here we recommend a modification to the definition of the human connectome to include the SC and PNS, and argue for the creation of an inclusive atlas to complement current efforts to map the brain's human connectome, to enhance clinical education, and to assist progress in neuroscience research. In addition to providing a critical overview of existing neuroimaging techniques, image processing methodologies and algorithmic advances which can be combined for the creation of a full connectome atlas, we outline a blueprint for ultimately mapping the entire human nervous system and, thereby, for filling a critical gap in our scientific knowledge of neural connectivity.
Collapse
Affiliation(s)
- Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles CA 90089, United States; Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, United States.
| | - John Darrell Van Horn
- Department of Psychology, University of Virginia, 485 McCormick Road, Gilmer Hall, Room 102, Charlottesville, Virginia 22903, United States; School of Data Science, University of Virginia, Dell 1, Charlottesville, Virginia 22903, United States.
| |
Collapse
|
48
|
Labounek R, Valošek J, Horák T, Svátková A, Bednařík P, Vojtíšek L, Horáková M, Nestrašil I, Lenglet C, Cohen-Adad J, Bednařík J, Hluštík P. HARDI-ZOOMit protocol improves specificity to microstructural changes in presymptomatic myelopathy. Sci Rep 2020; 10:17529. [PMID: 33067520 PMCID: PMC7567840 DOI: 10.1038/s41598-020-70297-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Diffusion magnetic resonance imaging (dMRI) proved promising in patients with non-myelopathic degenerative cervical cord compression (NMDCCC), i.e., without clinically manifested myelopathy. Aim of the study is to present a fast multi-shell HARDI-ZOOMit dMRI protocol and validate its usability to detect microstructural myelopathy in NMDCCC patients. In 7 young healthy volunteers, 13 age-comparable healthy controls, 18 patients with mild NMDCCC and 15 patients with severe NMDCCC, the protocol provided higher signal-to-noise ratio, enhanced visualization of white/gray matter structures in microstructural maps, improved dMRI metric reproducibility, preserved sensitivity (SE = 87.88%) and increased specificity (SP = 92.31%) of control-patient group differences when compared to DTI-RESOLVE protocol (SE = 87.88%, SP = 76.92%). Of the 56 tested microstructural parameters, HARDI-ZOOMit yielded significant patient-control differences in 19 parameters, whereas in DTI-RESOLVE data, differences were observed in 10 parameters, with mostly lower robustness. Novel marker the white-gray matter diffusivity gradient demonstrated the highest separation. HARDI-ZOOMit protocol detected larger number of crossing fibers (5–15% of voxels) with physiologically plausible orientations than DTI-RESOLVE protocol (0–8% of voxels). Crossings were detected in areas of dorsal horns and anterior white commissure. HARDI-ZOOMit protocol proved to be a sensitive and practical tool for clinical quantitative spinal cord imaging.
Collapse
Affiliation(s)
- René Labounek
- Department of Biomedical Engineering, University Hospital Olomouc, 779 00, Olomouc, Czech Republic.,Department of Neurology, Palacký University, 779 00, Olomouc, Czech Republic.,Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Jan Valošek
- Department of Biomedical Engineering, University Hospital Olomouc, 779 00, Olomouc, Czech Republic.,Department of Neurology, Palacký University, 779 00, Olomouc, Czech Republic
| | - Tomáš Horák
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Neurology, University Hospital Brno, 625 00, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Alena Svátková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, 1090, Vienna, Austria.,Department of Imaging Methods, Faculty of Medicine, University of Ostrava, 701 03, Ostrava, Czech Republic
| | - Petr Bednařík
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,High Field MR Centre, Medical University of Vienna, Vienna, Austria
| | - Lubomír Vojtíšek
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Magda Horáková
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Neurology, University Hospital Brno, 625 00, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Igor Nestrašil
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55414, USA.,Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Julien Cohen-Adad
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada
| | - Josef Bednařík
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.,Department of Neurology, University Hospital Brno, 625 00, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Petr Hluštík
- Department of Neurology, Palacký University, 779 00, Olomouc, Czech Republic. .,Department of Neurology, University Hospital Olomouc, 779 00, Olomouc, Czech Republic.
| |
Collapse
|
49
|
Scott-Young M, McEntee L, Rathbone E, Hing W, Nielsen D. Clinical Outcomes of Cervical Hybrid Reconstructions: A Prospective Study. Int J Spine Surg 2020; 14:S57-S66. [PMID: 32994307 DOI: 10.14444/7092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The study design was a prospective clinical cohort study. The aim of this study was to assess the patient-reported outcome measures (PROMs), patient satisfaction, as well as complication and reoperation rate of cervical hybrid procedures for symptomatic cervical multilevel degenerative disc disease (MLDDD). Cervical total disc replacement (CTDR) has been shown to be safe and effective for the treatment of degenerative pathologies. However, there is minimal PROMs data on the outcomes of combined CTDR and anterior cervical decompression and fusion procedures, commonly referred to as cervical hybrid surgery. METHODS Prospectively collected PROMs were analyzed from patients receiving cervical hybrid surgery for symptomatic cervical MLDDD. Between 2004 and 2016, data were collected preoperatively and postoperatively at 3, 6, and 12 months, then yearly thereafter. Patient reported outcome measures included patient satisfaction, visual analog score for neck and arm, and Neck Disability Index. Complication and reoperation rates were also assessed. RESULTS A total of 151 patients (80 males, 71 females) who had a minimum of 12 months follow up were included. The mean age was 53 years (range = 24-81), and median follow up was 2 years (range = 1-10). The median number of levels treated was 3, with 29.8%, 49.0%, and 21.2% of patients having 2, 3, and 4 levels treated, respectively. The most common indication for surgery was multilevel cervical spondylotic radiculopathy (52.8%), followed by combined cervical spondylotic radiculomyelopathy (16.7%), axial neck pain (16%), and cervical spondylotic myelopathy (13.9%). Improvement in pain and disability scores were both clinically and statistically significant (P < .001), and these improvements were sustained throughout the course of follow up. There was a 16% incidence of minor adverse events, and 3 (1.9%) reoperations. CONCLUSIONS Cervical hybrid surgery for cervical MLDDD demonstrates favorable and sustained clinical outcomes at short-term to midterm follow up. LEVEL OF EVIDENCE 4. CLINICAL RELEVANCE Statistically and substantial clinical benefits can be achieved by cervical hybrid surgery, in the treatment of cervical pathologies including radiculopathy and myelopathy. The key principles is to follow strict indications, and to match technology with the pathology.
Collapse
Affiliation(s)
- Matthew Scott-Young
- Gold Coast Spine, Gold Coast, Queensland, Australia.,Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Laurence McEntee
- Gold Coast Spine, Gold Coast, Queensland, Australia.,Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Evelyne Rathbone
- Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Wayne Hing
- Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland, Australia
| | | |
Collapse
|
50
|
Microstructural Changes in Compressed Cervical Spinal Cord Are Consistent With Clinical Symptoms and Symptom Duration. Spine (Phila Pa 1976) 2020; 45:E999-E1005. [PMID: 32706563 DOI: 10.1097/brs.0000000000003480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A prospective study. OBJECTIVE To investigate the association between microstructural changes measured by diffusion tensor imaging (DTI) and clinical symptoms and their duration in patients with cervical spondylotic myelopathy (CSM) affected by single level. SUMMARY OF BACKGROUND DATA No report was reported regarding the association between the microstructural changes and the symptoms and their duration at single-level spinal cord compression. METHODS Twenty-nine consecutive patients with CSM and 29 normal subjects were enrolled in this study. DTI with tractography was performed on the cervical spinal cord. Clinical symptoms were evaluated using modified Japanese Orthopaedic Association (mJOA) scores for each patient, and the duration of clinical symptoms was noted based on the earliest instance of limb pain or numbness or weakness or bladder dysfunction. Mean fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were calculated from tractography images. RESULTS The mean FA value of the cervical compressed spinal cord was significantly lower than the FA of the normal population (P < 0.001). The mean ADC value in the cervical compressed spinal cord was obviously higher than those of normal cervical spinal cord (P < 0.001). In the CSM patients, a significant positive association was observed between FA values and mJOA scores (P < 0.001). However, there were a notable negative association between mJOA scores and ADC values (P < 0.001), and between mJOA scores and symptom duration (P < 0.001). CONCLUSION These results illustrate DTI can measure the micostructural changes of cervical spinal cord and DTI parameters are potential biomarkers for spinal cord dysfunction in patients with CSM. LEVEL OF EVIDENCE 3.
Collapse
|