1
|
Bogdanic E, Müller T, Heinz-Erian P, Garczarczyk-Asim D, Janecke AR, Rückel A. Further delineation of SLC9A3-related congenital sodium diarrhea. Mol Genet Genomic Med 2022; 10:e2000. [PMID: 35775128 PMCID: PMC9356552 DOI: 10.1002/mgg3.2000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/06/2022] [Accepted: 05/13/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Congenital sodium diarrhea (CSD) is a rare enteropathy displaying both broad variability in clinical severity and genetic locus and allelic heterogeneity. Eleven CSD patients were reported so far with SLC9A3 variants that impair the function of the encoded intestinal sodium-proton exchanger 3 (NHE3). METHODS We report a 4-year-old patient, born prematurely in the 35th week of gestation, with antenatal polyhydramnios and dilated intestinal loops, and with diarrhea of congenital onset, 2-6 times a day, and with polydipsia. She thrived age-appropriately under a normal family diet. Serum sodium levels were repeatedly normal but urinary sodium excretion was low. Exome sequencing revealed compound heterozygous variants in SLC9A3 as the likely cause of the congenital diarrhea. RESULTS While exome sequencing did not reveal pathogenic or likely pathogenic variants in other genes that cause syndromic or non-syndromic forms of congenital and intractable diarrheas, we identified novel compound heterozygous variants in SLC9A3, a complex allele with two missense changes, NP_004165.2:p.[Ser331Leu;Val449Ile] and in-trans the missense variant p.(Phe451Ser). CONCLUSION The clinical phenotype here appears to localize to the milder end of the known CSD spectrum, and the identified variants suggest that this is the twelfth patient reported to date with CSD due to mutations in SLC9A3.
Collapse
Affiliation(s)
- Ema Bogdanic
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Heinz-Erian
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria.,Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Aline Rückel
- Department of Pediatrics, University of Erlangen, Erlangen, Germany
| |
Collapse
|
2
|
Rossi C, Simoncelli G, Arpa G, Stracuzzi A, Parente P, Fassan M, Vanoli A, Villanacci V. Histopathology of intestinal villi in neonatal and paediatric age: main features with clinical correlation - Part I. Pathologica 2022; 114:12-21. [PMID: 34856604 PMCID: PMC9040547 DOI: 10.32074/1591-951x-337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022] Open
Abstract
The neonatal and paediatric spectrum of small bowel disorders encompass a wide variety of conditions, ranging from food allergies to life-threatening surgical emergencies or life-long medical conditions and, as such, it comes with a whole set of diagnostic challenges for the non-paediatric pathologist. Histologic examination is a cornerstone of diagnosis in a large number of diseases and may still provide important diagnostic clues in the appropriate clinical context. In this review, divided in two sections, we aim to provide a comprehensive histopathological summary of paediatric small bowel alteration and their differential diagnoses with a reference to the main clinical aspects required for appropriate interpretation. Specifically, in this first part, we describe congenital and metabolic disorders, intestinal lymphangiectasia, immunodeficiencies, GVHD, and necrotising enterocolitis.
Collapse
Affiliation(s)
- Chiara Rossi
- Unit of Anatomic Pathology, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | | | - Giovanni Arpa
- Unit of Anatomic Pathology, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Alessandra Stracuzzi
- Pathological Anatomy Unit, Department of Diagnostic and Laboratory Medicine, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Paola Parente
- Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
- Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Alessandro Vanoli
- Unit of Anatomic Pathology, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | | |
Collapse
|
3
|
An inducible intestinal epithelial cell-specific NHE3 knockout mouse model mimicking congenital sodium diarrhea. Clin Sci (Lond) 2020; 134:941-953. [PMID: 32227118 PMCID: PMC8819665 DOI: 10.1042/cs20200065] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022]
Abstract
The sodium–hydrogen exchanger isoform 3 (NHE3, SLC9A3) is abundantly expressed in the gastrointestinal tract and is proposed to play essential roles in Na+ and fluid absorption as well as acid–base homeostasis. Mutations in the SLC9A3 gene can cause congenital sodium diarrhea (CSD). However, understanding the precise role of intestinal NHE3 has been severely hampered due to the lack of a suitable animal model. To navigate this problem and better understand the role of intestinal NHE3, we generated a tamoxifen-inducible intestinal epithelial cell-specific NHE3 knockout mouse model (NHE3IEC-KO). Before tamoxifen administration, the phenotype and blood parameters of NHE3IEC-KO were unremarkable compared with control mice. After tamoxifen administration, NHE3IEC-KO mice have undetectable levels of NHE3 in the intestine. NHE3IEC-KO mice develop watery, alkaline diarrhea in combination with a swollen small intestine, cecum and colon. The persistent diarrhea results in higher fluid intake. After 3 weeks, NHE3IEC-KO mice show a ~25% mortality rate. The contribution of intestinal NHE3 to acid–base and Na+ homeostasis under normal conditions becomes evident in NHE3IEC-KO mice that have metabolic acidosis, lower blood bicarbonate levels, hyponatremia and hyperkalemia associated with drastically elevated plasma aldosterone levels. These results demonstrate that intestinal NHE3 has a significant contribution to acid–base, Na+ and volume homeostasis, and lack of intestinal NHE3 has consequences on intestinal structural integrity. This mouse model mimics and explains the phenotype of individuals with CSD carrying SLC9A3 mutations.
Collapse
|
4
|
Congenital Sodium Diarrhea: A Form of Intractable Diarrhea, With a Link to Inflammatory Bowel Disease. J Pediatr Gastroenterol Nutr 2016; 63:170-6. [PMID: 26835907 DOI: 10.1097/mpg.0000000000001139] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Congenital diarrheal disorders (CDDs) represent a group of challenging clinical conditions for pediatricians because of the severity of the presentation and the broad range of possible differential diagnoses. CDDs arise from alterations in the transport of nutrients and electrolytes across the intestinal mucosa, from enterocyte and enteroendocrine cell differentiation and/or polarization defects, and from the modulation of the intestinal immune response. Advances were made recently in deciphering the etiology and pathophysiology of one of these disorders, congenital sodium diarrhea (CSD). CSD refers to an intractable diarrhea of intrauterine onset with high fecal sodium loss. CSD is clinically and genetically heterogeneous. A syndromic form of CSD features choanal and intestinal atresias as well as recurrent corneal erosions. Small bowel histology frequently detects an epithelial "tufting" dysplasia. It is autosomal recessively inherited, and caused by SPINT2 mutations. The nonsyndromic form of CSD can be caused by dominant activating mutations in GUCY2C, encoding intestinal receptor guanylate cyclase C (GC-C), and by autosomal recessive SLC9A3 loss-of-function mutations. SLC9A3 encodes Na/H antiporter 3, the major intestinal brush border Na/H exchanger, and a downstream target of GC-C. A number of patients with GUCY2C and SLC9A3 mutations developed inflammatory bowel disease. Both the number of recognized CDD forms as well as the number of underlying disease genes are gradually increasing. Knowledge of these CDD genes enables noninvasive, next-generation gene panel-based testing to facilitate an early diagnosis in CDD. Primary Na/H antiporter 3 and GC-C malfunction is implicated as a predisposition for inflammatory bowel disease in subset of patients.
Collapse
|
5
|
Janecke AR, Heinz-Erian P, Yin J, Petersen BS, Franke A, Lechner S, Fuchs I, Melancon S, Uhlig HH, Travis S, Marinier E, Perisic V, Ristic N, Gerner P, Booth IW, Wedenoja S, Baumgartner N, Vodopiutz J, Frechette-Duval MC, De Lafollie J, Persad R, Warner N, Tse CM, Sud K, Zachos NC, Sarker R, Zhu X, Muise AM, Zimmer KP, Witt H, Zoller H, Donowitz M, Müller T. Reduced sodium/proton exchanger NHE3 activity causes congenital sodium diarrhea. Hum Mol Genet 2015; 24:6614-23. [PMID: 26358773 DOI: 10.1093/hmg/ddv367] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023] Open
Abstract
Congenital sodium diarrhea (CSD) refers to an intractable diarrhea of intrauterine onset with high fecal sodium loss. CSD is clinically and genetically heterogeneous. Syndromic CSD is caused by SPINT2 mutations. While we recently described four cases of the non-syndromic form of CSD that were caused by dominant activating mutations in intestinal receptor guanylate cyclase C (GC-C), the genetic cause for the majority of CSD is still unknown. Therefore, we aimed to determine the genetic cause for non-GC-C non-syndromic CSD in 18 patients from 16 unrelated families applying whole-exome sequencing and/or chromosomal microarray analyses and/or direct Sanger sequencing. SLC9A3 missense, splicing and truncation mutations, including an instance of uniparental disomy, and whole-gene deletion were identified in nine patients from eight families with CSD. Two of these nine patients developed inflammatory bowel disease (IBD) at 4 and 16 years of age. SLC9A3 encodes Na(+)/H(+) antiporter 3 (NHE3), which is the major intestinal brush-border Na(+)/H(+) exchanger. All mutations were in the NHE3 N-terminal transport domain, and all missense mutations were in the putative membrane-spanning domains. Identified SLC9A3 missense mutations were functionally characterized in plasma membrane NHE null fibroblasts. SLC9A3 missense mutations compromised NHE3 activity by reducing basal surface expression and/or loss of basal transport function of NHE3 molecules, whereas acute regulation was normal. This study identifies recessive mutations in NHE3, a downstream target of GC-C, as a cause of CSD and implies primary basal NHE3 malfunction as a predisposition for IBD in a subset of patients.
Collapse
Affiliation(s)
| | | | - Jianyi Yin
- Department of Medicine, Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Britt-Sabina Petersen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel 24105, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel 24105, Germany
| | | | | | - Serge Melancon
- Department of Medical Genetics, McGill University Health Centre, Montreal, Canada H3H 1P3
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Medicine, and Children's Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Simon Travis
- Translational Gastroenterology Unit, Nuffield Department of Medicine, and Children's Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Evelyne Marinier
- Service des maladies digestives et respiratoires de l'enfant, Centre de référence des maladies digestives rares, Hôpital R Debré, Paris 75935, France
| | - Vojislav Perisic
- Department of Hepatology and GI Endoscopy, University Children's Hospital, Belgrade 11000, Serbia
| | - Nina Ristic
- Department of Hepatology and GI Endoscopy, University Children's Hospital, Belgrade 11000, Serbia
| | - Patrick Gerner
- Zentrum für Kinder-und Jugendmedizin, Universitätsklinikum, Freiburg 79106, Germany
| | - Ian W Booth
- Paediatrics and Child Health, University of Birmingham, Birmingham B4 6NH, UK
| | - Satu Wedenoja
- Department of Medical Genetics, University of Helsinki, Helsinki 00014, Finland
| | - Nadja Baumgartner
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Wien 1090, Austria
| | | | - Jan De Lafollie
- Abteilung Allgemeine Pädiatrie & Neonatologie, Zentrum für Kinderheilkunde und Jugendmedizin, Justus-Liebig-Universität, Gießen 35392, Germany
| | - Rabindranath Persad
- Stollery Children's Hospital, University of Alberta, Edmonton, Canada T6G 2B7
| | - Neil Warner
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - C Ming Tse
- Department of Medicine, Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Karan Sud
- Department of Medicine, Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nicholas C Zachos
- Department of Medicine, Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rafiquel Sarker
- Department of Medicine, Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xinjun Zhu
- Department of Medicine, Albany Medical Center, Albany, NY 12208, USA
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8, Department of Biochemistry, Department of IMS, Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of Toronto, Toronto, ON, Canada M5G 1X8 and
| | - Klaus-Peter Zimmer
- Abteilung Allgemeine Pädiatrie & Neonatologie, Zentrum für Kinderheilkunde und Jugendmedizin, Justus-Liebig-Universität, Gießen 35392, Germany
| | - Heiko Witt
- Pädiatrische Ernährungsmedizin, Else Kröner-Fresenius-Zentrum für Ernährungsmedizin, Technische Universität München, Freising-Weihenstephan 85350, Germany
| | - Heinz Zoller
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Mark Donowitz
- Department of Medicine, Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | |
Collapse
|
6
|
Salomon J, Goulet O, Canioni D, Brousse N, Lemale J, Tounian P, Coulomb A, Marinier E, Hugot JP, Ruemmele F, Dufier JL, Roche O, Bodemer C, Colomb V, Talbotec C, Lacaille F, Campeotto F, Cerf-Bensussan N, Janecke AR, Mueller T, Koletzko S, Bonnefont JP, Lyonnet S, Munnich A, Poirier F, Smahi A. Genetic characterization of congenital tufting enteropathy: epcam associated phenotype and involvement of SPINT2 in the syndromic form. Hum Genet 2013; 133:299-310. [PMID: 24142340 DOI: 10.1007/s00439-013-1380-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 10/06/2013] [Indexed: 02/08/2023]
Abstract
Congenital tufting enteropathy (CTE) is a rare and severe enteropathy recently ascribed to mutations in the epcam gene. Here we establish SPINT2, previously ascribed to congenital sodium diarrhea, as a second gene associated with CTE and report molecular and immunohistochemistry data in 57 CTE patients. Inclusion criteria were early onset diarrhea and intestinal insufficiency with the typical histological CTE abnormalities. The clinical phenotype was registered, the entire coding regions of epcam and SPINT2 sequenced, and immunostaining of EpCAM and SPINT2 performed on intestinal biopsies. An epcam mutation was involved in 41 patients (73 %) who mainly displayed isolated digestive symptoms. Mutations severely affected gene expression since the EpCAM signal on intestinal tissues was either undetectable or low and irregular. Twelve other patients (21 %) carried mutations in SPINT2, and were phenotypically characterized by systematic association with keratitis (p < 10(-4)) and, for half of them, with choanal atresia (p < 10(-4)). Dependency on parenteral nutrition (PN) was comparable in patients with epcam or SPINT2 mutations, but the frequent epcam mutation c.556-14A>G (abnormal splicing) was significantly associated with a better outcome (p = 0.032) with milder PN dependency to weaning in some cases. Finally, four patients (7 %) with isolated digestive symptoms had no detectable epcam or SPINT2 mutation. Two candidate genes, Elf3 and Claudin7, were excluded from this population. Our study allows us to separate CTE patients into at least three genetic classes, each with specific phenotypes. The genetics approach raises the question of the distinction between two congenital enteropathies. Our findings should help improve the diagnosis of CTE, guide toward strategies of long-term PN management, and limit indications for intestinal transplantation to life-threatening PN complications.
Collapse
Affiliation(s)
- Julie Salomon
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Assistance Publique-Hôpitaux de Paris, Necker-Enfants Malades Hospital, Université Paris Descartes, Sorbonne Paris Cité, 149 rue de Sèvres, 75015, Paris, France,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Affiliation(s)
- Pierre Russo
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, 324 South 34th Street, Main Building, Room 5NW16, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Girardi ACC, Di Sole F. Deciphering the mechanisms of the Na+/H+ exchanger-3 regulation in organ dysfunction. Am J Physiol Cell Physiol 2012; 302:C1569-87. [DOI: 10.1152/ajpcell.00017.2012] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Na+/H+ exchanger-3 (NHE3) belongs to the mammalian NHE protein family and catalyzes the electro-neutral exchange of extracellular sodium for intracellular proton across cellular membranes. Its transport function is of essential importance for the maintenance of the body's salt and water homeostasis as well as acid-base balance. Indeed, NHE3 activity is finely regulated by a variety of stimuli, both acutely and chronically, and its transport function is fundamental for a multiplicity of severe and world-wide infection-pathological conditions. This review aims to provide a concise overview of NHE3 physiology and discusses the role of NHE3 in clinical conditions of prominent importance, specifically in hypertension, diabetic nephropathy, heart failure, acute kidney injury, and diarrhea. Study of NHE3 function in models of these diseases has contributed to the deciphering of mechanisms that control the delicate ion balance disrupted in these disorders. The majority of the findings indicate that NHE3 transport function is activated before the onset of hypertension and inhibited thereafter; NHE3 transport function is also upregulated in diabetic nephropathy and heart failure, while it is reported to be downregulated in acute kidney injury and in diarrhea. The molecular mechanisms activated during these pathological conditions to regulate NHE3 transport function are examined with the aim of linking NHE3 dysfunction to the analyzed clinical disorders.
Collapse
Affiliation(s)
| | - Francesca Di Sole
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
- Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
9
|
|
10
|
Abstract
Sodium absorption by the intestine is mediated by brush border Na/H exchangers, which include the NHE3 and NHE8 isoforms. We demonstrated a maturational decrease in NHE8 and increase in NHE3 in mouse intestine mRNA abundance and brush border membrane protein abundance, indicating a developmental switch of isoforms. Congenital sodium diarrhea is a rare autosomal recessive disorder characterized by polyhydramnios, hyponatremia, metabolic acidosis, and diarrhea with a high sodium content. Previous studies using intestinal brush border membrane vesicles from patients with this disorder have demonstrated a decrease in Na/H exchanger activity. Because some patients with congenital sodium diarrhea improve with age and knowing the developmental switch from NHE8 to NHE3, NHE8 may be a candidate gene for this disorder. We sequenced NHE8 from 5 patients with this disorder and found no disease-causing homozygous mutations. Although brush border membrane Na/H exchange activity may be decreased, exonic mutations in NHE8 cannot account for this disorder in these subjects.
Collapse
|
11
|
Concomitant presence of congenital sodium diarrhea and chronic idiopathic intestinal pseudoobstruction in an infant. J Pediatr Gastroenterol Nutr 2011; 52:624-6. [PMID: 21464760 DOI: 10.1097/mpg.0b013e318203f907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Abstract
Intestinal biopsies constitute an ever-increasing portion of the pathologist's workload, accounting for nearly two-thirds of specimens accessioned yearly by the pathology department at The Children's Hospital of Philadelphia. The widespread use of endoscopy and gastrointestinal biopsies in current clinical practice presents the pathologist with a diversity of intestinal mucosal appearances corresponding to disease states of variable clinical severity, requiring close collaboration between clinician and pathologist for optimal interpretation. Many of the entities resulting in severe diarrhea of infancy have been recognized only in the last several decades, and although rare, the study of these disorders, especially when combined with the powerful methods of present-day genetics and molecular biology, has afforded important insights into enterocyte development and function, and intestinal immunity and tolerance. Other conditions once considered infrequent, such as celiac disease, have now been recognized to be much more common and can present with a wide range of pathologic features.
Collapse
Affiliation(s)
- Pierre Russo
- Department of Pathology and Laboratory Medicine, The University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Cutz E, Sherman PM, Davidson GP. Enteropathies Associated with Protracted Diarrhea of Infancy: Clinicopathological Features, Cellular and Molecular Mechanisms. ACTA ACUST UNITED AC 2010. [DOI: 10.1080/15513819709168580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Heinz-Erian P, Müller T, Krabichler B, Schranz M, Becker C, Rüschendorf F, Nürnberg P, Rossier B, Vujic M, Booth IW, Holmberg C, Wijmenga C, Grigelioniene G, Kneepkens CMF, Rosipal S, Mistrik M, Kappler M, Michaud L, Dóczy LC, Siu VM, Krantz M, Zoller H, Utermann G, Janecke AR. Mutations in SPINT2 cause a syndromic form of congenital sodium diarrhea. Am J Hum Genet 2009; 84:188-96. [PMID: 19185281 DOI: 10.1016/j.ajhg.2009.01.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 01/05/2009] [Accepted: 01/07/2009] [Indexed: 11/28/2022] Open
Abstract
Autosomal-recessive congenital sodium diarrhea (CSD) is characterized by perinatal onset of a persistent watery diarrhea with nonproportionally high fecal sodium excretion. Defective jejunal brush-border Na(+)/H(+) exchange has been reported in three sporadic patients, but the molecular basis of the disease has not been elucidated. We reviewed data from a large cohort of CSD patients (n = 24) and distinguished CSD associated with choanal or anal atresia, hypertelorism, and corneal erosions--i.e., a syndromic form of CSD--occurring in ten families from an isolated form--i.e., classic CSD--presenting in seven families. Patients from both groups have a high risk of mortality due to immediate electrolyte imbalances and complications from long-term parenteral nutrition in the first years of life, but survivors can eventually adapt to partial or complete enteral nutrition. A genome-wide SNP scan was applied and identified a homozygous c.593-1G-->A splicing mutation in SPINT2, encoding a Kunitz-type serine-protease inhibitor, in one extended kindred with syndromic CSD. The same mutation and four distinct, homozygous or compound heterozygous mutations (p.Y163C, c.1A-->T, c.337+2T-->C, c.553+2T-->A) were identified in all syndromic patients. No SPINT2 mutations were found in classic-CSD patients. SPINT2 mutations were associated with loss of protein synthesis or failure to inhibit the serine protease trypsin in vitro. We delineate syndromic CSD as a distinct disease entity caused by SPINT2 loss-of-function mutations. SPINT2 mutations might lead to an excess of yet unknown serine protease activity in affected tissues.
Collapse
Affiliation(s)
- Peter Heinz-Erian
- Department of Pediatrics II, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
NHE3 is the brush-border (BB) Na+/H+exchanger of small intestine, colon, and renal proximal tubule which is involved in large amounts of neutral Na+absorption. NHE3 is a highly regulated transporter, being both stimulated and inhibited by signaling that mimics the postprandial state. It also undergoes downregulation in diarrheal diseases as well as changes in renal disorders. For this regulation, NHE3 exists in large, multiprotein complexes in which it associates with at least nine other proteins. This review deals with short-term regulation of NHE3 and the identity and function of its recognized interacting partners and the multiprotein complexes in which NHE3 functions.
Collapse
Affiliation(s)
- Mark Donowitz
- Department of Medicine, GI Division, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
16
|
Phillips AD. Diarrhées intraitables dues à des anomalies congénitales des entérocytes. ACTA ACUST UNITED AC 2006. [DOI: 10.1159/000093836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Philips AD. Diarrea intratable causada por anomalías congénitas de los enterocitos. ACTA ACUST UNITED AC 2006. [DOI: 10.1159/000091005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Abstract
The sodium/hydrogen exchange (NHE) gene family plays an integral role in neutral sodium absorption in the mammalian intestine. The NHE gene family is comprised of nine members that are categorized by cellular localization (i.e., plasma membrane or intracellular). In the gastrointestinal (GI) tract of multiple species, there are resident plasma membrane isoforms including NHE1 (basolateral) and NHE2 (apical), recycling isoforms (NHE3), as well as intracellular isoforms (NHE6, 7, 9). NHE3 recycles between the endosomal compartment and the apical plasma membrane and functions in both locations. NHE3 regulation occurs during normal digestive processes and is often inhibited in diarrheal diseases. The C terminus of NHE3 binds multiple regulatory proteins to form large protein complexes that are involved in regulation of NHE3 trafficking to and from the plasma membrane, turnover number, and protein phosphorylation. NHE1 and NHE2 are not regulated by trafficking. NHE1 interacts with multiple regulatory proteins that affect phosphorylation; however, whether NHE1 exists in large multi-protein complexes is unknown. Although intestinal and colonic sodium absorption appear to involve at least NHE2 and NHE3, future studies are necessary to more accurately define their relative contributions to sodium absorption during human digestion and in pathophysiological conditions.
Collapse
Affiliation(s)
- Nicholas C Zachos
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2195, USA.
| | | | | |
Collapse
|
19
|
Al Makadma AS, Al-Akash SI, Al Dalaan I, Al Turaiki M, Shabib SM. Congenital sodium diarrhea in a neonate presenting as acute renal failure. Pediatr Nephrol 2004; 19:905-7. [PMID: 15179572 DOI: 10.1007/s00467-004-1523-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 04/21/2004] [Accepted: 04/22/2004] [Indexed: 10/26/2022]
Abstract
Congenital sodium diarrhea is a rare cause of secretory diarrhea due to a defect in the sodium/proton exchanger that results in decreased sodium absorption and increased excretion in stools. We report a pre-term baby boy with a birth weight of 1.4 kg who was referred because of rapidly rising serum urea and creatinine. The initially reported high urine output was later found to be severe watery diarrhea with severe oliguria and acute renal failure. Associated findings were normal anion gap metabolic acidosis with hyponatremia that required > 50 mmol/kg of sodium per day for correction and about 300 ml/kg per day of replacement fluid to correct fluid and electrolyte abnormalities. The patient continues to do well 5 months after diagnosis.
Collapse
Affiliation(s)
- Abdulkarim S Al Makadma
- Section of Nephrology, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | | | | | | | | |
Collapse
|
20
|
Müller T, Wijmenga C, Phillips AD, Janecke A, Houwen RH, Fischer H, Ellemunter H, Frühwirth M, Offner F, Hofer S, Müller W, Booth IW, Heinz-Erian P. Congenital sodium diarrhea is an autosomal recessive disorder of sodium/proton exchange but unrelated to known candidate genes. Gastroenterology 2000; 119:1506-13. [PMID: 11113072 DOI: 10.1053/gast.2000.20514] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Congenital sodium diarrhea (CSD) is caused by defective sodium/proton exchange with only 6 sporadic cases reported. The genetics of the disease have not been established. We studied 5 infants with secretory diarrhea, identified in a circumscribed rural area in Austria, to define the mode of transmission and the involvement of candidate genes known to encode for sodium/proton exchangers (NHEs). METHODS We collected clinical and laboratory data from 5 affected patients, analyzed the pedigrees of their families, and performed homozygosity mapping and multipoint linkage analysis studies in 4 candidate regions known to contain NHE genes. RESULTS The diagnosis of CSD in 4 of 5 patients was based on daily fecal sodium excretion between 98 and 190 mmol/L, hyponatremia, metabolic acidosis, and low-to-normal urinary sodium concentrations. Pedigree analysis of the affected 2 CSD families revealed parental consanguinity and a common single ancestor 5 generations ago. Homozygosity mapping and/or multipoint linkage analysis excluded the NHE1 locus on chromosome 1, NHE2 locus on chromosome 2, NHE3 locus on chromosome 5, and NHE5 locus on chromosome 16 as potential candidate genes for CSD in this pedigree. Results on NHE4 were inconclusive because the precise chromosomal location of this NHE gene in humans is currently unknown. CONCLUSIONS Our data indicate that CSD is an autosomal recessive disorder but is not related to mutations in the NHE1, NHE2, NHE3, and NHE5 genes encoding for currently known sodium/proton exchangers.
Collapse
Affiliation(s)
- T Müller
- Department of Pediatrics, University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chapter 12 Molecular physiology of mammalian epithelial Na+/H+ exchangers NHE2 and NHE3. CURRENT TOPICS IN MEMBRANES 2000. [DOI: 10.1016/s1063-5823(00)50014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
22
|
Michail S, Collins JF, Xu H, Kaufman S, Vanderhoof J, Ghishan FK. Abnormal expression of brush-border membrane transporters in the duodenal mucosa of two patients with microvillus inclusion disease. J Pediatr Gastroenterol Nutr 1998; 27:536-42. [PMID: 9822319 DOI: 10.1097/00005176-199811000-00008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Microvillus inclusion disease is a congenital disorder characterized by secretory diarrhea. Patients demonstrate villus atrophy, loss of microvilli, and internalized inclusions of microvilli within the cytoplasm of small intestinal enterocytes. The exact molecular defect in these patients is not known. Two infants are described in this report with microvillus inclusion disease. Case 1 was a 3-month-old boy who developed secretory diarrhea shortly after birth. Case 2 was a 9-month-old boy who had abrupt onset diarrhea at 2 weeks of age resulting in weight loss and dehydration. Light microscopy revealed total villus atrophy with minimal crypt hyperplasia, and electron microscopic examination revealed variably shortened microvilli and cytoplasmic microvillus inclusions in both patients. METHODS Poly (A)+ RNA was purified from duodenal biopsies and RT-PCR reactions were performed. Normal human intestinal RNA was used as a positive control. Primers specific for human NHE-1, NHE-2, NHE-3 (2 sets), sodium-glucose transporter (SGLT1), and beta-actin were used. RESULTS Results showed that NHE-1 and beta-actin cDNAs amplified to similar levels in both patient and control samples. However, the expression of NHE-2 and SGLT1 was much higher in the control sample than in the patient samples. Additionally, NHE-3 mRNA was not detected in the patient samples using two sets of NHE-3 specific primers. CONCLUSIONS The patients with microvillus inclusion disease have defects in apical but not basolateral membrane transport systems, and these defects are related to the pathogenesis of the disease.
Collapse
Affiliation(s)
- S Michail
- Joint Division of Pediatric Gastroenterology and Nutrition, The University of Nebraska Medical Center and Creighton University, Omaha, USA
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Important inroads are being made into understanding the pathophysiology of diarrhea. Clear understanding of key mechanisms should suggest new approaches to combat disease. Exciting developments are occurring in terms of super-ORS solutions, particularly with the promise of short chained glucose polymers and glutamine. Perhaps the most important development is the prospect of a good rotavirus vaccine being available before the end of the decade. Chronic diarrhea seems to be on the increase globally, probably because of the success of ORS. The mechanisms that lead to mucosal injury are elusive, and therapy still largely supportive and empiric. Celiac disease continues to be a puzzle, because of the uncomfortable feeling that a majority of cases may be missed because of atypical presentations. The successful use of long term parenteral nutrition has allowed survival and better characterization of cases that otherwise would have perished as 'lethal protracted diarrhea'. Microvillus inclusion disease may be the commonest congenital secretory diarrhea. The role of the recently reported high prevalence of glucoamlase deficiency may be important. Lastly, attention to micronutrients, particularly low vitamin A and probably zinc may prove to be important in prevention and amelioration of diarrhea and growth failure.
Collapse
Affiliation(s)
- D I Mehta
- Alfred I. duPont Institute, Wilmington, Delaware, USA
| | | | | |
Collapse
|