1
|
Xu XX, Smith ER. The Second Selectivity of Taxanes to Malignant Cells --- Nuclear Envelope Malleability. J Cancer 2025; 16:1051-1053. [PMID: 39895785 PMCID: PMC11786023 DOI: 10.7150/jca.104809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/09/2024] [Indexed: 02/04/2025] Open
Affiliation(s)
- Xiang-Xi Xu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Elizabeth R. Smith
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
2
|
Picotto J, Cipressa F, Busso D, Cenci G, Bertrand P, Pennarun G. Lamin B1-dependent regulation of human separase in mitosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.28.625860. [PMID: 39651205 PMCID: PMC11623671 DOI: 10.1101/2024.11.28.625860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Separase plays a central role in chromosome separation during mitosis and in centrosome cycle. Tight control of separase activity is required to prevent unscheduled resolution of sister chromatid cohesion and centrosome aberrations, thereby preserving genome stability. In mammals, despite their disassembly in early mitosis, some nuclear envelope components possess mitotic roles, but links with separase activity remain unexplored. Here, we uncover a new mechanism of separase regulation involving lamin B1, a key nuclear envelope factor. We show that separase and lamin B1 associate preferentially during early stages of mitosis. Importantly, lamin B1 depletion leads to an increase in separase recruitment on chromosomes together with premature chromatid separation, a phenotype reminiscent of separase overexpression. Conversely, similar to separase depletion, lamin B1 overexpression induces formation of diplochromosomes- resulting from chromatid separation failure-, in association with centrosome amplification. Importantly, increasing separase level prevents lamin B1-induced centrosome aberrations, suggesting a separase defect at their origin. Indeed, we show that overexpression of lamin B1 leads to a decrease in the recruitment of separase to the chromosome and a delay in its activity. Taken together, this study unveils a novel mechanism of separase regulation involving the nuclear envelope factor lamin B1, that is crucial for genome integrity maintenance.
Collapse
|
3
|
Kundu S, Jit BP, Sharma A. Pan-cancer TCGA analysis reveals the potential involvement of B-type lamins in dysregulating chromosome segregation in human cancer. Mamm Genome 2024:10.1007/s00335-024-10086-9. [PMID: 39592474 DOI: 10.1007/s00335-024-10086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Lamins play a crucial role in maintaining nuclear structure and function. Our study investigates the expression patterns and clinical implications of B-type lamins with a special focus on lamin B2 across various cancer types using comprehensive RNA sequencing datasets. We found that high expression levels of lamin B1 and lamin B2 are associated with decreased overall and disease-free survival in cancer. This association is further pronounced when both lamins are co-expressed, indicating a compounded negative impact on patient prognosis. Additionally, we highlighted the relationship between B-type lamins and the tumor microenvironment. Lamin B1 mRNA expression shows a strong positive correlation with activated CD4+ T-cells and type 2 T-helper cells (Th2), suggesting its role in immune cell infiltration and response within tumors. Lamin B2 expression also correlates moderately with these immune cells, indicating a potential but lesser role in modulating the immune landscape. Notably, the epigenetic state of lamin B1 significantly affects the tumor microenvironment, suggesting a dual role in structural integrity and immune modulation. We have identified 9 lamin B2 interacting proteins that are co-expressed with B-type lamins in cancerous conditions and modulate cytokinesis and cell division pathways during tumorigenesis. Furthermore, we have identified specific molecular targets of B-type lamins that co-express with them in a range of human cancers and are potentially involved in dysregulating chromosome segregation and mRNA binding. Overexpression of these targets alongside B-type lamins correlates with poor prognosis in multiple cancers. These findings underscore the potential of B-type lamins as biomarkers for poor prognosis and as targets for cancer therapies.
Collapse
Affiliation(s)
- Subhadip Kundu
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Bimal Prasad Jit
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ashok Sharma
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
- National Cancer Institute, All India Institute of Medical Sciences, Jhajjar, Haryana, India.
| |
Collapse
|
4
|
Kobayashi S, Kanehira Y, Kushibiki R, Nishijima Y, Nagashima T, Ohtaki Y, Ikota H, Yokoo H, Saio M. Effect of lamins and emerin on nuclear morphology and histological architecture in lung adenocarcinoma. Pathol Res Pract 2024; 262:155557. [PMID: 39191195 DOI: 10.1016/j.prp.2024.155557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Emerin and lamins not only influence nuclear morphology but are also involved in differentiation. We herein examined 82 resected cases of invasive lung adenocarcinoma using computer-assisted image analysis of nuclear morphology on Feulgen-stained and immunohistochemical sections of lamin A, B1, B2, and emerin (four proteins) to calculate the rank sum of the cell positivity rates for these four proteins. The rank sum of four proteins showed weak negative correlations with the nuclear area and perimeter and a weak positive correlation with the nuclear shape factor. Interestingly, the top three cases with the highest rank sum were papillary adenocarcinoma, and the bottom three cases were acinar adenocarcinomas containing cribriform patterns. We compared the rank sum for grading (differentiation: G1, G2, and G3) and predominant histological subtypes and found that the rank sum of G3 was lower than that of G1 and G2. Furthermore, the rank sum was lower for acinar adenocarcinoma with >20 % cribriform pattern (acinar+cribri) and solid adenocarcinoma than for lepidic and papillary adenocarcinoma. Individual examination of the four proteins revealed that emerin expression was lower in G3 than in G1, and lamin B2 expression was lower in G3 than in G1 and G2. Compared with lepidic adenocarcinoma, acinar+cribri showed significantly lower expression of all four proteins among histological subtypes. These data indicated that the expression of lamin A, B1, B2, and emerin was markedly decreased in poorly differentiated adenocarcinoma (i.e., G3), especially in acinar+cribri. Our data suggested that changes in these four proteins can not only affect nuclear morphology but also histological structure in lung adenocarcinoma.
Collapse
Affiliation(s)
- Sayaka Kobayashi
- Laboratory of Histopathology and Cytopathology, Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma 371-8514, Japan
| | - Yuki Kanehira
- Laboratory of Histopathology and Cytopathology, Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma 371-8514, Japan
| | - Raia Kushibiki
- Laboratory of Histopathology and Cytopathology, Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma 371-8514, Japan
| | - Yoshimi Nishijima
- Laboratory of Histopathology and Cytopathology, Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma 371-8514, Japan
| | - Toshiteru Nagashima
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital
| | - Yoichi Ohtaki
- Division of General Thoracic Surgery, Integrative Center of General Surgery, Gunma University Hospital
| | - Hayato Ikota
- Clinical Department of Pathology, Gunma University Hospital, Gunma 371-8511, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Masanao Saio
- Laboratory of Histopathology and Cytopathology, Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma 371-8514, Japan.
| |
Collapse
|
5
|
Lv T, Wang C, Zhou J, Feng X, Zhang L, Fan Z. Mechanism and role of nuclear laminin B1 in cell senescence and malignant tumors. Cell Death Discov 2024; 10:269. [PMID: 38824174 PMCID: PMC11144256 DOI: 10.1038/s41420-024-02045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024] Open
Abstract
Nuclear lamin B1 (LMNB1) is a member of the nuclear lamin protein family. LMNB1 can maintain and ensure the stability of nuclear structure and influence the process of cell senescence by regulating chromatin distribution, DNA replication and transcription, gene expression, cell cycle, etc. In recent years, several studies have shown that the abnormal expression of LMNB1, a classical biomarker of cell senescence, is highly correlated with the progression of various malignant tumors; LMNB1 is therefore considered a new potential tumor marker and therapeutic target. However, the mechanism of action of LMNB1 is influenced by many factors, which are difficult to clarify at present. This article focuses on the recent progress in understanding the role of LMNB1 in cell senescence and malignant tumors and offers insights that could contribute to elucidating the mechanism of action of LMNB1 to provide a new direction for further research.
Collapse
Affiliation(s)
- Tingcong Lv
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Cong Wang
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Jialin Zhou
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiao Feng
- School of Chemistry, Dalian University of Technology, Dalian, China.
| | - Lijun Zhang
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Faculty of Medicine, Dalian University of Technology, Dalian, China.
| | - Zhe Fan
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Faculty of Medicine, Dalian University of Technology, Dalian, China.
| |
Collapse
|
6
|
Keuper K, Bartek J, Maya-Mendoza A. The nexus of nuclear envelope dynamics, circular economy and cancer cell pathophysiology. Eur J Cell Biol 2024; 103:151394. [PMID: 38340500 DOI: 10.1016/j.ejcb.2024.151394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
The nuclear envelope (NE) is a critical component in maintaining the function and structure of the eukaryotic nucleus. The NE and lamina are disassembled during each cell cycle to enable an open mitosis. Nuclear architecture construction and deconstruction is a prime example of a circular economy, as it fulfills a highly efficient recycling program bound to continuous assessment of the quality and functionality of the building blocks. Alterations in the nuclear dynamics and lamina structure have emerged as important contributors to both oncogenic transformation and cancer progression. However, the knowledge of the NE breakdown and reassembly is still limited to a fraction of participating proteins and complexes. As cancer cells contain highly diverse nuclei in terms of DNA content, but also in terms of nuclear number, size, and shape, it is of great interest to understand the intricate relationship between these nuclear features in cancer cell pathophysiology. In this review, we provide insights into how those NE dynamics are regulated, and how lamina destabilization processes may alter the NE circular economy. Moreover, we expand the knowledge of the lamina-associated domain region by using strategic algorithms, including Artificial Intelligence, to infer protein associations, assess their function and location, and predict cancer-type specificity with implications for the future of cancer diagnosis, prognosis and treatment. Using this approach we identified NUP98 and MECP2 as potential proteins that exhibit upregulation in Acute Myeloid Leukemia (LAML) patients with implications for early diagnosis.
Collapse
Affiliation(s)
- Kristina Keuper
- DNA Replication and Cancer Group, Danish Cancer Institute, Copenhagen, Denmark; Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SciLifeLab, Stockholm, Sweden
| | | |
Collapse
|
7
|
Das S, Dey MK, Devireddy R, Gartia MR. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. SENSORS (BASEL, SWITZERLAND) 2023; 24:37. [PMID: 38202898 PMCID: PMC10780704 DOI: 10.3390/s24010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Biomarkers are vital in healthcare as they provide valuable insights into disease diagnosis, prognosis, treatment response, and personalized medicine. They serve as objective indicators, enabling early detection and intervention, leading to improved patient outcomes and reduced costs. Biomarkers also guide treatment decisions by predicting disease outcomes and facilitating individualized treatment plans. They play a role in monitoring disease progression, adjusting treatments, and detecting early signs of recurrence. Furthermore, biomarkers enhance drug development and clinical trials by identifying suitable patients and accelerating the approval process. In this review paper, we described a variety of biomarkers applicable for cancer detection and diagnosis, such as imaging-based diagnosis (CT, SPECT, MRI, and PET), blood-based biomarkers (proteins, genes, mRNA, and peptides), cell imaging-based diagnosis (needle biopsy and CTC), tissue imaging-based diagnosis (IHC), and genetic-based biomarkers (RNAseq, scRNAseq, and spatial transcriptomics).
Collapse
Affiliation(s)
| | | | | | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (S.D.); (M.K.D.); (R.D.)
| |
Collapse
|
8
|
Schibler AC, Jevtic P, Pegoraro G, Levy DL, Misteli T. Identification of epigenetic modulators as determinants of nuclear size and shape. eLife 2023; 12:e80653. [PMID: 37219077 PMCID: PMC10259489 DOI: 10.7554/elife.80653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
The shape and size of the human cell nucleus is highly variable among cell types and tissues. Changes in nuclear morphology are associated with disease, including cancer, as well as with premature and normal aging. Despite the very fundamental nature of nuclear morphology, the cellular factors that determine nuclear shape and size are not well understood. To identify regulators of nuclear architecture in a systematic and unbiased fashion, we performed a high-throughput imaging-based siRNA screen targeting 867 nuclear proteins including chromatin-associated proteins, epigenetic regulators, and nuclear envelope components. Using multiple morphometric parameters, and eliminating cell cycle effectors, we identified a set of novel determinants of nuclear size and shape. Interestingly, most identified factors altered nuclear morphology without affecting the levels of lamin proteins, which are known prominent regulators of nuclear shape. In contrast, a major group of nuclear shape regulators were modifiers of repressive heterochromatin. Biochemical and molecular analysis uncovered a direct physical interaction of histone H3 with lamin A mediated via combinatorial histone modifications. Furthermore, disease-causing lamin A mutations that result in disruption of nuclear shape inhibited lamin A-histone H3 interactions. Oncogenic histone H3.3 mutants defective for H3K27 methylation resulted in nuclear morphology abnormalities. Altogether, our results represent a systematic exploration of cellular factors involved in determining nuclear morphology and they identify the interaction of lamin A with histone H3 as an important contributor to nuclear morphology in human cells.
Collapse
Affiliation(s)
| | - Predrag Jevtic
- Department of Molecular Biology, University of WyomingLaramieUnited States
| | - Gianluca Pegoraro
- High Throughput Imaging Facility (HiTIF), National Cancer Institute, NIHBethesdaUnited States
| | - Daniel L Levy
- Department of Molecular Biology, University of WyomingLaramieUnited States
| | - Tom Misteli
- National Cancer InstituteBethesdaUnited States
| |
Collapse
|
9
|
Kim HJ, Lee PCW, Hong JH. Overview of cellular homeostasis-associated nuclear envelope lamins and associated input signals. Front Cell Dev Biol 2023; 11:1173514. [PMID: 37250905 PMCID: PMC10213260 DOI: 10.3389/fcell.2023.1173514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
With the discovery of the role of the nuclear envelope protein lamin in human genetic diseases, further diverse roles of lamins have been elucidated. The roles of lamins have been addressed in cellular homeostasis including gene regulation, cell cycle, cellular senescence, adipogenesis, bone remodeling as well as modulation of cancer biology. Features of laminopathies line with oxidative stress-associated cellular senescence, differentiation, and longevity and share with downstream of aging-oxidative stress. Thus, in this review, we highlighted various roles of lamin as key molecule of nuclear maintenance, specially lamin-A/C, and mutated LMNA gene clearly reveal aging-related genetic phenotypes, such as enhanced differentiation, adipogenesis, and osteoporosis. The modulatory roles of lamin-A/C in stem cell differentiation, skin, cardiac regulation, and oncology have also been elucidated. In addition to recent advances in laminopathies, we highlighted for the first kinase-dependent nuclear lamin biology and recently developed modulatory mechanisms or effector signals of lamin regulation. Advanced knowledge of the lamin-A/C proteins as diverse signaling modulators might be biological key to unlocking the complex signaling of aging-related human diseases and homeostasis in cellular process.
Collapse
Affiliation(s)
- Hyeong Jae Kim
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Peter C. W. Lee
- Lung Cancer Research Center, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Jeong Hee Hong
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
10
|
Liu S, Li Y, Hong Y, Wang M, Zhang H, Ma J, Qu K, Huang G, Lu TJ. Mechanotherapy in oncology: Targeting nuclear mechanics and mechanotransduction. Adv Drug Deliv Rev 2023; 194:114722. [PMID: 36738968 DOI: 10.1016/j.addr.2023.114722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/23/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Mechanotherapy is proposed as a new option for cancer treatment. Increasing evidence suggests that characteristic differences are present in the nuclear mechanics and mechanotransduction of cancer cells compared with those of normal cells. Recent advances in understanding nuclear mechanics and mechanotransduction provide not only further insights into the process of malignant transformation but also useful references for developing new therapeutic approaches. Herein, we present an overview of the alterations of nuclear mechanics and mechanotransduction in cancer cells and highlight their implications in cancer mechanotherapy.
Collapse
Affiliation(s)
- Shaobao Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China
| | - Yuan Li
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuan Hong
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; National Science Foundation Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
| | - Ming Wang
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hao Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China
| | - Jinlu Ma
- Department of Radiation Oncology, the First Affiliated Hospital, Xian Jiaotong University, Xi'an 710061, PR China
| | - Kai Qu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Xian Jiaotong University, Xi'an 710061, PR China
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, PR China.
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China.
| |
Collapse
|
11
|
Scott NR, Parekh SH. A-type lamins involvement in transport and implications in cancer? Nucleus 2022; 13:221-235. [PMID: 36109835 PMCID: PMC9481127 DOI: 10.1080/19491034.2022.2118418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Nuclear lamins and transport are intrinsically linked, but their relationship is yet to be fully unraveled. A multitude of complex, coupled interactions between lamins and nucleoporins (Nups), which mediate active transport into and out of the nucleus, combined with well documented dysregulation of lamins in many cancers, suggests that lamins and nuclear transport may play a pivotal role in carcinogenesis and the preservation of cancer. Changes of function related to lamin/Nup activity can principally lead to DNA damage, further increasing the genetic diversity within a tumor, which could lead to the reduction the effectiveness of antineoplastic treatments. This review discusses and synthesizes different connections of lamins to nuclear transport and offers a number of outlook questions, the answers to which could reveal a new perspective on the connection of lamins to molecular transport of cancer therapeutics, in addition to their established role in nuclear mechanics.
Collapse
Affiliation(s)
- Nicholas R. Scott
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Sapun H. Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
12
|
Balaji AK, Saha S, Deshpande S, Poola D, Sengupta K. Nuclear envelope, chromatin organizers, histones, and DNA: The many achilles heels exploited across cancers. Front Cell Dev Biol 2022; 10:1068347. [PMID: 36589746 PMCID: PMC9800887 DOI: 10.3389/fcell.2022.1068347] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
In eukaryotic cells, the genome is organized in the form of chromatin composed of DNA and histones that organize and regulate gene expression. The dysregulation of chromatin remodeling, including the aberrant incorporation of histone variants and their consequent post-translational modifications, is prevalent across cancers. Additionally, nuclear envelope proteins are often deregulated in cancers, which impacts the 3D organization of the genome. Altered nuclear morphology, genome organization, and gene expression are defining features of cancers. With advances in single-cell sequencing, imaging technologies, and high-end data mining approaches, we are now at the forefront of designing appropriate small molecules to selectively inhibit the growth and proliferation of cancer cells in a genome- and epigenome-specific manner. Here, we review recent advances and the emerging significance of aberrations in nuclear envelope proteins, histone variants, and oncohistones in deregulating chromatin organization and gene expression in oncogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Kundan Sengupta
- Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research, Pune, Maharashtra, India
| |
Collapse
|
13
|
Jones ML, Dahl KN, Lele TP, Conway DE, Shenoy V, Ghosh S, Szczesny SE. The Elephant in the Cell: Nuclear Mechanics and Mechanobiology. J Biomech Eng 2022; 144:080802. [PMID: 35147160 PMCID: PMC8990742 DOI: 10.1115/1.4053797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/28/2022] [Indexed: 11/08/2022]
Abstract
The 2021 Summer Biomechanics, Bioengineering, and Biotransport Conference (SB3C) featured a workshop titled "The Elephant in the Room: Nuclear Mechanics and Mechanobiology." The goal of this workshop was to provide a perspective from experts in the field on the current understanding of nuclear mechanics and its role in mechanobiology. This paper reviews the major themes and questions discussed during the workshop, including historical context on the initial methods of measuring the mechanical properties of the nucleus and classifying the primary structures dictating nuclear mechanics, physical plasticity of the nucleus, the emerging role of the linker of nucleoskeleton and cytoskeleton (LINC) complex in coupling the nucleus to the cytoplasm and driving the behavior of individual cells and multicellular assemblies, and the computational models currently in use to investigate the mechanisms of gene expression and cell signaling. Ongoing questions and controversies, along with promising future directions, are also discussed.
Collapse
Affiliation(s)
| | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, Doherty Hall, 5000 Forbes Avenue, Pittsburgh, PA 15213; Forensics Department, Thornton Tomasetti, 120 Broadway 15th Floor, New York City, NY 10271
| | - Tanmay P. Lele
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell Street, College Station, TX 77840; Department of Chemical Engineering, Texas A&M University, 101 Bizzell Street, College Station, TX 77840; Department of Translational Medical Sciences, Texas A&M University, 101 Bizzell Street, College Station, TX 77840
| | - Daniel E. Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 West Main Street, P.O. Box 843068, Richmond, VA 23284
| | - Vivek Shenoy
- Materials Science and Engineering Bioengineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104; Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104; Center for Engineering Mechanobiology, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104
| | - Soham Ghosh
- Department of Mechanical Engineering, School of Biomedical Engineering, Translational Medicine Institute, Colorado State University, 400 Isotope Drive, Fort Collins, CO 80521
| | - Spencer E. Szczesny
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802; Department of Orthopaedics and Rehabilitation, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
14
|
Stiekema M, Houben F, Verheyen F, Borgers M, Menzel J, Meschkat M, van Zandvoort MAMJ, Ramaekers FCS, Broers JLV. The Role of Lamins in the Nucleoplasmic Reticulum, a Pleiomorphic Organelle That Enhances Nucleo-Cytoplasmic Interplay. Front Cell Dev Biol 2022; 10:914286. [PMID: 35784476 PMCID: PMC9243388 DOI: 10.3389/fcell.2022.914286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Invaginations of the nuclear membrane occur in different shapes, sizes, and compositions. Part of these pleiomorphic invaginations make up the nucleoplasmic reticulum (NR), while others are merely nuclear folds. We define the NR as tubular invaginations consisting of either both the inner and outer nuclear membrane, or only the inner nuclear membrane. Specifically, invaginations of both the inner and outer nuclear membrane are also called type II NR, while those of only the inner nuclear membrane are defined as type I NR. The formation and structure of the NR is determined by proteins associated to the nuclear membrane, which induce a high membrane curvature leading to tubular invaginations. Here we review and discuss the current knowledge of nuclear invaginations and the NR in particular. An increase in tubular invaginations of the nuclear envelope is associated with several pathologies, such as laminopathies, cancer, (reversible) heart failure, and Alzheimer’s disease. Furthermore, viruses can induce both type I and II NR. In laminopathies, the amount of A-type lamins throughout the nucleus is generally decreased or the organization of lamins or lamin-associated proteins is disturbed. Also, lamin overexpression or modulation of lamin farnesylation status impacts NR formation, confirming the importance of lamin processing in NR formation. Virus infections reorganize the nuclear lamina via (de)phosphorylation of lamins, leading to an uneven thickness of the nuclear lamina and in turn lobulation of the nuclear membrane and the formation of invaginations of the inner nuclear membrane. Since most studies on the NR have been performed with cell cultures, we present additional proof for the existence of these structures in vivo, focusing on a variety of differentiated cardiovascular and hematopoietic cells. Furthermore, we substantiate the knowledge of the lamin composition of the NR by super-resolution images of the lamin A/C and B1 organization. Finally, we further highlight the essential role of lamins in NR formation by demonstrating that (over)expression of lamins can induce aberrant NR structures.
Collapse
Affiliation(s)
- Merel Stiekema
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Frederik Houben
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Healthcare, PXL University College, Hasselt, Belgium
| | - Fons Verheyen
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Marcel Borgers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | | | - Marc A. M. J. van Zandvoort
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, Netherlands
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, Aachen, Germany
| | - Frans C. S. Ramaekers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jos L. V. Broers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, Netherlands
- *Correspondence: Jos L. V. Broers,
| |
Collapse
|
15
|
Reilly A, Philip Creamer J, Stewart S, Stolla MC, Wang Y, Du J, Wellington R, Busch S, Estey EH, Becker PS, Fang M, Keel SB, Abkowitz JL, Soma LA, Ma J, Duan Z, Doulatov S. Lamin B1 deletion in myeloid neoplasms causes nuclear anomaly and altered hematopoietic stem cell function. Cell Stem Cell 2022; 29:577-592.e8. [PMID: 35278369 PMCID: PMC9018112 DOI: 10.1016/j.stem.2022.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/05/2022] [Accepted: 02/15/2022] [Indexed: 11/19/2022]
Abstract
Abnormal nuclear morphology is a hallmark of malignant cells widely used in cancer diagnosis. Pelger-Huët anomaly (PHA) is a common abnormality of neutrophil nuclear morphology of unknown molecular etiology in myeloid neoplasms (MNs). We show that loss of nuclear lamin B1 (LMNB1) encoded on chromosome 5q, which is frequently deleted in MNs, induces defects in nuclear morphology and human hematopoietic stem cell (HSC) function associated with malignancy. LMNB1 deficiency alters genome organization inducing in vitro and in vivo expansion of HSCs, myeloid-biased differentiation with impaired lymphoid commitment, and genome instability due to defective DNA damage repair. Nuclear dysmorphology of neutrophils in patients with MNs is associated with 5q deletions spanning the LMNB1 locus, and lamin B1 loss is both necessary and sufficient to cause PHA in normal and 5q-deleted neutrophils. LMNB1 loss thus causes acquired PHA and links abnormal nuclear morphology with HSCs and progenitor cell fate determination via genome organization.
Collapse
Affiliation(s)
- Andreea Reilly
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - J Philip Creamer
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sintra Stewart
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Massiel C Stolla
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Yuchuan Wang
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jing Du
- Division of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Rachel Wellington
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Stephanie Busch
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Elihu H Estey
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Pamela S Becker
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Division of Hematology/Oncology, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92617, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Min Fang
- Department of Clinical Transplant Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Siobán B Keel
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Janis L Abkowitz
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Lorinda A Soma
- Division of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jian Ma
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Zhijun Duan
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sergei Doulatov
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
16
|
Xu J, Sun X, Kim K, Brand RM, Hartman D, Ma H, Brand RE, Bai M, Liu Y. Ultrastructural visualization of chromatin in cancer pathogenesis using a simple small-molecule fluorescent probe. SCIENCE ADVANCES 2022; 8:eabm8293. [PMID: 35245126 PMCID: PMC8896800 DOI: 10.1126/sciadv.abm8293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Imaging chromatin organization at the molecular-scale resolution remains an important endeavor in basic and translational research. Stochastic optical reconstruction microscopy (STORM) is a powerful superresolution imaging technique to visualize nanoscale molecular organization down to the resolution of ~20 to 30 nm. Despite the substantial progress in imaging chromatin organization in cells and model systems, its routine application on assessing pathological tissue remains limited. It is, in part, hampered by the lack of simple labels that consistently generates high-quality STORM images on the highly processed clinical tissue. We developed a fast, simple, and robust small-molecule fluorescent probe-cyanine 5-conjugated Hoechst-for routine superresolution imaging of nanoscale nuclear architecture on clinical tissue. We demonstrated the biological and clinical significance of imaging superresolved chromatin structure in cancer development and its potential clinical utility for cancer risk stratification.
Collapse
Affiliation(s)
- Jianquan Xu
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xuejiao Sun
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kwangho Kim
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Rhonda M. Brand
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Douglas Hartman
- Department of Pathology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Hongqiang Ma
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Randall E. Brand
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mingfeng Bai
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yang Liu
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
17
|
Evangelisti C, Rusciano I, Mongiorgi S, Ramazzotti G, Lattanzi G, Manzoli L, Cocco L, Ratti S. The wide and growing range of lamin B-related diseases: from laminopathies to cancer. Cell Mol Life Sci 2022; 79:126. [PMID: 35132494 PMCID: PMC8821503 DOI: 10.1007/s00018-021-04084-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022]
Abstract
B-type lamins are fundamental components of the nuclear lamina, a complex structure that acts as a scaffold for organization and function of the nucleus. Lamin B1 and B2, the most represented isoforms, are encoded by LMNB1 and LMNB2 gene, respectively. All B-type lamins are synthesized as precursors and undergo sequential post-translational modifications to generate the mature protein. B-type lamins are involved in a wide range of nuclear functions, including DNA replication and repair, regulation of chromatin and nuclear stiffness. Moreover, lamins B1 and B2 regulate several cellular processes, such as tissue development, cell cycle, cellular proliferation, senescence, and DNA damage response. During embryogenesis, B-type lamins are essential for organogenesis, in particular for brain development. As expected from the numerous and pivotal functions of B-type lamins, mutations in their genes or fluctuations in their expression levels are critical for the onset of several diseases. Indeed, a growing range of human disorders have been linked to lamin B1 or B2, increasing the complexity of the group of diseases collectively known as laminopathies. This review highlights the recent findings on the biological role of B-type lamins under physiological or pathological conditions, with a particular emphasis on brain disorders and cancer.
Collapse
Affiliation(s)
- Camilla Evangelisti
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Isabella Rusciano
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Singh I, Lele TP. Nuclear Morphological Abnormalities in Cancer: A Search for Unifying Mechanisms. Results Probl Cell Differ 2022; 70:443-467. [PMID: 36348118 PMCID: PMC9722227 DOI: 10.1007/978-3-031-06573-6_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Irregularities in nuclear shape and/or alterations to nuclear size are a hallmark of malignancy in a broad range of cancer types. Though these abnormalities are commonly used for diagnostic purposes and are often used to assess cancer progression in the clinic, the mechanisms through which they occur are not well understood. Nuclear size alterations in cancer could potentially arise from aneuploidy, changes in osmotic coupling with the cytoplasm, and perturbations to nucleocytoplasmic transport. Nuclear shape changes may occur due to alterations to cell-generated mechanical stresses and/or alterations to nuclear structural components, which balance those stresses, such as the nuclear lamina and chromatin. A better understanding of the mechanisms underlying abnormal nuclear morphology and size may allow the development of new therapeutics to target nuclear aberrations in cancer.
Collapse
Affiliation(s)
- Ishita Singh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Tanmay P. Lele
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA,Department of Chemical Engineering, University of Florida, Gainesville, FL, USA,Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA
| |
Collapse
|
19
|
The Role of Emerin in Cancer Progression and Metastasis. Int J Mol Sci 2021; 22:ijms222011289. [PMID: 34681951 PMCID: PMC8537873 DOI: 10.3390/ijms222011289] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022] Open
Abstract
It is commonly recognized in the field that cancer cells exhibit changes in the size and shape of their nuclei. These features often serve as important biomarkers in the diagnosis and prognosis of cancer patients. Nuclear size can significantly impact cell migration due to its incredibly large size. Nuclear structural changes are predicted to regulate cancer cell migration. Nuclear abnormalities are common across a vast spectrum of cancer types, regardless of tissue source, mutational spectrum, and signaling dependencies. The pervasiveness of nuclear alterations suggests that changes in nuclear structure may be crucially linked to the transformation process. The factors driving these nuclear abnormalities, and the functional consequences, are not completely understood. Nuclear envelope proteins play an important role in regulating nuclear size and structure in cancer. Altered expression of nuclear lamina proteins, including emerin, is found in many cancers and this expression is correlated with better clinical outcomes. A model is emerging whereby emerin, as well as other nuclear lamina proteins, binding to the nucleoskeleton regulates the nuclear structure to impact metastasis. In this model, emerin and lamins play a central role in metastatic transformation, since decreased emerin expression during transformation causes the nuclear structural defects required for increased cell migration, intravasation, and extravasation. Herein, we discuss the cellular functions of nuclear lamina proteins, with a particular focus on emerin, and how these functions impact cancer progression and metastasis.
Collapse
|
20
|
Ovsiannikova NL, Lavrushkina SV, Ivanova AV, Mazina LM, Zhironkina OA, Kireev II. Lamin A as a Determinant of Mechanical Properties of the Cell Nucleus in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1288-1300. [PMID: 34903160 DOI: 10.1134/s0006297921100102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 06/14/2023]
Abstract
One of the main factors associated with worse prognosis in oncology is metastasis, which is based on the ability of tumor cells to migrate from the primary source and to form secondary tumors. The search for new strategies to control migration of metastatic cells is one of the urgent issues in biomedicine. One of the strategies to stop spread of cancer cells could be regulation of the nuclear elasticity. Nucleus, as the biggest and stiffest cellular compartment, determines mechanical properties of the cell as a whole, and, hence, could prevent cell migration through the three-dimensional extracellular matrix. Nuclear rigidity is maintained by the nuclear lamina, two-dimensional network of intermediate filaments in the inner nuclear membrane (INM). Here we present the most significant factors defining nucleus rigidity, discuss the role of nuclear envelope composition in the cell migration, as well consider possible approaches to control lamina composition in order to change plasticity of the cell nucleus and ability of the tumor cells to metastasize.
Collapse
Affiliation(s)
- Natalia L Ovsiannikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Svetlana V Lavrushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasia V Ivanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ludmila M Mazina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Oxana A Zhironkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Igor I Kireev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Moscow, 117198, Russia
| |
Collapse
|
21
|
Nishikawa T, Kuwano Y, Nakata M, Rokutan K, Nishida K. Multiple G-quadruplexes in the LMNA promoter regulate LMNA variant 6 transcription and promote colon cancer cell growth. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194746. [PMID: 34419630 DOI: 10.1016/j.bbagrm.2021.194746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/22/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Lamin A/C proteins, major components of the nuclear lamina, are encoded by the LMNA gene. These proteins have multiple cellular functions, including DNA transcription and replication, chromatin organization, regulation of the cell cycle, and apoptosis. Mutations in LMNA are associated with a variety of diseases called laminopathies. LMNA has implications in cancer; however, its mechanisms of dysregulation in cancer cells are not yet fully understood. In this study, among the LMNA transcript variants, we focused on a transcriptional variant 6 (termed LMNA-V6), which contains unique 3 exons upstream of exon 1 of LMNA. The promoter region of LMNA-V6 formed multiple G-quadruplexes and increased its transcriptional activity. Moreover, LMNA-V6 negatively regulated other LMNA mRNA variants, lamin A and lamin C, via direct interaction with their promoter. Knockdown of LMNA-V6 decreased the proliferation of colon cancer cells, whereas overexpression of the unique 3 exons of LMNA-V6 increased cell growth. Furthermore, microarray gene expression profiling showed that alteration of LMNA-V6 levels influenced the expression of p53 in colon cancer cells. Taken together, the results suggest that LMNA-V6 may be a novel functional RNA whose expression is regulated through multiple G-quadruplexes in colon cancer cells.
Collapse
Affiliation(s)
- Tatsuya Nishikawa
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Onco-cardiology, Osaka International Cancer Institute, Osaka, Japan
| | - Yuki Kuwano
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Mayu Nakata
- Student Lab, Tokushima University Faculty of Medicine, Tokushima, Japan
| | - Kazuhito Rokutan
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kensei Nishida
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
22
|
Dubik N, Mai S. Lamin A/C: Function in Normal and Tumor Cells. Cancers (Basel) 2020; 12:cancers12123688. [PMID: 33316938 PMCID: PMC7764147 DOI: 10.3390/cancers12123688] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The aim of this review is to summarize lamin A/C’s currently known functions in both normal and diseased cells. Lamin A/C is a nuclear protein with many functions in cells, such as maintaining a cell’s structural stability, cell motility, mechanosensing, chromosome organization, gene regulation, cell differentiation, DNA damage repair, and telomere protection. Mutations of the lamin A/C gene, incorrect processing of the protein, and lamin A/C deregulation can lead to various diseases and cancer. This review touches on diseases caused by mutation and incorrect processing of lamin A/C, called laminopathies. The effect of lamin A/C deregulation in cancer is also reviewed, and lamin A/C’s potential in helping to diagnose prostate cancers more accurately is discussed. Abstract This review is focused on lamin A/C, a nuclear protein with multiple functions in normal and diseased cells. Its functions, as known to date, are summarized. This summary includes its role in maintaining a cell’s structural stability, cell motility, mechanosensing, chromosome organization, gene regulation, cell differentiation, DNA damage repair, and telomere protection. As lamin A/C has a variety of critical roles within the cell, mutations of the lamin A/C gene and incorrect processing of the protein results in a wide variety of diseases, ranging from striated muscle disorders to accelerated aging diseases. These diseases, collectively termed laminopathies, are also touched upon. Finally, we review the existing evidence of lamin A/C’s deregulation in cancer. Lamin A/C deregulation leads to various traits, including genomic instability and increased tolerance to mechanical insult, which can lead to more aggressive cancer and poorer prognosis. As lamin A/C’s expression in specific cancers varies widely, currently known lamin A/C expression in various cancers is reviewed. Additionally, Lamin A/C’s potential as a biomarker in various cancers and as an aid in more accurately diagnosing intermediate Gleason score prostate cancers is also discussed.
Collapse
|
23
|
Structural and Mechanical Aberrations of the Nuclear Lamina in Disease. Cells 2020; 9:cells9081884. [PMID: 32796718 PMCID: PMC7464082 DOI: 10.3390/cells9081884] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/02/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The nuclear lamins are the major components of the nuclear lamina in the nuclear envelope. Lamins are involved in numerous functions, including a role in providing structural support to the cell and the mechanosensing of the cell. Mutations in the genes encoding for lamins lead to the rare diseases termed laminopathies. However, not only laminopathies show alterations in the nuclear lamina. Deregulation of lamin expression is reported in multiple cancers and several viral infections lead to a disrupted nuclear lamina. The structural and mechanical effects of alterations in the nuclear lamina can partly explain the phenotypes seen in disease, such as muscular weakness in certain laminopathies and transmigration of cancer cells. However, a lot of answers to questions about the relation between changes in the nuclear lamina and disease development remain elusive. Here, we review the current understandings of the contribution of the nuclear lamina in the structural support and mechanosensing of healthy and diseased cells.
Collapse
|
24
|
Blank M. Targeted Regulation of Nuclear Lamins by Ubiquitin and Ubiquitin-Like Modifiers. Cells 2020; 9:cells9061340. [PMID: 32471220 PMCID: PMC7348791 DOI: 10.3390/cells9061340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Nuclear lamins (NLs) are essential components of the animal cell nucleus involved in the regulation of a plethora of molecular and cellular processes. These include the nuclear envelope assembly and stability, mechanotransduction and chromatin organization, transcription, DNA replication, damage repair, and genomic integrity maintenance. Mutations in NLs can lead to the development of a wide range of distinct disease phenotypes, laminopathies, consisting of cardiac, neuromuscular, metabolic and premature aging syndromes. In addition, alterations in the expression of nuclear lamins were associated with different types of neoplastic diseases. Despite the importance and critical roles that NLs play in the diverse cellular activities, we only recently started to uncover the complexity of regulatory mechanisms governing their expression, localization and functions. This integrative review summarizes and discusses the recent findings on the emerging roles of ubiquitin and ubiquitin-like modifiers (ULMs) in the regulation of NLs, highlighting the intriguing molecular associations and cross-talks occurring between NLs and these regulatory molecules under physiological conditions and in the disease states.
Collapse
Affiliation(s)
- Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
25
|
Ruggieri S, De Giorgis M, Annese T, Tamma R, Notarangelo A, Marzullo A, Senetta R, Cassoni P, Notarangelo M, Ribatti D, Nico B. Dp71 Expression in Human Glioblastoma. Int J Mol Sci 2019; 20:E5429. [PMID: 31683640 PMCID: PMC6862465 DOI: 10.3390/ijms20215429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/14/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Dp71 is the most abundant dystrophin (DMD) gene product in the nervous system. Mutation in the Dp71 coding region is associated with cognitive disturbances in Duchenne muscular dystrophy (DMD) patients, but the function of dystrophin Dp71 in tumor progression remains to be established. This study investigated Dp71 expression in glioblastoma, the most common and aggressive primary tumor of the central nervous system (CNS). METHODS Dp71 expression was analyzed by immunofluorescence, immunohistochemistry, RT-PCR, and immunoblotting in glioblastoma cell lines and cells isolated from human glioblastoma multiforme (GBM) bioptic specimens. RESULTS Dp71 isoform was expressed in normal human astrocytes (NHA) cell lines and decreased in glioblastoma cell lines and cells isolated from human glioblastoma multiforme bioptic specimens. Moreover, Dp71 was localized in the nucleus in normal cells, while it was localized into the cytoplasm of glioblastoma cells organized in clusters. We have shown, by double labeling, that Dp71 colocalizes with lamin B in normal astrocytes cells, confirming the roles of Dp71 and lamin B in maintaining nuclear architecture. Finally, we demonstrated that decreased Dp71 protein in cells isolated from human bioptic specimens was inversely correlated with the Ki-67 tumor proliferative index. CONCLUSION A decreased Dp71 expression is associated with cancer proliferation and poor prognosis in glioblastoma.
Collapse
Affiliation(s)
- Simona Ruggieri
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy.
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy.
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy.
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy.
| | - Angelo Notarangelo
- Medical Genetic Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy.
| | - Andrea Marzullo
- Department of Emergency and Transplantation, Pathology Unit, University of Bari Medical School, 70124 Bari, Italy.
| | - Rebecca Senetta
- Pathology Unit, Department of Medical Sciences, University of Turin, University of Turin Medical School, 10124 Turin, Italy.
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, University of Turin Medical School, 10124 Turin, Italy.
| | - Michela Notarangelo
- Centre for Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy.
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy.
| | - Beatrice Nico
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy.
| |
Collapse
|
26
|
Klingler-Hoffmann M, Mittal P, Hoffmann P. The Emerging Role of Cytoskeletal Proteins as Reliable Biomarkers. Proteomics 2019; 19:e1800483. [PMID: 31525818 DOI: 10.1002/pmic.201800483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/12/2019] [Indexed: 12/26/2022]
Abstract
Cytoskeletal proteins are essential building blocks of cells. More than 100 cytoskeletal and cytoskeleton-associated proteins are known and for some, their function and regulation are understood in great detail. Apart from cell shape and support, they facilitate many processes such as intracellular signaling and transport, and cancer related processes such as proliferation, migration, and invasion. During the last decade, comparative proteomic studies have identified cytoskeletal proteins as in vitro markers for tumor progression and metastasis. Here, these results are summarized and a number of unrelated studies are highlighted, identifying the same cytoskeletal proteins as potential biomarkers. These findings might indicate that the abundance of these potential markers of tumor progression is associated with the biological outcome and are independent of the cancer origin. This correlates well with recently published results from the Cancer Genome Atlas, indicating that cancers show remarkable similarities in their analyzed molecular information, independent of their organ of origin. It is postulated that the quantification of cytoskeletal proteins in healthy tissues, tumors, in adjacent tissues, and in stroma, is a great source of molecular information, which might not only be used to classify tumors, but more importantly to predict patients' outcome or even best treatment choices.
Collapse
Affiliation(s)
- Manuela Klingler-Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, 5095, Australia
| | - Parul Mittal
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, 5005, Australia
| | - Peter Hoffmann
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, 5095, Australia
| |
Collapse
|
27
|
Radspieler MM, Schindeldecker M, Stenzel P, Försch S, Tagscherer KE, Herpel E, Hohenfellner M, Hatiboglu G, Roth W, Macher-Goeppinger S. Lamin-B1 is a senescence-associated biomarker in clear-cell renal cell carcinoma. Oncol Lett 2019; 18:2654-2660. [PMID: 31402955 PMCID: PMC6676677 DOI: 10.3892/ol.2019.10593] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/03/2019] [Indexed: 01/17/2023] Open
Abstract
Clear-cell renal cell carcinoma (ccRCC) is a von-Hippel-Lindau gene (VHL) associated tumor disease. In addition to activating the hypoxia inducible factor (HIF) dependent oxygen-sensing pathway, VHL loss also has an impact on a HIF-independent senescence program which functions as a tumorigenesis barrier. Lamin-B1 is a nuclear intermediate filament protein that exhibits effects on chromatin structure and gene expression and acts as a senescence effector. In the present study, the expression and prognostic relevance of Lamin-B1 in a large cohort of ccRCC patients was examined and the report presents initial functional data on possible therapeutic implications. The expression of Lamin-B1 was measured by immunohistochemistry using a tissue microarray containing tumor tissue samples from 763 ccRCC patients. Chi-squared tests, Kaplan-Meier curves and Cox regression models were used to investigate the possible association between Lamin-B1 expression, clinical and pathological characteristics and patient survival. High Lamin-B1 expression was associated with poor clinical outcomes and multivariate Cox regression analyses revealed that Lamin-B1 was an independent prognostic factor for cancer-specific survival. Furthermore in vitro data suggested that Lamin-B1 acted as a functional downstream senescence effector in RCC cell lines. In conclusion, patients affected by ccRCC with high Lamin-B1 expression exhibit poor prognosis. Lamin-B1 may serve as a tissue-based biomarker for new therapeutic agents targeting therapy-induced senescence.
Collapse
Affiliation(s)
| | - Mario Schindeldecker
- Institute of Pathology, University Medical Center Mainz, D-55131 Mainz, Germany
- Tissue Biobank, University Medical Center Mainz, D-55131 Mainz, Germany
| | - Philipp Stenzel
- Institute of Pathology, University Medical Center Mainz, D-55131 Mainz, Germany
| | - Sebastian Försch
- Institute of Pathology, University Medical Center Mainz, D-55131 Mainz, Germany
| | | | - Esther Herpel
- Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
- Tissue Bank of The National Center for Tumor Diseases, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Markus Hohenfellner
- Department of Urology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Gencay Hatiboglu
- Department of Urology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center Mainz, D-55131 Mainz, Germany
| | - Stephan Macher-Goeppinger
- Institute of Pathology, University Medical Center Mainz, D-55131 Mainz, Germany
- Tissue Biobank, University Medical Center Mainz, D-55131 Mainz, Germany
| |
Collapse
|
28
|
Liu L, Lin J, He H. Identification of Potential Crucial Genes Associated With the Pathogenesis and Prognosis of Endometrial Cancer. Front Genet 2019; 10:373. [PMID: 31105744 PMCID: PMC6499025 DOI: 10.3389/fgene.2019.00373] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
Background and Objective Endometrial cancer (EC) is a common gynecological malignancy worldwide. Despite advances in the development of strategies for treating EC, prognosis of the disease remains unsatisfactory, especially for advanced EC. The aim of this study was to identify novel genes that can be used as potential biomarkers for identifying the prognosis of EC and to construct a novel risk stratification using these genes. Methods and Results An mRNA sequencing dataset, corresponding survival data and expression profiling of an array of EC patients were obtained from The Cancer Genome Atlas and Gene Expression Omnibus, respectively. Common differentially expressed genes (DEGs) were identified based on sequencing and expression as given in the profiling dataset. Pathway enrichment analysis of the DEGs was performed using the Database for Annotation, Visualization, and Integrated Discovery. The protein-protein interaction network was established using the string online database in order to identify hub genes. Univariate and multivariable Cox regression analyses were used to screen prognostic DEGs and to construct a prognostic signature. Survival analysis based on the prognostic signature was performed on TCGA EC dataset. A total of 255 common DEGs were found and 11 hub genes (TOP2A, CDK1, CCNB1, CCNB2, AURKA, PCNA, CCNA2, BIRC5, NDC80, CDC20, and BUB1BA) that may be closely related to the pathogenesis of EC were identified. A panel of 7 DEG signatures consisting of PHLDA2, GGH, ESPL1, FAM184A, KIAA1644, ESPL1, and TRPM4 were constructed. The signature performed well for prognosis prediction (p < 0.001) and time-dependent receiver-operating characteristic (ROC) analysis displayed an area under the curve (AUC) of 0.797, 0.734, 0.729, and 0.647 for 1, 3, 5, and 10-year overall survival (OS) prediction, respectively. Conclusion This study identified potential genes that may be involved in the pathophysiology of EC and constructed a novel gene expression signature for EC risk stratification and prognosis prediction.
Collapse
Affiliation(s)
- Li Liu
- Department of Obstetrics and Gynecology, Liuzhou Worker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jiajing Lin
- Department of Obstetrics and Gynecology, Liuzhou Worker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Hongying He
- Department of Obstetrics and Gynecology, Liuzhou Worker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| |
Collapse
|
29
|
Alhudiri IM, Nolan CC, Ellis IO, Elzagheid A, Rakha EA, Green AR, Chapman CJ. Expression of Lamin A/C in early-stage breast cancer and its prognostic value. Breast Cancer Res Treat 2019; 174:661-668. [DOI: 10.1007/s10549-018-05092-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
|
30
|
Smith ER, Capo-Chichi CD, Xu XX. Defective Nuclear Lamina in Aneuploidy and Carcinogenesis. Front Oncol 2018; 8:529. [PMID: 30524960 PMCID: PMC6256246 DOI: 10.3389/fonc.2018.00529] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/29/2018] [Indexed: 01/05/2023] Open
Abstract
Aneuploidy, loss or gain of whole chromosomes, is a prominent feature of carcinomas, and is generally considered to play an important role in the initiation and progression of cancer. In high-grade serous ovarian cancer, the only common gene aberration is the p53 point mutation, though extensive genomic perturbation is common due to severe aneuploidy, which presents as a deviant karyotype. Several mechanisms for the development of aneuploidy in cancer cells have been recognized, including chromosomal non-disjunction during mitosis, centrosome amplification, and more recently, nuclear envelope rupture at interphase. Many cancer types including ovarian cancer have lost or reduced expression of Lamin A/C, a structural component of the lamina matrix that underlies the nuclear envelope in differentiated cells. Several recent studies suggest that a nuclear lamina defect caused by the loss or reduction of Lamin A/C leads to failure in cytokinesis and formation of tetraploid cells, transient nuclear envelope rupture, and formation of nuclear protrusions and micronuclei during the cell cycle gap phase. Thus, loss and reduction of Lamin A/C underlies the two common features of cancer—aberrations in nuclear morphology and aneuploidy. We discuss here and emphasize the newly recognized mechanism of chromosomal instability due to the rupture of a defective nuclear lamina, which may account for the rapid genomic changes in carcinogenesis.
Collapse
Affiliation(s)
- Elizabeth R Smith
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Callinice D Capo-Chichi
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States.,Laboratory of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, University of Abomey-Calavi, Abomey Calavi, Benin
| | - Xiang-Xi Xu
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
31
|
González-Cruz RD, Dahl KN, Darling EM. The Emerging Role of Lamin C as an Important LMNA Isoform in Mechanophenotype. Front Cell Dev Biol 2018; 6:151. [PMID: 30450357 PMCID: PMC6224339 DOI: 10.3389/fcell.2018.00151] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022] Open
Abstract
Lamin A and lamin C isoforms of the gene LMNA are major structural and mechanotransductive components of the nuclear lamina. Previous reports have proposed lamin A as the isoform with the most dominant contributions to cellular mechanophenotype. Recently, expression of lamin C has also been shown to strongly correlate to cellular elastic and viscoelastic properties. Nevertheless, LMNA isoforms exist as part of a network that collectively provides structural integrity to the nucleus and their expression is ultimately regulated in a cell-specific manner. Thus, they have importance in mechanotransduction and structural integrity of the nucleus as well as potential candidates for biomarkers of whole-cell mechanophenotype. Therefore, a fuller discussion of lamin isoforms as mechanophenotypic biomarkers should compare both individual and ratiometric isoform contributions toward whole-cell mechanophenotype across different cell types. In this perspective, we discuss the distinctions between the mechanophenotypic correlations of individual and ratiometric lamins A:B1, C:B1, (A + C):B1, and C:A across cells from different lineages, demonstrating that the collective contribution of ratiometric lamin (A + C):B1 isoforms exhibited the strongest correlation to whole-cell stiffness. Additionally, we highlight the potential roles of lamin isoform ratios as indicators of mechanophenotypic change in differentiation and disease to demonstrate that the contributions of individual and collective lamin isoforms can occur as both static and dynamic biomarkers of mechanophenotype.
Collapse
Affiliation(s)
| | - Kris N Dahl
- Department of Chemical Engineering, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Eric M Darling
- Center for Biomedical Engineering, Brown University, Providence, RI, United States.,Department of Molecular Pharmacology, Physiology and Biotechnology, School of Engineering, Department of Orthopaedics, Brown University, Providence, RI, United States
| |
Collapse
|
32
|
Wang Y, Jiang J, He L, Gong G, Wu X. Effect of lamin-A expression on migration and nuclear stability of ovarian cancer cells. Gynecol Oncol 2018; 152:166-176. [PMID: 30384980 DOI: 10.1016/j.ygyno.2018.10.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Nuclear lamina plays important roles in nuclear shape and mechanical stability. Many studies demonstrated that defects of lamin-A were associated with several diseases, but little research was found on its potential roles in ovarian cancer. METHODS GEPIA and GEO database were used to analyze lamin-A in ovarian tissues, followed by assessing lamin-A and prognosis of ovarian cancer patients with Kaplan-Meier plotter. Then, transient transfected HO-8910 cells with shRNA to knockdown lamin-A. Knockdown efficiency was determined by western blot, qRT-PCR and immunofluorescence. Meanwhile, lamin-A was overexpressed in HO-8910 PM cells. Then, 2D migration, 3D migration through 3 μm and 8 μm pores were carried out, followed by immunofluorescence and TEM observation. RESULTS Lamin-A tended to be lower in ovarian cancer, and higher expression of lamin-A was associated with better survival. After lamin-A knockdown, 2D and 3D migration (3 μm, 8 μm) abilities of HO-8910 cells were significantly increased (p < 0.001), while overexpression of lamin-A in HO-8910PM impeded migration. Meanwhile, when HO-8910 cells migrated through 3 μm pores, nuclei became strikingly elongated, and down-regulation of lamin-A promoted nuclear plasticity, making the circularity of nucleus increased. Besides, further knockdown group had the highest proportion of γ-H2AX, with micronuclei forming. Furthermore, western blot showed that the expression of BRCA1, Ku80 and Rad50 decreased significantly after further knockdown, suggesting impairment of DNA damage repair. CONCLUSIONS Lamin-A was down-regulated in ovarian cancer, and higher lamin-A was associated with better prognosis. Nuclei with high lamin-A were severely deformed through constricted pores. Moderate lamin-A enhanced nuclear plasticity, so as to strengthen migration ability. When lamin-A was further knockdown, ovarian cancer cells that migrated through restricted pores decreased, with DNA damage, genomic instability and impairment of DNA damage repair.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jing Jiang
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Liuqing He
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Guanghui Gong
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiaoying Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
33
|
Distinct 3D Structural Patterns of Lamin A/C Expression in Hodgkin and Reed-Sternberg Cells. Cancers (Basel) 2018; 10:cancers10090286. [PMID: 30149530 PMCID: PMC6162537 DOI: 10.3390/cancers10090286] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/22/2018] [Indexed: 12/20/2022] Open
Abstract
Classical Hodgkin's lymphoma (cHL) is a B-Cell lymphoma comprised of mononuclear Hodgkin cells (H) and bi- to multi-nucleated Reed-Sternberg (RS) cells. Previous studies revealed that H and RS cells express lamin A/C, a component of the lamina of the nuclear matrix. Since no information was available about the three-dimensional (3D) expression patterns of lamin A/C in H and RS cells, we analyzed the 3D spatial organization of lamin in such cells, using 3D fluorescent microscopy. H and RS cells from cHL derived cell lines stained positive for lamin A/C, in contrast to peripheral blood lymphocytes (PBLs), in which the lamin A/C protein was not detected or weak, although its presence could be transiently increased with lymphocyte activation by lipopolysaccharide (LPS). Most importantly, in H and RS cells, the regular homogeneous and spherically shaped lamin A/C pattern, identified in activated lymphocytes, was absent. Instead, in H and RS cells, lamin staining showed internal lamin A/C structures, subdividing the nuclei into two or more smaller compartments. Analysis of pre-treatment cHL patients' samples replicated the lamin patterns identified in cHL cell lines. We conclude that the investigation of lamin A/C protein could be a useful tool for understanding nuclear remodeling in cHL.
Collapse
|
34
|
Guinde J, Frankel D, Perrin S, Delecourt V, Lévy N, Barlesi F, Astoul P, Roll P, Kaspi E. Lamins in Lung Cancer: Biomarkers and Key Factors for Disease Progression through miR-9 Regulation? Cells 2018; 7:E78. [PMID: 30012957 PMCID: PMC6071028 DOI: 10.3390/cells7070078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 02/08/2023] Open
Abstract
Lung cancer represents the primary cause of cancer death in the world. Malignant cells identification and characterization are crucial for the diagnosis and management of patients with primary or metastatic cancers. In this context, the identification of new biomarkers is essential to improve the differential diagnosis between cancer subtypes, to select the most appropriate therapy, and to establish prognostic correlations. Nuclear abnormalities are hallmarks of carcinoma cells and are used as cytological diagnostic criteria of malignancy. Lamins (divided into A- and B-types) are localized in the nuclear matrix comprising nuclear lamina, where they act as scaffolding protein, involved in many nuclear functions, with regulatory effects on the cell cycle and differentiation, senescence and apoptosis. Previous studies have suggested that lamins are involved in tumor development and progression with opposite results concerning their prognostic role. This review provides an overview of lamins expression in lung cancer and the relevance of these findings for disease diagnosis and prognosis. Furthermore, we discuss the link between A-type lamins expression in lung carcinoma cells and nuclear deformability, epithelial to mesenchymal transition, and metastatic potential, and which mechanisms could regulate A-type lamins expression in lung cancer, such as the microRNA miR-9.
Collapse
Affiliation(s)
- Julien Guinde
- Aix Marseille Université, INSERM, MMG, 13385 Marseille, France.
- APHM, Hôpital Nord, Department of Thoracic Oncology-Pleural Diseases-Interventional Pulmonology, CEDEX 5, 13385 Marseille, France.
| | - Diane Frankel
- Aix Marseille Université, APHM, INSERM, MMG, Hôpital la Timone, Service de Biologie Cellulaire, 13385 Marseille, France.
| | - Sophie Perrin
- Aix Marseille Université, INSERM, MMG, 13385 Marseille, France.
- ProGeLife, 13385 Marseille, France.
| | | | - Nicolas Lévy
- Aix Marseille Université, APHM, INSERM, MMG, Hôpital la Timone, Département de Génétique Médicale, 13385 Marseille, France.
| | - Fabrice Barlesi
- Aix Marseille Université, APHM, CNRS, INSERM, CRCM, Multidisciplinary Oncology & Therapeutic Innovations Department, 13385 Marseille, France.
| | - Philippe Astoul
- APHM, Hôpital Nord, Department of Thoracic Oncology-Pleural Diseases-Interventional Pulmonology, CEDEX 5, 13385 Marseille, France.
| | - Patrice Roll
- Aix Marseille Université, APHM, INSERM, MMG, Hôpital la Timone, Service de Biologie Cellulaire, 13385 Marseille, France.
| | - Elise Kaspi
- Aix Marseille Université, APHM, INSERM, MMG, Hôpital la Timone, Service de Biologie Cellulaire, 13385 Marseille, France.
| |
Collapse
|
35
|
Smith ER, George SH, Kobetz E, Xu XX. New biological research and understanding of Papanicolaou's test. Diagn Cytopathol 2018; 46:507-515. [PMID: 29663734 PMCID: PMC5949091 DOI: 10.1002/dc.23941] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/08/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
The development of the Papanicolaou smear test by Dr. George Nicholas Papanicolaou (1883-1962) is one of the most significant achievements in screening for disease and cancer prevention in history. The Papanicolaou smear has been used for screening of cervical cancer since the 1950s. The test is technically straightforward and practical and based on a simple scientific observation: malignant cells have an aberrant nuclear morphology that can be distinguished from benign cells. Here, we review the scientific understanding that has been achieved and continues to be made on the causes and consequences of abnormal nuclear morphology, the basis of Dr. Papanicolaou's invention. The deformed nuclear shape is caused by the loss of lamina and nuclear envelope structural proteins. The consequences of a nuclear envelope defect include chromosomal numerical instability, altered chromatin organization and gene expression, and increased cell mobility because of a malleable nuclear envelope. HPV (Human Papilloma Virus) infection is recognized as the key etiology in the development of cervical cancer. Persistent HPV infection causes disruption of the nuclear lamina, which presents as a change in nuclear morphology detectable by a Papanicolaou smear. Thus, the causes and consequences of nuclear deformation are now linked to the mechanisms of viral carcinogenesis, and are still undergoing active investigation to reveal the details. Recently a statue was installed in front of the Papanicolaou's Cancer Research Building to honor the inventor. Remarkably, the invention nearly 60 years ago by Dr. Papanicolaou still exerts clinical impacts and inspires scientific inquiries.
Collapse
Affiliation(s)
- Elizabeth R. Smith
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Sophia H. George
- Department of Obstetrics & Gynecology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Erin Kobetz
- Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Xiang-Xi Xu
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
36
|
Brady GF, Kwan R, Cunha JB, Elenbaas JS, Omary MB. Lamins and Lamin-Associated Proteins in Gastrointestinal Health and Disease. Gastroenterology 2018; 154:1602-1619.e1. [PMID: 29549040 PMCID: PMC6038707 DOI: 10.1053/j.gastro.2018.03.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/04/2018] [Accepted: 03/06/2018] [Indexed: 02/07/2023]
Abstract
The nuclear lamina is a multi-protein lattice composed of A- and B-type lamins and their associated proteins. This protein lattice associates with heterochromatin and integral inner nuclear membrane proteins, providing links among the genome, nucleoskeleton, and cytoskeleton. In the 1990s, mutations in EMD and LMNA were linked to Emery-Dreifuss muscular dystrophy. Since then, the number of diseases attributed to nuclear lamina defects, including laminopathies and other disorders, has increased to include more than 20 distinct genetic syndromes. Studies of patients and mouse genetic models have pointed to important roles for lamins and their associated proteins in the function of gastrointestinal organs, including liver and pancreas. We review the interactions and functions of the lamina in relation to the nuclear envelope and genome, the ways in which its dysfunction is thought to contribute to human disease, and possible avenues for targeted therapies.
Collapse
Affiliation(s)
- Graham F. Brady
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan,To whom correspondence should be addressed: University of Michigan Medical School, Division of Gastroenterology, Department of Internal Medicine, 1137 Catherine St., Ann Arbor, MI 48109-5622.
| | - Raymond Kwan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Juliana Bragazzi Cunha
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jared S. Elenbaas
- Medical Scientist Training Program, Washington University, St Louis, Missouri
| | - M. Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan,Ǻbo Akademi University, Turku, Finland
| |
Collapse
|
37
|
Malvezzi H, Viana BG, Dobo C, Filippi RZ, Podgaec S, Piccinato CA. Depleted lamin B1: a possible marker of the involvement of senescence in endometriosis? Arch Gynecol Obstet 2018; 297:977-984. [PMID: 29417283 DOI: 10.1007/s00404-018-4691-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/25/2018] [Indexed: 02/06/2023]
Abstract
PROPOSE Endometriosis is a benign disease characterized by implantation and the growth of endometrial tissue outside the uterine cavity and it shares similarities with cancer. Lamin B1, p16 and p21 play a role on cell cycle regulation, development, cell repair and its activities are related to cancers. Considering the similarities between endometriosis and cancer, the aim of the present cross-sectional study is to detect p16, p21 and Lamin B1 in the ectopic endometrium of patients with endometriosis (n = 8) with eutopic (n = 8) and control endometrium (n = 8) and relate them to the maintenance and development of endometriosis. METHODS Biopsies were obtained from both eutopic and ectopic, from deep infiltrating lesions, endometrium frozen and used for immunofluorescent (p16) or immunohistochemistry procedures (p16, p21, lamin B1). RESULTS Detected higher lamin B1 in the eutopic endometrium when compared with ectopic endometrium, with no differences between endometriosis tissue with control endometrium. Similar presence of p16 in all groups of patients and no p21 detection was observed. CONCLUSION We observed reduced detection of lamin B1 in the ectopic endometrium raising the possibility that the presence of senescent cells might be contributing to the maintenance and progression of endometriosis by apoptosis resistance and peritoneal stress inherent of the disease.
Collapse
Affiliation(s)
- Helena Malvezzi
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi, SP, 05652-900, Brazil
| | - Bruno Gallani Viana
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi, SP, 05652-900, Brazil
| | - Cristine Dobo
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi, SP, 05652-900, Brazil
| | - Renee Zon Filippi
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi, SP, 05652-900, Brazil
| | - Sérgio Podgaec
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi, SP, 05652-900, Brazil
| | - Carla Azevedo Piccinato
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627, Morumbi, SP, 05652-900, Brazil.
| |
Collapse
|
38
|
Osorio HL, Finol HJ, Gonzalez LR, Sardiñas CE. Ultrastructure of colorectal adenocarcinoma and peritumoral tissue in untreated patients. Ultrastruct Pathol 2018; 42:81-90. [PMID: 29419351 DOI: 10.1080/01913123.2017.1422064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, we describe, compare, and discuss several subcellular alterations found in Colorectal Adenocarcinoma and peritumoral tissue using transmission electron microscopy, morphometry, and statistical analysis. Tissue samples from anterior resections were collected from patients diagnosed with Colorectal Adenocarcinoma in the University Hospital of Caracas. Samples were processed according to the typical protocol for their observation through transmission electron microscopy. The resulting images were analyzed using specialized software for the collection of morphometric data. Several anomalies were common for both tissues, including but not limited to, rough endoplasmic reticulum and mitochondrial swelling, nuclear invagination, nuclear enlargement, and cellular swelling. In general, alterations within the tumor were more frequent and intense. Extensive organellar degradation and other evidences of cellular damage seemed to extend past the edge of the tumor into the peritumoral tissue. There seems to be a clear process of lateral cancerization present in the peritumoral area. The tissue layers composed of smooth muscle cells, probably due to their structural features, may allow greater diffusion of harmful substances produced by the tumor. A more in-depth analysis of peritumoral tissue considering organellar damage and morphometric data may provide relevant insight about the changing microenvironment promoted by the close proximity of a tumor.
Collapse
Affiliation(s)
- Hector L Osorio
- a Laboratory for Cellular and Molecular Pathology, Venezuelan Institute for Scientific Research, Altos de Pipe , Miranda , Distrito Capital , Venezuela
| | - Hector J Finol
- b Center for Electron Microscopy, Faculty of Science , Central University of Venezuela , Caracas , Venezuela
| | - L Roschman Gonzalez
- b Center for Electron Microscopy, Faculty of Science , Central University of Venezuela , Caracas , Venezuela
| | - Carlos E Sardiñas
- c Coloproctology Unit , University Hospital of Caracas, Central University of Venezuela , Caracas , Venezuela
| |
Collapse
|
39
|
Setijono SR, Park M, Kim G, Kim Y, Cho KW, Song SJ. miR-218 and miR-129 regulate breast cancer progression by targeting Lamins. Biochem Biophys Res Commun 2018; 496:826-833. [PMID: 29378184 DOI: 10.1016/j.bbrc.2018.01.146] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/23/2018] [Indexed: 01/15/2023]
Abstract
Breast cancer is the most frequently diagnosed life-threatening cancer in women. Triple-negative breast cancer (TNBC) has an aggressive clinical behavior, but the treatment of TNBC remains challenging. MicroRNAs (miRNAs) have emerged as a potential target for the diagnosis, therapy and prognosis of breast cancer. However, the precise role of miRNAs and their targets in breast cancer remain to be elucidated. Here we show that miR-218 is downregulated and miR-129 is upregulated in TNBC samples and their expressions confer prognosis to patients. Gain-of-function and loss-of-function analysis reveals that miR-218 has a tumor suppressive activity, while miR-129 acts as an oncomir in breast cancer. Notably, miR-218 and miR-129 directly target Lamin B1 and Lamin A, respectively, which are also found to be deregulated in human breast tumors. Finally, we demonstrate Lamins as the major factors in reliable miR-218 and miR-129 functions for breast cancer progression. Our findings uncover a new miRNA-mediated regulatory network for different Lamins and provide a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Stephanie Rebecca Setijono
- Soonchunhyang Institute of Medi-Bioscience (SIMS), Soonchunhyang University, 25 Bongjeong-ro Dongnam-gu, Chungcheongnam-do, 31151, South Korea
| | - Mikyung Park
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Goeun Kim
- Soonchunhyang Institute of Medi-Bioscience (SIMS), Soonchunhyang University, 25 Bongjeong-ro Dongnam-gu, Chungcheongnam-do, 31151, South Korea
| | - Yongjo Kim
- Soonchunhyang Institute of Medi-Bioscience (SIMS), Soonchunhyang University, 25 Bongjeong-ro Dongnam-gu, Chungcheongnam-do, 31151, South Korea
| | - Kae Won Cho
- Soonchunhyang Institute of Medi-Bioscience (SIMS), Soonchunhyang University, 25 Bongjeong-ro Dongnam-gu, Chungcheongnam-do, 31151, South Korea.
| | - Su Jung Song
- Soonchunhyang Institute of Medi-Bioscience (SIMS), Soonchunhyang University, 25 Bongjeong-ro Dongnam-gu, Chungcheongnam-do, 31151, South Korea.
| |
Collapse
|
40
|
Tan S, Tan J, Tan S, Zhao S, Cao X, Chen Z, Weng Q, Zhang H, Wang K, Zhou J, Xiao X. Decreased Dp71 expression is associated with gastric adenocarcinoma prognosis. Oncotarget 2018; 7:53702-53711. [PMID: 27449096 PMCID: PMC5288215 DOI: 10.18632/oncotarget.10724] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 07/06/2016] [Indexed: 11/25/2022] Open
Abstract
For the first time, dramatically decreased Dp71 protein and mRNA was found in 34 pairs of resected primary gastric adenocarcinoma. Immunohistochemistry identified Dp71 expression suppressed in 72.2% of 104 gastric cancer patients. The decreased Dp71 expression was significantly correlated with cancer differentiation (P=0.001) and lymph vascular invasion (p=0.041). Decreased Dp71 expression was associated with a poor gastric adenocarcinoma prognosis (P=0.001). Significantly less Dp71 mRNA and protein were found in BGC823, SGC7901, AGS compared with GES-1. Via increasing lamin B1 mRNA and protein, enforced Dp71d and Dp71f expression resulted in SGC7901 proliferation inhibition. Co-IP proved interaction of Dp71 with lamin B1 in GES-1 cells. Further expression characterization showed reduced lamin B1 in gastric cancer tissue and cancer cells. Increasing lamin B1 expression results in the growth inhibition of SGC7901, which suggests that Dp71-lamin B1 protein complex plays an important role for the newly identified tumor suppressive function of Dp71.
Collapse
Affiliation(s)
- Sipin Tan
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Jin Tan
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Sichuang Tan
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Hunan 410011, People's Republic of China
| | - Shuai Zhao
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xiaoxia Cao
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Zhikang Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Qiaocheng Weng
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Huali Zhang
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Kangkai Wang
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Jiang Zhou
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Xianzhong Xiao
- Laboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
41
|
Khan ZS, Santos JM, Hussain F. Aggressive prostate cancer cell nuclei have reduced stiffness. BIOMICROFLUIDICS 2018; 12:014102. [PMID: 29333204 PMCID: PMC5750055 DOI: 10.1063/1.5019728] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 12/15/2017] [Indexed: 05/25/2023]
Abstract
It has been hypothesized that highly metastatic cancer cells have softer nuclei and hence would travel faster through confining environments. Our goal was to prove this untested hypothesis for prostate cells. Our nuclear creep experiments using a microfluidic channel with a narrow constriction show that stiffness of aggressive immortalized prostate cancer nuclei is significantly lower than that of immortalized normal cell nuclei and hence can be a convenient malignancy marker. Nuclear stiffness is found to be the highest for cells expressing high levels of lamin A/C but lowest for cells expressing low lamin A/C levels. Decreased chromatin condensation found in softer nuclei suggests that the former can also be a marker for aggressive cancers.
Collapse
Affiliation(s)
- Zeina S Khan
- Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Julianna M Santos
- Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Fazle Hussain
- Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
42
|
Izdebska M, Gagat M, Grzanka A. Overexpression of lamin B1 induces mitotic catastrophe in colon cancer LoVo cells and is associated with worse clinical outcomes. Int J Oncol 2018; 52:89-102. [PMID: 29115590 PMCID: PMC5743383 DOI: 10.3892/ijo.2017.4182] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023] Open
Abstract
Lamins are the major components of the nuclear lamina and play important roles in many cellular processes. The role of lamins in cancer development and progression is still unclear but it is known that reduced expression of lamin B1 has been observed in colon cancer. Thus, the aim of the present study was to elucidate the influence of LMNB1 upregulation on colon cancer cell line after treatment with 5-FU. The results indicate, that overexpression of LMNB1 induced dose-dependent cell death mainly by mitotic catastrophe pathway. Furthermore, after upregulation of this intermediate protein, lower expression of lamin A/C was observed. Moreover, we observed an increase in fluorescence intensity of nuclear β-catenin and decrease in cell-cell interaction area, that was connected with inhibition of colon cancer cells migration. We present the reorganization of actin filament and β-tubulin, because these cytoskeletal proteins are directly or indirectly linked with lamins, and analyzing publicly available mRNA data we show that patients with overexpression of LMNB1 are characterized by lower survival rates within the first 30 months from diagnosis. Summarizing our results, upregulation of LMNB1 induce mitotic catastrophe and only small percentage of apoptosis. Moreover, we showed inhibition of cell migration and promotion of cell-cell contact as a results of direct and indirect regulation of β-catenin, lamin A/C, actin and tubulin. However, it is possible that mitotic catastrophe cells in patients with colorectal cancer may be a reservoir of the cells responsible for faster disease progression, and further investigations are necessary to confirm this hypothesis.
Collapse
Affiliation(s)
| | | | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| |
Collapse
|
43
|
Kaspi E, Frankel D, Guinde J, Perrin S, Laroumagne S, Robaglia-Schlupp A, Ostacolo K, Harhouri K, Tazi-Mezalek R, Micallef J, Dutau H, Tomasini P, De Sandre-Giovannoli A, Lévy N, Cau P, Astoul P, Roll P. Low lamin A expression in lung adenocarcinoma cells from pleural effusions is a pejorative factor associated with high number of metastatic sites and poor Performance status. PLoS One 2017; 12:e0183136. [PMID: 28806747 PMCID: PMC5555706 DOI: 10.1371/journal.pone.0183136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 07/31/2017] [Indexed: 11/29/2022] Open
Abstract
The type V intermediate filament lamins are the principal components of the nuclear matrix, including the nuclear lamina. Lamins are divided into A-type and B-type, which are encoded by three genes, LMNA, LMNB1, and LMNB2. The alternative splicing of LMNA produces two major A-type lamins, lamin A and lamin C. Previous studies have suggested that lamins are involved in cancer development and progression. A-type lamins have been proposed as biomarkers for cancer diagnosis, prognosis, and/or follow-up. The aim of the present study was to investigate lamins in cancer cells from metastatic pleural effusions using immunofluorescence, western blotting, and flow cytometry. In a sub-group of lung adenocarcinomas, we found reduced expression of lamin A but not of lamin C. The reduction in lamin A expression was correlated with the loss of epithelial membrane antigen (EMA)/MUC-1, an epithelial marker that is involved in the epithelial to mesenchymal transition (EMT). Finally, the lamin A expression was inversely correlated with the number of metastatic sites and the WHO Performance status, and association of pleural, bone and lung metastatic localizations was more frequent when lamin A expression was reduced. In conclusion, low lamin A but not lamin C expression in pleural metastatic cells could represent a major actor in the development of metastasis, associated with EMT and could account for a pejorative factor correlated with a poor Performance status.
Collapse
Affiliation(s)
- Elise Kaspi
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
- APHM, Hôpital la Timone, Service de Biologie Cellulaire, Marseille, France
| | - Diane Frankel
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
- APHM, Hôpital la Timone, Service de Biologie Cellulaire, Marseille, France
| | - Julien Guinde
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
- APHM, Hôpital Nord, Department of Thoracic Oncology–Pleural diseases–Interventional pulmonology, Marseille, France
| | | | - Sophie Laroumagne
- APHM, Hôpital Nord, Department of Thoracic Oncology–Pleural diseases–Interventional pulmonology, Marseille, France
| | - Andrée Robaglia-Schlupp
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
- APHM, Hôpital la Timone, Service de Biologie Cellulaire, Marseille, France
- APHM, Hôpital la Timone, Département de Génétique Médicale et Centre de Ressources Biologiques, Marseille, France
| | | | | | - Rachid Tazi-Mezalek
- APHM, Hôpital Nord, Department of Thoracic Oncology–Pleural diseases–Interventional pulmonology, Marseille, France
| | - Joelle Micallef
- APHM, Hôpital la Timone, Service de Pharmacologie Clinique & Centre d’Investigation Clinique—CPCET, Marseille, France
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | - Hervé Dutau
- APHM, Hôpital Nord, Department of Thoracic Oncology–Pleural diseases–Interventional pulmonology, Marseille, France
| | - Pascale Tomasini
- Aix Marseille Univ, APHM, Marseille Early Phases Cancer Trials Center CLIP, Marseille, France
| | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
- APHM, Hôpital la Timone, Département de Génétique Médicale et Centre de Ressources Biologiques, Marseille, France
| | - Nicolas Lévy
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
- APHM, Hôpital la Timone, Département de Génétique Médicale et Centre de Ressources Biologiques, Marseille, France
| | - Pierre Cau
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
| | - Philippe Astoul
- APHM, Hôpital Nord, Department of Thoracic Oncology–Pleural diseases–Interventional pulmonology, Marseille, France
- Aix Marseille Univ, Marseille, France
| | - Patrice Roll
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
- APHM, Hôpital la Timone, Service de Biologie Cellulaire, Marseille, France
- * E-mail:
| |
Collapse
|
44
|
Ranade D, Koul S, Thompson J, Prasad KB, Sengupta K. Chromosomal aneuploidies induced upon Lamin B2 depletion are mislocalized in the interphase nucleus. Chromosoma 2017; 126:223-244. [PMID: 26921073 PMCID: PMC5371638 DOI: 10.1007/s00412-016-0580-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 01/28/2016] [Accepted: 02/09/2016] [Indexed: 12/31/2022]
Abstract
Chromosome territories assume non-random positions in the interphase nucleus with gene-rich chromosomes localized toward the nuclear interior and gene-poor chromosome territories toward the nuclear periphery. Lamins are intermediate filament proteins of the inner nuclear membrane required for the maintenance of nuclear structure and function. Here, we show using whole-genome expression profiling that Lamin A/C or Lamin B2 depletion in an otherwise diploid colorectal cancer cell line (DLD1) deregulates transcript levels from specific chromosomes. Further, three-dimensional fluorescence in situ hybridization (3D-FISH) analyses of a subset of these transcriptionally deregulated chromosome territories revealed that the diploid chromosome territories in Lamin-depleted cells largely maintain conserved positions in the interphase nucleus in a gene-density-dependent manner. In addition, chromosomal aneuploidies were induced in ~25 % of Lamin A/C or Lamin B2-depleted cells. Sub-populations of these aneuploid cells consistently showed a mislocalization of the gene-rich aneuploid chromosome 19 territory toward the nuclear periphery, while gene-poor aneuploid chromosome 18 territory was mislocalized toward the nuclear interior predominantly upon Lamin B2 than Lamin A/C depletion. In addition, a candidate gene locus ZNF570 (Chr.19q13.12) significantly overexpressed upon Lamin B2 depletion was remarkably repositioned away from the nuclear lamina. Taken together, our studies strongly implicate an overarching role for Lamin B2 in the maintenance of nuclear architecture since loss of Lamin B2 relieves the spatial positional constraints required for maintaining conserved localization of aneuploid chromosome territories in the interphase nucleus.
Collapse
Affiliation(s)
- Devika Ranade
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Shivsmriti Koul
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Joyce Thompson
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Kumar Brajesh Prasad
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Kundan Sengupta
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India.
| |
Collapse
|
45
|
Capo-Chichi CD, Yeasky TM, Smith ER, Xu XX. Nuclear envelope structural defect underlies the main cause of aneuploidy in ovarian carcinogenesis. BMC Cell Biol 2016; 17:37. [PMID: 27875985 PMCID: PMC5120486 DOI: 10.1186/s12860-016-0114-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/26/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The Cancer Atlas project has shown that p53 is the only commonly (96 %) mutated gene found in high-grade serous epithelial ovarian cancer, the major histological subtype. Another general genetic change is extensive aneuploidy caused by chromosomal numerical instability, which is thought to promote malignant transformation. Conventionally, aneuploidy is thought to be the result of mitotic errors and chromosomal nondisjunction during mitosis. Previously, we found that ovarian cancer cells often lost or reduced nuclear lamina proteins lamin A/C, and suppression of lamin A/C in cultured ovarian epithelial cells leads to aneuploidy. Following up, we investigated the mechanisms of lamin A/C-suppression in promoting aneuploidy and synergy with p53 inactivation. RESULTS We found that suppression of lamin A/C by siRNA in human ovarian surface epithelial cells led to frequent nuclear protrusions and formation of micronuclei. Lamin A/C-suppressed cells also often underwent mitotic failure and furrow regression to form tetraploid cells, which frequently underwent aberrant multiple polar mitosis to form aneuploid cells. In ovarian surface epithelial cells isolated from p53 null mice, transient suppression of lamin A/C produced massive aneuploidy with complex karyotypes, and the cells formed malignant tumors when implanted in mice. CONCLUSIONS Based on the results, we conclude that a nuclear envelope structural defect, such as the loss or reduction of lamin A/C proteins, leads to aneuploidy by both the formation of tetraploid intermediates following mitotic failure, and the reduction of chromosome (s) following nuclear budding and subsequent loss of micronuclei. We suggest that the nuclear envelope defect, rather than chromosomal unequal distribution during cytokinesis, is the main cause of aneuploidy in ovarian cancer development.
Collapse
Affiliation(s)
- Callinice D Capo-Chichi
- Sylvester Comprehensive Cancer Center/University of Miami, Miami, Florida, 33136, USA.,Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Institute of Biomedical Sciences, Laboratory of Biochemistry and Molecular Biology, University of Abomey-Calavi, Abomey Calavi, Benin
| | - Toni M Yeasky
- Sylvester Comprehensive Cancer Center/University of Miami, Miami, Florida, 33136, USA.,Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Elizabeth R Smith
- Sylvester Comprehensive Cancer Center/University of Miami, Miami, Florida, 33136, USA.,Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Xiang-Xi Xu
- Sylvester Comprehensive Cancer Center/University of Miami, Miami, Florida, 33136, USA. .,Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
46
|
Sakthivel KM, Sehgal P. A Novel Role of Lamins from Genetic Disease to Cancer Biomarkers. Oncol Rev 2016; 10:309. [PMID: 27994771 PMCID: PMC5136755 DOI: 10.4081/oncol.2016.309] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022] Open
Abstract
Lamins are the key components of the nuclear lamina and by virtue of their interactions with chromatin and binding partners act as regulators of cell proliferation and differentiation. Of late, the diverse roles of lamins in cellular processes have made them the topic of intense debate for their role in cancer progression. The observations about aberrant localization or misexpression of the nuclear lamins in cancerous tissues have often led to the speculative role of lamins as a cancer risk biomarker. Here we discuss the involvement of lamins in several cancer subtypes and their potential role in predicting the tumor progression.
Collapse
Affiliation(s)
| | - Poonam Sehgal
- Chemical and Biomolecular Engineering, University of Illinois , Urbana-Champaign, IL, USA
| |
Collapse
|
47
|
Zhang X, Hu J, Chen Y. Betulinic acid and the pharmacological effects of tumor suppression (Review). Mol Med Rep 2016; 14:4489-4495. [PMID: 27748864 DOI: 10.3892/mmr.2016.5792] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 09/21/2016] [Indexed: 11/06/2022] Open
Abstract
Betulinic acid (BA), a lupane-type pentacyclic triterpenoid saponin from tree bark, has the potential to induce the apoptosis of cancer cells without toxicity towards normal cells in vitro and in vivo. The antitumor pharmacological effects of BA consist of triggering apoptosis via the mitochondrial pathway, regulating the cell cycle and the angiogenic pathway via factors, including specificity protein transcription factors, cyclin D1 and epidermal growth factor receptor, inhibiting the signal transducer and activator of transcription 3 and nuclear factor‑κB signaling pathways, preventing the invasion and metastasis of tumor cells, and affecting the expression of topoisomerase I, p53 and lamin B1. In previous years, several studies have shown its antitumor effect, initially applied to malignant melanoma, however, it also has broad efficacies against most solid types of tumor from different regions of the body. There have been few investigations in hematological malignancies, however, this direction may offer potential in such a novel field of research. In this review, the primary pharmacological effects of BA in tumors, particularly in hematological malignancies are discussed.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jingyu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yan Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
48
|
Meaburn KJ. Spatial Genome Organization and Its Emerging Role as a Potential Diagnosis Tool. Front Genet 2016; 7:134. [PMID: 27507988 PMCID: PMC4961005 DOI: 10.3389/fgene.2016.00134] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/13/2016] [Indexed: 12/12/2022] Open
Abstract
In eukaryotic cells the genome is highly spatially organized. Functional relevance of higher order genome organization is implied by the fact that specific genes, and even whole chromosomes, alter spatial position in concert with functional changes within the nucleus, for example with modifications to chromatin or transcription. The exact molecular pathways that regulate spatial genome organization and the full implication to the cell of such an organization remain to be determined. However, there is a growing realization that the spatial organization of the genome can be used as a marker of disease. While global genome organization patterns remain largely conserved in disease, some genes and chromosomes occupy distinct nuclear positions in diseased cells compared to their normal counterparts, with the patterns of reorganization differing between diseases. Importantly, mapping the spatial positioning patterns of specific genomic loci can distinguish cancerous tissue from benign with high accuracy. Genome positioning is an attractive novel biomarker since additional quantitative biomarkers are urgently required in many cancer types. Current diagnostic techniques are often subjective and generally lack the ability to identify aggressive cancer from indolent, which can lead to over- or under-treatment of patients. Proof-of-principle for the use of genome positioning as a diagnostic tool has been provided based on small scale retrospective studies. Future large-scale studies are required to assess the feasibility of bringing spatial genome organization-based diagnostics to the clinical setting and to determine if the positioning patterns of specific loci can be useful biomarkers for cancer prognosis. Since spatial reorganization of the genome has been identified in multiple human diseases, it is likely that spatial genome positioning patterns as a diagnostic biomarker may be applied to many diseases.
Collapse
Affiliation(s)
- Karen J. Meaburn
- Cell Biology of Genomes Group, National Cancer Institute, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|
49
|
Milone MR, Pucci B, Colangelo T, Lombardi R, Iannelli F, Colantuoni V, Sabatino L, Budillon A. Proteomic characterization of peroxisome proliferator-activated receptor-γ (PPARγ) overexpressing or silenced colorectal cancer cells unveils a novel protein network associated with an aggressive phenotype. Mol Oncol 2016; 10:1344-62. [PMID: 27499265 DOI: 10.1016/j.molonc.2016.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/19/2016] [Indexed: 01/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a transcription factor of the nuclear hormone receptor superfamily implicated in a wide range of processes, including tumorigenesis. Its role in colorectal cancer (CRC) is still debated; most reports support that PPARγ reduced expression is associated with poor prognosis. We employed 2-Dimensional Differential InGel Electrophoresis (2-D DIGE) followed by Liquid Chromatography (LC)-tandem Mass Spectrometry (MS/MS) to identify differentially expressed proteins and the molecular pathways underlying PPARγ expression in CRC progression. We identified several differentially expressed proteins in HT29 and HCT116 CRC cells and derived clones either silenced or overexpressing PPARγ, respectively. In Ingenuity Pathway Analysis (IPA) they showed reciprocal relation with PPARγ and a strong relationship with networks linked to cell death, growth and survival. Interestingly, five of the identified proteins, ezrin (EZR), isoform C of prelamin-A/C (LMNA), alpha-enolase (ENOA), prohibitin (PHB) and RuvB-like 2 (RUVBL2) were shared by the two cell models with opposite expression levels, suggesting a possible regulation by PPARγ. mRNA and western blot analysis were undertaken to obtain a technical validation and confirm the expression trend observed by 2-D DIGE data. We associated EZR upregulation with increased cell surface localization in PPARγ-overexpressing cells by flow cytometry and immunofluorescence staining. We also correlated EZR and PPARγ expression in our series of CRC specimens and the expression profiling of all five proteins levels in the publicly available colon cancer genomic data from Oncomine and Cancer Genome Atlas (TCGA) colon adenocarcinoma (COAD) datasets. In summary, we identified a panel of proteins correlated with PPARγ expression that could be associated with CRC unveiling new pathways to be investigated for the selection of novel potential prognostic/predictive biomarkers and/or therapeutic targets.
Collapse
Affiliation(s)
- Maria Rita Milone
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Biagio Pucci
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Tommaso Colangelo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Rita Lombardi
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Federica Iannelli
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Vittorio Colantuoni
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy.
| | - Alfredo Budillon
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy; Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy.
| |
Collapse
|
50
|
Annexin A1 contributes to pancreatic cancer cell phenotype, behaviour and metastatic potential independently of Formyl Peptide Receptor pathway. Sci Rep 2016; 6:29660. [PMID: 27412958 PMCID: PMC4944142 DOI: 10.1038/srep29660] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/20/2016] [Indexed: 12/31/2022] Open
Abstract
Annexin A1 (ANXA1) is a Ca(2+)-binding protein over-expressed in pancreatic cancer (PC). We recently reported that extracellular ANXA1 mediates PC cell motility acting on Formyl Peptide Receptors (FPRs). Here, we describe other mechanisms by which intracellular ANXA1 could mediate PC progression. We obtained ANXA1 Knock-Out (KO) MIA PaCa-2 cells using the CRISPR/Cas9 genome editing technology. LC-MS/MS analysis showed altered expression of several proteins involved in cytoskeletal organization. As a result, ANXA1 KO MIA PaCa-2 partially lost their migratory and invasive capabilities with a mechanism that appeared independent of FPRs. The acquisition of a less aggressive phenotype has been further investigated in vivo. Wild type (WT), PGS (scrambled) and ANXA1 KO MIA PaCa-2 cells were engrafted orthotopically in SCID mice. No differences were found about PC primary mass, conversely liver metastatization appeared particularly reduced in ANXA1 KO MIA PaCa-2 engrafted mice. In summary, we show that intracellular ANXA1 is able to preserve the cytoskeleton integrity and to maintain a malignant phenotype in vitro. The protein has a relevant role in the metastatization process in vivo, as such it appears attractive and suitable as prognostic and therapeutic marker in PC progression.
Collapse
|