1
|
Matsuoka T, Yashiro M. Molecular Insight into Gastric Cancer Invasion-Current Status and Future Directions. Cancers (Basel) 2023; 16:54. [PMID: 38201481 PMCID: PMC10778111 DOI: 10.3390/cancers16010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. There has been no efficient therapy for stage IV GC patients due to this disease's heterogeneity and dissemination ability. Despite the rapid advancement of molecular targeted therapies, such as HER2 and immune checkpoint inhibitors, survival of GC patients is still unsatisfactory because the understanding of the mechanism of GC progression is still incomplete. Invasion is the most important feature of GC metastasis, which causes poor mortality in patients. Recently, genomic research has critically deepened our knowledge of which gene products are dysregulated in invasive GC. Furthermore, the study of the interaction of GC cells with the tumor microenvironment has emerged as a principal subject in driving invasion and metastasis. These results are expected to provide a profound knowledge of how biological molecules are implicated in GC development. This review summarizes the advances in our current understanding of the molecular mechanism of GC invasion. We also highlight the future directions of the invasion therapeutics of GC. Compared to conventional therapy using protease or molecular inhibitors alone, multi-therapy targeting invasion plasticity may seem to be an assuring direction for the progression of novel strategies.
Collapse
Affiliation(s)
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan;
| |
Collapse
|
2
|
Xi Y, Zhang XL, Luo QX, Gan HN, Liu YS, Shao SH, Mao XH. Helicobacter pylori regulates stomach diseases by activating cell pathways and DNA methylation of host cells. Front Cell Dev Biol 2023; 11:1187638. [PMID: 37215092 PMCID: PMC10192871 DOI: 10.3389/fcell.2023.1187638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
One of the most prevalent malignant tumors of the digestive tract is gastric cancer (GC). Age, high salt intake, Helicobacter pylori (H. pylori) infection, and a diet deficient in fruits and vegetables are risk factors for the illness. A significant risk factor for gastric cancer is infection with H. pylori. Infecting gastric epithelial cells with virulence agents secreted by H. pylori can cause methylation of tumor genes or carcinogenic signaling pathways to be activated. Regulate downstream genes' aberrant expression, albeit the precise mechanism by which this happens is unclear. Oncogene, oncosuppressor, and other gene modifications, as well as a number of different gene change types, are all directly associated to the carcinogenesis of gastric cancer. In this review, we describe comprehensive H. pylori and its virulence factors, as well as the activation of the NF-κB, MAPK, JAK/STAT signaling pathways, and DNA methylation following infection with host cells via virulence factors, resulting in abnormal gene expression. As a result, host-related proteins are regulated, and gastric cancer progression is influenced. This review provides insight into the H. pylori infection, summarizes a series of relevant papers, discusses the complex signaling pathways underlying molecular mechanisms, and proposes new approach to immunotherapy of this important disease.
Collapse
Affiliation(s)
- Yue Xi
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Zhang
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Qing-Xin Luo
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hai-Ning Gan
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yu-Shi Liu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shi-He Shao
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xu-Hua Mao
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| |
Collapse
|
3
|
Liu S, Deng Z, Zhu J, Ma Z, Tuo B, Li T, Liu X. Gastric immune homeostasis imbalance: An important factor in the development of gastric mucosal diseases. Biomed Pharmacother 2023; 161:114338. [PMID: 36905807 DOI: 10.1016/j.biopha.2023.114338] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 03/11/2023] Open
Abstract
The gastric mucosal immune system is a unique immune organ independent of systemic immunity that not only maintains nutrient absorption but also plays a role in resisting the external environment. Gastric mucosal immune disorder leads to a series of gastric mucosal diseases, including autoimmune gastritis (AIG)-related diseases, Helicobacter pylori (H. pylori)-induced diseases, and various types of gastric cancer (GC). Therefore, understanding the role of gastric mucosal immune homeostasis in gastric mucosal protection and the relationship between mucosal immunity and gastric mucosal diseases is very important. This review focuses on the protective effect of gastric mucosal immune homeostasis on the gastric mucosa, as well as multiple gastric mucosal diseases caused by gastric immune disorders. We hope to offer new prospects for the prevention and treatment of gastric mucosal diseases.
Collapse
Affiliation(s)
- Shuhui Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zilin Deng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
4
|
Ferreira RM, Figueiredo J, Pinto-Ribeiro I, Gullo I, Sgouras DN, Carreto L, Castro P, Santos MA, Carneiro F, Seruca R, Figueiredo C. Activation of Laminin γ2 by Helicobacter pylori Promotes Invasion and Survival of Gastric Cancer Cells With E-Cadherin Defects. J Infect Dis 2022; 226:2226-2237. [PMID: 36173814 DOI: 10.1093/infdis/jiac397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Helicobacter pylori infection induces cellular phenotypes relevant for cancer progression, namely cell motility and invasion. We hypothesized that the extracellular matrix (ECM) could be involved in these deleterious effects. METHODS Microarrays were used to uncover ECM interactors in cells infected with H. pylori. LAMC2, encoding laminin γ2, was selected as a candidate gene and its expression was assessed in vitro and in vivo. The role of LAMC2 was investigated by small interference RNA (siRNA) combined with a set of functional assays. Laminin γ2 and E-cadherin expression patterns were evaluated in gastric cancer cases. RESULTS Laminin γ2 was found significantly overexpressed in gastric cancer cells infected with H. pylori. This finding was validated in vitro by infection with clinical isolates and in vivo by using gastric biopsies of infected and noninfected individuals. We showed that laminin γ2 overexpression is dependent on the bacterial type IV secretion system and on the CagA. Functionally, laminin γ2 promotes cell invasion and resistance to apoptosis, through modulation of Src, JNK, and AKT activity. These effects were abrogated in cells with functional E-cadherin. CONCLUSIONS These data highlight laminin γ2 and its downstream effectors as potential therapeutic targets, and the value of H. pylori eradication to delay gastric cancer onset and progression.
Collapse
Affiliation(s)
- Rui M Ferreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Joana Figueiredo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ines Pinto-Ribeiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Irene Gullo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Pathology, Centro Hospitalar Universitário São João, Porto, Portugal
| | | | - Laura Carreto
- Department of Biology, University of Aveiro, Aveiro, Portugal.,Centre of Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Patricia Castro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Manuel A Santos
- Institute of Biomedicine, University of Aveiro, Aveiro, Portugal.,Multidisciplinary Institute of Ageing, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Fatima Carneiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Pathology, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Raquel Seruca
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ceu Figueiredo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
5
|
Astaxanthin Inhibits Matrix Metalloproteinase Expression by Suppressing PI3K/AKT/mTOR Activation in Helicobacter pylori-Infected Gastric Epithelial Cells. Nutrients 2022; 14:nu14163427. [PMID: 36014933 PMCID: PMC9412703 DOI: 10.3390/nu14163427] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori (H. pylori) increases production of reactive oxygen species (ROS) and activates signaling pathways associated with gastric cell invasion, which are mediated by matrix metalloproteinases (MMPs). We previously demonstrated that H. pylori activated mitogen-activated protein kinase (MAPK) and increased expression of MMP-10 in gastric epithelial cells. MMPs degrade the extracellular matrix, enhancing tumor invasion and cancer progression. The signaling pathway of phosphatidylinositol 3-kinase (PI3K)/serine/threonine protein kinase B (AKT)/mammalian target of rapamycin (mTOR) is associated with MMP expression. ROS activates PIK3/AKT/mTOR signaling in cancer. Astaxanthin, a xanthophyll carotenoid, shows antioxidant activity by reducing ROS levels in gastric epithelial cells infected with H. pylori. This study aimed to determine whether astaxanthin inhibits MMP expression, cell invasion, and migration by reducing the PI3K/AKT/mTOR signaling in H. pylori-infected gastric epithelial AGS cells. H. pylori induced PIK3/AKT/mTOR and NF-κB activation, decreased IκBα, and induced MMP (MMP-7 and -10) expression, the invasive phenotype, and migration in AGS cells. Astaxanthin suppressed these H. pylori-induced alterations in AGS cells. Specific inhibitors of PI3K, AKT, and mTOR reversed the H. pylori-stimulated NF-κB activation and decreased IκBα levels in the cells. In conclusion, astaxanthin suppressed MMP expression, cell invasion, and migration via inhibition of PI3K/AKT/mTOR/NF-κB signaling in H. pylori-stimulated gastric epithelial AGS cells.
Collapse
|
6
|
Sokolova O, Naumann M. Matrix Metalloproteinases in Helicobacter pylori-Associated Gastritis and Gastric Cancer. Int J Mol Sci 2022; 23:1883. [PMID: 35163805 PMCID: PMC8836485 DOI: 10.3390/ijms23031883] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer is one of the leading causes of the cancer-related mortality worldwide. The etiology of this disease is complex and involves genetic predisposition and environmental factors, including Helicobacter pylori. Infection of the stomach with H. pylori leads to gastritis and gastric atrophy, which can progress stepwise to gastric cancer. Matrix metalloproteinases (MMPs) actively participate in the pathology development. The further progression of gastric cancer seems to be less dependent on bacteria but of intra-tumor cell dynamics. Bioinformatics data confirmed an important role of the extracellular matrix constituents and specific MMPs in stomach carcinoma invasion and metastasis, and revised their potential as predictors of the disease outcome. In this review, we describe, in detail, the impact of MMPs in H. pylori-associated gastritis and gastric cancer.
Collapse
Affiliation(s)
- Olga Sokolova
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
7
|
Proteomic Signatures of Diffuse and Intestinal Subtypes of Gastric Cancer. Cancers (Basel) 2021; 13:cancers13235930. [PMID: 34885041 PMCID: PMC8656738 DOI: 10.3390/cancers13235930] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a leading cause of death from cancer globally. Gastric cancer is classified into intestinal, diffuse and indeterminate subtypes based on histology according to the Laurén classification. The intestinal and diffuse subtypes, although different in histology, demographics and outcomes, are still treated in the same fashion. This study was designed to discover proteomic signatures of diffuse and intestinal subtypes. Mass spectrometry-based proteomics using tandem mass tags (TMT)-based multiplexed analysis was used to identify proteins in tumor tissues from patients with diffuse or intestinal gastric cancer with adjacent normal tissue control. A total of 7448 or 4846 proteins were identified from intestinal or diffuse subtype, respectively. This quantitative mass spectrometric analysis defined a proteomic signature of differential expression across the two subtypes, which included gremlin1 (GREM1), bcl-2-associated athanogene 2 (BAG2), olfactomedin 4 (OLFM4), thyroid hormone receptor interacting protein 6 (TRIP6) and melanoma-associated antigen 9 (MAGE-A9) proteins. Although GREM1, BAG2, OLFM4, TRIP6 and MAGE-A9 have all been previously implicated in tumor progression and metastasis, they have not been linked to intestinal or diffuse subtypes of gastric cancer. Using immunohistochemical labelling of a tissue microarray comprising of 124 cases of gastric cancer, we validated the proteomic signature obtained by mass spectrometry in the discovery cohort. Our findings should help investigate the pathogenesis of these gastric cancer subtypes and potentially lead to strategies for early diagnosis and treatment.
Collapse
|
8
|
Marques MS, Costa AC, Osório H, Pinto ML, Relvas S, Dinis-Ribeiro M, Carneiro F, Leite M, Figueiredo C. Helicobacter pylori PqqE is a new virulence factor that cleaves junctional adhesion molecule A and disrupts gastric epithelial integrity. Gut Microbes 2021; 13:1-21. [PMID: 33970782 PMCID: PMC8115454 DOI: 10.1080/19490976.2021.1921928] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Helicobacter pylori infects approximately half of the world's population and is the strongest risk factor for peptic ulcer disease and gastric cancer, representing a major global health concern. H. pylori persistently colonizes the gastric epithelium, where it subverts the highly organized structures that maintain epithelial integrity. Here, a unique strategy used by H. pylori to disrupt the gastric epithelial junctional adhesion molecule-A (JAM-A) is disclosed, using various experimental models that include gastric cell lines, primary human gastric cells, and biopsy specimens of infected and non-infected individuals. H. pylori preferentially cleaves the cytoplasmic domain of JAM-A at Alanine 285. Cells stably transfected with full-length JAM-A or JAM-A lacking the cleaved sequence are used in a range of functional assays, which demonstrate that the H. pylori cleaved region is critical to the maintenance of the epithelial barrier and of cell-cell adhesion. Notably, by combining chromatography techniques and mass spectrometry, PqqE (HP1012) is purified and identified as the H. pylori virulence factor that cleaves JAM-A, uncovering a previously unreported function for this bacterial protease. These findings propose a novel mechanism for H. pylori to disrupt epithelial integrity and functions, breaking new ground in the understanding of the pathogenesis of this highly prevalent and clinically relevant infection.
Collapse
Affiliation(s)
- Miguel S. Marques
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal,Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Ana C. Costa
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal,Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Hugo Osório
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal,Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Marta L. Pinto
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Sandra Relvas
- Department of Pathology, Centro Hospitalar Universitário S. João, Porto, Portugal
| | - Mário Dinis-Ribeiro
- Faculty of Medicine of the University of Porto, Porto, Portugal,Instituto Português de Oncologia, Porto, Portugal,Center for Health Technology and Services Research (CINTESIS), Porto, Portugal
| | - Fátima Carneiro
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal,Faculty of Medicine of the University of Porto, Porto, Portugal,Department of Pathology, Centro Hospitalar Universitário S. João, Porto, Portugal
| | - Marina Leite
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal,Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Ceu Figueiredo
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal,Faculty of Medicine of the University of Porto, Porto, Portugal,CONTACT Ceu Figueiredo i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
9
|
Jeon JI, Lee KH, Kim JM. Bacteroides fragilis Enterotoxin Upregulates Matrix Metalloproteinase-7 Expression through MAPK and AP-1 Activation in Intestinal Epithelial Cells, Leading to Syndecan-2 Release. Int J Mol Sci 2021; 22:ijms222111817. [PMID: 34769248 PMCID: PMC8583974 DOI: 10.3390/ijms222111817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/29/2022] Open
Abstract
Bacteroides fragilis enterotoxin (BFT) produced by enterotoxigenic B. fragilis (ETBF) causes colonic inflammation. BFT initially contacts intestinal epithelial cells (IECs) and affects the intestinal barrier. Although molecular components of the gut epithelial barrier such as metalloproteinase-7 (MMP-7) and syndecan-2 are known to be associated with inflammation, little has been reported about MMP-7 expression and syndecan-2 shedding in response to ETBF infection. This study explores the role of BFT in MMP-7 induction and syndecan-2 release in IECs. Stimulating IECs with BFT led to the induction of MMP-7 and the activation of transcription factors such as NF-κB and AP-1. MMP-7 upregulation was not affected by NF-κB, but it was related to AP-1 activation. In BFT-exposed IECs, syndecan-2 release was observed in a time- and concentration-dependent manner. MMP-7 suppression was associated with a reduction in syndecan-2 release. In addition, suppression of ERK, one of the mitogen-activated protein kinases (MAPKs), inhibited AP-1 activity and MMP-7 expression. Furthermore, the suppression of AP-1 and ERK activity was related to the attenuation of syndecan-2 release. These results suggest that a signaling cascade comprising ERK and AP-1 activation in IECs is involved in MMP-7 upregulation and syndecan-2 release during exposure to BFT.
Collapse
Affiliation(s)
| | - Keun Hwa Lee
- Correspondence: (K.H.L.); (J.M.K.); Tel.: +82-2-2220-0642 (K.H.L.); +82-2-2220-0645 (J.M.K.); Fax: +82-2-2282-0645 (K.H.L.); +82-2-2282-0645 (J.M.K.)
| | - Jung Mogg Kim
- Correspondence: (K.H.L.); (J.M.K.); Tel.: +82-2-2220-0642 (K.H.L.); +82-2-2220-0645 (J.M.K.); Fax: +82-2-2282-0645 (K.H.L.); +82-2-2282-0645 (J.M.K.)
| |
Collapse
|
10
|
Liao HY, Da CM, Liao B, Zhang HH. Roles of matrix metalloproteinase-7 (MMP-7) in cancer. Clin Biochem 2021; 92:9-18. [PMID: 33713636 DOI: 10.1016/j.clinbiochem.2021.03.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/13/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022]
Abstract
Matrix metalloproteinase-7 (MMP-7) is a small proteolytic enzyme that secretes zinc and calcium endopeptidases. It can degrade a variety of extracellular matrix substrates and other substrates and plays important regulatory roles in many human pathophysiological processes. Since its discovery, MMP-7 has been recognized as a regulatory protein in wound healing, bone growth, and remodeling. Later, MMP-7 was reported to regulate the occurrence and development of cancers and mediate the proliferation, differentiation, metastasis, and invasion of several types of cancer cells via various mechanisms. Thus, matrix metalloproteinase-7 may be a promising tumor biomarker and therapeutic target. The expression of MMP-7 correlates with the clinical characteristics of cancer patients, and its expression profile is a new diagnostic and prognostic biomarker for a variety of human diseases. Hence, manipulating the expression or function of MMP-7 may be a potential treatment strategy for different diseases including cancers. This review summarizes the role played by MMP-7 in carcinogenesis of several human cancers, underlying mechanisms, and its clinical significance of the occurrence and development of cancers.
Collapse
Affiliation(s)
- Hai-Yang Liao
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| | - Chao-Ming Da
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| | - Bei Liao
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China; The First Clinical Medical College of Lanzhou University, 1 Donggang Road, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
11
|
Chang Y, Tian Y, Zhou D, Yang L, Liu TM, Liu ZG, Wang SW. Gentiopicroside ameliorates ethanol-induced gastritis via regulating MMP-10 and pERK1/2 signaling. Int Immunopharmacol 2021; 90:107213. [PMID: 33296781 DOI: 10.1016/j.intimp.2020.107213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/04/2020] [Accepted: 11/14/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Excessive ethanol consumption results in gastric mucosa damage, which could further develop into chronic gastritis, peptic ulcer, and gastric cancer in humans. Gentiopicroside (GPS), a major active component of Gentianae Macrophyllae radix, was reported to play a critical role in anti-inflammation. In the study, we aimed to investigate the functional role and underlying mechanism of GPS in ethanol-induced gastritis. METHODS A model of gastritis was created by ethanol in C57BL/6 mice. Enzyme-linked immunosorbent assay was used to determine the concentration of TNF-α, IL-1β, IL-8, and IL-10. RESULTS We found that GPS treatment significantly ameliorated ethanol-induced gastritis in mice, with lower production of pro-inflammatory cytokine TNF-α, IL-1β, and IL-8 and higher levels of anti-inflammatory cytokine IL-10. The anti-inflammatory effect of GPS was further confirmed in vitro in ethanol-treated human gastric mucosal GES cells. Mechanistically, we demonstrated that GPS regulated matrix metallopeptidase expression and pERK1/2 signaling. Knockdown of matrix metallopeptidase 10 (MMP-10) greatly improved cell survival and suppressed inflammatory response in ethanol-treated GES cells. Moreover, inhibition of pERK1/2 signaling using U0126 decreased the expression of MMP-10 in ethanol-induced gastritis. U0126 treatment also suppressed the expression of TNF-α, IL-1β, and IL-8, and enhanced IL-10 expression in mice gastric mucosa. CONCLUSIONS Taken together, our findings suggest that GPS ameliorates ethanol-induced gastritis via regulating MMP-10 and pERK1/2 signaling, which might provide a promising therapeutic drug for ethanol-induced gastritis.
Collapse
Affiliation(s)
- Ying Chang
- Department of Chinese Materia Medica and Natural Medicines, Air Force Medical University, Xi'an 710032, China; Department of Pharmacy, Northwest Women's and Children's Hospital, Xi'an 710061, China
| | - Yun Tian
- Department of Clinical Pharmacy, Shaanxi Provincial Cancer Hospital, Xi'an 710061, China
| | - Dan Zhou
- Department of Pharmacy, Ninth Hospital of Xi'an, Xi'an 710061, China
| | - Li Yang
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | | | - Zhen-Guo Liu
- Department of Pharmacy, Northwest Women's and Children's Hospital, Xi'an 710061, China.
| | - Si-Wang Wang
- Department of Chinese Materia Medica and Natural Medicines, Air Force Medical University, Xi'an 710032, China.
| |
Collapse
|
12
|
Lloyd KA, Parsons BN, Burkitt MD, Moore AR, Papoutsopoulou S, Boyce M, Duckworth CA, Exarchou K, Howes N, Rainbow L, Fang Y, Oxvig C, Dodd S, Varro A, Hall N, Pritchard DM. Netazepide Inhibits Expression of Pappalysin 2 in Type 1 Gastric Neuroendocrine Tumors. Cell Mol Gastroenterol Hepatol 2020; 10:113-132. [PMID: 32004755 PMCID: PMC7215182 DOI: 10.1016/j.jcmgh.2020.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS In patients with autoimmune atrophic gastritis and achlorhydria, hypergastrinemia is associated with the development of type 1 gastric neuroendocrine tumors (gNETs). Twelve months of treatment with netazepide (YF476), an antagonist of the cholecystokinin B receptor (CCKBR or CCK2R), eradicated some type 1 gNETs in patients. We investigated the mechanisms by which netazepide induced gNET regression using gene expression profiling. METHODS We obtained serum samples and gastric corpus biopsy specimens from 8 patients with hypergastrinemia and type 1 gNETs enrolled in a phase 2 trial of netazepide. Control samples were obtained from 10 patients without gastric cancer. We used amplified and biotinylated sense-strand DNA targets from total RNA and Affymetrix (Thermofisher Scientific, UK) Human Gene 2.0 ST microarrays to identify differentially expressed genes in stomach tissues from patients with type 1 gNETs before, during, and after netazepide treatment. Findings were validated in a human AGSGR gastric adenocarcinoma cell line that stably expresses human CCK2R, primary mouse gastroids, transgenic hypergastrinemic INS-GAS mice, and patient samples. RESULTS Levels of pappalysin 2 (PAPPA2) messenger RNA were reduced significantly in gNET tissues from patients receiving netazepide therapy compared with tissues collected before therapy. PAPPA2 is a metalloproteinase that increases the bioavailability of insulin-like growth factor (IGF) by cleaving IGF binding proteins (IGFBPs). PAPPA2 expression was increased in the gastric corpus of patients with type 1 gNETs, and immunohistochemistry showed localization in the same vicinity as CCK2R-expressing enterochromaffin-like cells. Up-regulation of PAPPA2 also was found in the stomachs of INS-GAS mice. Gastrin increased PAPPA2 expression with time and in a dose-dependent manner in gastric AGSGR cells and mouse gastroids by activating CCK2R. Knockdown of PAPPA2 in AGSGR cells with small interfering RNAs significantly decreased their migratory response and tissue remodeling in response to gastrin. Gastrin altered the expression and cleavage of IGFBP3 and IGFBP5. CONCLUSIONS In an analysis of human gNETS and mice, we found that gastrin up-regulates the expression of gastric PAPPA2. Increased PAPPA2 alters IGF bioavailability, cell migration, and tissue remodeling, which are involved in type 1 gNET development. These effects are inhibited by netazepide.
Collapse
Affiliation(s)
- Katie A Lloyd
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Bryony N Parsons
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Michael D Burkitt
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Andrew R Moore
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals, National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Stamatia Papoutsopoulou
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Malcolm Boyce
- Trio Medicines, Ltd, Hammersmith Medicines Research, London, United Kingdom
| | - Carrie A Duckworth
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Klaire Exarchou
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals, National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Nathan Howes
- Liverpool University Hospitals, National Health Service Foundation Trust, Liverpool, United Kingdom
| | - Lucille Rainbow
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Steven Dodd
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Andrea Varro
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Neil Hall
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom; The Earlham Institute, Norwich, Norfolk, United Kingdom; School of Biological Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - D Mark Pritchard
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals, National Health Service Foundation Trust, Liverpool, United Kingdom.
| |
Collapse
|
13
|
A Cell Proliferation and Inflammatory Signature Is Induced by Lawsonia intracellularis Infection in Swine. mBio 2019; 10:mBio.01605-18. [PMID: 30696739 PMCID: PMC6355989 DOI: 10.1128/mbio.01605-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lawsonia intracellularis causes porcine proliferative enteropathy. This is an enteric disease characterized by thickening of the wall of the ileum that leads to decreased growth of animals and diarrhea. In this study, we investigated the host response to L. intracellularis infection by performing transcriptomic and pathway analysis of intestinal tissue samples from groups of infected and noninfected animals at 14, 21, and 28 days postchallenge. At the peak of infection, when animals developed the most severe lesions, infected animals had higher levels of several gene transcripts involved in cellular proliferation and inflammation, including matrix metalloproteinase-7 (MMP7), transglutaminase-2 (TGM2), and oncostatin M (OSM). Histomorphology also revealed general features of intestinal inflammation. This study identified important pathways associated with the host response in developing and resolving lesions due to L. intracellularis infection.IMPORTANCE Lawsonia intracellularis is among the most important enteric pathogens of swine, and it can also infect other mammalian species. Much is still unknown regarding its pathogenesis and the host response, especially at the site of infection. In this study, we uncovered several novel genes and pathways associated with infection. Differentially expressed transcripts, in addition to histological changes in infected tissue, revealed striking similarities between L. intracellularis infection and cellular proliferation mechanisms described in some cancers and inflammatory diseases of the gastrointestinal tract. This research sheds important light into the pathogenesis of L. intracellularis and the host response associated with the lesions caused by infection.
Collapse
|
14
|
Li W, Ng JMK, Wong CC, Ng EKW, Yu J. Molecular alterations of cancer cell and tumour microenvironment in metastatic gastric cancer. Oncogene 2018; 37:4903-4920. [PMID: 29795331 PMCID: PMC6127089 DOI: 10.1038/s41388-018-0341-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
The term metastasis is widely used to describe the endpoint of the process by which tumour cells spread from the primary location to an anatomically distant site. Achieving successful dissemination is dependent not only on the molecular alterations of the cancer cells themselves, but also on the microenvironment through which they encounter. Here, we reviewed the molecular alterations of metastatic gastric cancer (GC) as it reflects a large proportion of GC patients currently seen in clinic. We hope that further exploration and understanding of the multistep metastatic cascade will yield novel therapeutic targets that will lead to better patient outcomes.
Collapse
Affiliation(s)
- Weilin Li
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jennifer Mun-Kar Ng
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chi Chun Wong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Enders Kwok Wai Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
15
|
Proteolysis in Helicobacter pylori-Induced Gastric Cancer. Toxins (Basel) 2017; 9:toxins9040134. [PMID: 28398251 PMCID: PMC5408208 DOI: 10.3390/toxins9040134] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/15/2022] Open
Abstract
Persistent infections with the human pathogen and class-I carcinogen Helicobacter pylori (H. pylori) are closely associated with the development of acute and chronic gastritis, ulceration, gastric adenocarcinoma and lymphoma of the mucosa-associated lymphoid tissue (MALT) system. Disruption and depolarization of the epithelium is a hallmark of H. pylori-associated disorders and requires extensive modulation of epithelial cell surface structures. Hence, the complex network of controlled proteolysis which facilitates tissue homeostasis in healthy individuals is deregulated and crucially contributes to the induction and progression of gastric cancer through processing of extracellular matrix (ECM) proteins, cell surface receptors, membrane-bound cytokines, and lateral adhesion molecules. Here, we summarize the recent reports on mechanisms how H. pylori utilizes a variety of extracellular proteases, involving the proteases Hp0169 and high temperature requirement A (HtrA) of bacterial origin, and host matrix-metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs) and tissue inhibitors of metalloproteinases (TIMPs). H. pylori-regulated proteases represent predictive biomarkers and attractive targets for therapeutic interventions in gastric cancer.
Collapse
|
16
|
Exploiting the Gastric Epithelial Barrier: Helicobacter pylori’s Attack on Tight and Adherens Junctions. Curr Top Microbiol Immunol 2017; 400:195-226. [DOI: 10.1007/978-3-319-50520-6_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Siregar G, Halim S, Sitepu R. Serum IL-10, MMP-7, MMP-9 Levels in Helicobacter pylori Infection and Correlation with Degree of Gastritis. Open Access Maced J Med Sci 2016; 4:359-363. [PMID: 27703556 PMCID: PMC5042616 DOI: 10.3889/oamjms.2016.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022] Open
Abstract
AIM Helicobacter pylori causes gastric mucosal inflammation and immune reaction. However, the increase of IL-10, MMP-7, and MMP-7 levels in the serum is still controversial. The objective of this study was to investigate the serum levels of IL-10, MMP-7 & MMP-9 in gastritis patients with H. pylori infection. MATERIALS AND METHODS A cross-sectional study was done on seventy gastritis patients that consecutive admitted to endoscopy units. The diagnosis of gastritis was made based on histopathology and diagnosis of H. pylori infection was based on rapid urease test. Serum samples were obtained to determine to circulate IL-10, MMP-7, and MMP-9 level. Univariate and bivariate analysis were done by SPSS version 22. RESULTS Forthy percentages of the patients were infected with H. pylori. The IL-10 level was significantly higher in H. pylori-infected patients compared to non-infected patients. However, there were no differences between serum levels of MMP-7 and MMP-9 in infected and non-infected H. pylori patients. CONCLUSIONS The immune response to H. pylori promotes systemic inflammation, which was reflected by the increased levels of serum IL-10. However, there were no significant differences in MMP-7 and MMP-9 serum levels between positive and negative infected H. pylori patients.
Collapse
Affiliation(s)
- Gontar Siregar
- University of Sumatera Utara, Gastroentero-Hepatology, Komp. Tasbi YY No 203, Medan, Sumatera Utara 20122, Indonesia
| | - Sahat Halim
- University of Sumatera Utara, Internal Medicine, Medan, Sumatera Utara, Indonesia
| | - Ricky Sitepu
- University of Sumatera Utara, Internal Medicine, Medan, Sumatera Utara, Indonesia
| |
Collapse
|
18
|
Tohidpour A. CagA-mediated pathogenesis of Helicobacter pylori. Microb Pathog 2016; 93:44-55. [DOI: 10.1016/j.micpath.2016.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/14/2015] [Accepted: 01/07/2016] [Indexed: 12/20/2022]
|
19
|
Bornschein J, Seidel T, Langner C, Link A, Wex T, Selgrad M, Jechorek D, Meyer F, Bird-Lieberman E, Vieth M, Malfertheiner P. MMP2 and MMP7 at the invasive front of gastric cancer are not associated with mTOR expression. Diagn Pathol 2015; 10:212. [PMID: 26652716 PMCID: PMC4676863 DOI: 10.1186/s13000-015-0449-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 12/05/2015] [Indexed: 01/12/2023] Open
Abstract
Background Regulation of MMP expression by activation of mTOR signalling has been demonstrated for several tumor types, but has thus far not been confirmed in gastric cancer. Findings The study compromised 128 patients who underwent gastric resection for cancer (66.4 % male; 86 intestinal, 42 diffuse type). Immunohistochemical staining of MMPs was performed to analyse the topographical pattern of MMP expression at the tumor center and the invasive front, respectively. MMP2 showed higher expression at the invasive front compared to the tumor center, whereas MMP7 staining scores were higher in the tumor center, and there was no difference for MMP9. The expression of p-mTOR was higher in the tumor center than at the invasive front, with a similar trend for mTOR. For intestinal type gastric cancer there was a weak correlation of MMP9 with expression of mTOR in the tumor center. Otherwise, there was no correlation of the MMPs with mTOR. By treatment of MKN45 gastric cancer cells with rapamycin, a reduction of p-mTOR in the Western blot was achieved; however, expression of MMPs remained unaffected. Conclusions Expression of MMP2 and MMP7 in gastric cancer is not associated with mTOR, MMP9 expression might be related to mTOR signalling in a subset of tumors. Electronic supplementary material The online version of this article (doi:10.1186/s13000-015-0449-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jan Bornschein
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany.
| | - Tina Seidel
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Cosima Langner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Thomas Wex
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany.,Department of Molecular Genetics, Medical Laboratory for Clinical Chemistry, Microbiology and Infectious Diseases, Am Neustädter Feld 47, Magdeburg, 39124, Germany
| | - Michael Selgrad
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Doerthe Jechorek
- Institute for Pathology, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Frank Meyer
- Department for General, Visceral and Vascular Surgery, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Elizabeth Bird-Lieberman
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Michael Vieth
- Institute for Pathology, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
| |
Collapse
|
20
|
Sougleri IS, Papadakos KS, Zadik MP, Mavri-Vavagianni M, Mentis AF, Sgouras DN. Helicobacter pylori CagA protein induces factors involved in the epithelial to mesenchymal transition (EMT) in infected gastric epithelial cells in an EPIYA- phosphorylation-dependent manner. FEBS J 2015; 283:206-20. [PMID: 26907789 DOI: 10.1111/febs.13592] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 12/16/2022]
Abstract
As a result of Helicobacter pylori adhesion to gastric epithelial cells, the bacterial effector cytotoxin-associated gene A (CagA) is translocated intracellularly, and after hierarchical tyrosine phosphorylation on multiple EPIYA motifs, de-regulates cellular polarity and contributes to induction of an elongation and scattering phenotype that resembles the epithelial to mesenchymal transition (EMT). Stromelysin-1/matrix metalloproteinase-3 (MMP-3) has been reported to induce a sequence of molecular alterations leading to stable EMT transition and carcinogenesis in epithelial cells. To identify the putative role of CagA protein in MMP-3 induction, we exploited an experimental H. pylori infection system in gastric epithelial cell lines. We utilized isogenic mutants expressing CagA protein with variable numbers of EPIYA and phosphorylation-deficient EPIFA motifs, as well as cagA knockout and translocation-deficient cagE knockout strains. Increased levels of MMP-3 transcriptional activation were demonstrated by quantitative real time-PCR for strains with more than two terminal EPIYA phosphorylation motifs in CagA. MMP-3 expression in total cell lysates and the corresponding culture supernatants was associated with CagA expression and translocation and was dependent on CagA phosphorylation. A CagA EPIYA phosphorylation-dependent increase in gelatinase and caseinolytic activity was also detected in culture supernatants by zymography. A significant increase in the transcriptional activity of the mesenchymal markers Vimentin, Snail and ZEB1 and the stem cell marker CD44 was observed in the case of CagA containing phosphorylation-functional EPIYA motifs. Our data suggest that CagA protein induces EMT through EPIYA phosphorylation-dependent up-regulation of MMP-3. Moreover, no significant increase in EMT and stem cell markers was observed following infection with H. pylori strains that cannot effectively translocate CagA protein.
Collapse
Affiliation(s)
- Ioanna S Sougleri
- Laboratory of Medical Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | | | - Mairi P Zadik
- Laboratory of Medical Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Mary Mavri-Vavagianni
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Greece
| | - Andreas F Mentis
- Laboratory of Medical Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | | |
Collapse
|
21
|
Allison CC, Ferrero RL. Role of virulence factors and host cell signaling in the recognition of Helicobacter pylori and the generation of immune responses. Future Microbiol 2010; 5:1233-55. [PMID: 20722601 DOI: 10.2217/fmb.10.84] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori colonizes a large proportion of the world's population, with infection invariably leading to chronic, lifelong gastritis. While the infection often persists undiagnosed and without causing severe pathology, there are a number of host, bacterial and environmental factors that can influence whether infection provokes a mild inflammatory response or results in significant morbidity. Intriguingly, the most virulent H. pylori strains appear to deliberately induce the epithelial signaling cascades responsible for activating the innate immune system. While the reason for this remains unclear, the resulting adaptive immune responses are largely ineffective in clearing the bacterium once infection has become established and, as a result, inflammation likely causes more damage to the host itself.
Collapse
Affiliation(s)
- Cody C Allison
- Centre for Innate Immunity & Infectious Diseases, Monash Institute of Medical Research, Clayton, Australia.
| | | |
Collapse
|
22
|
Shi M, Liu D, Duan H, Han C, Wei B, Qian L, Chen C, Guo L, Hu M, Yu M, Song L, Shen B, Guo N. Catecholamine up-regulates MMP-7 expression by activating AP-1 and STAT3 in gastric cancer. Mol Cancer 2010; 9:269. [PMID: 20939893 PMCID: PMC2964618 DOI: 10.1186/1476-4598-9-269] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 10/12/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Stress, anxiety and depression can cause complex physiological and neuroendocrine changes, resulting in increased level of stress related hormone catecholamine, which may constitute a primary mechanism by which physiological factors impact gene expression in tumors. In the present study, we investigated the effects of catecholamine stimulation on MMP-7 expression in gastric cancer cells and elucidated the molecular mechanisms of the up-regulation of MMP-7 level by catecholamine through an adrenergic signaling pathway. RESULTS Increased MMP-7 expression was identified at both mRNA and protein levels in the gastric cancer cells in response to isoproterenol stimulation. β2-AR antigonist effectively abrogated isoproterenol-induced MMP-7 expression. The activation of STAT3 and AP-1 was prominently induced by isoproterenol stimulation and AP-1 displayed a greater efficacy than STAT3 in isoproterenol-induced MMP-7 expression. Mutagenesis of three STAT3 binding sites in MMP-7 promoter failed to repress the transactivation of MMP-7 promoter and silencing STAT3 expression was not effective in preventing isoproterenol-induced MMP-7 expression. However, isoproterenol-induced MMP-7 promoter activities were completely disappeared when the AP-1 site was mutated. STAT3 and c-Jun could physically interact and bind to the AP-1 site, implicating that the interplay of both transcriptional factors on the AP-1 site is responsible for isoproterenol-stimulated MMP-7 expression in gastric cancer cells. The expression of MMP-7 in gastric cancer tissues was found to be at the site where β2-AR was overexpressed and the levels of MMP-7 and β2-AR were the highest in the metastatic locus of gastric cancer. CONCLUSIONS Up-regulation of MMP-7 expression through β2-AR-mediated signaling pathway is involved in invasion and metastasis of gastric cancer.
Collapse
Affiliation(s)
- Ming Shi
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing 100850, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rautelin H, Tervahartiala T, Lauhio A, Sorsa T, Kolho KL. Assessment of systemic matrix metalloproteinase and their regulator response in children with Helicobacter pylori gastritis. Scandinavian Journal of Clinical and Laboratory Investigation 2010; 70:492-6. [PMID: 20854182 DOI: 10.3109/00365513.2010.520732] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Helicobacter pylori causes gastritis and is the most important risk factor of peptic ulcer disease and gastric cancer. In chronic adulthood H. pylori infection some matrix metalloproteinases (MMPs), which are proteolytic metalloendopeptidases regulated by tissue inhibitors of metalloproteinases (TIMPs), are upregulated. Our aim was to determine circulating levels of MMPs and their regulators TIMP-1, human neutrophil elastase (HNE) and myeloperoxidase (MPO) in childhood H. pylori infection. DESIGN AND METHODS Twenty-six H. pylori positive and 34 H. pylori negative children whose H. pylori status was verified by histological examination of gastric biopsies were included. Serum samples were analysed by enzyme-linked immunosorbent assay. RESULTS Significantly decreased serum levels of TIMP-1 were detected in H. pylori-infected children (median, 97.50 ng/mL) as compared to H. pylori-negative children (median, 118.5 ng/mL, p = 0.003). However, there were no significant differences in serum levels of MMP-2, -7, -8, -9, and their regulators HNE and MPO between H. pylori-positive and -negative children. CONCLUSIONS Differing from the recent findings in adulthood H. pylori infection, only circulating TIMP-1 levels were significantly different between H. pylori-positive and -negative children. Whether this reflects the first sign of a proteolytic cascade later leading to increased levels of MMPs remains to be shown.
Collapse
Affiliation(s)
- Hilpi Rautelin
- Department of Medical Sciences, Clinical Bacteriology, University of Uppsala, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
24
|
The detection of Helicobacter pylori cag pathogenicity islands (PAIs) and expression of matrix metalloproteinase-7 (MMP-7) in gastric epithelial dysplasia and intramucosal cancer. Gastric Cancer 2010; 13:162-9. [PMID: 20820985 DOI: 10.1007/s10120-010-0552-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 03/10/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND The cag pathogenicity island (PAI), a Helicobacter pylori virulence factor, is associated with the pathogenesis of gastric cancer. Matrix metalloproteinase-7(MMP-7) is upregulated in the epithelial cells of gastric cancer. To date, there is limited information available on the role of cag PAI and MMP-7 in precursor lesions. In this study, we aimed to identify virulent H. pylori strains and the expression of MMP-7 in samples of gastric epithelial dysplasia and intramucosal cancer. METHODS One hundred and twelve tissues excised by endoscopic mucosal resection, 76 specimens with gastric epithelial dysplasia and 36 with intramucosal cancer, were examined. All tissue samples were paired with surrounding normal epithelial tissue samples. We performed polymerase chain reaction for cagA and cagL in neoplasia and paired normal specimens, and assessed the matrix metalloproteinase (MMP)-7 expression by immunohistochemical staining. RESULTS There was a significant difference in the frequencies of cagA or cagL between specimens with gastric dysplasia and those with intramucosal cancer. We confirmed greater expression of MMP-7 immunoreactivity in intramucosal cancers infected with a virulent H. pylori strain. CONCLUSION Our results suggest that infection with a virulent H. pylori strain was associated with early-stage gastric cancer and that carcinogenesis was associated with cag PAI-dependent MMP-7 upregulation.
Collapse
|
25
|
Yin Y, Grabowska AM, Clarke PA, Whelband E, Robinson K, Argent RH, Tobias A, Kumari R, Atherton JC, Watson SA. Helicobacter pylori potentiates epithelial:mesenchymal transition in gastric cancer: links to soluble HB-EGF, gastrin and matrix metalloproteinase-7. Gut 2010; 59:1037-45. [PMID: 20584780 PMCID: PMC2976077 DOI: 10.1136/gut.2009.199794] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Helicobacter pylori (H pylori) infection is a major risk factor in the development of distal gastric adenocarcinoma. Development of the invasive phenotype is associated with the phenomenon of epithelial:mesenchymal transition (EMT). Soluble heparin-binding epidermal growth factor (HB-EGF) has been implicated in this process. A study was undertaken to investigate the possibility that matrix metalloproteinase (MMP)-7 is upregulated in H pylori infection as a result of hypergastrinaemia, which may enhance shedding of HB-EGF and contribute towards EMT in gastric adenocarcinoma cell lines. METHODS Three gastric epithelial cell lines (AGS, MGLVA1 and ST16) were co-cultured with the pathogenic H pylori strain 60190 and non-pathogenic strain Tx30a in an in vitro infection model. Gene expression was quantified by real-time PCR, HB-EGF shedding by ELISA and protein expression by immunofluorescence or immunohistochemistry. The INS-GAS mouse, a transgenic mouse model of gastric carcinogenesis which overexpresses amidated gastrin, was used to investigate the in vivo relationship between HB-EGF, MMP-7, gastrin and EMT. RESULTS The pathogenic strain of H pylori significantly upregulated EMT-associated genes Snail, Slug and vimentin in all three gastric cell lines to a greater degree than the non-pathogenic strain. Pathogenic H pylori also upregulated HB-EGF shedding, a factor implicated in EMT, which was partially dependent on both gastrin and MMP-7 expression. Gastrin and MMP-7 siRNAs and MMP-7 neutralising antibody significantly reduced upregulation of HB-EGF shedding in H pylori infected gastric cell lines and reduced EMT gene expression. The effect of H pylori on EMT was also reversed by gastrin siRNA. Neutralisation of gastrin in the INS-GAS mouse model reduced expression of MMP-7, HB-EGF and key EMT proteins. CONCLUSION The upregulation of MMP-7 by pathogenic H pylori is partially dependent on gastrin and may have a role in the development of gastric cancer, potentially through EMT, by indirectly increasing levels of soluble HB-EGF.
Collapse
Affiliation(s)
- Yinfei Yin
- Division of Pre-Clinical Oncology, University of Nottingham, Nottingham, UK
| | - Anna M Grabowska
- Division of Pre-Clinical Oncology, University of Nottingham, Nottingham, UK
| | - Philip A Clarke
- Division of Pre-Clinical Oncology, University of Nottingham, Nottingham, UK
| | - Elisabeth Whelband
- Division of Pre-Clinical Oncology, University of Nottingham, Nottingham, UK
| | - Karen Robinson
- Division of Medicine, University of Nottingham, Nottingham, UK
| | - Richard H Argent
- Division of Pre-Clinical Oncology, University of Nottingham, Nottingham, UK
| | - Amanda Tobias
- Division of Pre-Clinical Oncology, University of Nottingham, Nottingham, UK
| | - Rajendra Kumari
- Division of Pre-Clinical Oncology, University of Nottingham, Nottingham, UK
| | - John C Atherton
- Nottingham Digestive Diseases Centre, School of Clinical Sciences, University of Nottingham, Nottingham, UK
| | - Susan A Watson
- Division of Pre-Clinical Oncology, University of Nottingham, Nottingham, UK
| |
Collapse
|
26
|
Yeh YC, Sheu BS, Cheng HC, Wang YL, Yang HB, Wu JJ. Elevated serum matrix metalloproteinase-3 and -7 in H. pylori-related gastric cancer can be biomarkers correlating with a poor survival. Dig Dis Sci 2010; 55:1649-57. [PMID: 19690958 DOI: 10.1007/s10620-009-0926-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 07/16/2009] [Indexed: 12/15/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection up-regulates the expression of matrix metalloproteinases (MMPs), which may be involved in chronic inflammation, ulceration, and even cancer development. This study aimed to test if serum levels of MMP-3, -7, and -9 are correlated with different clinical outcomes in H. pylori-infected subjects and if these are predictive of progression to H. pylori-related gastric cancer. METHOD Two hundred one patients, 28 with H. pylori-negative gastritis and 173 with different H. pylori-positive gastrointestinal diseases (46 gastritis, 43 duodenal ulcers, 29 gastric ulcers, and 55 gastric cancers) were assessed for serum MMP-3, -7, and -9 titers by enzyme-linked immunosorbent assay and validated to their correlations with the different clinical features and survival of patients with H. pylori-positive gastric cancer. RESULTS Among the H. pylori-infected subjects, gastric cancer patients had higher serum levels of MMP-3 and MMP-7 than those with duodenal ulcer and gastritis (P < 0.05). For gastric cancer patients, concomitant elevated MMP-3 (>14 ng/ml) and MMP-7 (>4.5 ng/ml) independently correlated with lymph node invasion (P < 0.05) and could be predictive to have shorter 2- or 5-year survivals (log rank test, P = 0.006). CONCLUSION Concomitant elevations of MMP-3 and MMP-7 serum levels in the H. pylori-infected gastric cancer patients could serve as potential biomarkers to correlate with poor survival.
Collapse
Affiliation(s)
- Yi-Chun Yeh
- Institute of Basic Medical Sciences, National Cheng Kung University Medical Center, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
27
|
Metaloproteasas de la matriz extracelular como marcadores moleculares en cáncer gástrico. Med Clin (Barc) 2010; 134:123-6. [DOI: 10.1016/j.medcli.2009.09.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 09/10/2009] [Indexed: 01/27/2023]
|
28
|
Fischer W, Prassl S, Haas R. Virulence Mechanisms and Persistence Strategies of the Human Gastric Pathogen Helicobacter pylori. Curr Top Microbiol Immunol 2009; 337:129-71. [DOI: 10.1007/978-3-642-01846-6_5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Magalhães A, Marcos NT, Carvalho AS, David L, Figueiredo C, Bastos J, David G, Reis CA. Helicobacter pylori cagpathogenicity island-positive strains induce syndecan-4 expression in gastric epithelial cells. ACTA ACUST UNITED AC 2009; 56:223-32. [DOI: 10.1111/j.1574-695x.2009.00569.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
30
|
Achyut BR, Ghoshal UC, Moorchung N, Mittal B. Transforming growth factor-B1 and matrix metalloproteinase-7 promoter variants induce risk for Helicobacter pylori-associated gastric precancerous lesions. DNA Cell Biol 2009; 28:295-301. [PMID: 19317620 DOI: 10.1089/dna.2008.0842] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The expression of growth factors, proteolytic enzymes, fibrogenic factors, and cytokines is altered in the Helicobacter pylori-infected gastric mucosa. Therefore, we aimed to evaluate the association of functional promoter variants of transforming growth factor (TGF)-B1 and matrix metalloproteinase (MMP)-7 genes with gastritis and gastric precancerous lesions. After upper gastrointestinal endoscopy, a total of 130 rapid urease test-positive patients with nonulcer dyspepsia were examined for H. pylori infection using modified Giemsa stain and IgG anti-CagA ELISA. All patients and 200 asymptomatic controls were genotyped for TGF-B1 (-509 C>T) and MMP-7 (-181 A>G) substitutions using PCR-RFLP. The genotype and allele frequencies of TGF-B1 and MMP-7 polymorphisms did not differ between patients and controls (p > 0.05). However, the CagA-positive patients with TGF-B1 -509 T allele had higher risk for gastric atrophy (p = 0.026, odds ratio [OR] = 2.38) and lymphoid follicle development (p = 0.028, OR = 2.29). In addition, CagA-positive patients carrying MMP-7 -181 G allele had risk for lymphoid follicle formation (p = 0.027, OR = 2.30). Thus, the present study revealed significant association of functional MMP-7 and TGF-B1 gene variants toward susceptibility to H. pylori-induced precancerous gastric lesions.
Collapse
Affiliation(s)
- B R Achyut
- Department of Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | | | | |
Collapse
|
31
|
Sugimoto M, Furuta T, Kodaira C, Nishino M, Yamade M, Ikuma M, Sugimura H, Hishida A. Polymorphisms of matrix metalloproteinase-7 and chymase are associated with susceptibility to and progression of gastric cancer in Japan. J Gastroenterol 2009; 43:751-61. [PMID: 18958543 DOI: 10.1007/s00535-008-2221-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2007] [Accepted: 05/17/2008] [Indexed: 02/04/2023]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are a family of enzymes that degrade most macromolecules making up the extracellular matrix. MMPs are involved in not only the gastric mucosal inflammatory response but also the pathogenesis of Helicobacter pylori-associated diseases. In the renin-angiotensin system, chymase (CMA) is related to gastric carcinogenesis and angiogenesis in H. pylori-infected patients. We aimed to clarify the association of MMP-7-181 and CMA/B polymorphisms with susceptibility to gastric cancer and cancer progression in H. pylori-infected patients. METHODS We assessed the MMP-7-181 and CMA/B polymorphisms in H. pylori-positive patients with gastric cancer (n = 160), gastric ulcer (n = 157), duodenal ulcer (n = 121), and H. pylori-positive gastritis alone as controls (n = 156). RESULTS For gastric cancer risk, the age-and sex-adjusted odds ratio (OR) of the MMP-7-181 G allele carrier relative to the A/A genotype was significantly increased [OR, 2.32; 95% confidence interval (CI), 1.24-4.35], especially in patients with noncardia cancer (OR, 2.31; 95% CI, 1.22-4.36) and those with clinical stage III or IV cancer (OR, 3.66; 95% CI, 1.54-8.73). Carriage of the CMA/B A allele was significantly associated with gastric cancer development (OR, 1.73; 95% CI, 1.10-2.71). Simultaneous carriage of both the MMP-7-181 G allele and the CMA/B A allele dramatically increased the gastric cancer risk (OR, 8.18; 95% CI, 2.79-23.93). CONCLUSIONS In Japan, carriage of the MMP-7-181 G allele and of the CMA/B A allele were each associated with an increased risk for H. pylori-related noncardia gastric cancer development. MMP-7-181 and CMA/B genotyping tests might be useful tools for screening for individuals with higher gastric cancer risk.
Collapse
Affiliation(s)
- Mitsushige Sugimoto
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Rautelin HI, Oksanen AM, Veijola LI, Sipponen PI, Tervahartiala TI, Sorsa TA, Lauhio A. Enhanced systemic matrix metalloproteinase response in Helicobacter pylori gastritis. Ann Med 2009; 41:208-15. [PMID: 18979291 DOI: 10.1080/07853890802482452] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Helicobacter pylori causes chronic gastritis, peptic ulcer disease, and is the most important risk factor for non-cardia gastric cancer, and has been shown to upregulate matrix metalloproteinases (MMPs) in infected gastric mucosa. MMPs are proteolytic enzymes regulated by tissue inhibitors of metalloproteinases (TIMPs). AIMS We set up this study to find out whether H. pylori gastritis induces systemic MMP response. METHODS Serum samples were collected from patients undergoing gastroscopy; 26 patients had H. pylori gastritis and 18 were H. pylori-negative controls with normal gastric mucosa. Serum MMP levels were analysed by enzyme-linked immunosorbent assay. RESULTS Significantly elevated serum levels of collagenase-2 (MMP-8), gelatinase B (MMP-9), neutrophil elastase (NE), and myeloperoxidase (MPO), and reduced serum levels of gelatinase A (MMP-2) and TIMP-1 were demonstrated in patients with H. pylori gastritis as compared to H. pylori-negative controls. No significant differences were shown in serum matrilysin-1 (MMP-7) levels. CONCLUSIONS For the first time, we show enhanced MMP-8 response in H. pylori infection together with other neutrophil degranulation products (MMP-9, MPO, NE). Elevated circulating neutrophil degranulation product levels in serum of H. pylori-positive patients reflect accelerated proteolysis and oxidative stress, and may contribute to extraintestinal sequelae, such as cardiovascular diseases.
Collapse
Affiliation(s)
- Hilpi I Rautelin
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki and HUSLAB, Helsinki University Central Hospital Laboratory, Finland.
| | | | | | | | | | | | | |
Collapse
|
33
|
Kenny S, Duval C, Sammut SJ, Steele I, Pritchard DM, Atherton JC, Argent RH, Dimaline R, Dockray GJ, Varro A. Increased expression of the urokinase plasminogen activator system by Helicobacter pylori in gastric epithelial cells. Am J Physiol Gastrointest Liver Physiol 2008; 295:G431-41. [PMID: 18599586 PMCID: PMC2536790 DOI: 10.1152/ajpgi.90283.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gastric pathogen Helicobacter pylori (H. pylori) is linked to peptic ulcer and gastric cancer, but the relevant pathophysiological mechanisms are unclear. We now report that H. pylori stimulates the expression of plasminogen activator inhibitor (PAI)-1, urokinase plasminogen activator (uPA), and its receptor (uPAR) in gastric epithelial cells and the consequences for epithelial cell proliferation. Real-time PCR of biopsies from gastric corpus, but not antrum, showed significantly increased PAI-1, uPA, and uPAR in H. pylori-positive patients. Transfection of primary human gastric epithelial cells with uPA, PAI-1, or uPAR promoters in luciferase reporter constructs revealed expression of all three in H+/K+ATPase- and vesicular monoamine transporter 2-expressing cells; uPA was also expressed in pepsinogen- and uPAR-containing trefoil peptide-1-expressing cells. In each case expression was increased in response to H. pylori and for uPA, but not PAI-1 or uPAR, required the virulence factor CagE. H. pylori also stimulated soluble and cell surface-bound uPA activity, and both were further increased by PAI-1 knockdown, consistent with PAI-1 inhibition of endogenous uPA. H. pylori stimulated epithelial cell proliferation, which was inhibited by uPA immunoneutralization and uPAR knockdown; exogenous uPA also stimulated proliferation that was further increased after PAI-1 knockdown. The proliferative effects of uPA were inhibited by immunoneutralization of the EGF receptor and of heparin-binding EGF (HB-EGF) by the mutant diphtheria toxin CRM197 and an EGF receptor tyrosine kinase inhibitor. H. pylori induction of uPA therefore leads to epithelial proliferation through activation of HB-EGF and is normally inhibited by concomitant induction of PAI-1; treatments directed at inhibition of uPA may slow the progression to gastric cancer.
Collapse
Affiliation(s)
- Susan Kenny
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - Cedric Duval
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - Stephen J. Sammut
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - Islay Steele
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - D. Mark Pritchard
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - John C. Atherton
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - Richard H. Argent
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - Rod Dimaline
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - Graham J. Dockray
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - Andrea Varro
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| |
Collapse
|
34
|
Ogden SR, Wroblewski LE, Weydig C, Romero-Gallo J, O'Brien DP, Israel DA, Krishna US, Fingleton B, Reynolds AB, Wessler S, Peek RM. p120 and Kaiso regulate Helicobacter pylori-induced expression of matrix metalloproteinase-7. Mol Biol Cell 2008; 19:4110-21. [PMID: 18653469 DOI: 10.1091/mbc.e08-03-0283] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori is the strongest known risk factor for gastric adenocarcinoma, yet only a fraction of infected persons develop cancer. One H. pylori constituent that augments disease risk is the cytotoxin-associated gene (cag) pathogenicity island, which encodes a secretion system that translocates bacterial effector molecules into host cells. Matrix metalloproteinase (MMP)-7, a member of a family of enzymes with tumor-initiating properties, is overexpressed in premalignant and malignant gastric lesions, and H. pylori cag(+) strains selectively increase MMP-7 protein levels in gastric epithelial cells in vitro and in vivo. We now report that H. pylori-mediated mmp-7 induction is transcriptionally regulated via aberrant activation of p120-catenin (p120), a component of adherens junctions. H. pylori increases mmp-7 mRNA levels in a cag- and p120-dependent manner and induces translocation of p120 to the nucleus in vitro and in a novel ex vivo gastric gland culture system. Nuclear translocation of p120 in response to H. pylori relieves Kaiso-mediated transcriptional repression of mmp-7, which is implicated in tumorigenesis. These results indicate that selective and coordinated induction of mmp-7 expression by H. pylori cag(+) isolates may explain in part the augmentation in gastric cancer risk associated with these strains.
Collapse
Affiliation(s)
- Seth R Ogden
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2279, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wessler S, Backert S. Molecular mechanisms of epithelial-barrier disruption by Helicobacter pylori. Trends Microbiol 2008; 16:397-405. [PMID: 18619844 DOI: 10.1016/j.tim.2008.05.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/08/2008] [Accepted: 05/28/2008] [Indexed: 12/22/2022]
Abstract
Intact intercellular junctions and cell-matrix contacts are important structures in the formation and maintenance of epithelial-barrier functions against microbes. The human gastric pathogen Helicobacter pylori developed a remarkable network of strategies to alter these epithelial cell-cell and cell-matrix adhesions, which are implicated in inflammation, proliferation, cell migration and invasive growth. This review focuses on recent findings on H. pylori-induced host-cell signaling. We propose a stepwise model for how H. pylori interacts with components of focal adhesions and intercellular tight and adherens junctions to disrupt the epithelial layer, providing novel insights into the pathogenesis of H. pylori.
Collapse
Affiliation(s)
- Silja Wessler
- Junior Research Group, Paul-Ehrlich Institute, D-63225 Langen, Germany.
| | | |
Collapse
|
36
|
Sengupta N, MacDonald TT. The role of matrix metalloproteinases in stromal/epithelial interactions in the gut. Physiology (Bethesda) 2008; 22:401-9. [PMID: 18073413 DOI: 10.1152/physiol.00027.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The gastrointestinal mucosa is an extremely soft, highly vascularised tissue, with a single layer of epithelium separating the gut lumen from the host. Epithelial cells adhere to a thin basement membrane that is produced by both epithelial cells and the underlying stromal cells. Signals passing between epithelial cells and stromal cells are needed for normal gut structure. In gut diseases, however, epithelial cells and stromal cells produce large amounts of matrix degrading enzymes (matrix metalloproteinases), the function of which is only beginning to be elucidated. Here, we review the role of matrix metalloproteonases (MMPs) in the gut in health, in gut inflammation, and in cancer.
Collapse
Affiliation(s)
- N Sengupta
- Centre for Academic Surgery, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London
| | | |
Collapse
|
37
|
Atherton JC. The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 1:63-96. [PMID: 18039108 DOI: 10.1146/annurev.pathol.1.110304.100125] [Citation(s) in RCA: 448] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori is the main cause of peptic ulceration, distal gastric adenocarcinoma, and gastric lymphoma. Only 15% of those colonized develop disease, and pathogenesis depends upon strain virulence, host genetic susceptibility, and environmental cofactors. Virulence factors include the cag pathogenicity island, which induces proinflammatory, pro-proliferative epithelial cell signaling; the cytotoxin VacA, which causes epithelial damage; and an adhesin, BabA. Host genetic polymorphisms that lead to high-level pro-inflammatory cytokine release in response to infection increase cancer risk. Pathogenesis is dependent upon inflammation, a Th-1 acquired immune response and hormonal changes including hypergastrinaemia. Antral-predominant inflammation leads to increased acid production from the uninflamed corpus and predisposes to duodenal ulceration; corpus-predominant gastritis leads to hypochlorhydria and predisposes to gastric ulceration and adenocarcinoma. Falling prevalence of H. pylori in developed countries has led to a falling incidence of associated diseases. However, whether there are disadvantages of an H. pylori-free stomach, for example increased risk of esosphageal adenocarcinoma, remains unclear.
Collapse
Affiliation(s)
- John C Atherton
- Wolfson Digestive Diseases Centre and Institute of Infections, Immunity, and Inflammation, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
38
|
Bergin PJ, Raghavan S, Svensson H, Starckx S, Van Aelst I, Gjertsson I, Opdenakker G, Quiding-Järbrink M. Gastric gelatinase B/matrix metalloproteinase-9 is rapidly increased in Helicobacter felis-induced gastritis. ACTA ACUST UNITED AC 2007; 52:88-98. [PMID: 17995959 DOI: 10.1111/j.1574-695x.2007.00349.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has previously been shown that matrix metalloproteinase-9 (MMP-9) levels, originating from macrophages, are considerably increased in human Helicobacter pylori-associated gastritis. Here, the early kinetics of the MMP-9 response resulting from Helicobacter infection in C57BL/6 and MMP-9 knock-out mice using the murine Helicobacter felis model were examined. H. felis infection induced severe gastritis in the murine stomach at just 2 weeks after infection. Before gastritis, an increase was observed in MMP-9-positive cells detected by immunohistochemistry in the basal lamina propria. This finding was corroborated by gelatin zymography of stomach samples. As the gastritis increased so did the concentration of MMP-9 and the incidence of gastric MMP-9-positive cells, their location corresponding to that of macrophages. In contrast, systemic levels of MMP-9 remained unchanged. When MMP-9-deficient mice were infected with H. felis, no significant difference in gastritis development was detected compared with disease development in wild-type animals. We conclude that MMP-9 production is an early event in the response to gastric Helicobacter infection, a feature that may favor the recruitment of immune cells early during infection. At later stages, however, the increased levels of MMP-9 may damage the integrity of the stomach mucosa.
Collapse
Affiliation(s)
- Philip J Bergin
- Department of Microbiology and Immunology, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Individual matrix metalloproteinases control distinct transcriptional responses in airway epithelial cells infected with Pseudomonas aeruginosa. Infect Immun 2007; 75:5640-50. [PMID: 17923522 DOI: 10.1128/iai.00799-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Airway epithelium is the initial point of host-pathogen interaction in Pseudomonas aeruginosa infection, an important pathogen in cystic fibrosis and nosocomial pneumonia. We used global gene expression analysis to determine airway epithelial transcriptional responses dependent on matrilysin (matrix metalloproteinase 7 [MMP-7]) and stromelysin-2 (MMP-10), two MMPs induced by acute P. aeruginosa pulmonary infection. Extraction of differential gene expression (EDGE) analysis of gene expression changes in P. aeruginosa-infected organotypic tracheal epithelial cell cultures from wild-type, Mmp7-/-, and Mmp10-/- mice identified 2,091 matrilysin-dependent and 1,628 stromelysin-2-dependent genes that were differentially expressed. Key node network analysis showed that these MMPs controlled distinct gene expression programs involved in proliferation, cell death, immune responses, and signal transduction, among other host defense processes. Our results demonstrate discrete roles for these MMPs in regulating epithelial responses to Pseudomonas infection and show that a global genomics strategy can be used to assess MMP function.
Collapse
|
40
|
Oue N, Yoshida K, Noguchi T, Sentani K, Kikuchi A, Yasui W. Increased expression of h-prune is associated with tumor progression and poor survival in gastric cancer. Cancer Sci 2007; 98:1198-205. [PMID: 17532757 PMCID: PMC11159333 DOI: 10.1111/j.1349-7006.2007.00515.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The human homolog of the Drosophila prune protein (from PRUNE, which encodes h-prune), which interacts with glycogen synthase kinase 3, promotes cellular motility. H-prune also interacts with nm23-H1, a suppressor of cancer metastasis. It has been reported that stimulation of cellular motility by h-prune is enhanced by its interaction with nm23-H1 in breast cancer cells. In the present study, we examined the expression of h-prune and nm23-H1 during tumor progression in gastric cancer (GC). PRUNE mRNA was overexpressed in 12 (32%) of 38 GC cases by quantitative reverse transcription-polymerase chain reaction. PRUNE mRNA levels correlated significantly with advanced T grade, N grade and tumor stage. Immunohistochemical analysis revealed that 43 (30%) of 143 GC cases were positive for h-prune, and h-prune-positive GC cases showed more advanced T grade, N grade and tumor stage than h-prune-negative GC cases. One hundred and twenty-four (87%) of 143 GC cases were positive for nm23-H1, and nm23-H1 was expressed in almost all (42 cases, 98%) h-prune-positive GC cases. Many GC cases positive for both h-prune and nm23-H1 showed more advanced T grade, N grade and tumor stage than other type GC cases. Patients with h-prune-positive GC had a significantly worse survival rate than patients with h-prune-negative GC. These findings indicate that overexpression of h-prune is associated with tumor progression and aggressiveness of GC. nm23-H1 may enhance motility of cancer cells by interacting with h-prune.
Collapse
Affiliation(s)
- Naohide Oue
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima 734-8551, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Caruso R, Fina D, Peluso I, Fantini MC, Tosti C, Del Vecchio Blanco G, Paoluzi OA, Caprioli F, Andrei F, Stolfi C, Romano M, Ricci V, MacDonald TT, Pallone F, Monteleone G. IL-21 is highly produced in Helicobacter pylori-infected gastric mucosa and promotes gelatinases synthesis. THE JOURNAL OF IMMUNOLOGY 2007; 178:5957-65. [PMID: 17442980 DOI: 10.4049/jimmunol.178.9.5957] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Helicobacter pylori (Hp) infection is associated with gastric inflammation and ulceration. The pathways of tissue damage in Hp-infected subjects are complex, but evidence indicates that T cell-derived cytokines enhance the synthesis of matrix metalloproteinases (MMP) that contribute to mucosal ulceration and epithelial damage. In this study, we have examined the role of the T cell cytokine IL-21 in Hp-infected gastric mucosa and evaluated whether IL-21 regulates MMP production by gastric epithelial cells. We show that IL-21 is constitutively expressed in gastric mucosa and is more abundant in biopsy specimens and purified mucosal CD3(+) T cells from Hp-infected patients compared with normal patients and disease controls. We also demonstrate that IL-21R is expressed by primary gastric epithelial cells, as well as by the gastric epithelial cell lines AGS and MKN28. Consistently, AGS cells respond to IL-21 by increasing production of MMP-2 and MMP-9, but not MMP-1, MMP-3, MMP-7, or tissue inhibitors of MMP. Analysis of signaling pathways leading to MMP production reveals that IL-21 enhances NF-kappaB but not MAPK activation, and inhibition of NF-kappaB activation reduces IL-21-induced MMP-2 and MMP-9 production. Finally, we show that treatment of Hp-infected gastric explants with anti-IL-21 reduces epithelial cell-derived MMP-2 and MMP-9 production. These data indicate that IL-21 is overexpressed in Hp-infected gastric mucosa where it could contribute to increased epithelial gelatinase production.
Collapse
Affiliation(s)
- Roberta Caruso
- Department of Internal Medicine and Centre of Excellence for Genomic Risk Assessment in Multifactorial and Complex Diseases, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pillinger MH, Marjanovic N, Kim SY, Lee YC, Scher JU, Roper J, Abeles AM, Izmirly PI, Axelrod M, Pillinger MY, Tolani S, Dinsell V, Abramson SB, Blaser MJ. Helicobacter pylori stimulates gastric epithelial cell MMP-1 secretion via CagA-dependent and -independent ERK activation. J Biol Chem 2007; 282:18722-31. [PMID: 17475625 DOI: 10.1074/jbc.m703022200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Because the mechanisms of Helicobacter pylori-induced gastric injury are incompletely understood, we examined the hypothesis that H. pylori induces matrix metalloproteinase-1 (MMP-1) secretion, with potential to disrupt gastric stroma. We further tested the role of CagA, an H. pylori virulence factor, in MMP-1 secretion. Co-incubation of AGS cells with Tx30a, an H. pylori strain lacking the cagA virulence gene, stimulated MMP-1 secretion, confirming cagA-independent secretion. Co-incubation with strain 147C (cagA(+)) resulted in CagA translocation into AGS cells and increased MMP-1 secretion relative to Tx30a. Transfection of cells with the recombinant 147C cagA gene also induced MMP-1 secretion, indicating that CagA can independently stimulate MMP-1 secretion. Co-incubation with strain 147A, containing a cagA gene that lacks an EPIYA tyrosine phosphorylation motif, as well as transfection with 147A cagA, yielded an MMP-1 secretion intermediate between no treatment and 147C, indicating that CagA tyrosine phosphorylation regulates cellular signaling in this model system. H. pylori induced activation of the MAP kinase ERK, with CagA-independent (early) and dependent (later) components. MEK inhibitors UO126 and PD98059 inhibited both CagA-independent and -dependent MMP-1 secretion, whereas p38 inhibition enhanced MMP-1 secretion and ERK activation, suggesting p38 negative regulation of MMP-1 and ERK. These data indicate H. pylori effects on host epithelial MMP-1 expression via ERK, with p38 playing a potential regulatory role.
Collapse
Affiliation(s)
- Michael H Pillinger
- Department of Medicine, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Varro A, Kenny S, Hemers E, McCaig C, Przemeck S, Wang TC, Bodger K, Pritchard DM. Increased gastric expression of MMP-7 in hypergastrinemia and significance for epithelial-mesenchymal signaling. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1133-40. [PMID: 17218472 DOI: 10.1152/ajpgi.00526.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic hypergastrinemia is associated with enterochromaffin-like (ECL) cell hyperplasia, which may progress to gastric carcinoid tumors. The latter consists of epithelial cells and stroma, and both compartments usually regress after normalization of hypergastrinemia. We previously showed that matrix metalloproteinase (MMP)-7 in gastric epithelial cells was upregulated by Helicobacter pylori and described MMP-7-dependent reciprocal signaling between the epithelium and a key stromal cell type, the myofibroblast. Here, we describe the regulation of gastric MMP-7 by gastrin and the potential significance for recruiting and maintaining myofibroblast populations. Biopsies of the gastric corpus and ECL cell carcinoid tumors were obtained from hypergastrinemic patients. Western blot analysis, ELISA, immunohistochemistry, and promoter-luciferase (luc) reporter assays were used to study MMP-7 expression. Gastric myofibroblasts were identified by alpha-smooth muscle actin (alpha-SMA) expression, and the effects of MMP-7 on myofibroblast proliferation were investigated. In hypergastrinemic patients, there was an increased abundance of MMP-7 and alpha-SMA in gastric corpus biopsies and ECL cell carcinoid tumors. In the latter, MMP-7 was localized to ECL cells but not stromal cells, which were nevertheless well represented. Gastrin stimulated MMP-7-luc expression in both AGS-G(R) and primary human gastric epithelial cells. Conditioned medium from gastrin-treated human gastric glands stimulated myofibroblast proliferation, which was inhibited by neutralizing antibodies to MMP-7. MMP-7 increased the proliferation of myofibroblasts via the MAPK and phosphatidylinositol 3-kinase (PI3K) pathways. In conclusion, stimulation of gastric MMP-7 by elevated plasma gastrin may activate epithelial-mesenchymal signaling pathways regulating myofibroblast function via MAPK and PI3K pathways and contribute to stromal deposition in ECL cell carcinoid tumors.
Collapse
Affiliation(s)
- Andrea Varro
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown St., Liverpool L69 3BX, UK.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Oliveira MJ, Costa AC, Costa AM, Henriques L, Suriano G, Atherton JC, Machado JC, Carneiro F, Seruca R, Mareel M, Leroy A, Figueiredo C. Helicobacter pylori induces gastric epithelial cell invasion in a c-Met and type IV secretion system-dependent manner. J Biol Chem 2006; 281:34888-96. [PMID: 16990273 DOI: 10.1074/jbc.m607067200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Helicobacter pylori interacts with gastric epithelial cells, activating signaling pathways important for carcinogenesis. In this study we examined the role of H. pylori on cell invasion and the molecular mechanisms underlying this process. The relevance of H. pylori cag pathogenicity island-encoded type IV secretion system (T4SS), CagA, and VacA for cell invasion was also investigated. We found that H. pylori induces AGS cell invasion in collagen type I and in Matrigel invasion assays. H. pylori-induced cell invasion requires the direct contact between bacteria and cancer cells. H. pylori-mediated cell invasion was dependent on the activation of the c-Met receptor and on increased MMP-2 and MMP-9 activity. The abrogation of the c-Met receptor using the specific NK4 inhibitor or the silencing of c-Met expression with small interference RNA suppressed both cell invasion and MMP activity. Studies with different H. pylori strains revealed that cell invasion, c-Met tyrosine phosphorylation, and increased MMP-2 and MMP-9 activity were all dependent on the presence of a functional bacterial T4SS, but not on VacA cytotoxicity. Our findings demonstrate that H. pylori strains with a functional T4SS stimulate gastric epithelial cell invasion through a c-Met-dependent signaling pathway that comprises an increase in MMP-2 and MMP-9 activity.
Collapse
Affiliation(s)
- Maria J Oliveira
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Portugal, and the Laboratory of Experimental Cancerology, Ghent University Hospital, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bebb JR, Leach L, Zaitoun A, Hand N, Letley DP, Thomas R, Atherton JC. Effects of Helicobacter pylori on the cadherin-catenin complex. J Clin Pathol 2006; 59:1261-6. [PMID: 16679349 PMCID: PMC1860537 DOI: 10.1136/jcp.2006.036772] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The cadherin-catenin complex is the key component of the adherens junction in epithelial cells, and changes in this complex are implicated in gastric adenocarcinoma. Germline mutations in E-cadherin have been described in diffuse-type gastric adenocarcinoma. Helicobacter pylori infection is the first stage in gastric carcinogenesis. AIMS To determine whether H pylori was associated with changes in the complex, and whether this was affected by virulence of the strain. METHODS Epithelial cell lines were cultured with H pylori using the wild-type pathogenic and non-pathogenic strains and CagE null and VacA null isogenic mutants. Gastric biopsy specimens at endoscopy were obtained from patients with (n = 17) and without (n = 15) H pylori infection, and E-cadherin and beta-catenin expression was assessed by immunohistochemistry. H pylori was typed by polymerase chain reaction from these patients for CagE and VacA. RESULTS In vitro studies showed that coculture with a pathogenic strain of H pylori led to disruption of epithelial junctional beta-catenin expression, but without evidence of nuclear translocation or signalling. This effect was independent of a functional Cag pathogenicity island and vacuolating activity, but dependent on live bacteria. No marked differences in beta-catenin or E-cadherin expression were seen in gastric biopsy specimens in patients with and without H pylori infection. CONCLUSION Acute H pylori infection disrupts junctional beta-catenin in vitro, but chronic infection by H pylori has no effect on E-cadherin and beta-catenin expression, as seen in gastric biopsy specimens at the initial gastritis stage of the proposed Correa pathway of gastric carcinogenesis. A later effect at the later stages of atrophy or intestinal metaplasia cannot be ruled out.
Collapse
Affiliation(s)
- J R Bebb
- Wolfson Centre for Digestive Diseases and Institute of Infections, Inflammation and Immunity, University Hospital Nottingham, Nottingham, UK.
| | | | | | | | | | | | | |
Collapse
|
46
|
McCaig C, Duval C, Hemers E, Steele I, Pritchard DM, Przemeck S, Dimaline R, Ahmed S, Bodger K, Kerrigan DD, Wang TC, Dockray GJ, Varro A. The role of matrix metalloproteinase-7 in redefining the gastric microenvironment in response to Helicobacter pylori. Gastroenterology 2006; 130:1754-63. [PMID: 16697739 DOI: 10.1053/j.gastro.2006.02.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 01/25/2006] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Interactions between epithelial and stromal cells are important determinants of mucosal organization, but the signaling mechanisms are understood incompletely. Matrix metalloproteinase (MMP)-7 is produced uniquely in epithelia, may act on growth factors and matrix proteins, and in the stomach is increased with Helicobacter pylori infection. We have studied the role of MMP-7 in signaling between epithelial cells and a key stromal cell type, the myofibroblast. METHODS Immunohistochemistry and Western blotting were applied to gastric corpus biopsy specimens; primary cultures of human gastric glands and myofibroblasts were used to study the role of MMP-7 in regulating proliferation and migration of the latter, and MMP-7 substrates were identified by proteomic methods. RESULTS Increased abundance of the myofibroblast marker alpha-smooth muscle actin was identified in H. pylori-positive biopsy specimens. Media from H pylori-infected gastric epithelial cultures stimulated proliferation and migration of primary human gastric myofibroblasts and antisense oligonucleotide treatment indicated a role for MMP-7. Proteomic methods identified insulin-like growth factor binding protein (IGFBP)-5 as a substrate for MMP-7 in medium from gastric myofibroblasts. Knockdown of IGFBP-5 by small interfering RNA or immunoneutralization of IGF-II, abolished myofibroblast responses to MMP-7. Proliferation of gastric epithelial cells also was stimulated by MMP-7-treated myofibroblasts via IGF-II. CONCLUSIONS MMP-7 acts as an epithelial-derived signal increasing the bioavailability of IGF-II released from myofibroblasts. Because IGF-II acts on both stromal and epithelial cells, the findings suggest that increased MMP-7 expression contributes to redefining the niche occupied by dividing cells and leading to hyperproliferation in H pylori infection.
Collapse
Affiliation(s)
- Catherine McCaig
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2005; 13:2858-2861. [DOI: 10.11569/wcjd.v13.i24.2858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
48
|
Krueger S, Hundertmark T, Kalinski T, Peitz U, Wex T, Malfertheiner P, Naumann M, Roessner A. Helicobacter pylori encoding the pathogenicity island activates matrix metalloproteinase 1 in gastric epithelial cells via JNK and ERK. J Biol Chem 2005; 281:2868-75. [PMID: 16321971 DOI: 10.1074/jbc.m511053200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori colonizes the human gastric epithelium and induces an inflammatory response that is a trigger for gastric carcinogenesis. Matrix metalloproteinases (MMPs) have recently been shown to be up-regulated in gastric epithelial cells infected with H. pylori and might contribute to the pathogenesis of peptic ulcer. The aim of this study was to extend the knowledge about the effect of H. pylori infection on MMP-1 expression by gastric epithelial cells, the kinetics of induction, the pathogenetic properties of the bacterium, and the intracellular signaling pathways required for MMP-1 up-regulation. Expression of MMP-1 was induced more than 10-fold by co-culture of AGS+cells with H. pylori strains carrying the pathogenicity island (PAI). H. pylori strains with mutations in the PAI and a defective type IV secretion system had no effect on MMP-1. Double immunofluorescence revealed strong MMP-1 staining in epithelial cells of gastric biopsies at sites of bacterial attachment. In vitro, MMP-1 is up-regulated by interleukin-1beta and tumor necrosis factor-alpha, but these regulatory mechanisms are not operating in H. pylori infection as shown by inhibitory antibodies. Specific inhibitors of JNK kinase and ERK1/2 kinase were found to suppress the H. pylori-induced MMP-1 expression and activity. AGS cells treated with antisense MMP-1 showed a significantly reduced potential to degrade reconstituted basement membrane. Our results suggest that in gastric epithelial cells, H. pylori up-regulates MMP-1 in a type IV secretion system-dependent manner via JNK and ERK1/2. Induction of MMP-1 is further implicated in complex processes induced by H. pylori, resulting in tissue degradation and remodeling of the gastric mucosa.
Collapse
Affiliation(s)
- Sabine Krueger
- Institute of Pathology, Department of Gastroenterology, Hepatology and Infectious Diseases, Magdeburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Bergin PJ, Sicheng W, Qiang PH, Marianne QJ. Secretion of matrix metalloproteinase-9 by macrophages, in vitro, in response to Helicobacter pylori. ACTA ACUST UNITED AC 2005; 45:159-69. [PMID: 16051068 DOI: 10.1016/j.femsim.2005.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 03/16/2005] [Accepted: 03/22/2005] [Indexed: 01/31/2023]
Abstract
We have previously shown that matrix metalloproteinase-9 (MMP-9) activity is greatly enhanced within the active chronic inflammation of Helicobacter pylori infected individuals, of which a major fraction derives from macrophages in the tissue. Here, we have investigated the ability of macrophages to secrete MMPs in response to H. pylori. Human macrophages secrete MMP-9 in response to live and inactivated H. pylori, as well as to specific bacterial products. Protein kinase C, phosphatiolylinositol 3-kinase and calcium uptake channels all play a role in MMP-9 secretion, whereas neither tumour necrosis factor alpha, interleukin-8, nor interleukin-1beta autocrine stimulation appear to contribute. We conclude that human macrophages have the ability to react directly against several H. pylori derived factors, utilising several signalling pathways.
Collapse
Affiliation(s)
- Philip James Bergin
- Departments of Medical Microbiology and Immunology, Göteborg University, Sweden.
| | | | | | | |
Collapse
|
50
|
Elkington PTG, O'Kane CM, Friedland JS. The paradox of matrix metalloproteinases in infectious disease. Clin Exp Immunol 2005; 142:12-20. [PMID: 16178851 PMCID: PMC1809491 DOI: 10.1111/j.1365-2249.2005.02840.x] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2005] [Indexed: 12/15/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that perform multiple roles in the normal immune response to infection. MMPs facilitate leucocyte recruitment, cytokine and chemokine processing, defensin activation and matrix remodelling. However, excess MMP activity following infection may lead to immunopathology that causes host morbidity or mortality and favours pathogen dissemination or persistence. Here, we review the normal functions of MMPs in immunity and then discuss viral and bacterial infections where excess MMP activity has been implicated in pathology, specifically examining HIV, HTLV-1, hepatitis B, endotoxin shock, Helicobacter pylori and Mycobacterium tuberculosis. Tissue destruction may be exacerbated further by bacterial-derived enzymes which activate the host pro-MMPs. Finally, the potential for therapeutic targeting of excess MMP activity in infection is considered.
Collapse
Affiliation(s)
- P T G Elkington
- Department of Infectious Diseases, Hammersmith Campus, Imperial College, London, UK
| | | | | |
Collapse
|