1
|
Lim M, Kim T, Kim H, Jang BG, Myung JK, Kim HY. Esophageal ILC2s mediate abnormal epithelial remodeling in eosinophilic esophagitis via Areg-EGFR signaling. Cell Mol Immunol 2025; 22:97-110. [PMID: 39653767 PMCID: PMC11685411 DOI: 10.1038/s41423-024-01242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic allergic disorder characterized by eosinophilia and epithelial thickening, resulting in dysphagia. While emerging evidence implicates increased frequencies of group 2 innate lymphoid cells (ILC2s) and increased interleukin (IL)-33 expression in EoE pathogenesis, the precise mechanisms remain unclear. In this study, we investigated the role of ILC2s in EoE pathogenesis. We observed an abundance of KLRG1+ ILC2s in the esophagi of healthy mice, with their numbers significantly increasing in murine EoE models and humans. Using a murine EoE model, we demonstrated the recapitulation of EoE-associated features, including basal-cell hyperproliferation, epithelial thickening, and eosinophilia. Notably, these characteristics are absent in ILC-deficient mice, whereas mice lacking IL-5 or eosinophils display epithelial defects, highlighting the pivotal role of ILC2s in EoE pathogenesis. Further investigations revealed increased amphiregulin (Areg) production by esophageal ILC2s in mice. The administration of Areg induced epithelial defects similar to those observed in EoE. Mechanistic studies using human esophageal cell lines revealed Areg-induced phosphorylation of epidermal growth factor receptor (EGFR). Significatntly, treatment with anti-Areg agents and EGFR inhibitors effectively attenuated EoE development, highlighting the therapeutic potential of targeting the Areg-EGFR axis.
Collapse
Affiliation(s)
- MinYeong Lim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
- Department of Biological Sciences, SRC Center for Immune Research on Nonlymphoid Organs, Sungkyunkwan University, Suwon, South Korea
| | - Taesoo Kim
- Department of Life Science and Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
| | - Hyesung Kim
- Jeju National University College of Medicine, Jeju, South Korea
| | - Bo Gun Jang
- Department of Pathology, Jeju National University College of Medicine and Jeju National University Hospital, Jeju, South Korea
| | - Jae Kyung Myung
- Department of Pathology, Hanyang University College of Medicine, Seoul, South Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea.
- Department of Life Science and Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
2
|
Reyes Hueros RA, Gier RA, Shaffer SM. Non-genetic differences underlie variability in proliferation among esophageal epithelial clones. PLoS Comput Biol 2024; 20:e1012360. [PMID: 39466790 PMCID: PMC11573201 DOI: 10.1371/journal.pcbi.1012360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/18/2024] [Accepted: 07/24/2024] [Indexed: 10/30/2024] Open
Abstract
Individual cells grown in culture exhibit remarkable differences in their growth, with some cells capable of forming large clusters, while others are limited or fail to grow at all. While these differences have been observed across cell lines and human samples, the growth dynamics and associated cell states remain poorly understood. In this study, we performed clonal tracing through imaging and cellular barcoding of an in vitro model of esophageal epithelial cells (EPC2-hTERT). We found that about 10% of clones grow exponentially, while the remaining have cells that become non-proliferative leading to a halt in the growth rate. Using mathematical models, we demonstrate two distinct growth behaviors: exponential and logistic. Further, we discovered that the propensity to grow exponentially is largely heritable through four doublings and that the less proliferative clones can become highly proliferative through increasing plating density. Combining barcoding with single-cell RNA-sequencing (scRNA-seq), we identified the cellular states associated with the highly proliferative clones, which include genes in the WNT and PI3K pathways. Finally, we identified an enrichment of cells resembling the highly proliferative cell state in the proliferating healthy human esophageal epithelium.
Collapse
Affiliation(s)
- Raúl A. Reyes Hueros
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rodrigo A. Gier
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sydney M. Shaffer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Herms A, Fernandez-Antoran D, Alcolea MP, Kalogeropoulou A, Banerjee U, Piedrafita G, Abby E, Valverde-Lopez JA, Ferreira IS, Caseda I, Bejar MT, Dentro SC, Vidal-Notari S, Ong SH, Colom B, Murai K, King C, Mahbubani K, Saeb-Parsy K, Lowe AR, Gerstung M, Jones PH. Self-sustaining long-term 3D epithelioid cultures reveal drivers of clonal expansion in esophageal epithelium. Nat Genet 2024; 56:2158-2173. [PMID: 39313617 PMCID: PMC11525200 DOI: 10.1038/s41588-024-01875-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/18/2024] [Indexed: 09/25/2024]
Abstract
Aging epithelia are colonized by somatic mutations, which are subjected to selection influenced by intrinsic and extrinsic factors. The lack of suitable culture systems has slowed the study of this and other long-term biological processes. Here, we describe epithelioids, a facile, cost-effective method of culturing multiple mouse and human epithelia. Esophageal epithelioids self-maintain without passaging for at least 1 year, maintaining a three-dimensional structure with proliferative basal cells that differentiate into suprabasal cells, which eventually shed and retain genomic stability. Live imaging over 5 months showed that epithelioids replicate in vivo cell dynamics. Epithelioids support genetic manipulation and enable the study of mutant cell competition and selection in three-dimensional epithelia, and show how anti-cancer treatments modulate competition between transformed and wild-type cells. Finally, a targeted CRISPR-Cas9 screen shows that epithelioids recapitulate mutant gene selection in aging human esophagus and identifies additional drivers of clonal expansion, resolving the genetic networks underpinning competitive fitness.
Collapse
Affiliation(s)
- Albert Herms
- Wellcome Sanger Institute, Hinxton, UK
- Department of Biomedical Sciences, Universitat de Barcelona, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - David Fernandez-Antoran
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- ARAID Foundation, Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Maria P Alcolea
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | - Gabriel Piedrafita
- Wellcome Sanger Institute, Hinxton, UK
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | - Inês S Ferreira
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Irene Caseda
- Department of Biomedical Sciences, Universitat de Barcelona, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria T Bejar
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Stefan C Dentro
- Wellcome Sanger Institute, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
- Artificial Intelligence in Oncology (B450), Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Sara Vidal-Notari
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Bartomeu Colom
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Institute of Science, Altos Labs, Cambridge, UK
| | | | | | - Krishnaa Mahbubani
- Department of Surgery, University of Cambridge, Cambridge, UK
- Collaborative Biorepository for Translational Medicine (CBTM), Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Collaborative Biorepository for Translational Medicine (CBTM), Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Alan R Lowe
- Institute for Structural and Molecular Biology, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
- Artificial Intelligence in Oncology (B450), Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Philip H Jones
- Wellcome Sanger Institute, Hinxton, UK.
- Department of Oncology, Hutchison Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Shimonosono M, Morimoto M, Hirose W, Tomita Y, Matsuura N, Flashner S, Ebadi MS, Okayasu EH, Lee CY, Britton WR, Martin C, Wuertz BR, Parikh AS, Sachdeva UM, Ondrey FG, Atigadda VR, Elmets CA, Abrams JA, Muir AB, Klein-Szanto AJ, Weinberg KI, Momen-Heravi F, Nakagawa H. Modeling Epithelial Homeostasis and Perturbation in Three-Dimensional Human Esophageal Organoids. Biomolecules 2024; 14:1126. [PMID: 39334892 PMCID: PMC11430971 DOI: 10.3390/biom14091126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Esophageal organoids from a variety of pathologies including cancer are grown in Advanced Dulbecco's Modified Eagle Medium-Nutrient Mixture F12 (hereafter ADF). However, the currently available ADF-based formulations are suboptimal for normal human esophageal organoids, limiting the ability to compare normal esophageal organoids with those representing a given disease state. Methods: We have utilized immortalized normal human esophageal epithelial cell (keratinocyte) lines EPC1 and EPC2 and endoscopic normal esophageal biopsies to generate three-dimensional (3D) organoids. To optimize the ADF-based medium, we evaluated the requirement of exogenous epidermal growth factor (EGF) and inhibition of transforming growth factor-(TGF)-β receptor-mediated signaling, both key regulators of the proliferation of human esophageal keratinocytes. We have modeled human esophageal epithelial pathology by stimulating esophageal 3D organoids with interleukin (IL)-13, an inflammatory cytokine, or UAB30, a novel pharmacological activator of retinoic acid signaling. Results: The formation of normal human esophageal 3D organoids was limited by excessive EGF and intrinsic TGFβ-receptor-mediated signaling. Optimized HOME0 improved normal human esophageal organoid formation. In the HOME0-grown organoids, IL-13 and UAB30 induced epithelial changes reminiscent of basal cell hyperplasia, a common histopathologic feature in broad esophageal disease conditions including eosinophilic esophagitis. Conclusions: HOME0 allows modeling of the homeostatic differentiation gradient and perturbation of the human esophageal epithelium while permitting a comparison of organoids from mice and other organs grown in ADF-based media.
Collapse
Affiliation(s)
- Masataka Shimonosono
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Masaki Morimoto
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Wataru Hirose
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Yasuto Tomita
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Norihiro Matsuura
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Samuel Flashner
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Mesra S. Ebadi
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Emilea H. Okayasu
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Christian Y. Lee
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - William R. Britton
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
| | - Cecilia Martin
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
- Organoid & Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, New York, NY 10032, USA
| | - Beverly R. Wuertz
- Department of Otolaryngology, Head and Neck Surgery, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (B.R.W.); (F.G.O.)
| | - Anuraag S. Parikh
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
- Department of Otolaryngology, Head and Neck Surgery, Columbia University, New York, NY 10032, USA
| | - Uma M. Sachdeva
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Frank G. Ondrey
- Department of Otolaryngology, Head and Neck Surgery, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (B.R.W.); (F.G.O.)
| | - Venkatram R. Atigadda
- Department of Dermatology, University of Alabama, Birmingham, AL 35294, USA; (V.R.A.); (C.A.E.)
| | - Craig A. Elmets
- Department of Dermatology, University of Alabama, Birmingham, AL 35294, USA; (V.R.A.); (C.A.E.)
| | - Julian A. Abrams
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Amanda B. Muir
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| | | | - Kenneth I. Weinberg
- Department of Pediatrics, Maternal & Child Health Research Institute, Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA;
| | - Fatemeh Momen-Heravi
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (M.M.); (W.H.); (Y.T.); (N.M.); (S.F.); (M.S.E.); (E.H.O.); (C.Y.L.); (W.R.B.); (C.M.); (A.S.P.); (J.A.A.); (F.M.-H.)
- Organoid & Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, New York, NY 10032, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
5
|
de Boer RJ, van Lidth de Jeude JF, Heijmans J. ER stress and the unfolded protein response in gastrointestinal stem cells and carcinogenesis. Cancer Lett 2024; 587:216678. [PMID: 38360143 DOI: 10.1016/j.canlet.2024.216678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Endoplasmic reticulum (ER) stress and the adaptive response that follows, termed the unfolded protein response (UPR), are crucial molecular mechanisms to maintain cellular integrity by safeguarding proper protein synthesis. Next to being important in protein homeostasis, the UPR is intricate in cell fate decisions such as proliferation, differentiation, and stemness. In the intestine, stem cells are critical in governing epithelial homeostasis and they are the cell of origin of gastrointestinal malignancies. In this review, we will discuss the role of ER stress and the UPR in the gastrointestinal tract, focusing on stem cells and carcinogenesis. Insights in mechanisms that connect ER stress and UPR with stemness and carcinogenesis may broaden our understanding in the development of cancer throughout the gastrointestinal tract and how we can exploit these mechanisms to target these malignancies.
Collapse
Affiliation(s)
- Ruben J de Boer
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Jooske F van Lidth de Jeude
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands
| | - Jarom Heijmans
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 69-71, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Amsterdam UMC, University of Amsterdam, Department of General Internal Medicine and Department of Hematology, Meibergdreef 9, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Wang Q, Qin Y, Li B. CD8 + T cell exhaustion and cancer immunotherapy. Cancer Lett 2023; 559:216043. [PMID: 36584935 DOI: 10.1016/j.canlet.2022.216043] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Immunotherapy plays an increasingly important role in the treatment of most malignant tumors, and CD8+ T cells are the most important antitumor effector cells in the process of immunotherapy, and their number and functional status largely determine the antitumor effect. However, under continuous antigen exposure and the stimulation of inflammatory factors, CD8+ T cells gradually show a weakened proliferation and effector function, accompanied by the expression of a variety of inhibitory receptors. This state is known as CD8+ T cell "exhaustion" and often leads to the loss of control and progression of tumors. Recent studies provided us a better understanding of the mechanisms of T cell exhaustion, this review provides an overview of the activation, exhaustion mechanisms and exhaustion characteristics of CD8+ T cells. Although immunotherapy can reverse the exhaustion of CD8+ T cells and significantly improve the antitumor effects, single immunotherapy often has limitations, and it is difficult to achieve satisfactory antitumor effects, therefore, this review also summarizes up-to-date information related to cancer immunotherapy, and these emerging insights provide promising clues to the future management of malignant tumors.
Collapse
Affiliation(s)
- Qingda Wang
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, Chengdu, China
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Bo Li
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, Chengdu, China.
| |
Collapse
|
7
|
Liao G, Tang J, Bai J. Early development of esophageal squamous cell cancer: Stem cells, cellular origins and early clone evolution. Cancer Lett 2023; 555:216047. [PMID: 36587837 DOI: 10.1016/j.canlet.2022.216047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC), a highly malignant cancer with poor prognosis, is an example of the classical view of cancer development based on stem cell origin and multistep progression. In the past five years, the applications of large-scale sequencing and single-cell sequencing have expanded to human esophageal normal tissues and precancerous lesions, which, coupled with the application of transgenic lineage tracing technology in mouse models, has provided a more comprehensive and detailed understanding of esophageal stem cell heterogeneity and early clonal evolution of ESCC. In this review, we discuss the heterogeneity of esophageal basal-layer stem cells and their potential relationship with cells of ESCC origin. We present evidence that expansion of NOTCH1 mutants may call into play an evolutionarily conserved anti-cancer mechanism and mold the model of early clonal evolution in ESCCs. Finally, we discuss the potential avenues in this context. This review provides a focused understanding of the early development of ESCC, as a background for early tumor detection, intervention, and prevention strategies.
Collapse
Affiliation(s)
- Guobin Liao
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China; Department of Gastroenterology, The 901 Hospital of Chinese People's Liberation Army Joint Service Support Unit, Hefei, 230000, China.
| | - Jun Tang
- Department of Gastroenterology, The 901 Hospital of Chinese People's Liberation Army Joint Service Support Unit, Hefei, 230000, China.
| | - Jianying Bai
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
8
|
Zyla RE, Kalimuthu SN. Barrett’s Esophagus and Esophageal Adenocarcinoma: A Histopathological Perspective. Thorac Surg Clin 2022; 32:413-424. [DOI: 10.1016/j.thorsurg.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Ferrer-Torres D, Wu JH, Zhang CJ, Hammer MA, Dame MK, Wu A, Holloway EM, Karpoff K, McCarthy CL, Bohm MS, Cuttitta AJ, Tigani DJ, Huang S, Tsai YH, Miller AJ, Walker T, Bayer DE, Hogan SP, Turgeon DK, Lin J, Higgins PDR, Sexton J, Spence JR. Mapping the adult human esophagus in vivo and in vitro. Development 2022; 149:dev200614. [PMID: 36278875 PMCID: PMC9720751 DOI: 10.1242/dev.200614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/20/2022] [Indexed: 10/22/2023]
Abstract
Many esophageal diseases can arise during development or throughout life. Therefore, well-characterized in vitro models and detailed methods are essential for studying human esophageal development, homeostasis and disease. Here, we (1) create an atlas of the cell types observed in the normal adult human esophagus; (2) establish an ancestrally diverse biobank of in vitro esophagus tissue to interrogate homeostasis and injury; and (3) benchmark in vitro models using the adult human esophagus atlas. We created a single-cell RNA sequencing reference atlas using fresh adult esophagus biopsies and a continuously expanding biobank of patient-derived in vitro cultures (n=55 lines). We identify and validate several transcriptionally distinct cell classes in the native human adult esophagus, with four populations belonging to the epithelial layer, including basal, epibasal, early differentiating and terminally differentiated luminal cells. Benchmarking in vitro esophagus cultures to the in vivo reference using single-cell RNA sequencing shows that the basal stem cells are robustly maintained in vitro, and the diversity of epithelial cell types in culture is dependent on cell density. We also demonstrate that cultures can be grown in 2D or as 3D organoids, and these methods can be employed for modeling the complete epithelial layers, thereby enabling in vitro modeling of the human adult esophagus.
Collapse
Affiliation(s)
- Daysha Ferrer-Torres
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Cell Plasticity and Organ Design, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joshua H. Wu
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Charles J. Zhang
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Max A. Hammer
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael K. Dame
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Angeline Wu
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emily M. Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kateryna Karpoff
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Caroline L. McCarthy
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Margaret S. Bohm
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ashley J. Cuttitta
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Dominic J. Tigani
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sha Huang
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alyssa J. Miller
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Taylor Walker
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - David E. Bayer
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Simon P. Hogan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Danielle Kim Turgeon
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jules Lin
- Department of Thoracic Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Peter D. R. Higgins
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jonathan Sexton
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
- U-M Center for Drug Repurposing, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jason R. Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Cell Plasticity and Organ Design, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Fowler JC, Jones PH. Somatic Mutation: What Shapes the Mutational Landscape of Normal Epithelia? Cancer Discov 2022; 12:1642-1655. [PMID: 35397477 PMCID: PMC7613026 DOI: 10.1158/2159-8290.cd-22-0145] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
Abstract
Epithelial stem cells accumulate mutations throughout life. Some of these mutants increase competitive fitness and may form clones that colonize the stem cell niche and persist to acquire further genome alterations. After a transient expansion, mutant stem cells must revert to homeostatic behavior so normal tissue architecture is maintained. Some positively selected mutants may promote cancer development, whereas others inhibit carcinogenesis. Factors that shape the mutational landscape include wild-type and mutant stem cell dynamics, competition for the niche, and environmental exposures. Understanding these processes may give new insight into the basis of cancer risk and opportunities for cancer prevention. SIGNIFICANCE Recent advances in sequencing have found somatic mutations in all epithelial tissues studied to date. Here we review how the mutational landscape of normal epithelia is shaped by clonal competition within the stem cell niche combined with environmental exposures. Some of the selected mutant genes are oncogenic, whereas others may be inhibitory of transformation. Discoveries in this area leave many open questions, such as the definition of cancer driver genes, the mechanisms by which tissues constrain a high proportion of oncogenic mutant cells, and whether clonal fitness can be modulated to decrease cancer risk.
Collapse
Affiliation(s)
| | - Philip H Jones
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Liao G, Dai N, Xiong T, Wang L, Diao X, Xu Z, Ni Y, Chen D, Jiang A, Lin H, Dai S, Bai J. Single-cell transcriptomics provides insights into the origin and microenvironment of human oesophageal high-grade intraepithelial neoplasia. Clin Transl Med 2022; 12:e874. [PMID: 35608199 PMCID: PMC9128161 DOI: 10.1002/ctm2.874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background High‐grade intraepithelial neoplasia (HIN) is the precursor of oesophageal squamous cell carcinoma. The molecular and functional properties of HIN are determined by intrinsic origin cells and the extrinsic microenvironment. Yet, these factors are poorly understood. Methods We performed single‐cell RNA sequencing of cells from HINs and adjacent tissues from the human oesophagus. We analysed the heterogeneity of basal layer cells and confirmed it using immunostaining. Aneuploid cells in HIN were studied using primary cell culture combined with karyotype analysis. We reconstructed the lineage relationship between tumour and normal populations based on transcriptome similarity. Integration analysis was applied to our epithelial data and published invasive cancer data, and results were confirmed by immunostaining and 3D organoid functional experiments. We also analysed the tumour microenvironment of HIN. Results The basal layer contained two cell populations: KRT15highSTMN1low and KRT15highSTMN1high cells, which were located mainly in the interpapillary and papillary zones, respectively. The KRT15highSTMN1low population more closely resembled stem cells and transcriptome similarity revealed that HIN probably originated from these slow‐cycling KRT15highSTMN1low cells. 3D Organoid experiments and RNA‐sequencing showed that basal‐cell features and the differentiation ability of the normal epithelium were largely retained in HIN, but may change dramatically in tumour invasion stage. Moreover, the tumour microenvironment of HIN was characterised by both inflammation and immunosuppression. Conclusions Our study provides a comprehensive single‐cell transcriptome landscape of human oesophageal HIN. Our findings on the origin cells and unique microenvironment of HIN will allow for the development of strategies to block tumour progression and even prevent cancer initiation.
Collapse
Affiliation(s)
- Guobin Liao
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Nan Dai
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Tiantian Xiong
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, China
| | - Liang Wang
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xinwei Diao
- Pathology, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhizhen Xu
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, China
| | - Yuanli Ni
- Chongqing University Cancer Hospital, Chongqing, China
| | - Dingrong Chen
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Airui Jiang
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Hui Lin
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Shuangshuang Dai
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, China
| | - Jianying Bai
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
12
|
CD73 + Epithelial Progenitor Cells That Contribute to Homeostasis and Renewal Are Depleted in Eosinophilic Esophagitis. Cell Mol Gastroenterol Hepatol 2022; 13:1449-1467. [PMID: 35108658 PMCID: PMC8957025 DOI: 10.1016/j.jcmgh.2022.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Although basal cell hyperplasia is a histologic hallmark of eosinophilic esophagitis (EoE), little is known about the capabilities of epithelial renewal and differentiation in the EoE inflammatory milieu. In murine esophageal epithelium, there are self-renewing and slowly proliferating basal stem-like cells characterized by concurrent expression of CD73 (5'-nucleotidase ecto) and CD104 (integrin β4). Here, we investigated CD73+CD104+ cells within the basal population of human esophageal epithelium and clarified the biological significance of these cells in the EoE epithelium. METHODS We performed flow cytometry on esophageal biopsy samples from EoE and non-EoE patients to determine the quantity of CD73+CD104+ cells in the epithelium. Simulating the EoE milieu we stimulated primary patient-derived and immortalized cell line-derived esophageal organoids with interleukin (IL)4 and IL13 and analyzed by flow cytometry, immunohistochemistry, and quantitative reverse-transcription polymerase chain reaction. We performed single-cell RNA sequencing on primary organoids in the setting of IL13 stimulation and evaluated the CD73+CD104+ population. We performed fluorescent-activated cell sorting to purify CD73+CD104+ and CD73- CD104+ populations and seeded these groups in organoid culture to evaluate the organoid formation rate and organoid size. We used RNA interference to knock down CD73 in esophageal organoids to evaluate organoid formation rates and size. We evaluated the effects of signal transducer and activator of transcription 6 (STAT6) signaling inhibition by RNA interference, a STAT6 inhibitor, AS1517499, as well as the proton pump inhibitor omeprazole. RESULTS EoE patients showed decreased epithelial CD73+CD104+ cell content. IL4 and IL13 stimulation depleted this population in 3-dimensional organoids with a recapitulation of basal cell hyperplasia as corroborated by single-cell RNA sequencing of the organoids, which suggests depletion of CD73+CD104+ cells. The CD73+CD104+ population had enhanced organoid formation compared with the CD73-CD104+ population. Similarly, knock-down of CD73 resulted in decreased organoid formation rate. Genetic and pharmacologic inhibition of STAT6 prevented T helper 2 cytokine-induced depletion of CD73+CD104+ cells. Lastly, omeprazole treatment prevented the effects of IL4 and IL13 on the CD73+CD104+ population. CONCLUSIONS This study addressed the role of CD73+CD104+ cells in epithelial renewal and homeostasis in the context of EoE. The depletion of the CD73+CD104+ self-renewal population by helper T cell 2 cytokines in EoE milieu may be perpetuating epithelial injury. Future therapies targeting epithelial restitution in EoE could decrease the need for immune modulation and steroid therapy.
Collapse
|
13
|
Mahmoudian RA, Farshchian M, Abbaszadegan MR. Genetically engineered mouse models of esophageal cancer. Exp Cell Res 2021; 406:112757. [PMID: 34331909 DOI: 10.1016/j.yexcr.2021.112757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/10/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Esophageal cancer is the most common cause of cancer-related death worldwide with a diverse geographical distribution, poor prognosis, and diagnosis in advanced stages of the disease. Identification of the mechanisms involved in esophageal cancer development is evaluative to improve outcomes for patients. Genetically engineered mouse models (GEMMs) of cancer provide the physiologic, molecular, and histologic features of the human tumors to determine the pathogenesis and treatments for cancer, hence exhibiting a source of tremendous potential for oncology research. The advancement of cancer modeling in mice has improved to the extent that researchers can observe and manipulate the disease process in a specific manner. Despite the significant differences between mice and humans, mice can be great models for human oncology researches due to similarities between them at the molecular and physiological levels. Due to most of the existing esophageal cancer GEMMs do not propose an ideal system for pathogenesis of the disease, genetic risks, and microenvironment exposure, so identification of challenges in GEM modeling and well-developed technologies are required to obtain the most value for patients. In this review, we describe the biology of human and mouse, followed by the exciting esophageal cancer mouse models with a discussion of applicability and challenges of these models for generating new GEMMs in future studies.
Collapse
Affiliation(s)
| | - Moein Farshchian
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi, Mashhad, Iran.
| | | |
Collapse
|
14
|
Pereira D, Sequeira I. A Scarless Healing Tale: Comparing Homeostasis and Wound Healing of Oral Mucosa With Skin and Oesophagus. Front Cell Dev Biol 2021; 9:682143. [PMID: 34381771 PMCID: PMC8350526 DOI: 10.3389/fcell.2021.682143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Epithelial tissues are the most rapidly dividing tissues in the body, holding a natural ability for renewal and regeneration. This ability is crucial for survival as epithelia are essential to provide the ultimate barrier against the external environment, protecting the underlying tissues. Tissue stem and progenitor cells are responsible for self-renewal and repair during homeostasis and following injury. Upon wounding, epithelial tissues undergo different phases of haemostasis, inflammation, proliferation and remodelling, often resulting in fibrosis and scarring. In this review, we explore the phenotypic differences between the skin, the oesophagus and the oral mucosa. We discuss the plasticity of these epithelial stem cells and contribution of different fibroblast subpopulations for tissue regeneration and wound healing. While these epithelial tissues share global mechanisms of stem cell behaviour for tissue renewal and regeneration, the oral mucosa is known for its outstanding healing potential with minimal scarring. We aim to provide an updated review of recent studies that combined cell therapy with bioengineering exporting the unique scarless properties of the oral mucosa to improve skin and oesophageal wound healing and to reduce fibrotic tissue formation. These advances open new avenues toward the ultimate goal of achieving scarless wound healing.
Collapse
Affiliation(s)
| | - Inês Sequeira
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
15
|
Zhang Y, Bailey D, Yang P, Kim E, Que J. The development and stem cells of the esophagus. Development 2021; 148:148/6/dev193839. [PMID: 33782045 PMCID: PMC8034879 DOI: 10.1242/dev.193839] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The esophagus is derived from the anterior portion of the foregut endoderm, which also gives rise to the respiratory system. As it develops, the esophageal lining is transformed from a simple columnar epithelium into a stratified squamous cell layer, accompanied by the replacement of unspecified mesenchyme with layers of muscle cells. Studies in animal models have provided significant insights into the roles of various signaling pathways in esophageal development. More recent studies using human pluripotent stem cells (hPSCs) further demonstrate that some of these signaling pathways are conserved in human esophageal development. In addition, a combination of mouse genetics and hPSC differentiation approaches have uncovered new players that control esophageal morphogenesis. In this Review, we summarize these new findings and discuss how the esophagus is established and matures throughout different stages, including its initial specification, respiratory-esophageal separation, epithelial morphogenesis and maintenance. We also discuss esophageal muscular development and enteric nervous system innervation, which are essential for esophageal structure and function.
Collapse
Affiliation(s)
- Yongchun Zhang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China,Authors for correspondence (; )
| | - Dominique Bailey
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Patrick Yang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Eugene Kim
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianwen Que
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Authors for correspondence (; )
| |
Collapse
|
16
|
Krishnamurthy K, Lindsey AM, Estrada CA, Martinez CC, Cusnir M, Schwartz M, Sriganeshan V, Poppiti R. Title- Genomic landscape of squamous cell carcinoma- Different genetic pathways culminating in a common phenotype. Cancer Treat Res Commun 2020; 25:100238. [PMID: 33260028 DOI: 10.1016/j.ctarc.2020.100238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Squamous cell carcinomas (SqCCs) are the most common solid tumors in humans and are found across multiple organ systems. Although, integrated analysis of genetic alterations divulge similarities between SqCCs from various body sites, certain genes appear to be more frequently mutated in a given SqCC. These subtle differences may hold the key to determining the differentiation characteristics and predicting aggressiveness of tumors. MATERIALS AND METHOD Fifty-four cases of SqCCs, in which the primary location of the tumor could be ascertained by clinical and radiological findings, were included in this study. Next generation sequencing data was analyzed for recurrent genetic abnormalities. RESULTS Genetic alterations were found in 219 genes in the 54 cases studied. TP53 mutations were found to be more frequent in pulmonary SqCCs (86.5%) as compared to non-pulmonary SqCCs (58.8%) (p<0.05). NOTCH gene family mutations and CREBBP mutations were limited to non-pulmonary SqCC (p<0.005) and were mutated in 41.2% and 17.6% cases. CONCLUSION A detailed comparative analysis of the genetic alterations identified by sequencing identified higher frequency of TP53 mutations in lung SqCCs as compared to non-pulmonary SqCCs. NOTCH and CREBPP mutations were found to be absent in lung and head and neck SqCCs and more frequent in SqCCs from other locations.
Collapse
Affiliation(s)
- Kritika Krishnamurthy
- A.M. Rywlin, MD Department of Pathology, Mount Sinai Medical Center, Miami Beach, FL 33140, United States.
| | - Allison M Lindsey
- Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, United States
| | - Christie-Anne Estrada
- Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, United States
| | - Camila C Martinez
- Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, United States
| | - Mike Cusnir
- Department of Medical Oncology, Mount Sinai Medical Center, Miami Beach, FL 33140, United States
| | - Michael Schwartz
- Department of Medical Oncology, Mount Sinai Medical Center, Miami Beach, FL 33140, United States
| | - Vathany Sriganeshan
- A.M. Rywlin, MD Department of Pathology, Mount Sinai Medical Center, Miami Beach, FL 33140, United States; Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, United States
| | - Robert Poppiti
- A.M. Rywlin, MD Department of Pathology, Mount Sinai Medical Center, Miami Beach, FL 33140, United States; Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, United States
| |
Collapse
|
17
|
Alison MR. The cellular origins of cancer with particular reference to the gastrointestinal tract. Int J Exp Pathol 2020; 101:132-151. [PMID: 32794627 PMCID: PMC7495846 DOI: 10.1111/iep.12364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022] Open
Abstract
Stem cells or their closely related committed progenitor cells are the likely founder cells of most neoplasms. In the continually renewing and hierarchically organized epithelia of the oesophagus, stomach and intestine, homeostatic stem cells are located at the beginning of the cell flux, in the basal layer of the oesophagus, the isthmic region of gastric oxyntic glands and at the bottom of gastric pyloric-antral glands and colonic crypts. The introduction of mutant oncogenes such as KrasG12D or loss of Tp53 or Apc to specific cell types expressing the likes of Lgr5 and Mist1 can be readily accomplished in genetically engineered mouse models to initiate tumorigenesis. Other origins of cancer are discussed including 'reserve' stem cells that may be activated by damage or through disruption of morphogen gradients along the crypt axis. In the liver and pancreas, with little cell turnover and no obvious stem cell markers, the importance of regenerative hyperplasia associated with chronic inflammation to tumour initiation is vividly apparent, though inflammatory conditions in the renewing populations are also permissive for tumour induction. In the liver, hepatocytes, biliary epithelial cells and hepatic progenitor cells are embryologically related, and all can give rise to hepatocellular carcinoma and cholangiocarcinoma. In the exocrine pancreas, both acinar and ductal cells can give rise to pancreatic ductal adenocarcinoma (PDAC), although the preceding preneoplastic states are quite different: acinar-ductal metaplasia gives rise to pancreatic intraepithelial neoplasia culminating in PDAC, while ducts give rise to PDAC via. mucinous cell metaplasia that may have a polyclonal origin.
Collapse
Affiliation(s)
- Malcolm R. Alison
- Centre for Tumour BiologyBarts Cancer Institute, Charterhouse SquareBarts and The London School of Medicine and DentistryLondonUK
| |
Collapse
|
18
|
Raad S, David A, Que J, Faure C. Genetic Mouse Models and Induced Pluripotent Stem Cells for Studying Tracheal-Esophageal Separation and Esophageal Development. Stem Cells Dev 2020; 29:953-966. [PMID: 32515280 PMCID: PMC9839344 DOI: 10.1089/scd.2020.0075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Esophagus and trachea arise from a common origin, the anterior foregut tube. The compartmentalization process of the foregut into the esophagus and trachea is still poorly understood. Esophageal atresia/tracheoesophageal fistula (EA/TEF) is one of the most common gastrointestinal congenital defects with an incidence rate of 1 in 2,500 births. EA/TEF is linked to the disruption of the compartmentalization process of the foregut tube. In EA/TEF patients, other organ anomalies and disorders have also been reported. Over the last two decades, animal models have shown the involvement of multiple signaling pathways and transcription factors in the development of the esophagus and trachea. Use of induced pluripotent stem cells (iPSCs) to understand organogenesis has been a valuable tool for mimicking gastrointestinal and respiratory organs. This review focuses on the signaling mechanisms involved in esophageal development and the use of iPSCs to model and understand it.
Collapse
Affiliation(s)
- Suleen Raad
- Esophageal Development and Engineering Laboratory, Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Anu David
- Esophageal Development and Engineering Laboratory, Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Department of Medicine, Center for Human Development, Columbia University, New York, New York, USA
| | - Christophe Faure
- Esophageal Development and Engineering Laboratory, Sainte-Justine Research Centre, Montreal, Quebec, Canada.,Esophageal Atresia Clinic and Division of Pediatric Gastroenterology Hepatology and Nutrition, CHU Sainte Justine, Université de Montréal, Montréal, Quebec, Canada.,Address correspondence to: Dr. Christophe Faure, Division of Pediatric Gastroenterology, Sainte-Justine Hospital, 3715 Côte Sainte Catherine, Montreal H3T1C5, Quebec, Canada
| |
Collapse
|
19
|
Hassan WA, Ibrahim R. Expression of CD117, CD34, and VEGF proteins in progression from endometrial hyperplasia to endometrioid carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2115-2122. [PMID: 32922608 PMCID: PMC7476947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The risk of endometrial hyperplasia progressing into endometrioid carcinoma ranges from 1% for benign hyperplasia to 46.2% for endometrial intra-epithelial neoplasia. Differentiation between both types of hyperplasia is thus crucial for optimal management. The present study investigates the expression of the following immune-histochemical markers, for their potential roles in differentiating between both types of endometrial hyperplasia; as well as their expression in endometrial carcinoma: VEGF, CD34 and CD117. METHODS Tissue samples were obtained, fixed, processed, stained by hematoxylin and eosin for diagnosis, and then imunohistochemically stained using anti CD117, CD34, and VEGF antibodies. RESULTS In benign endometrial hyperplasia, the cells show weak expression to VEGF and CD34, and absent CD117. In endometrial intra-epithelial neoplasia, the cells show strong expression of VEGF and weak expression of CD34 and CD117. In case of endometrioid carcinoma, all cases showed strong reaction for VEGF and CD34, and moderate expression to CD117. CONCLUSION Our data suggests a role for CD117, CD34, and VEGF in progression from hyperplasia to carcinoma.
Collapse
Affiliation(s)
- Wael Abdo Hassan
- Department of Pathology, Faculty of Medicine, Suez Canal UniversityIsmailia, Egypt
- Department of Basic Sciences, Sulaiman Al Rajhi UniversityAl-Bukayriyah, KSA
| | - Rehab Ibrahim
- Department of Pathology, Faculty of Medicine, Suez Canal UniversityIsmailia, Egypt
- Department of Pathology, Collage of Medicine, Jouf UniversitySakaka, KSA
| |
Collapse
|
20
|
Suman S, Domingues A, Ratajczak J, Ratajczak MZ. Potential Clinical Applications of Stem Cells in Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:1-22. [PMID: 31898779 DOI: 10.1007/978-3-030-31206-0_1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The field of regenerative medicine is looking for a pluripotent/multipotent stem cell able to differentiate across germ layers and be safely employed in therapy. Unfortunately, with the exception of hematopoietic stem/progenitor cells (HSPCs) for hematological applications, the current clinical results with stem cells are somewhat disappointing. The potential clinical applications of the more primitive embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have so far been discouraging, as both have exhibited several problems, including genomic instability, a risk of teratoma formation, and the possibility of rejection. Therefore, the only safe stem cells that have so far been employed in regenerative medicine are monopotent stem cells, such as the abovementioned HSPCs or mesenchymal stem cells (MSCs) isolated from postnatal tissues. However, their monopotency, and therefore limited differentiation potential, is a barrier to their broader application in the clinic. Interestingly, results have accumulated indicating that adult tissues contain rare, early-development stem cells known as very small embryonic-like stem cells (VSELs), which can differentiate into cells from more than one germ layer. This chapter addresses different sources of stem cells for potential clinical application and their advantages and problems to be solved.
Collapse
Affiliation(s)
- Suman Suman
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Alison Domingues
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA. .,Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland.
| |
Collapse
|
21
|
Zhang Y, Yang Y, Jiang M, Huang SX, Zhang W, Al Alam D, Danopoulos S, Mori M, Chen YW, Balasubramanian R, Chuva de Sousa Lopes SM, Serra C, Bialecka M, Kim E, Lin S, Toste de Carvalho ALR, Riccio PN, Cardoso WV, Zhang X, Snoeck HW, Que J. 3D Modeling of Esophageal Development using Human PSC-Derived Basal Progenitors Reveals a Critical Role for Notch Signaling. Cell Stem Cell 2018; 23:516-529.e5. [PMID: 30244870 DOI: 10.1016/j.stem.2018.08.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/20/2018] [Accepted: 08/15/2018] [Indexed: 12/25/2022]
Abstract
Pluripotent stem cells (PSCs) could provide a powerful system to model development of the human esophagus, whose distinct tissue organization compared to rodent esophagus suggests that developmental mechanisms may not be conserved between species. We therefore established an efficient protocol for generating esophageal progenitor cells (EPCs) from human PSCs. We found that inhibition of TGF-ß and BMP signaling is required for sequential specification of EPCs, which can be further purified using cell-surface markers. These EPCs resemble their human fetal counterparts and can recapitulate normal development of esophageal stratified squamous epithelium during in vitro 3D cultures and in vivo. Importantly, combining hPSC differentiation strategies with mouse genetics elucidated a critical role for Notch signaling in the formation of this epithelium. These studies therefore not only provide an efficient approach to generate EPCs, but also offer a model system to study the regulatory mechanisms underlying development of the human esophagus.
Collapse
Affiliation(s)
- Yongchun Zhang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA; Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Ying Yang
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Ming Jiang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA; Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Sarah Xuelian Huang
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Wanwei Zhang
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Denise Al Alam
- Developmental Biology and Regenerative Medicine Program, Department of Pediatric Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Soula Danopoulos
- Developmental Biology and Regenerative Medicine Program, Department of Pediatric Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Munemasa Mori
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Ya-Wen Chen
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Revathi Balasubramanian
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands; Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Carlos Serra
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Monika Bialecka
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Eugene Kim
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Sijie Lin
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Ana Luisa Rodrigues Toste de Carvalho
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA; Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Paul N Riccio
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Wellington V Cardoso
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Xin Zhang
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Hans-Willem Snoeck
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA; Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
22
|
Abstract
Squamous cell carcinomas (SCCs) are among the most prevalent human cancers. SCC comprises a wide range of tumours originated from diverse anatomical locations that share common genetic mutations and expression of squamous differentiation markers. SCCs arise from squamous and non-squamous epithelial tissues. Here, we discuss the different studies in which the cell of origin of SCCs has been uncovered by expressing oncogenes and/or deleting tumour suppressor genes in the different cell lineages that compose these epithelia. We present evidence showing that the squamous differentiation phenotype of the tumour depends on the type of mutated oncogene and the cell of origin, which dictate the competence of the cells to initiate SCC formation, as well as on the aggressiveness and invasive properties of these tumours.
Collapse
Affiliation(s)
- Adriana Sánchez-Danés
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels, Belgium
| | - Cédric Blanpain
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels, Belgium.
- WELBIO, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
23
|
Zhang W, Wang DH. Origins of Metaplasia in Barrett's Esophagus: Is this an Esophageal Stem or Progenitor Cell Disease? Dig Dis Sci 2018; 63:2005-2012. [PMID: 29675663 PMCID: PMC6783253 DOI: 10.1007/s10620-018-5069-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The incidence of esophageal adenocarcinoma has been increasing in Western countries over the past several decades. Though Barrett's esophagus, in which the normal esophageal squamous epithelium is replaced with metaplastic intestinalized columnar cells due to chronic damage from gastroesophageal reflux, is accepted as the requisite precursor lesion for esophageal adenocarcinoma, the Barrett's esophagus cell of origin and the molecular mechanism underlying esophageal epithelial metaplasia remain controversial. Much effort has been dedicated towards identifying the Barrett's esophagus cell of origin since this could lead to more effective prevention and treatment strategies for both Barrett's esophagus and esophageal adenocarcinoma. Previously, it was hypothesized that terminally differentiated esophageal squamous cells might undergo direct conversion into specialized intestinal columnar cells via the process of transdifferentiation. However, there is increasing evidence that stem and/or progenitor cells are molecularly reprogrammed through the process of transcommitment to differentiate into the columnar cell lineages that characterize Barrett's esophagus. Given that Barrett's esophagus originates at the gastroesophageal junction, the boundary between the distal esophagus and gastric cardia, potential sources of these stem and/or progenitor cells include columnar cells from the squamocolumnar junction or neighboring gastric cardia, native esophageal squamous cells, native esophageal cuboidal or columnar cells from submucosal glands or ducts, or circulating bone marrow-derived cells. In this review, we focus on native esophageal specific stem and/or progenitor cells and detail molecular mediators of transcommitment based on recent insights gained from novel mouse models and clinical observations from patients.
Collapse
Affiliation(s)
- Wei Zhang
- Esophageal Diseases Center, Department of Internal Medicine and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David H. Wang
- Esophageal Diseases Center, Department of Internal Medicine and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Medical Service, Dallas VA Medical Center, Dallas, Texas, USA
| |
Collapse
|
24
|
Abstract
The incidence of esophageal adenocarcinoma (EAC) and its precursor lesion Barrett's esophagus (BE) has been increasing steadily in the western world in recent decades. Understanding the cellular origins of BE and the conditions responsible for their malignant transformation would greatly facilitate risk assessment and identification of patients at risk of progression, but this topic remains a source of debate. Here, we review recent findings that have provided support for the gastroesophageal junction (GEJ) as the main source of stem cells that give rise to BE and EAC. These include both gastric cardia cells and transitional basal cells. Furthermore, we discuss the role of chronic injury and inflammation in a tumor microenvironment as a major factor in promoting stem cell expansion and proliferation as well as transformation of the GEJ-derived stem cells and progression to EAC. We conclude that there exists a large amount of empirical support for the GEJ as the likely source of BE stem cells. While BE seems to resemble a successful adaptation to esophageal damage, carcinogenesis appears as a consequence of natural selection at the level of GEJ stem cells, and later glands, that expand into the esophagus wherein the local ecology creates the selective landscape for cancer progression.
Collapse
|
25
|
Abstract
Oesophageal cancer remains one of the least explored malignancies. However, in recent years its increasing incidence and poor prognosis have stimulated interest from the cancer community to understand the pathways to the initiation and progression of the disease. Critical understanding of the molecular processes controlling changes in stem cell fate and the cross-talk with their adjacent stromal neighbours will provide essential knowledge on the mechanisms that go awry in oesophageal carcinogenesis. Advances in lineage tracing techniques have represented a powerful tool to start understanding changes in oesophageal cell behaviour in response to mutations and mutagens that favour tumour development. Environmental cues constitute an important factor in the aetiology of oesophageal cancer. The oesophageal epithelium is a tissue exposed to harsh conditions that not only damage the DNA of epithelial cells but also result in an active stromal reaction, promoting tumour progression. Ultimately, cancer represents a complex interplay between malignant cells and their microenvironment. Indeed, increasing evidence suggests that the accumulation of somatic mutations is not the sole cause of cancer. Instead, non-cell autonomous components, coming from the stroma, can significantly contribute from the earliest stages of tumour formation. The realisation that stromal cells play an important role in cancer has transformed this cellular compartment into an attractive and emerging field of research. It is becoming increasingly clear that the tumour microenvironment provides unique opportunities to identify early diagnostic and prognostic markers, as well as potential therapeutic strategies that may synergise with those targeting tumour cells. This chapter compiles recent observations on oesophageal epithelial stem cell biology, and how environmental and micro-environmental changes may lead to oesophageal disease and cancer.
Collapse
Affiliation(s)
- Maria P Alcolea
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Tennis Court Road, CB2 1QR, Cambridge, UK
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, CB2 0XZ, Cambridge, UK
| |
Collapse
|
26
|
钟 海, 李 想, 梁 洪, 刘 南, 刘 煜, 张 军, 吴 旭. [Tubular gastric elongation surgery for high esophageal-gastric anastomosis after resection of esophageal cancer: analysis of 5 cases]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:123-124. [PMID: 33177022 PMCID: PMC6765623 DOI: 10.3969/j.issn.1673-4254.2018.01.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To summarize our experience with tubular gastric elongation surgery for management of insufficient gastric length for high esophageal-gastric anastomosis following esophageal carcinoma resection. METHODS From September, 2015 to October 2016, 5 patients with esophageal cancer were treated in our department, including two with cervical esophageal cancer and 3 with thoracic esophageal cancer. The patients with cervical esophageal cancer underwent pharyngeal resection, total laryngectomy, esophageal varus extubation and gastric oropharyngeal anastomosis, and the patients with thoracic esophageal cancer underwent esophageal cancer resection with incisions on the left neck, the right chest and the median abdomen. During the surgery, the length of the stomach was found insufficient to allow routine oropharyngeal anastomosis, and tubular gastric elongation was conducted to extend the tubular stomach to enable successful completion of the surgery. RESULTS All the patients recovered smoothly after the surgery and were discharged after 2-3 weeks. CONCLUSIONS Tubular gastric elongation surgery can be a good choice for high esophageal-gastric anastomosis after resection of esophageal cancer in cases of insufficient tubular stomach length or high tension at the anastomosis.
Collapse
Affiliation(s)
- 海 钟
- />南方医科大学附属南方医院惠侨医疗中心胸外科,广东 广州 510515Department of Thoracic Surgery, Southern Hospital, Southern Medical University, Guangzhou 510515, China
| | - 想 李
- />南方医科大学附属南方医院惠侨医疗中心胸外科,广东 广州 510515Department of Thoracic Surgery, Southern Hospital, Southern Medical University, Guangzhou 510515, China
| | - 洪森 梁
- />南方医科大学附属南方医院惠侨医疗中心胸外科,广东 广州 510515Department of Thoracic Surgery, Southern Hospital, Southern Medical University, Guangzhou 510515, China
| | - 南波 刘
- />南方医科大学附属南方医院惠侨医疗中心胸外科,广东 广州 510515Department of Thoracic Surgery, Southern Hospital, Southern Medical University, Guangzhou 510515, China
| | - 煜凡 刘
- />南方医科大学附属南方医院惠侨医疗中心胸外科,广东 广州 510515Department of Thoracic Surgery, Southern Hospital, Southern Medical University, Guangzhou 510515, China
| | - 军花 张
- />南方医科大学附属南方医院惠侨医疗中心胸外科,广东 广州 510515Department of Thoracic Surgery, Southern Hospital, Southern Medical University, Guangzhou 510515, China
| | - 旭 吴
- />南方医科大学附属南方医院惠侨医疗中心胸外科,广东 广州 510515Department of Thoracic Surgery, Southern Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
27
|
Liu W, Zeng HZ, Chen HL, Wu CC, Ye LS, Hu B. Open peroral endoscopic myotomy (O-POEM) for the treatment of achalasia. Dis Esophagus 2017; 30:1-2. [PMID: 28859393 DOI: 10.1093/dote/dox070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Indexed: 12/11/2022]
Abstract
With the development of endoscopic interventions and inspired by the success of peroral endoscopic myotomy (POEM) for the treatment of achalasia, we investigated an old method of direct peroral endoscopic myotomy without a submucosal tunnel for the treatment of achalasia, which we call open peroral endoscopic myotomy (O-POEM). In this study, Clinical success was achieved in the patient after O-POEM. A reduction of LES pressure, Eckardt score, and a timed barium esophagogram were observed during follow-up. There were no severe complications and no recurrences during two months of follow-up. Therefore, open peroral endoscopic myotomy is a feasible and effective endoscopic treatment modality for achalasia. However, long-term outcomes of O-POEM requires further follow-up.
Collapse
|
28
|
Testa U, Castelli G, Pelosi E. Esophageal Cancer: Genomic and Molecular Characterization, Stem Cell Compartment and Clonal Evolution. MEDICINES (BASEL, SWITZERLAND) 2017; 4:E67. [PMID: 28930282 PMCID: PMC5622402 DOI: 10.3390/medicines4030067] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 12/20/2022]
Abstract
Esophageal cancer (EC) is the eighth most common cancer and is the sixth leading cause of death worldwide. The incidence of histologic subtypes of EC, esophageal adenocarcinoma (EAC) and esophageal squamous carcinoma (ESCC), display considerable geographic variation. EAC arises from metaplastic Barrett's esophagus (BE) in the context of chronic inflammation secondary to exposure to acid and bile. The main risk factors for developing ESCC are cigarette smoking and alcohol consumption. The main somatic genetic abnormalities showed a different genetic landscape in EAC compared to ESCC. EAC is a heterogeneous cancer dominated by copy number alterations, a high mutational burden, co-amplification of receptor tyrosine kinase, frequent TP53 mutations. The cellular origins of BE and EAC are still not understood: animal models supported a cellular origin either from stem cells located in the basal layer of esophageal epithelium or from progenitors present in the cardia region. Many studies support the existence of cancer stem cells (CSCs) able to initiate and maintain EAC or ESCC. The exact identification of these CSCs, as well as their role in the pathogenesis of EAC and ESCC remain still to be demonstrated. The reviewed studies suggest that current molecular and cellular characterization of EAC and ESCC should serve as background for development of new treatment strategies.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00141 Rome, Italy.
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00141 Rome, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00141 Rome, Italy.
| |
Collapse
|
29
|
Wang DH. The Esophageal Squamous Epithelial Cell-Still a Reasonable Candidate for the Barrett's Esophagus Cell of Origin? Cell Mol Gastroenterol Hepatol 2017; 4:157-160. [PMID: 28593187 PMCID: PMC5453881 DOI: 10.1016/j.jcmgh.2017.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Barrett's esophagus is the metaplastic change of the squamous epithelium lining the distal esophagus into an intestinalized columnar epithelium that predisposes to esophageal adenocarcinoma development. The cell that gives rise to Barrett's esophagus has not been identified definitively, although several sources for the Barrett's esophagus cell of origin have been postulated. One possible source is a fully differentiated squamous epithelial cell or a squamous epithelial progenitor or stem cell native to the esophagus that, through molecular reprogramming, either transdifferentiation or transcommitment, could give rise to an intestinalized columnar cell. Multilayered epithelium found in human patients and rodents with Barrett's esophagus and direct phenotypic conversion of mouse embryonic esophageal epithelium provide support for this. Limitations in current experimental approaches may explain why it has been difficult to fully change an esophageal squamous epithelial cell into an intestinalized columnar cell in vitro.
Collapse
Affiliation(s)
- David H Wang
- Esophageal Diseases Center, Department of Internal Medicine and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, Medical Service, Dallas VA Medical Center, Dallas, Texas
| |
Collapse
|
30
|
Niwa O, Barcellos-Hoff MH, Globus RK, Harrison JD, Hendry JH, Jacob P, Martin MT, Seed TM, Shay JW, Story MD, Suzuki K, Yamashita S. ICRP Publication 131: Stem Cell Biology with Respect to Carcinogenesis Aspects of Radiological Protection. Ann ICRP 2016; 44:7-357. [PMID: 26637346 DOI: 10.1177/0146645315595585] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This report provides a review of stem cells/progenitor cells and their responses to ionising radiation in relation to issues relevant to stochastic effects of radiation that form a major part of the International Commission on Radiological Protection's system of radiological protection. Current information on stem cell characteristics, maintenance and renewal, evolution with age, location in stem cell 'niches', and radiosensitivity to acute and protracted exposures is presented in a series of substantial reviews as annexes concerning haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. This foundation of knowledge of stem cells is used in the main text of the report to provide a biological insight into issues such as the linear-no-threshold (LNT) model, cancer risk among tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age. Knowledge of the biology and associated radiation biology of stem cells and progenitor cells is more developed in tissues that renew fairly rapidly, such as haematopoietic tissue, intestinal mucosa, and epidermis, although all the tissues considered here possess stem cell populations. Important features of stem cell maintenance, renewal, and response are the microenvironmental signals operating in the niche residence, for which a well-defined spatial location has been identified in some tissues. The identity of the target cell for carcinogenesis continues to point to the more primitive stem cell population that is mostly quiescent, and hence able to accumulate the protracted sequence of mutations necessary to result in malignancy. In addition, there is some potential for daughter progenitor cells to be target cells in particular cases, such as in haematopoietic tissue and in skin. Several biological processes could contribute to protecting stem cells from mutation accumulation: (a) accurate DNA repair; (b) rapidly induced death of injured stem cells; (c) retention of the DNA parental template strand during divisions in some tissue systems, so that mutations are passed to the daughter differentiating cells and not retained in the parental cell; and (d) stem cell competition, whereby undamaged stem cells outcompete damaged stem cells for residence in the niche. DNA repair mainly occurs within a few days of irradiation, while stem cell competition requires weeks or many months depending on the tissue type. The aforementioned processes may contribute to the differences in carcinogenic radiation risk values between tissues, and may help to explain why a rapidly replicating tissue such as small intestine is less prone to such risk. The processes also provide a mechanistic insight relevant to the LNT model, and the relative and absolute risk models. The radiobiological knowledge also provides a scientific insight into discussions of the dose and dose-rate effectiveness factor currently used in radiological protection guidelines. In addition, the biological information contributes potential reasons for the age-dependent sensitivity to radiation carcinogenesis, including the effects of in-utero exposure.
Collapse
|
31
|
Association of TGFβ signaling with the maintenance of a quiescent stem cell niche in human oral mucosa. Histochem Cell Biol 2016; 146:539-555. [PMID: 27480259 DOI: 10.1007/s00418-016-1473-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2016] [Indexed: 12/26/2022]
Abstract
A dogma in squamous epithelial biology is that proliferation occurs in the basal cell layer. Notable exceptions are squamous epithelia of the human oral cavity, esophagus, ectocervix, and vagina. In these human epithelia, proliferation is rare in the basal cell layer, and the vast majority of cells positive for Ki67 and other proliferation markers are found in para- and suprabasal cell layers. This unique human feature of a generally quiescent basal cell layer overlaid by highly proliferative cells offers the rare opportunity to study the molecular features of undifferentiated, quiescent, putative stem cells in their natural context. Here, we show that the quiescent human oral mucosa basal cell layer expresses putative markers of stemness, while para- and suprabasal cells are characterized by cell cycle genes. We identified a TGFβ signature in this quiescent basal cell layer. In in vitro organotypic cultures, human keratinocytes could be induced to express markers of these quiescent basal cells when TGFβ signaling is activated. The study suggests that the separation of basal cell layer and proliferation in human oral mucosa may function to accommodate high proliferation rates and the protection of a quiescent reserve stem cell pool. Psoriasis, an epidermal inflammatory hyperproliferative disease, exhibits features of a quiescent basal cell layer mimicking normal oral mucosa. Our data indicate that structural changes in the organization of epithelial proliferation could contribute to longevity and carcinogenesis.
Collapse
|
32
|
Jeong Y, Rhee H, Martin S, Klass D, Lin Y, Nguyen LXT, Feng W, Diehn M. Identification and genetic manipulation of human and mouse oesophageal stem cells. Gut 2016; 65:1077-86. [PMID: 25897018 DOI: 10.1136/gutjnl-2014-308491] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/28/2015] [Indexed: 12/08/2022]
Abstract
OBJECTIVE Human oesophageal stem cell research is hampered by the lack of an optimal assay system to study self-renewal and differentiation. We aimed to identify and characterise human and mouse oesophageal stem/progenitor cells by establishing 3-dimensional organotypic sphere culture systems for both species. DESIGN Primary oesophageal epithelial cells were freshly isolated and fluorescence-activated cell sorting (FACS)-sorted from human and mouse oesophagus and 3-dimensional organotypic sphere culture systems were developed. The self-renewing potential and differentiation status of novel subpopulations were assessed by sphere-forming ability, cell cycle analysis, immunostaining, qPCR and RNA-Seq. RESULTS Primary human and mouse oesophageal epithelial cells clonally formed esophagospheres consisting of stratified squamous epithelium. Sphere-forming cells could self-renew and form esophagospheres for over 43 passages in vitro and generated stratified squamous epithelium when transplanted under the kidney capsule of immunodeficient mice. Sphere-forming cells were 10-15-fold enriched among human CD49f(hi)CD24(low) cells and murine CD49f(+)CD24(low)CD71(low) cells compared with the most differentiated cells. Genetic elimination of p63 in mouse and human oesophageal cells dramatically decreased esophagosphere formation and basal gene expression while increasing suprabasal gene expression. CONCLUSIONS We developed clonogenic and organotypic culture systems for the quantitative analyses of human and mouse oesophageal stem/progenitor cells and identified novel cell surface marker combinations that enrich for these cells. Using this system, we demonstrate that elimination of p63 inhibits self-renewal of human oesophageal stem/progenitor cells. We anticipate that these esophagosphere culture systems will facilitate studies of oesophageal stem cell biology and may prove useful for ex vivo expansion of human oesophageal stem cells.
Collapse
Affiliation(s)
- Youngtae Jeong
- Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Horace Rhee
- Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Shanique Martin
- Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel Klass
- Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Yuan Lin
- Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Le Xuan Truong Nguyen
- Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Weiguo Feng
- Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Maximilian Diehn
- Stanford Cancer Institute and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
33
|
Abstract
Recent work in the field of stem cell biology suggests that there is no single design for an adult tissue stem cell hierarchy, and that different tissues employ distinct strategies to meet their self-renewal and repair requirements. Stem cells may be multipotent or unipotent, and can exist in quiescent or actively dividing states. 'Professional' stem cells may also co-exist with facultative stem cells, which are more specialized daughter cells that revert to a stem cell state under specific tissue damage conditions. Here, we discuss stem cell strategies as seen in three solid mammalian tissues: the intestine, mammary gland and skeletal muscle.
Collapse
|
34
|
Fernandez Vallone V, Leprovots M, Strollo S, Vasile G, Lefort A, Libert F, Vassart G, Garcia MI. Trop2 marks transient gastric fetal epithelium and adult regenerating cells after epithelial damage. Development 2016; 143:1452-63. [PMID: 26989172 PMCID: PMC4986166 DOI: 10.1242/dev.131490] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/04/2016] [Indexed: 01/10/2023]
Abstract
Mouse fetal intestinal progenitors lining the epithelium prior to villogenesis grow as spheroids when cultured ex vivo and express the transmembrane glycoprotein Trop2 as a marker. Here, we report the characterization of Trop2-expressing cells from fetal pre-glandular stomach, growing as immortal undifferentiated spheroids, and their relationship with gastric development and regeneration. Trop2+ cells generating gastric spheroids differed from adult glandular Lgr5+ stem cells, but appeared highly related to fetal intestinal spheroids. Although they shared a common spheroid signature, intestinal and gastric fetal spheroid-generating cells expressed organ-specific transcription factors and were committed to intestinal and glandular gastric differentiation, respectively. Trop2 expression was transient during glandular stomach development, being lost at the onset of gland formation, whereas it persisted in the squamous forestomach. Undetectable under homeostasis, Trop2 was strongly re-expressed in glands after acute Lgr5+ stem cell ablation or following indomethacin-induced injury. These highly proliferative reactive adult Trop2+ cells exhibited a transcriptome displaying similarity with that of gastric embryonic Trop2+ cells, suggesting that epithelium regeneration in adult stomach glands involves the partial re-expression of a fetal genetic program. Summary: Trop2, a marker of gastric fetal glandular epithelium grown ex vivo, is re-expressed upon injury in adult regenerative cells together with a partial fetal-like genetic program.
Collapse
Affiliation(s)
- Valeria Fernandez Vallone
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, Brussels 1070, Belgium
| | - Morgane Leprovots
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, Brussels 1070, Belgium
| | - Sandra Strollo
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, Brussels 1070, Belgium
| | - Gabriela Vasile
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, Brussels 1070, Belgium
| | - Anne Lefort
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, Brussels 1070, Belgium
| | - Frederick Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, Brussels 1070, Belgium
| | - Gilbert Vassart
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, Brussels 1070, Belgium
| | - Marie-Isabelle Garcia
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Faculty of Medicine, Université Libre de Bruxelles ULB, Route de Lennik 808, Brussels 1070, Belgium
| |
Collapse
|
35
|
Zhang LY, Wu JL, Qiu HB, Dong SS, Zhu YH, Lee VHF, Qin YR, Li Y, Chen J, Liu HB, Bi J, Ma S, Guan XY, Fu L. PSCA acts as a tumor suppressor by facilitating the nuclear translocation of RB1CC1 in esophageal squamous cell carcinoma. Carcinogenesis 2016; 37:320-332. [PMID: 26785734 DOI: 10.1093/carcin/bgw010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/14/2016] [Indexed: 12/12/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is an aggressive malignancy; its mechanisms of development and progression are poorly understood. By high-throughput transcriptome sequencing (RNA-Seq) profiling of three pairs of primary ESCCs and their corresponding non-tumorous tissues, we identified that prostate stem cell antigen (PSCA), a gene that encodes a glycosylphosphatidylinositol-anchored protein, is significantly downregulated in ESCC. Here, we reported decreased expression of PSCA in 188/218 (86.2%) of primary ESCC cases and was negatively regulated by its transcription factor sex-determining region Y-box5 that was significantly associated with the poor differentiation (P = 0.003), increased lymph node metastasis (P < 0.0001), advanced stage (P = 0.007), and disease-specific survival (P < 0.0001), but not associated with the recently reported transcrible rs2294008 (C > T) polymorphism in ESCC. Functional studies showed that PSCA could arrest cell cycle progression and promote cell differentiation independent of the start codon polymorphism. Further mechanistic studies revealed that retinoblastoma 1-inducible coiled-coil 1 (RB1CC1), a key signaling node to regulate cellular proliferation and differentiation, interacted specifically with PSCA in ESCC cells. Binding of PSCA and RB1CC1 in cytoplasm resulted in stabilization and translocation of RB1CC1 into nucleus, thereby activating key factors involved in cell cycle arrest and differentiation. Collectively, our data provide a novel molecular mechanism for the tumor suppressor role of PSCA and may help design effective therapy targeting PSCA-RB1CC1 pathway to control esophageal cancer growth and differentiation.
Collapse
Affiliation(s)
- Li-Yi Zhang
- Department of Clinical Oncology, University of Hong Kong, Room 56, 10/F, Laboratory Block, 21 Sassoon Road, Hong Kong 999077, China.,State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou 510000, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology , Macau 999078 , China
| | - Hai-Bo Qiu
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou 510000, China.,Department of Gastric and Pancreatic Surgery, Cancer Center, Sun Yat-Sen University, Guangzhou 510000, China
| | - Sui-Sui Dong
- Department of Clinical Oncology, University of Hong Kong , Room 56, 10/F, Laboratory Block, 21 Sassoon Road, Hong Kong 999077 , China
| | - Ying-Hui Zhu
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University , Guangzhou 510000 , China
| | - Victor Ho-Fun Lee
- Department of Clinical Oncology, University of Hong Kong , Room 56, 10/F, Laboratory Block, 21 Sassoon Road, Hong Kong 999077 , China
| | - Yan-Ru Qin
- Department of Clinical Oncology, The First Affiliated Hospital, Zhengzhou University , Zhengzhou 450000 , China
| | - Yan Li
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University , Guangzhou 510000 , China
| | - Juan Chen
- Department of Clinical Oncology, University of Hong Kong , Room 56, 10/F, Laboratory Block, 21 Sassoon Road, Hong Kong 999077 , China
| | - Hai-Bo Liu
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University , Guangzhou 510000 , China
| | - Jiong Bi
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University , Guangzhou 510000 , China and
| | - Stephanie Ma
- Department of Clinical Oncology, University of Hong Kong , Room 56, 10/F, Laboratory Block, 21 Sassoon Road, Hong Kong 999077 , China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, University of Hong Kong, Room 56, 10/F, Laboratory Block, 21 Sassoon Road, Hong Kong 999077, China.,State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou 510000, China
| | - Li Fu
- Shenzhen Key Laboratory of Translational Medicine of Tumor and Cancer Research Centre, School of Medicine, Shenzhen University , Shenzhen 518000 , China
| |
Collapse
|
36
|
The Complex, Clonal, and Controversial Nature of Barrett's Esophagus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 908:27-40. [PMID: 27573766 DOI: 10.1007/978-3-319-41388-4_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Barrett's esophagus (BO) is a preneoplastic condition described as the replacement of the stratified squamous epithelium of the distal esophagus with one that histologically presents as a diverse mixture of metaplastic glands resembling gastric or intestinal-type columnar epithelium. The clonal origins of BO are still unclear. More recently, we have begun to investigate the relationship between the various metaplastic gland phenotypes observed in BO, how they evolve, and the cancer risk they bestow. Studies have revealed that glands along the BO segment are clonal units containing a single stem cell clone that can give rise to all the differentiated epithelial cell types in glands. Clonal lineage tracing analysis has revealed that Barrett's glands are capable of bifurcation and this facilitates clonal expansion and competition. In fact, BO in some patients appears to consist of multiple, independently initiated clones that compete with each other for space and possibly resources. This chapter discusses the concepts of clonal competition and expansion in BO and sets out to query what we know about the role of gland diversity and phenotypic evolution within this complex columnar metaplasia.
Collapse
|
37
|
Lowes H, Somarathna T, Shepherd NA. Definition, Derivation, and Diagnosis of Barrett’s Esophagus: Pathological Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 908:111-36. [DOI: 10.1007/978-3-319-41388-4_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Wang DH, Souza RF. Transcommitment: Paving the Way to Barrett's Metaplasia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 908:183-212. [PMID: 27573773 DOI: 10.1007/978-3-319-41388-4_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Barrett's esophagus is the condition in which metaplastic columnar epithelium that predisposes to cancer development replaces stratified squamous epithelium in the distal esophagus. Potential sources for the cell or tissue of origin for metaplastic Barrett's epithelium are reviewed including native esophageal differentiated squamous cells, progenitor cells native to the esophagus located within the squamous epithelium or in the submucosal glands or ducts, circulating bone marrow-derived stem cells, and columnar progenitor cells from the squamocolumnar junction or the gastric cardia that proximally shift into the esophagus to fill voids left by damaged squamous epithelium. Wherever its source the original cell must undergo molecular reprogramming (i.e., either transdifferentiation or transcommitment) to give rise to specialized intestinal metaplasia. Transcription factors that specify squamous, columnar, intestinal, and mucus-secreting epithelial differentiation are discussed. An improved understanding of how esophageal columnar metaplasia forms could lead to development of effective treatment or prevention strategies for Barrett's esophagus. It could also more broadly inform upon normal tissue development and differentiation, wound healing, and stem cell biology.
Collapse
Affiliation(s)
- David H Wang
- Division of Hematology and Oncology, Department of Internal Medicine, Harold C. Simmons Comprehensive Cancer Center, Esophageal Diseases Center, Medical Service, VA North Texas Health Care System, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8852, USA.
| | - Rhonda F Souza
- Division of Digestive and Liver Diseases, Department of Internal Medicine, Harold C. Simmons Comprehensive Cancer Center, Esophageal Diseases Center, Medical Service (111B1), VA North Texas Health Care System, University of Texas Southwestern Medical Center, 4500 S. Lancaster Road, Dallas, TX, 75216, USA
| |
Collapse
|
39
|
Rosekrans SL, Baan B, Muncan V, van den Brink GR. Esophageal development and epithelial homeostasis. Am J Physiol Gastrointest Liver Physiol 2015; 309:G216-28. [PMID: 26138464 DOI: 10.1152/ajpgi.00088.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/25/2015] [Indexed: 01/31/2023]
Abstract
The esophagus is a relatively simple organ that evolved to transport food and liquids through the thoracic cavity. It is the only part of the gastrointestinal tract that lacks any metabolic, digestive, or absorptive function. The mucosa of the adult esophagus is covered by a multilayered squamous epithelium with a remarkable similarity to the epithelium of the skin despite the fact that these tissues originate from two different germ layers. Here we review the developmental pathways involved in the establishment of the esophagus and the way these pathways regulate gut-airway separation. We summarize current knowledge of the mechanisms that maintain homeostasis in esophageal epithelial renewal in the adult and the molecular mechanism of the development of Barrett's metaplasia, the precursor lesion to esophageal adenocarcinoma. Finally, we examine the ongoing debate on the hierarchy of esophageal epithelial precursor cells and on the presence or absence of a specific esophageal stem cell population. Together the recent insights into esophageal development and homeostasis suggest that the pathways that establish the esophagus during development also play a role in the maintenance of the adult epithelium. We are beginning to understand how reflux of gastric content and the resulting chronic inflammation can transform the squamous esophageal epithelium to columnar intestinal type metaplasia in Barrett's esophagus.
Collapse
Affiliation(s)
- Sanne L Rosekrans
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, the Netherlands
| | - Bart Baan
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, the Netherlands
| | - Vanesa Muncan
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, the Netherlands
| | - Gijs R van den Brink
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
40
|
Barret M, Beye B, Leblanc S, Beuvon F, Chaussade S, Batteux F, Prat F. Systematic review: the prevention of oesophageal stricture after endoscopic resection. Aliment Pharmacol Ther 2015; 42:20-39. [PMID: 25982288 DOI: 10.1111/apt.13254] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 02/28/2015] [Accepted: 04/30/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Extensive endoscopic resections for the treatment of early oesophageal neoplasia can result in fibro-inflammatory strictures that require repeated interventions, which significantly alter the patients' quality of life. AIMS To review current evidence about the prevention of oesophageal strictures following endoscopic resections. METHODS Systematic search of PubMed and Embase from inception to March 2015 using appropriate keywords. All original publications in English were included, and articles on the treatment of oesophageal stricture were excluded. RESULTS Of the 461 hits, 62 studies were included in the analysis. Among the wound-protective strategies, polyglycolic acid sheets showed the most convincing evidence with a 37.5% stricture rate and excellent safety. Regenerative medicine, using cell sheets of autologous keratinocytes, resulted in a 25% stricture rate, although with cost and availability concerns. Among anti-proliferative treatment modalities, steroid treatment, either endoscopically injected triamcinolone in the resection wound or orally administered prednisolone, proved effective with an overall stricture rate of 13.5%, with safety concerns regarding late oesophageal perforations and infectious morbidity. Among mechanical treatment options, poorly effective and high-risk preventive balloon dilation tend to be replaced by prophylactic covered stent, with 18-28% stricture rates. CONCLUSIONS Although oral or locally injected steroids are promising options, no currently available technique is sufficiently efficient and devoid of significant safety concerns to recommend its routine use for the prevention of strictures after extensive endoscopic resection. Improving our knowledge in the mechanisms of oesophageal wound healing will guide the development of novel methods for stricture prevention.
Collapse
Affiliation(s)
- M Barret
- Department of Gastroenterology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,UI 1016, Faculté Paris Descartes, Paris, France
| | - B Beye
- Department of Gastroenterology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,UI 1016, Faculté Paris Descartes, Paris, France
| | - S Leblanc
- Department of Gastroenterology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - F Beuvon
- Department of Pathology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - S Chaussade
- Department of Gastroenterology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - F Batteux
- UI 1016, Faculté Paris Descartes, Paris, France.,Department of Immunology, Cochin Hospital, Paris, France
| | - F Prat
- Department of Gastroenterology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,UI 1016, Faculté Paris Descartes, Paris, France
| |
Collapse
|
41
|
di Pietro M, Alzoubaidi D, Fitzgerald RC. Barrett's esophagus and cancer risk: how research advances can impact clinical practice. Gut Liver 2014; 8:356-70. [PMID: 25071900 PMCID: PMC4113043 DOI: 10.5009/gnl.2014.8.4.356] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/15/2014] [Indexed: 12/18/2022] Open
Abstract
Barrett’s esophagus (BE) is the only known precursor to esophageal adenocarcinoma (EAC), whose incidence has increased sharply in the last 4 decades. The annual conversion rate of BE to cancer is significant, but small. The identification of patients at a higher risk of cancer therefore poses a clinical conundrum. Currently, endoscopic surveillance is recommended in BE patients, with the aim of diagnosing either dysplasia or cancer at early stages, both of which are curable with minimally invasive endoscopic techniques. There is a large variation in clinical practice for endoscopic surveillance, and dysplasia as a marker of increased risk is affected by sampling error and high interobserver variability. Screening programs have not yet been formally accepted, mainly due to the economic burden that would be generated by upper gastrointestinal endoscopy. Screening programs have not yet been formally accepted, mainly due to the economic burden that would be generated by widespread indication to upper gastrointestinal endoscopy. In fact, it is currently difficult to formulate an accurate algorithm to confidently target the population at risk, based on the known clinical risk factors for BE and EAC. This review will focus on the clinical and molecular factors that are involved in the development of BE and its conversion to cancer and on how increased knowledge in these areas can improve the clinical management of the disease.
Collapse
Affiliation(s)
| | - Durayd Alzoubaidi
- Department of Gastroenterology, Basildon and Thurrock University Hospital, Basildon, UK
| | | |
Collapse
|