1
|
Taha SR, Karimi M, Mahdavi B, Yousefi Tehrani M, Bemani A, Kabirian S, Mohammadi J, Jabbari S, Hushmand M, Mokhtar A, Pourhanifeh MH. Crosstalk between non-coding RNAs and programmed cell death in colorectal cancer: implications for targeted therapy. Epigenetics Chromatin 2025; 18:3. [PMID: 39810224 PMCID: PMC11734566 DOI: 10.1186/s13072-024-00560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/13/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) remains one of the most common causes of cancer-related mortality worldwide. Its progression is influenced by complex interactions involving genetic, epigenetic, and environmental factors. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been identified as key regulators of gene expression, affecting diverse biological processes, notably programmed cell death (PCD). OBJECTIVE This review aims to explore the relationship between ncRNAs and PCD in CRC, focusing on how ncRNAs influence cancer cell survival, proliferation, and treatment resistance. METHODS A comprehensive literature analysis was conducted to examine recent findings on the role of ncRNAs in modulating various PCD mechanisms, including apoptosis, autophagy, necroptosis, and pyroptosis, and their impact on CRC development and therapeutic response. RESULTS ncRNAs were found to significantly regulate PCD pathways, impacting tumor growth, metastasis, and treatment sensitivity in CRC. Their influence on these pathways highlights the potential of ncRNAs as biomarkers for early CRC detection and as targets for innovative therapeutic interventions. CONCLUSION Understanding the involvement of ncRNAs in PCD regulation offers new insights into CRC biology. The targeted modulation of ncRNA-PCD interactions presents promising avenues for personalized cancer treatment, which may improve patient outcomes by enhancing therapeutic effectiveness and reducing resistance.
Collapse
Affiliation(s)
- Seyed Reza Taha
- Department of Pathology and Immunology, Washington University School of Medicine, St. LouisWashington, MO, USA
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Karimi
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kiev, Ukraine.
| | - Bahar Mahdavi
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | - Ali Bemani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahriar Kabirian
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Javad Mohammadi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sina Jabbari
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Meysam Hushmand
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mokhtar
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
- PAKAN Institute, Tehran, Iran.
| |
Collapse
|
2
|
Hamdy NM, Zaki MB, Abdelmaksoud NM, Ismail RA, Abd-Elmawla MA, Rizk NI, Fathi D, Abulsoud AI. Insights into the genetic and epigenetic mechanisms governing X-chromosome-linked-miRNAs expression in cancer; a step-toward ncRNA precision. Int J Biol Macromol 2024; 289:138773. [PMID: 39675615 DOI: 10.1016/j.ijbiomac.2024.138773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Sex chromosomes play a significant role in establishing sex-specific differences in gene expression, thereby contributing to phenotypic diversity and susceptibility to various diseases. MicroRNAs (miRNAs), which are small non-coding RNAs encoded by both the X and Y chromosomes, exhibit sex-specific regulatory characteristics. Computational analysis has identified several X-linked miRNAs differentially expressed in sex-specific cancers. This review aims to elucidate the genetic and epigenetic mechanisms that govern the sex-specific expression of X- and Y-linked miRNAs, with particular attention to their functional role in regulating diverse cellular processes in different cancer pathways. In addition, this review provides a comprehensive understanding of the targeted therapeutic interventions and critical insights into the potential clinical implications of targeting sex-specific miRNAs. In conclusion, this review opens new horizons for further research to effectively translate these findings into viable treatment options.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | | | - Rehab A Ismail
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al-Ainy, Cairo 11562, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| | - Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21526, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Nasr City, Cairo 11231, Egypt
| |
Collapse
|
3
|
Tang Y, Fahira A, Lin S, Shao Y, Huang Z. Shared and specific competing endogenous RNAs network mining in four digestive system tumors. Comput Struct Biotechnol J 2024; 23:4271-4287. [PMID: 39669749 PMCID: PMC11635987 DOI: 10.1016/j.csbj.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/17/2024] [Accepted: 11/02/2024] [Indexed: 12/14/2024] Open
Abstract
Background Digestive system malignancies, including esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD), liver hepatocellular carcinoma (LIHC), and colon adenocarcinoma (COAD), pose significant global health challenges. Identifying shared and distinct regulatory mechanisms across these cancers can lead to improved therapies. This study aims to construct and compare competing endogenous RNA (ceRNA) networks across ESCA, STAD, LIHC, and COAD to identify RNA biomarkers that could serve as precision therapeutic targets to enhance clinical outcomes and advance personalized cancer care. Methods Clinical and transcriptomic data from The Cancer Genome Atlas (TCGA) were analyzed to predict differentially expressed RNAs using the edgeR package. The ceRNA networks were constructed using the miRcode and ENCORI databases. Functional enrichment analysis and prognostic RNA screening were performed with ConsensusPathDB and univariate Cox regression analysis. Results we identified 6, 88, 55, and 41 RNA biomarkers in ESCA, STAD, LIHC, and COAD, respectively. Network analysis revealed shared and specific elements, with shared nodes enriched in cell cycle and mitotic processes. Several biomarkers, including HMGB3 and RGS16 (ESCA), COL4A1 and COL6A3 (STAD), CDCA5 and CDCA8 (LIHC), and LIMK1 and OSBPL3 (COAD), were consistent with prior studies, while novel biomarkers, such as C3P1 (ESCA), P2RY6 (STAD), and N4BP2L1 and PPP1R3B (LIHC), were discovered. Based on RNA correlation analysis, 1, 23, and 2 potential ceRNA regulatory axes were identified in STAD (PVT1/miR-490-3p/HMGA2), LIHC (DLX6-AS1/miR-139-5p/TOP2A, etc.), and COAD (STRCP1 & LINC00488/miR-142-3p/GAB1), respectively. Conclusions This study advances the understanding of ceRNA networks in digestive cancers, highlighting RNA biomarkers with potential as therapeutic targets for personalized treatment strategies.
Collapse
Affiliation(s)
- Yulai Tang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523710, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Sepsis Translational Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710
| | - Aamir Fahira
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Siying Lin
- Dongguan Key Laboratory of Sepsis Translational Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710
| | - Yiming Shao
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523710, China
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523710, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
4
|
Mannucci A, Goel A. Stool and blood biomarkers for colorectal cancer management: an update on screening and disease monitoring. Mol Cancer 2024; 23:259. [PMID: 39558327 PMCID: PMC11575410 DOI: 10.1186/s12943-024-02174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Biomarkers have revolutionized the management of colorectal cancer (CRC), facilitating early detection, prevention, personalized treatment, and minimal residual disease (MRD) monitoring. This review explores current CRC screening strategies and emerging biomarker applications. MAIN BODY We summarize the landscape of non-invasive CRC screening and MRD detection strategies, discuss the limitations of the current approaches, and highlight the promising potential of novel biomarker solutions. The fecal immunochemical test remained the cornerstone of CRC screening, but its sensitivity has been improved by assays that combined its performance with other stool analytes. However, their sensitivity for advanced adenomas and the patient compliance both remain suboptimal. Blood-based tests promise to increase compliance but require further refinement to compete with stool-based biomarker tests. The ideal scenario involves leveraging blood tests to increase screening participation, and simultaneously promote stool- and endoscopy-based screening among those who are compliant. Once solely reliant on upfront surgery followed by stage and pathology-driven adjuvant chemotherapy, the treatment of stage II and III colon cancer has undergone a revolutionary transformation with the advent of MRD testing after surgery. A decade ago, the concept of using a post-surgical test instead of stage and pathology to determine the need for adjuvant chemotherapy was disruptive. Today, a blood test may be more informative of the need for chemotherapy than the stage at diagnosis. CONCLUSION Biomarker research is not just improving, but bringing a transformative change to CRC clinical management. Early detection is not just getting better, but improving thanks to a multi-modality approach, and personalized treatment plans are not just becoming a reality, but a promising future with MRD testing.
Collapse
Affiliation(s)
- Alessandro Mannucci
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute at City of Hope, Monrovia, CA, USA
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Hospital, Milan, Italy
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute at City of Hope, Monrovia, CA, USA.
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
5
|
Yang H, Gong C, Wu Y, Xie X, Chen Y, Li Z, Shi Q, Liu J, Gao N, He B, Wang C, Liao Q, Bai J, Xiao Y. LncRNA SNHG1 facilitates colorectal cancer cells metastasis by recruiting HNRNPD protein to stabilize SERPINA3 mRNA. Cancer Lett 2024; 604:217217. [PMID: 39233042 DOI: 10.1016/j.canlet.2024.217217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Metastasis continues to negatively impact individuals diagnosed with colorectal cancer (CRC). Research has revealed the important role of long noncoding RNAs (lncRNAs) in CRC metastasis, but the underlying mechanisms remain unclear. Here, we revealed that the lncRNA small nucleolar RNA host gene 1 (SNHG1) is expressed at higher levels in metastatic CRC tissues than in primary CRC tissues, and that high lncRNA SNHG1 expression indicates poor patient outcomes. We found that lncRNA SNHG1 promotes the migration and invasion of tumor cells both in vivo and in vitro. Moreover, lncRNA SNHG1 increases serpin family A member 3 (SERPINA3) mRNA stability by interacting with the heterogeneous nuclear ribonucleoprotein D (HNRNPD) protein, and subsequently upregulates SERPINA3 expression. Moreover, HNRNPD and SERPINA3 reversed the effects of lncRNA SNHG1 knockdown on CRC cell metastasis. In conclusion, we report that the lncRNA SNHG1 recruits HNRNPD, in turn upregulating SERPINA3 expression and ultimately facilitating CRC cell migration and invasion. Targeting the lncRNA SNHG1/HNRNPD/SERPINA3 signaling pathway might be a therapeutic option for preventing CRC metastasis.
Collapse
Affiliation(s)
- Huan Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Chunli Gong
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yuyun Wu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xia Xie
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Zhibin Li
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Qiuyue Shi
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, 530021, China
| | - Jiao Liu
- Department of Gastroenterology, General Hospital of Northern Theater Command, Liaoning, 110003, China
| | - Nannan Gao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Bing He
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Chao Wang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Qiushi Liao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jianying Bai
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
6
|
Bian Y, Xu S, Gao Z, Ding J, Li C, Cui Z, Sun H, Li J, Pu J, Wang K. m 6A modification of lncRNA ABHD11-AS1 promotes colorectal cancer progression and inhibits ferroptosis through TRIM21/IGF2BP2/ FOXM1 positive feedback loop. Cancer Lett 2024; 596:217004. [PMID: 38838765 DOI: 10.1016/j.canlet.2024.217004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/07/2024]
Abstract
Long non-coding RNA (lncRNA) is closely related to a variety of human cancers, which may provide huge potential biomarkers for cancer diagnosis and treatment. However, the aberrant expression of most lncRNAs in colorectal cancer (CRC) remains elusive. This study aims to explore the clinical significance and potential mechanism of lncRNA ABHD11 antisense RNA 1 (ABHD11-AS1) in the colorectal cancer. Here, we demonstrated that lncRNA ABHD11-AS1 is high-expressed in colorectal cancer (CRC) patients, and strongly related with poor prognosis. Functionally, ABHD11-AS1 suppresses ferroptosis and promotes proliferation and migration in CRC both in vitro and in vivo. Mechanically, lncRNA ABHD11-AS1 interacted with insulin-like growing factor 2 mRNA-binding protein 2 (IGF2BP2) to enhance FOXM1 stability, forming an ABHD11-AS1/FOXM1 positive feedback loop. E3 ligase tripartite motif containing 21 (TRIM21) promotes the degradation of IGF2BP2 via the K48-ubiquitin-lysosome pathway and ABHD11-AS1 promotes the interaction between IGF2BP2 and TRIM21 as scaffold platform. Furthermore, N6 -adenosine-methyltransferase-like 3 (METTL3) upregulated the stabilization of ABHD11-AS1 through the m6A reader IGF2BP2. Our study highlights ABHD11-AS1 as a significant regulator in CRC and it may become a potential target in future CRC treatment.
Collapse
Affiliation(s)
- Yibo Bian
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of digestive Disease, Fourth Military Medical University, Xi'an, 710032, China
| | - Shufen Xu
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhishuang Gao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jie Ding
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chao Li
- Department of General Surgery, Zhongshan Hospital, Fudan University School of Medicine, Shanghai, 200032, China
| | - Zhiwei Cui
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Haoyu Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Juan Li
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Juan Pu
- Department of Oncology, Lianshui County People's Hospital, Huai'an, 223400, China.
| | - Keming Wang
- Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
7
|
Contran N, Arrigoni G, Battisti I, D'Incà R, Angriman I, Franchin C, Scapellato ML, Padoan A, Moz S, Aita A, Savarino E, Lorenzon G, Zingone F, Spolverato G, Pucciarelli S, Nordi E, Galozzi P, Basso D. Colorectal cancer and inflammatory bowel diseases share common salivary proteomic pathways. Sci Rep 2024; 14:17711. [PMID: 39085299 PMCID: PMC11291686 DOI: 10.1038/s41598-024-68400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Inflammatory bowels diseases (IBD) are high risk conditions for colorectal cancer (CRC). The discovery of IBD and CRC noninvasive protein/peptide biomarkers using saliva and feces was the aim of this study involving 20 controls, 25 IBD (12 Crohn's Disease-CD), 37 CRC. By untargeted proteomic (LTQ-Orbitrap/MS), a total of 152 proteins were identified in saliva. Absent in controls, 73 proteins were present in both IBD and CRC, being mainly related to cell-adhesion, cadherin-binding and enzyme activity regulation (g-Profiler). Among the remaining 79 proteins, 14 were highly expressed in CD and 11 in CRC. These proteins clustered in DNA replication/expression and innate/adaptive immunity. In stool, endogenous peptides from 30 different proteins were identified, two being salivary and CD-associated: Basic Proline-rich Protein 1 (PRBs) and Acidic Proline-rich Phosphoprotein. Biological effects of the PRBs-related peptides GQ-15 and GG-17 found in CD stool were evaluated using CRC cell lines. These peptides induced cell proliferation and activated Erk1/2, Akt and p38 pathways. In conclusion, the salivary proteome unveiled DNA stability and immunity clusters shared between IBD and CRC. Salivary PRB-derived peptides, enriched in CD stool, stimulate CRC cell proliferation and the pro-oncogenic RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways suggesting a potential involvement of PRBs in IBD and cancer pathogenesis.
Collapse
Affiliation(s)
- Nicole Contran
- Department of Medicine (DIMED), University of Padova, 35128, Padova, Italy.
| | - Giorgio Arrigoni
- Department of Biomedical Sciences (DBS), University of Padova, 35128, Padova, Italy
| | - Ilaria Battisti
- Department of Biomedical Sciences (DBS), University of Padova, 35128, Padova, Italy
| | - Renata D'Incà
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Imerio Angriman
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Cinzia Franchin
- Department of Biomedical Sciences (DBS), University of Padova, 35128, Padova, Italy
| | - Maria L Scapellato
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128, Padova, Italy
| | - Andrea Padoan
- Department of Medicine (DIMED), University of Padova, 35128, Padova, Italy
| | - Stefania Moz
- Department of Medicine (DIMED), University of Padova, 35128, Padova, Italy
| | - Ada Aita
- Department of Medicine (DIMED), University of Padova, 35128, Padova, Italy
| | - Edoardo Savarino
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Gaya Spolverato
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Salvatore Pucciarelli
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128, Padova, Italy
| | - Evelyn Nordi
- Department of Medicine (DIMED), University of Padova, 35128, Padova, Italy
| | - Paola Galozzi
- Department of Medicine (DIMED), University of Padova, 35128, Padova, Italy
| | - Daniela Basso
- Department of Medicine (DIMED), University of Padova, 35128, Padova, Italy
| |
Collapse
|
8
|
Zakari S, Niels NK, Olagunju GV, Nnaji PC, Ogunniyi O, Tebamifor M, Israel EN, Atawodi SE, Ogunlana OO. Emerging biomarkers for non-invasive diagnosis and treatment of cancer: a systematic review. Front Oncol 2024; 14:1405267. [PMID: 39132504 PMCID: PMC11313249 DOI: 10.3389/fonc.2024.1405267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a global health challenge, necessitating continuous advancements in diagnostic and treatment strategies. This review focuses on the utility of non-invasive biomarkers in cancer diagnosis and treatment, their role in early detection, disease monitoring, and personalized therapeutic interventions. Through a systematic review of the literature, we identified 45 relevant studies that highlight the potential of these biomarkers across various cancer types, such as breast, prostate, lung, and colorectal cancers. The non-invasive biomarkers discussed include liquid biopsies, epigenetic markers, non-coding RNAs, exosomal cargo, and metabolites. Notably, liquid biopsies, particularly those based on circulating tumour DNA (ctDNA), have emerged as the most promising method for early, non-invasive cancer detection due to their ability to provide comprehensive genetic and epigenetic information from easily accessible blood samples. This review demonstrates how non-invasive biomarkers can facilitate early cancer detection, accurate subtyping, and tailored treatment strategies, thereby improving patient outcomes. It underscores the transformative potential of non-invasive biomarkers in oncology, highlighting their application for enhancing early detection, survival rates, and treatment precision in cancer care. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023474749 PROSPERO, identifier CRD42023474749.
Collapse
Affiliation(s)
- Suleiman Zakari
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
- Department of Biochemistry, College of Medicine, Federal University of Health Sciences Otukpo, Otukpo, Benue State, Nigeria
| | - Nguedia K. Niels
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
- Biotechnology Centre, University of Yaounde I, Yaounde, Cameroon
| | - Grace V. Olagunju
- Department of Molecular Biology, New Mexico State University, Las Cruces, NM, United States
| | - Precious C. Nnaji
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
| | - Oluwabusayo Ogunniyi
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
| | - Mercy Tebamifor
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| | - Emmanuel N. Israel
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| | - Sunday E. Atawodi
- Department of Biochemistry, Federal University Lokoja, Lokoja, Kogi State, Nigeria
| | - Olubanke Olujoke Ogunlana
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| |
Collapse
|
9
|
Rac M. Synthesis and Regulation of miRNA, Its Role in Oncogenesis, and Its Association with Colorectal Cancer Progression, Diagnosis, and Prognosis. Diagnostics (Basel) 2024; 14:1450. [PMID: 39001340 PMCID: PMC11241650 DOI: 10.3390/diagnostics14131450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
The dysfunction of several types of regulators, including miRNAs, has recently attracted scientific attention for their role in cancer-associated changes in gene expression. MiRNAs are small RNAs of ~22 nt in length that do not encode protein information but play an important role in post-transcriptional mRNA regulation. Studies have shown that miRNAs are involved in tumour progression, including cell proliferation, cell cycle, apoptosis, and tumour angiogenesis and invasion, and play a complex and important role in the regulation of tumourigenesis. The detection of selected miRNAs may help in the early detection of cancer cells, and monitoring changes in their expression profile may serve as a prognostic factor in the course of the disease or its treatment. MiRNAs may serve as diagnostic and prognostic biomarkers, as well as potential therapeutic targets for colorectal cancer. In recent years, there has been increasing evidence for an epigenetic interaction between DNA methylation and miRNA expression in tumours. This article provides an overview of selected miRNAs, which are more frequently expressed in colorectal cancer cells, suggesting an oncogenic nature.
Collapse
Affiliation(s)
- Monika Rac
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
10
|
Liu M, Jiang H, Momeni MR. Epigenetic regulation of autophagy by non-coding RNAs and exosomal non-coding RNAs in colorectal cancer: A narrative review. Int J Biol Macromol 2024; 273:132732. [PMID: 38823748 DOI: 10.1016/j.ijbiomac.2024.132732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
One of the major diseases affecting people globally is colorectal cancer (CRC), which is primarily caused by a lack of effective medical treatment and a limited understanding of its underlying mechanisms. Cellular autophagy functions to break down and eliminate superfluous proteins and substances, thereby facilitating the continual replacement of cellular elements and generating vital energy for cell processes. Non-coding RNAs and exosomal ncRNAs have a crucial impact on regulating gene expression and essential cellular functions such as autophagy, metastasis, and treatment resistance. The latest research has indicated that specific ncRNAs and exosomal ncRNA to influence the process of autophagy in CRC cells, which could have significant consequences for the advancement and treatment of this disease. It has been determined that a variety of ncRNAs have a vital function in regulating the genes essential for the formation and maturation of autophagosomes. Furthermore, it has been confirmed that ncRNAs have a considerable influence on the signaling pathways associated with autophagy, such as those involving AMPK, AKT, and mTOR. Additionally, numerous ncRNAs have the potential to affect specific genes involved in autophagy. This study delves into the control mechanisms of ncRNAs and exosomal ncRNAs and examines how they simultaneously influence autophagy in CRC.
Collapse
Affiliation(s)
- Minghua Liu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Hongfang Jiang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| | - Mohammad Reza Momeni
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
11
|
Wu X, Chen X, Liu X, Jin B, Zhang Y, Wang Y, Xu H, Wan X, Zheng Y, Xu L, Xiao Y, Chen Z, Wang H, Mao Y, Lu X, Sang X, Zhao L, Du S. LINC02257 regulates colorectal cancer liver metastases through JNK pathway. Heliyon 2024; 10:e30841. [PMID: 38826728 PMCID: PMC11141284 DOI: 10.1016/j.heliyon.2024.e30841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have emerged as critical regulators of colorectal cancer (CRC) progression, but their roles and underlying mechanisms in colorectal cancer liver metastases (CRLMs) remain poorly understood. Methods To explore the expression patterns and functions of lncRNAs in CRLMs, we analyzed the expression profiles of lncRNAs in CRC tissues using the TCGA database and examined the expression patterns of lncRNAs in matched normal, CRC, and CRLM tissues using clinical samples. We further investigated the biological roles of LINC02257 in CRLM using in vitro and in vivo assays, and verified its therapeutic potential in a mouse model of CRLM. Results Our findings showed that LINC02257 was highly expressed in metastatic CRC tissues and its expression was negatively associated with overall survival. Functionally, LINC02257 promoted CRC cell growth, migration, metastasis, and inhibited cell apoptosis in vitro, and enhanced liver metastasis in vivo. Mechanistically, LINC02257 up-regulated phosphorylated c-Jun N-terminal kinase (JNK) to promote CRLM. Conclusions Our study revealed that LINC02257 played a key role in the proliferation and metastasis of CRC cells through the LINC02257/JNK axis. Targeting this axis may represent a promising therapeutic strategy for the treatment of liver metastases in patients with CRC.
Collapse
Affiliation(s)
- Xiangan Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaokun Chen
- Department of Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuke Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuxin Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Haifeng Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xueshuai Wan
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yongchang Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lai Xu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengju Chen
- Pooling Medical Research Institutes, Beijing, China
| | - Haiwen Wang
- Pooling Medical Research Institutes, Beijing, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Zhao
- Department of Medical Oncology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Hedayat S, Cascione L, Cunningham D, Schirripa M, Lampis A, Hahne JC, Tunariu N, Hong SP, Marchetti S, Khan K, Fontana E, Angerilli V, Delrieux M, Nava Rodrigues D, Procaccio L, Rao S, Watkins D, Starling N, Chau I, Braconi C, Fotiadis N, Begum R, Guppy N, Howell L, Valenti M, Cribbes S, Kolozsvari B, Kirkin V, Lonardi S, Ghidini M, Passalacqua R, Elghadi R, Magnani L, Pinato DJ, Di Maggio F, Ghelardi F, Sottotetti E, Vetere G, Ciracì P, Vlachogiannis G, Pietrantonio F, Cremolini C, Cortellini A, Loupakis F, Fassan M, Valeri N. Circulating microRNA Analysis in a Prospective Co-clinical Trial Identifies MIR652-3p as a Response Biomarker and Driver of Regorafenib Resistance Mechanisms in Colorectal Cancer. Clin Cancer Res 2024; 30:2140-2159. [PMID: 38376926 DOI: 10.1158/1078-0432.ccr-23-2748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE The multi-kinase inhibitor (mKi) regorafenib has demonstrated efficacy in chemorefractory patients with metastatic colorectal cancer (mCRC). However, lack of predictive biomarkers and concerns over significant toxicities hamper the use of regorafenib in clinical practice. EXPERIMENTAL DESIGN Serial liquid biopsies were obtained at baseline and monthly until disease progression in chemorefractory patients with mCRC treated with regorafenib in a phase II clinical trial (PROSPECT-R n = 40; NCT03010722) and in a multicentric validation cohort (n = 241). Tissue biopsies collected at baseline, after 2 months and at progression in the PROSPECT-R trial were used to establish patient-derived organoids (PDO) and for molecular analyses. MicroRNA profiling was performed on baseline bloods using the NanoString nCounter platform and results were validated by digital-droplet PCR and/or ISH in paired liquid and tissue biopsies. PDOs co-cultures and PDO-xenotransplants were generated for functional analyses. RESULTS Large-scale microRNA expression analysis in longitudinal matched liquid and tissue biopsies from the PROSPECT-R trial identified MIR652-3p as a biomarker of clinical benefit to regorafenib. These findings were confirmed in an independent validation cohort and in a "control" group of 100 patients treated with lonsurf. Using ex vivo co-culture assays paired with single-cell RNA-sequencing of PDO established pre- and post-treatment, we modeled regorafenib response observed in vivo and in patients, and showed that MIR652-3p controls resistance to regorafenib by impairing regorafenib-induced lethal autophagy and by orchestrating the switch from neo-angiogenesis to vessel co-option. CONCLUSIONS Our results identify MIR652-3p as a potential biomarker and as a driver of cell and non-cell-autonomous mechanisms of resistance to regorafenib.
Collapse
Affiliation(s)
- Somaieh Hedayat
- Division of Molecular Pathology and Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Luciano Cascione
- Bioinformatics Core Unit, Institute of Oncology Research (IOR), Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Bellinzona, Switzerland
| | - David Cunningham
- Department of Medicine, The Royal Marsden Hospital, London and Sutton, United Kingdom
| | - Marta Schirripa
- Istituto Oncologico Veneto, Istituto di Ricovero e Cura a Carattere Scientifico, Padua, Italy
| | - Andrea Lampis
- Division of Molecular Pathology and Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Jens C Hahne
- Division of Molecular Pathology and Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Nina Tunariu
- Department of Radiology, The Royal Marsden Hospital, London and Sutton, United Kingdom
| | - Sung Pil Hong
- Division of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Silvia Marchetti
- Division of Molecular Pathology and Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Khurum Khan
- Division of Molecular Pathology and Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Department of Medicine, The Royal Marsden Hospital, London and Sutton, United Kingdom
| | - Elisa Fontana
- Division of Molecular Pathology and Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Valentina Angerilli
- Division of Molecular Pathology and Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Department of Medicine, Surgical Pathology Unit, University of Padua, Padua, Italy
| | - Mia Delrieux
- Division of Molecular Pathology and Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Daniel Nava Rodrigues
- Division of Molecular Pathology and Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Letizia Procaccio
- Istituto Oncologico Veneto, Istituto di Ricovero e Cura a Carattere Scientifico, Padua, Italy
| | - Sheela Rao
- Department of Medicine, The Royal Marsden Hospital, London and Sutton, United Kingdom
| | - David Watkins
- Department of Medicine, The Royal Marsden Hospital, London and Sutton, United Kingdom
| | - Naureen Starling
- Department of Medicine, The Royal Marsden Hospital, London and Sutton, United Kingdom
| | - Ian Chau
- Department of Medicine, The Royal Marsden Hospital, London and Sutton, United Kingdom
| | - Chiara Braconi
- Department of Medicine, The Royal Marsden Hospital, London and Sutton, United Kingdom
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nicos Fotiadis
- Department of Interventional Radiology, The Royal Marsden Hospital, London, United Kingdom
| | - Ruwaida Begum
- Department of Medicine, The Royal Marsden Hospital, London and Sutton, United Kingdom
| | - Naomy Guppy
- Breast Cancer Now Nina Barough Pathology Core Facility, The Institute of Cancer Research, London, United Kingdom
| | - Louise Howell
- Division of Molecular Pathology and Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Melanie Valenti
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | | | | | - Vladimir Kirkin
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Sara Lonardi
- Istituto Oncologico Veneto, Istituto di Ricovero e Cura a Carattere Scientifico, Padua, Italy
| | - Michele Ghidini
- Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Raghad Elghadi
- Division of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Luca Magnani
- Division of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - David J Pinato
- Division of Surgery and Cancer, Imperial College London, London, United Kingdom
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Federica Di Maggio
- Division of Surgery and Cancer, Imperial College London, London, United Kingdom
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate Francesco Salvatore, Via Gaetano Salvatore, Naples, Italy
| | - Filippo Ghelardi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisa Sottotetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Guglielmo Vetere
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Paolo Ciracì
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Georgios Vlachogiannis
- Division of Molecular Pathology and Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Division of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessio Cortellini
- Division of Surgery and Cancer, Imperial College London, London, United Kingdom
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Fotios Loupakis
- Istituto Oncologico Veneto, Istituto di Ricovero e Cura a Carattere Scientifico, Padua, Italy
| | - Matteo Fassan
- Istituto Oncologico Veneto, Istituto di Ricovero e Cura a Carattere Scientifico, Padua, Italy
- Department of Medicine, Surgical Pathology Unit, University of Padua, Padua, Italy
| | - Nicola Valeri
- Division of Molecular Pathology and Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Department of Medicine, The Royal Marsden Hospital, London and Sutton, United Kingdom
- Division of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Wu ZH, Wang YX, Song JJ, Zhao LQ, Zhai YJ, Liu YF, Guo WJ. LncRNA SNHG26 promotes gastric cancer progression and metastasis by inducing c-Myc protein translation and an energy metabolism positive feedback loop. Cell Death Dis 2024; 15:236. [PMID: 38553452 PMCID: PMC10980773 DOI: 10.1038/s41419-024-06607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Metastasis is a bottleneck in cancer treatment. Studies have shown the pivotal roles of long noncoding RNAs (lncRNAs) in regulating cancer metastasis; however, our understanding of lncRNAs in gastric cancer (GC) remains limited. RNA-seq was performed on metastasis-inclined GC tissues to uncover metastasis-associated lncRNAs, revealing upregulated small nucleolar RNA host gene 26 (SNHG26) expression, which predicted poor GC patient prognosis. Functional experiments revealed that SNHG26 promoted cellular epithelial-mesenchymal transition and proliferation in vitro and in vivo. Mechanistically, SNHG26 was found to interact with nucleolin (NCL), thereby modulating c-Myc expression by increasing its translation, and in turn promoting energy metabolism via hexokinase 2 (HK2), which facilitates GC malignancy. The increase in energy metabolism supplies sufficient energy to promote c-Myc translation and expression, forming a positive feedback loop. In addition, metabolic and translation inhibitors can block this loop, thus inhibiting cell proliferation and mobility, indicating potential therapeutic prospects in GC.
Collapse
Affiliation(s)
- Zhen-Hua Wu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Xuan Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jun-Jiao Song
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai, 200032, China
| | - Li-Qin Zhao
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu-Jia Zhai
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan-Fang Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai, 200032, China
| | - Wei-Jian Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Mallela VR, Rajtmajerová M, Trailin A, Liška V, Hemminki K, Ambrozkiewicz F. miRNA and lncRNA as potential tissue biomarkers in hepatocellular carcinoma. Noncoding RNA Res 2024; 9:24-32. [PMID: 38075204 PMCID: PMC10700120 DOI: 10.1016/j.ncrna.2023.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 10/21/2023] [Indexed: 12/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is primary liver cancer, frequently diagnosed at advanced stages with limited therapeutic options. MicroRNAs (miRNAs) regulate target gene expression and through inhibitory competitive binding of miRNA influence cellular processes including carcinogenesis. Extensive evidence proved that certain miRNA's are specifically expressed in neoplastic tissues of HCC patients and are confirmed as important factors that can participate in the regulation of key signalling pathways in cancer cells. As such, miRNAs have a great potential in the clinical diagnosis and treatment of HCC and can improve the limitations of standard diagnosis and treatment. Long non-coding RNAs (lncRNAs) have a critical role in the development and progression of HCC. HCC-related lncRNAs have been demonstrated to exhibit abnormal expression and contribute to transformation process (such as proliferation, apoptosis, accelerated vascular formation, and gain of invasive potential) through their interaction with DNA, RNA, or proteins. LncRNAs can bind mRNAs to release their target mRNA and enable its translation. These lncRNA-miRNA networks regulate cancer cell expression and so its proliferation, apoptosis, invasion, metastasis, angiogenesis, epithelial-mesenchymal transition (EMT), drug resistance, and autophagy. In this narrative review, we focus on miRNA and lncRNA in HCC tumor tissue and their interaction as current tools, and biomarkers and therapeutic targets unravelled in recent years.
Collapse
Affiliation(s)
- Venkata Ramana Mallela
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Marie Rajtmajerová
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Andriy Trailin
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Václav Liška
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
- Department of Surgery, University Hospital in Pilsen and Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00, Pilsen, Czech Republic
| | - Kari Hemminki
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
- Department of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| |
Collapse
|
15
|
Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet 2024; 25:211-232. [PMID: 37968332 DOI: 10.1038/s41576-023-00662-1] [Citation(s) in RCA: 193] [Impact Index Per Article: 193.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 11/17/2023]
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group of transcripts that, by definition, are not translated into proteins. Since their discovery, ncRNAs have emerged as important regulators of multiple biological functions across a range of cell types and tissues, and their dysregulation has been implicated in disease. Notably, much research has focused on the link between microRNAs (miRNAs) and human cancers, although other ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as relevant contributors to human disease. In this Review, we summarize our current understanding of the roles of miRNAs, lncRNAs and circRNAs in cancer and other major human diseases, notably cardiovascular, neurological and infectious diseases. Further, we discuss the potential use of ncRNAs as biomarkers of disease and as therapeutic targets.
Collapse
Affiliation(s)
- Kinga Nemeth
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - George A Calin
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The RNA Interference and Non-coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
16
|
Tan YR, Jiang BH, Feng WJ, He ZL, Jiang YL, Xun Y, Wu XP, Li YH, Zhu HB. Circ0060467 sponges miR-6805 to promote hepatocellular carcinoma progression through regulating AIFM2 and GPX4 expression. Aging (Albany NY) 2024; 16:1796-1807. [PMID: 38244593 PMCID: PMC10866430 DOI: 10.18632/aging.205460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) represent a subset of non-coding RNAs implicated in the regulation of diverse biological processes, including tumorigenesis. However, the expression and functional implications of circ0060467 in hepatocellular carcinoma (HCC) remain elusive. In this study, we aimed to elucidate the role of circ0060467 in modulating the progression of HCC. METHODS Differentially expressed circRNAs in HCC tissues were identified through circRNA microarray assays. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays revealed the upregulation of circ0060467 in both HCC cell lines and tissues. Various assays were conducted to investigate the roles of circ0060467 in HCC progression. Additionally, RNA immunoprecipitation (RIP) assays and luciferase assays were carried out to assess the interactions between circ0060467, microRNA-6085 (miR-6085), apoptosis-inducing factor mitochondria-associated 2 (AIFM2), and glutathione peroxidase 4 (GPX4) in HCC. RESULTS Microarray and qRT-PCR analyses demonstrated a marked elevation of circ0060467 in HCC tissues and cell lines. Knockdown of circ0060467 suppressed HCC cell proliferation. Luciferase reporter and RIP assays confirmed the binding of circ0060467, AIFM2, and GPX4 to miR-6805. Subsequent experiments revealed that circ0060467 competes with AIFM2 and GPX4, thereby inhibiting cancer cell ferroptosis by binding to miR-6085 and promoting hepatocellular carcinoma progression. CONCLUSIONS Collectively, circ0060467 modulates the levels of AIFM2 and GPX4, crucial regulators of tumor cell ferroptosis, by acting as a sponge for miR-6085 in HCC. Thus, circ0060467 may represent a novel diagnostic marker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Ye-Ru Tan
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Bao-Hong Jiang
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Wen-Jie Feng
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Zhi-Long He
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Yi-Ling Jiang
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Yi Xun
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Xiao-Ping Wu
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Yue-Hua Li
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Hong-Bo Zhu
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| |
Collapse
|
17
|
He X, Xu Z, Ren R, Wan P, Zhang Y, Wang L, Han Y. A novel sphingolipid metabolism-related long noncoding RNA signature predicts the prognosis, immune landscape and therapeutic response in pancreatic adenocarcinoma. Heliyon 2024; 10:e23659. [PMID: 38173505 PMCID: PMC10761810 DOI: 10.1016/j.heliyon.2023.e23659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024] Open
Abstract
Sphingolipid metabolism affects prognosis and resistance to immunotherapy in patients with cancer and is an emerging target in cancer therapy with promising diagnostic and prognostic value. Long noncoding ribonucleic acids (lncRNAs) broadly regulate tumour-associated metabolic reprogramming. However, the potential of sphingolipid metabolism-related lncRNAs in pancreatic adenocarcinoma (PAAD) is poorly understood. In this study, coexpression algorithms were employed to identify sphingolipid metabolism-related lncRNAs. The least absolute shrinkage and selection operator (LASSO) algorithm was used to develop a sphingolipid metabolism-related lncRNA signature (SMLs). The prognostic predictive stability of the SMLs was validated using Kaplan-Meier. Univariate and multivariate Cox, receiver operating characteristic (ROC) and clinical stratification analyses were used to comprehensively assess the SMLs. Gene set variation analysis (GSVE), gene ontology (GO) and tumor mutation burden (TMB) analysis explored the potential mechanisms. Additionally, single sample gene set enrichment analysis (ssGSEA), ESTIMATE, immune checkpoints and drug sensitivity analysis were used to investigate the potential predictive function of the SMLs. Finally, an SMLs-based consensus clustering algorithm was utilized to differentiate patients and determine the suitable population for immunotherapy. The results showed that the SMLs consists of seven sphingolipid metabolism-related lncRNAs, which can well determine the clinical outcome of individuals with PAAD, with high stability and general applicability. In addition, the SMLs-based consensus clustering algorithm divided the TCGA-PAAD cohort into two clusters, with Cluster 1 showing better survival than Cluster 2. Additionally, Cluster 1 had a higher level of immune cell infiltration than Cluster 2, which combined with the higher levels of immune checkpoints in Cluster 1 suggests that Cluster 1 is more consistent with an immune 'hot tumor' profile and may respond better to immune checkpoint inhibitors (ICIs). This study offers new insights regarding the potential role of sphingolipid metabolism-related lncRNAs as biomarkers in PAAD. The constructed SMLs and the SMLs-based clustering are valuable tools for predicting clinical outcomes in PAAD and provide a basis for clinical selection of individualized treatments.
Collapse
Affiliation(s)
- Xiaolan He
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Zhengyang Xu
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Ruiping Ren
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Peng Wan
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Yu Zhang
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Liangliang Wang
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Ying Han
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
18
|
Yu JH, Tan JN, Zhong GY, Zhong L, Hou D, Ma S, Wang PL, Zhang ZH, Lu XQ, Yang B, Zhou SN, Han FH. Hsa_circ_0020134 promotes liver metastasis of colorectal cancer through the miR-183-5p-PFN2-TGF-β/Smad axis. Transl Oncol 2024; 39:101823. [PMID: 37925795 PMCID: PMC10652212 DOI: 10.1016/j.tranon.2023.101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023] Open
Abstract
Circular RNAs (circRNAs) are a distinct class of non-coding RNAs that play regulatory roles in the initiation and progression of tumors. With advancements in transcriptome sequencing technology, numerous circRNAs that play significant roles in tumor-related genes have been identified. In this study, we used transcriptome sequencing to analyze the expression levels of circRNAs in normal adjacent tissues, primary colorectal cancer (CRC) tissues, and CRC tissues with liver metastasis. We successfully identified the circRNA hsa_circ_0020134 (circ0020134), which exhibited significantly elevated expression specifically in CRC with liver metastasis. Importantly, high levels of circ0020134 were associated with a poor prognosis among patients. Functional experiments demonstrated that circ0020134 promotes the proliferation and metastasis of CRC cells both in vitro and in vivo. Mechanistically, upregulation of circ0020134 was induced by the transcription factor, PAX5, while miR-183-5p acted as a sponge for circ0020134, leading to partial upregulation of PFN2 mRNA and protein levels, thereby further activating the downstream TGF-β/Smad pathway. Additionally, downregulation of circ0020134 inhibited epithelial-mesenchymal transition (EMT) in CRC cells, which could be reversed by miR-183-5p inhibitor treatment. Collectively, our findings confirm that the circ0020134-miR-183-5p-PFN2-TGF-β/Smad axis induces EMT transformation within tumor cells, promoting CRC proliferation and metastasis, thus highlighting its potential as a therapeutic target for patients with CRC liver metastasis.
Collapse
Affiliation(s)
- Jin-Hao Yu
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Jia-Nan Tan
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Guang-Yu Zhong
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Lin Zhong
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Dong Hou
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Shuai Ma
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Peng-Liang Wang
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Zhi-Hong Zhang
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120
| | - Xu-Qiang Lu
- Department of General Surgery, Puning People's Hospital, Puning, China, 515399
| | - Bin Yang
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120.
| | - Sheng-Ning Zhou
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120.
| | - Fang-Hai Han
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China, 510120.
| |
Collapse
|
19
|
Lin H, Hu S, Li Y, Li S, Teng D, Yang Y, Liu B, Du X. H3K27ac-activated LncRNA NUTM2A-AS1 Facilitated the Progression of Colorectal Cancer Cells via MicroRNA-126-5p/FAM3C Axis. Curr Cancer Drug Targets 2024; 24:1222-1234. [PMID: 38347779 DOI: 10.2174/0115680096277956240119065938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 09/25/2024]
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) are of great importance in the process of colorectal cancer (CRC) tumorigenesis and progression. However, the functions and underlying molecular mechanisms of the majority of lncRNAs in CRC still lack clarity. METHODS A Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to detect lncRNA NUTM2A-AS1 expression in CRC cell lines. Cell counting kit 8 (CCK-8) assay and flow cytometry were used to examine the biological functions of lncRNA NUTM2A-AS1 in the proliferation and apoptosis of CRC cells. RT-qPCR and western blot were implemented for the detection of cell proliferation-, apoptosis-related proteins, and FAM3C. Bioinformatics analysis and dual- luciferase reporter assays were utilized to identify the mutual regulatory mechanism of ceRNAs. RESULTS lncRNA NUTM2A-AS1 notably elevated in CRC cell lines and the silenced of NUTM2A- AS1 declined proliferation and facilitated apoptosis. Mechanistically, NUTM2A-AS1 was transcriptionally activated by histone H3 on lysine 27 acetylation (H3K27ac) enriched at its promoter region, and NUTM2A-AS1 acted as a sponge for miR-126-5p, leading to the upregulation of FAM3C expression in CRC cell lines. CONCLUSION Our research proposed NUTM2A-AS1 as an oncogenic lncRNA that facilitates CRC malignancy by upregulating FAM3C expression, which might provide new insight and a promising therapeutic target for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Haiguan Lin
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of General Surgery, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Shidong Hu
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yuxuan Li
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Songyan Li
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Da Teng
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yan Yang
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Boyan Liu
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaohui Du
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
Gilyazova I, Gimalova G, Nizamova A, Galimova E, Ishbulatova E, Pavlov V, Khusnutdinova E. Non-Coding RNAs as Key Regulators in Lung Cancer. Int J Mol Sci 2023; 25:560. [PMID: 38203731 PMCID: PMC10778604 DOI: 10.3390/ijms25010560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
For several decades, most lung cancer investigations have focused on the search for mutations in candidate genes; however, in the last decade, due to the fact that most of the human genome is occupied by sequences that do not code for proteins, much attention has been paid to non-coding RNAs (ncRNAs) that perform regulatory functions. In this review, we principally focused on recent studies of the function, regulatory mechanisms, and therapeutic potential of ncRNAs including microRNA (miRNA), long ncRNA (lncRNA), and circular RNA (circRNA) in different types of lung cancer.
Collapse
Affiliation(s)
- Irina Gilyazova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Galiya Gimalova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Aigul Nizamova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
| | - Elmira Galimova
- Department of Pathological Physiology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Ekaterina Ishbulatova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Department of Urology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of Russian Academy of Sciences, 450054 Ufa, Russia
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
21
|
Huang W, Paul D, Calin GA, Bayraktar R. miR-142: A Master Regulator in Hematological Malignancies and Therapeutic Opportunities. Cells 2023; 13:84. [PMID: 38201290 PMCID: PMC10778542 DOI: 10.3390/cells13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
MicroRNAs (miRNAs) are a type of non-coding RNA whose dysregulation is frequently associated with the onset and progression of human cancers. miR-142, an ultra-conserved miRNA with both active -3p and -5p mature strands and wide-ranging physiological targets, has been the subject of countless studies over the years. Due to its preferential expression in hematopoietic cells, miR-142 has been found to be associated with numerous types of lymphomas and leukemias. This review elucidates the multifaceted role of miR-142 in human physiology, its influence on hematopoiesis and hematopoietic cells, and its intriguing involvement in exosome-mediated miR-142 transport. Moreover, we offer a comprehensive exploration of the genetic and molecular landscape of the miR-142 genomic locus, highlighting its mutations and dysregulation within hematological malignancies. Finally, we discuss potential avenues for harnessing the therapeutic potential of miR-142 in the context of hematological malignancies.
Collapse
Affiliation(s)
- Wilson Huang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (G.A.C.)
| | - Doru Paul
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (W.H.); (G.A.C.)
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Recep Bayraktar
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
22
|
Qu B, Liu J, Peng Z, Xiao Z, Li S, Wu J, Li S, Luo J. CircSOD2 polarizes macrophages towards the M1 phenotype to alleviate cisplatin resistance in gastric cancer cells by targeting the miR-1296/STAT1 axis. Gene 2023; 887:147733. [PMID: 37625563 DOI: 10.1016/j.gene.2023.147733] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Cisplatin is the first-line drug for gastric cancer (GC). Cisplatin resistance is the most important cause of poor prognosis for GC. Increasing evidence has identified the important role of macrophage polarization in chemoresistance. CircRNAs are newly discovered non-coding RNAs, characterized by covalently closed loops with high stability. Previous studies have reported a significant difference between circRNA profiles expressed in classically activated M1 macrophages, and those expressed in alternatively activated M2 macrophages. However, the underlying mechanism behind the regulation of GC cisplatin resistance by macrophages remains unclear. In our study, we observed the aberrant high expression of circSOD2 in M1 macrophages derived from THP-1. These expression patterns were confirmed in macrophages from patients with GC. Detection of the M1 and M2 markers confirmed that overexpression of circSOD2 enhances M1 polarization. The viability of cisplatin-treated GC cells was significantly reduced in the presence of macrophages overexpressing circSOD2, and cisplatin-induced apoptosis increased dramatically. In vivo experiments showed that macrophages expressing circSOD2 enhanced the effect of cisplatin. Moreover, we demonstrated that circSOD2 acts as a microRNA sponge for miR-1296 and regulates the expression of its target gene STAT1 (signal transducer and activator of transcription 1). CircSOD2 exerts its function through the miR-1296/STAT1 axis. Inhibition of circSOD2/miR-1296/STAT1 may therefore reduce M1 polarization. Overexpression of circSOD2 promotes the polarization of M1 macrophages and enhances the effect of cisplatin in GC. CircSOD2 is a novel positive regulator of M1 macrophages and may serve as a potential target for GC chemotherapy.
Collapse
Affiliation(s)
- Bing Qu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiasheng Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhiyang Peng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhe Xiao
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Shijun Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jianguo Wu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Shengbo Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jianfei Luo
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
23
|
Deng H, Gao J, Cao B, Qiu Z, Li T, Zhao R, Li H, Wei B. LncRNA CCAT2 promotes malignant progression of metastatic gastric cancer through regulating CD44 alternative splicing. Cell Oncol (Dordr) 2023; 46:1675-1690. [PMID: 37354353 DOI: 10.1007/s13402-023-00835-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 06/26/2023] Open
Abstract
OBJECTIVE Gastric cancer (GC) is one of the most malignant tumors worldwide. Thus, it is necessary to explore the underlying mechanisms of GC progression and develop novel therapeutic regimens. Long non-coding RNAs (lncRNAs) have been demonstrated to be abnormally expressed and regulate the malignant behaviors of cancer cells. Our previous research demonstrated that lncRNA colon cancer-associated transcript 2 (CCAT2) has potential value for GC diagnosis and discrimination. However, the functional mechanisms of lncRNA CCAT2 in GC development remain to be explored. METHODS GC and normal adjacent tissues were collected to detect the expression of lncRNA CCAT2, ESRP1 and CD44 in clinical specimens and their clinical significance for GC patients. Cell counting kit-8, wound healing and transwell assays were conducted to investigate the malignant behaviors in vitro. The generation of nude mouse xenografts by subcutaneous, intraperitoneal and tail vein injection was performed to examine GC growth and metastasis in vivo. Co-immunoprecipitation, RNA-binding protein pull-down assay and fluorescence in situ hybridization were performed to reveal the binding relationships between ESRP1 and CD44. RESULTS In the present study, lncRNA CCAT2 was overexpressed in GC tissues compared to adjacent normal tissues and correlated with short survival time of patients. lncRNA CCAT2 promoted the proliferation, migration and invasion of GC cells. Its overexpression modulates alternative splicing of Cluster of differentiation 44 (CD44) variants and facilitates the conversion from the standard form to variable CD44 isoform 6 (CD44v6). Mechanistically, lncRNA CCAT2 upregulated CD44v6 expression by binding to epithelial splicing regulatory protein 1 (ESRP1), which subsequently mediates CD44 alternative splicing. The oncogenic role of the lncRNA CCAT2/ESRP1/CD44 axis in the promotion of malignant behaviors was verified by both in vivo and in vitro experiments. CONCLUSIONS Our findings identified a novel mechanism by which lncRNA CCAT2, as a type of protein-binding RNA, regulates alternative splicing of CD44 and promotes GC progression. This axis may become an effective target for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Huan Deng
- Department of Gastrointestinal Surgery, Peking University First Hospital, Beijing, 100034, China
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jingwang Gao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Ziyu Qiu
- Health Service Department of the Guard Bureau of the General Office of the Central Committee of the Communist Party of China, Beijing, 100091, China
| | - Tian Li
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710021, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| |
Collapse
|
24
|
Jiang H, Wang J, Song Y, Chen J, Dong L, Xu Q, Cao R, Wang Y, Xu X, Zhang X, Kong F, Guan M, Deng X. Identification of three lncRNA-related prognostic signatures in gastric cancer by integrated multi-omics analysis. Epigenomics 2023; 15:1293-1308. [PMID: 38126139 DOI: 10.2217/epi-2023-0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Aims: The systematic identification of molecular features correlated with the clinical status of gastric cancer (GC) in patients is significant, although such investigation remains insufficient. Methods: GC subtyping based on RNA sequencing, copy number variation and DNA methylation data were derived from The Cancer Genome Atlas program. Prognostics lncRNA biomarkers for GC were identified by univariate Cox, LASSO and SVM-RFE analysis. Results: Three molecular subtypes with significant survival discrepancies, and their specific DEmRNAs and DElncRNAs were identified. Three reliable prognostic-associated lncRNA, including LINC00670, LINC00452 and LINC00160, were selected for GC. Conclusion: Our findings expanded the understanding on the regulatory network of lncRNAs in GC, providing potential targets for prognosis and treatment of GC patients.
Collapse
Affiliation(s)
- Haoqin Jiang
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Jun Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yingxiao Song
- Department of Gastroenterology, Changhai Hospital, The Naval Medical University, Shanghai, 222300, China
| | - Jian Chen
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Liu Dong
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Qianqian Xu
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Ruoshui Cao
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Yuting Wang
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Xiao Xu
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Xinju Zhang
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Fanyang Kong
- Department of Gastroenterology, Changhai Hospital, The Naval Medical University, Shanghai, 222300, China
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Xuan Deng
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| |
Collapse
|
25
|
Hua H, Su T, Han L, Zhang L, Huang Y, Zhang N, Yang M. LINC01226 promotes gastric cancer progression through enhancing cytoplasm-to-nucleus translocation of STIP1 and stabilizing β-catenin protein. Cancer Lett 2023; 577:216436. [PMID: 37806517 DOI: 10.1016/j.canlet.2023.216436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Gastric cancer (GC) remains one of the most common malignances and the leading cause of cancer-related mortality worldwide. Although the critical role of several long non-coding RNAs (lncRNAs) transcribed from several GC-risk loci has been established, we still know little about the biological significance of these lncRNAs at most gene loci and how they play in cell signaling. In the present study, we identified a novel oncogenic lncRNA LINC01226 transcribed from the 1p35.2 GC-risk locus. LINC01226 shows markedly higher expression levels in GC specimens compared with those in normal tissues. High expression of LINC01226 is evidently correlated with worse prognosis of GC cases. In line with these, oncogenic LINC01226 promotes proliferation, migration and metastasis of GC cells ex vivo and in vivo. Importantly, LINC01226 binds to STIP1 protein, leads to disassembly of the STIP1-HSP90 complex, elevates interactions between HSP90 and β-catenin, stabilizes β-catenin protein, activates the Wnt/β-catenin signaling and, thereby, promote GC progression. Together, our findings uncovered a novel layer regulating the Wnt signaling in cancers and uncovers a new epigenetic mode of GC tumorigenesis. These discoveries also shed new light on the importance of functional lncRNAs as innovative therapeutic targets through precisely controlling protein-protein interactions in cancers.
Collapse
Affiliation(s)
- Hui Hua
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Tao Su
- Shandong University Cancer Center, Jinan, Shandong Province, 250117, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Yizhou Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China; Shandong University Cancer Center, Jinan, Shandong Province, 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| |
Collapse
|
26
|
Wang X, Liu Y, Zhou M, Yu L, Si Z. m6A modified BACE1-AS contributes to liver metastasis and stemness-like properties in colorectal cancer through TUFT1 dependent activation of Wnt signaling. J Exp Clin Cancer Res 2023; 42:306. [PMID: 37986103 PMCID: PMC10661562 DOI: 10.1186/s13046-023-02881-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Liver metastasis is one of the most important reasons for high mortality of colorectal cancer (CRC). Growing evidence illustrates that lncRNAs play a critical role in CRC liver metastasis. Here we described a novel function and mechanisms of BACE1-AS promoting CRC liver metastasis. METHODS qRT-PCR and in situ hybridization were performed to examine the BACE1-AS level in CRC. IGF2BP2 binding to m6A motifs in BACE1-AS was determined by RIP assay and S1m-tagged immunoprecipitation. Transwell assay and liver metastasis mice model experiments were performed to examine the metastasis capabilities of BACE1-AS knockout cells. Stemness-like properties was examined by tumor sphere assay and the expression of stemness biomarkers. Microarray data were acquired to analyze the signaling pathways involved in BACE1-AS promoting CRC metastasis. RESULTS BACE1-AS is the most up-regulated in metastatic CRC associated with unfavorable prognosis. Sequence blast revealed two m6A motifs in BACE1-AS. IGF2BP2 binding to these two m6A motifs is required for BACE1-AS boost in metastatic CRC. m6A modified BACE1-AS drives CRC cells migration and invasion and liver metastasis both in vitro and in vivo. Moreover, BACE1-AS maintains the stemness-like properties of CRC cells. Mechanically, BACE1-AS promoted TUFT1 expression by ceRNA network through miR-214-3p. CRC patients with such ceRNA network suffer poorer prognosis than ceRNA-negative patients. Depletion of TUFT1 mimics BACE1-AS loss. BACE1-AS activated Wnt signaling pathway in a TUFT1 dependent manner. BACE1-AS/miR-214-3p/TUFT1/Wnt signaling regulatory axis is essential for CRC liver metastasis. Pharmacologic inhibition of Wnt signaling pathway repressed liver metastasis and stemness-like features in BACE1-AS over-expressed CRC cells. CONCLUSION Our study demonstrated BACE1-AS as a novel target of IGF2BP2 through m6A modification. m6A modified BACE1-AS promotes CRC liver metastasis through TUFT1 dependent activation of Wnt signaling pathway. Thus, targeting BACE1-AS and its downstream Wnt signaling pathways may provide a new opportunity for metastatic CRC intervention and treatment.
Collapse
Affiliation(s)
- Xidi Wang
- Central Laboratory of the Medical Research Center, The First Affiliated Hospital of Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, 315020, P. R. China.
- Health Science Center, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, P. R. China.
| | - Yu Liu
- Health Science Center, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, P. R. China
| | - Miao Zhou
- Central Laboratory of the Medical Research Center, The First Affiliated Hospital of Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, 315020, P. R. China
| | - Lei Yu
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Zizhen Si
- Health Science Center, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, 315211, P. R. China.
| |
Collapse
|
27
|
Abulsoud AI, Elshaer SS, Abdelmaksoud NM, Zaki MB, El-Mahdy HA, Ismail A, Al-Noshokaty TM, Fathi D, Abdel-Reheim MA, Mohammed OA, Doghish AS. Investigating the regulatory role of miRNAs as silent conductors in the management of pathogenesis and therapeutic resistance of pancreatic cancer. Pathol Res Pract 2023; 251:154855. [PMID: 37806169 DOI: 10.1016/j.prp.2023.154855] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Pancreatic cancer (PC) has the greatest mortality rate of all the main malignancies. Its advanced stage and poor prognosis place it at the bottom of all cancer sites. Hence, emerging biomarkers can enable precision medicine where PC therapy is tailored to each patient. This highlights the need for new, highly sensitive and specific biomarkers for early PC diagnosis. Prognostic indicators are also required to stratify PC patients. To avoid ineffective treatment, adverse events, and expenses, biomarkers are also required for patient monitoring and identifying responders to treatment. There is substantial evidence that microRNAs (miRs, miRNAs) play a critical role in regulating mRNA and, as a consequence, protein expression in normal and malignant tissues. Deregulated miRNA profiling in PC can help with diagnosis, treatment planning, and prognosis. Furthermore, knowledge of the primary effector genes and downstream pathways in PC can help pinpoint potential miRNAs for use in treatment. Different miRNA expression profiles may serve as diagnostic, prognostic markers, and therapeutic targets across the spectrum of malignant pancreatic illness. Dysregulation of miRNAs has been linked to the malignant pathophysiology of PC through affecting many cellular functions such as increasing invasive and proliferative prospect, supporting angiogenesis, cell cycle aberrance, apoptosis elusion, metastasis promotion, and low sensitivity to particular treatments. Accordingly, in the current review, we summarize the recent advances in the roles of oncogenic and tumor suppressor (TS) miRNAs in PC and discuss their potential as worthy diagnostic and prognostic biomarkers for PC, as well as their significance in PC pathogenesis and anticancer drug resistance.
Collapse
Affiliation(s)
- Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Doaa Fathi
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
28
|
Solati A, Thvimi S, Khatami SH, Shabaninejad Z, Malekzadegan Y, Alizadeh M, Mousavi P, Taheri-Anganeh M, Razmjoue D, Bahmyari S, Ghasemnejad-Berenji H, Vafadar A, Soltani Fard E, Ghasemi H, Movahedpour A. Non-coding RNAs in gynecologic cancer. Clin Chim Acta 2023; 551:117618. [PMID: 38375624 DOI: 10.1016/j.cca.2023.117618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 02/21/2024]
Abstract
The term "gynecologic cancer" pertains to neoplasms impacting the reproductive tissues and organs of women encompassing the endometrium, vagina, cervix, uterus, vulva, and ovaries. The progression of gynecologic cancer is linked to various molecular mechanisms. Historically, cancer research primarily focused on protein-coding genes. However, recent years have unveiled the involvement of non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs (LncRNAs), and circular RNAs, in modulating cellular functions within gynecological cancer. Substantial evidence suggests that ncRNAs may wield a dual role in gynecological cancer, acting as either oncogenic or tumor-suppressive agents. Numerous clinical trials are presently investigating the roles of ncRNAs as biomarkers and therapeutic agents. These endeavors may introduce a fresh perspective on the diagnosis and treatment of gynecological cancer. In this overview, we highlight some of the ncRNAs associated with gynecological cancers.
Collapse
Affiliation(s)
- Arezoo Solati
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Thvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mehdi Alizadeh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Damoun Razmjoue
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Department of Pharmacognosy, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sedigheh Bahmyari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | | |
Collapse
|
29
|
Pardini B, Ferrero G, Tarallo S, Gallo G, Francavilla A, Licheri N, Trompetto M, Clerico G, Senore C, Peyre S, Vymetalkova V, Vodickova L, Liska V, Vycital O, Levy M, Macinga P, Hucl T, Budinska E, Vodicka P, Cordero F, Naccarati A. A Fecal MicroRNA Signature by Small RNA Sequencing Accurately Distinguishes Colorectal Cancers: Results From a Multicenter Study. Gastroenterology 2023; 165:582-599.e8. [PMID: 37263306 DOI: 10.1053/j.gastro.2023.05.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/18/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND & AIMS Fecal tests currently used for colorectal cancer (CRC) screening show limited accuracy in detecting early tumors or precancerous lesions. In this respect, we comprehensively evaluated stool microRNA (miRNA) profiles as biomarkers for noninvasive CRC diagnosis. METHODS A total of 1273 small RNA sequencing experiments were performed in multiple biospecimens. In a cross-sectional study, miRNA profiles were investigated in fecal samples from an Italian and a Czech cohort (155 CRCs, 87 adenomas, 96 other intestinal diseases, 141 colonoscopy-negative controls). A predictive miRNA signature for cancer detection was defined by a machine learning strategy and tested in additional fecal samples from 141 CRC patients and 80 healthy volunteers. miRNA profiles were compared with those of 132 tumors/adenomas paired with adjacent mucosa, 210 plasma extracellular vesicle samples, and 185 fecal immunochemical test leftover samples. RESULTS Twenty-five miRNAs showed altered levels in the stool of CRC patients in both cohorts (adjusted P < .05). A 5-miRNA signature, including miR-149-3p, miR-607-5p, miR-1246, miR-4488, and miR-6777-5p, distinguished patients from control individuals (area under the curve [AUC], 0.86; 95% confidence interval [CI], 0.79-0.94) and was validated in an independent cohort (AUC, 0.96; 95% CI, 0.92-1.00). The signature classified control individuals from patients with low-/high-stage tumors and advanced adenomas (AUC, 0.82; 95% CI, 0.71-0.97). Tissue miRNA profiles mirrored those of stool samples, and fecal profiles of different gastrointestinal diseases highlighted miRNAs specifically dysregulated in CRC. miRNA profiles in fecal immunochemical test leftover samples showed good correlation with those of stool collected in preservative buffer, and their alterations could be detected in adenoma or CRC patients. CONCLUSIONS Our comprehensive fecal miRNome analysis identified a signature accurately discriminating cancer aimed at improving noninvasive diagnosis and screening strategies.
Collapse
Affiliation(s)
- Barbara Pardini
- Italian Institute for Genomic Medicine, Turin, Italy; Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy.
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy; Department of Computer Science, University of Turin, Turin, Italy
| | - Sonia Tarallo
- Italian Institute for Genomic Medicine, Turin, Italy; Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Gaetano Gallo
- Department of Surgery, Sapienza University of Rome, Rome, Italy; Department of Colorectal Surgery, Clinica S. Rita, Vercelli, Italy
| | | | - Nicola Licheri
- Department of Computer Science, University of Turin, Turin, Italy
| | - Mario Trompetto
- Department of Colorectal Surgery, Clinica S. Rita, Vercelli, Italy
| | - Giuseppe Clerico
- Department of Colorectal Surgery, Clinica S. Rita, Vercelli, Italy
| | - Carlo Senore
- Epidemiology and Screening Unit-CPO, University Hospital Città della Salute e della Scienza, Turin, Italy
| | - Sergio Peyre
- LILT (Lega Italiana Lotta contro i Tumori), associazione provinciale di Biella, Biella, Italy
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Vaclav Liska
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Department of Surgery, University Hospital and Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ondrej Vycital
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Department of Surgery, University Hospital and Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Miroslav Levy
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Peter Macinga
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Tomas Hucl
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Eva Budinska
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | | | - Alessio Naccarati
- Italian Institute for Genomic Medicine, Turin, Italy; Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy.
| |
Collapse
|
30
|
Xia B, Liu Y, Wang J, Lu Q, Lv X, Deng K, Yang J. Emerging role of exosome-shuttled noncoding RNAs in gastrointestinal cancers: From intercellular crosstalk to clinical utility. Pharmacol Res 2023; 195:106880. [PMID: 37543095 DOI: 10.1016/j.phrs.2023.106880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Gastrointestinal cancer remains a significant global health burden. The pursuit of advancing the comprehension of tumorigenesis, along with the identification of reliable biomarkers and the development of precise therapeutic strategies, represents imperative objectives in this field. Exosomes, small membranous vesicles released by most cells, commonly carry functional biomolecules, including noncoding RNAs (ncRNAs), which are specifically sorted and encapsulated by exosomes. Exosome-mediated communication involves the release of exosomes from tumor or stromal cells and the uptake by nearby or remote recipient cells. The bioactive cargoes contained within these exosomes exert profound effects on the recipient cells, resulting in significant modifications in the tumor microenvironment (TME) and distinct alterations in gastrointestinal tumor behaviors. Due to the feasibility of isolating exosomes from various bodily fluids, exosomal ncRNAs have shown great potential as liquid biopsy-based indicators for different gastrointestinal cancers, using blood, ascites, saliva, or bile samples. Moreover, exosomes are increasingly recognized as natural delivery vehicles for ncRNA-based therapeutic interventions. In this review, we elucidate the processes of ncRNA-enriched exosome biogenesis and uptake, examine the regulatory and functional roles of exosomal ncRNA-mediated intercellular crosstalk in gastrointestinal TME and tumor behaviors, and explore their potential clinical utility in diagnostics, prognostics, and therapeutics.
Collapse
Affiliation(s)
- Bihan Xia
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Yuzhi Liu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jin Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Qing Lu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Xiuhe Lv
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Kai Deng
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China.
| | - Jinlin Yang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China.
| |
Collapse
|
31
|
Zhang Y, Zhao L, Bi Y, Zhao J, Gao C, Si X, Dai H, Asmamaw MD, Zhang Q, Chen W, Liu H. The role of lncRNAs and exosomal lncRNAs in cancer metastasis. Biomed Pharmacother 2023; 165:115207. [PMID: 37499455 DOI: 10.1016/j.biopha.2023.115207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Tumor metastasis is the main reason for cancer-related death, but there is still a lack of effective therapeutic to inhibit tumor metastasis. Therefore, the discovery and study of new tumor metastasis regulators is a prominent measure for cancer diagnosis and treatment. Long non-coding RNA (lncRNA) is a type of non-coding RNAs over 200 bp in length. It has been shown that the abnormally expressed lncRNAs promote tumor metastasis by participating in the epithelial-to-mesenchymal transition (EMT) process, altering the metastatic tumor microenvironment, or changing the extracellular matrix. It is,thus, critical to explore the regulation of lncRNAs expression in cells and the molecular mechanism of lncRNA-mediated cancer metastasis. Simultaneously, it has been shown that lncRNA is one kind of the main components of exosomes, which protects lncRNAs from being rapidly degraded. Meanwhile, the components of exosomes are parent-specific, making exosomal lncRNAs to be potential tumor metastasis markers and therapeutic targets. In view of this, we also summarized the aberrant enrichment of lncRNAs in exosomes and their role in metastatic cancer. The aberrant lncRNAs and exosomal lncRNAs gradually become biomarkers and therapeutic targets for tumor metastatic, and the potential of lncRNAs in therapeutics are studied here. Besides, the lncRNA-related databases, which could greatly facilitate in the study of lncRNAs and exosomal lncRNAs in metastatic of cancer are included in this review.
Collapse
Affiliation(s)
- Yutong Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China; The People's Hospital of Zhang Dian District, Zibo, China
| | - Lijuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Science, Zhengzhou University, Zhengzhou China
| | - Yaping Bi
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Jinyuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Chao Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Xiaojie Si
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Honglin Dai
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Moges Dessale Asmamaw
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China
| | - Qiurong Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China.
| | - Wenchao Chen
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital; Zhengzhou University People's Hospital; Henan University People's Hospital, Zhengzhou China.
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou China.
| |
Collapse
|
32
|
Ashrafizadeh M, Mohan CD, Rangappa S, Zarrabi A, Hushmandi K, Kumar AP, Sethi G, Rangappa KS. Noncoding RNAs as regulators of STAT3 pathway in gastrointestinal cancers: Roles in cancer progression and therapeutic response. Med Res Rev 2023; 43:1263-1321. [PMID: 36951271 DOI: 10.1002/med.21950] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/09/2022] [Accepted: 02/28/2023] [Indexed: 03/24/2023]
Abstract
Gastrointestinal (GI) tumors (cancers of the esophagus, gastric, liver, pancreas, colon, and rectum) contribute to a large number of deaths worldwide. STAT3 is an oncogenic transcription factor that promotes the transcription of genes associated with proliferation, antiapoptosis, survival, and metastasis. STAT3 is overactivated in many human malignancies including GI tumors which accelerates tumor progression, metastasis, and drug resistance. Research in recent years demonstrated that noncoding RNAs (ncRNAs) play a major role in the regulation of many signaling pathways including the STAT3 pathway. The major types of endogenous ncRNAs that are being extensively studied in oncology are microRNAs, long noncoding RNAs, and circular RNAs. These ncRNAs can either be tumor-promoters or tumor-suppressors and each one of them imparts their activity via different mechanisms. The STAT3 pathway is also tightly modulated by ncRNAs. In this article, we have elaborated on the tumor-promoting role of STAT3 signaling in GI tumors. Subsequently, we have comprehensively discussed the oncogenic as well as tumor suppressor functions and mechanism of action of ncRNAs that are known to modulate STAT3 signaling in GI cancers.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chakrabhavi D Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, Nagamangala Taluk, India
| | - Ali Zarrabi
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Sariyer, Turkey
| | - Kiavash Hushmandi
- Division of Epidemiology, Faculty of Veterinary Medicine, Department of Food Hygiene and Quality Control, University of Tehran, Tehran, Iran
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
33
|
Xing S, Zhu Y, You Y, Wang S, Wang H, Ning M, Jin H, Liu Z, Zhang X, Yu C, Lu ZJ. Cell-free RNA for the liquid biopsy of gastrointestinal cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1791. [PMID: 37086051 DOI: 10.1002/wrna.1791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Gastrointestinal (GI) cancer includes many cancer types, such as esophageal, liver, gastric, pancreatic, and colorectal cancer. As the cornerstone of personalized medicine for GI cancer, liquid biopsy based on noninvasive biomarkers provides promising opportunities for early diagnosis and dynamic treatment management. Recently, a growing number of studies have demonstrated the potential of cell-free RNA (cfRNA) as a new type of noninvasive biomarker in body fluids, such as blood, saliva, and urine. Meanwhile, transcriptomes based on high-throughput RNA detection technologies keep discovering new cfRNA biomarkers. In this review, we introduce the origins and applications of cfRNA, describe its detection and qualification methods in liquid biopsy, and summarize a comprehensive list of cfRNA biomarkers in different GI cancer types. Moreover, we also discuss perspective studies of cfRNA to overcome its current limitations in clinical applications. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Shaozhen Xing
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| | - Yumin Zhu
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Department of Maternal & Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yaxian You
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siqi Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hongke Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Meng Ning
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Heyue Jin
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Population Health and Aristogenics, Department of Maternal & Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhengxia Liu
- Department of General Surgery, SIR RUN RUN Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinhua Zhang
- Department of Health Care, Jiangsu Women and Children Health Hospital, the First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, China
| | - Chunzhao Yu
- Department of General Surgery, SIR RUN RUN Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
34
|
Chen X, Ding J, Hu G, Shu X, Liu Y, Du J, Wen Z, Liu J, Huang H, Tang G, Liu W. Estrogen-Induced LncRNA, LINC02568, Promotes Estrogen Receptor-Positive Breast Cancer Development and Drug Resistance Through Both In Trans and In Cis Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206663. [PMID: 37404090 PMCID: PMC10477896 DOI: 10.1002/advs.202206663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/12/2023] [Indexed: 07/06/2023]
Abstract
Endocrine therapy is the frontline treatment for estrogen receptor (ER) positive breast cancer patients. However, the primary and acquired resistance to endocrine therapy drugs remain as a major challenge in the clinic. Here, this work identifies an estrogen-induced lncRNA, LINC02568, which is highly expressed in ER-positive breast cancer and functional important in cell growth in vitro and tumorigenesis in vivo as well as endocrine therapy drug resistance. Mechanically, this work demonstrates that LINC02568 regulates estrogen/ERα-induced gene transcriptional activation in trans by stabilizing ESR1 mRNA through sponging miR-1233-5p in the cytoplasm. Meanwhile, LINC02568 contributes to tumor-specific pH homeostasis by regulating carbonic anhydrase CA12 in cis in the nucleus. The dual functions of LINC02568 together contribute to breast cancer cell growth and tumorigenesis as well as endocrine therapy drug resistance. Antisense oligonucleotides (ASO) targeting LINC02568 significantly inhibits ER-positive breast cancer cell growth in vitro and tumorigenesis in vivo. Furthermore, combination treatment with ASO targeting LINC02568 and endocrine therapy drugs or CA12 inhibitor U-104 exhibits synergistic effects on tumor growth. Taken together, the findings reveal the dual mechanisms of LINC02568 in regulating ERα signaling and pH homeostasis in ER-positive breast cancer, and indicated that targeting LINC02568 might represent a potential therapeutic avenue in the clinic.
Collapse
Affiliation(s)
- Xue Chen
- State Key Laboratory of Cellular Stress BiologySchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamen361102FujianChina
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamen361102FujianChina
- Xiang An Biomedicine LaboratorySchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamen361102FujianChina
| | - Jian‐cheng Ding
- State Key Laboratory of Cellular Stress BiologySchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamen361102FujianChina
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamen361102FujianChina
- Xiang An Biomedicine LaboratorySchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamen361102FujianChina
| | - Guo‐sheng Hu
- State Key Laboratory of Cellular Stress BiologySchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamen361102FujianChina
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamen361102FujianChina
- Xiang An Biomedicine LaboratorySchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamen361102FujianChina
| | - Xing‐yi Shu
- State Key Laboratory of Cellular Stress BiologySchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamen361102FujianChina
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamen361102FujianChina
- Xiang An Biomedicine LaboratorySchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamen361102FujianChina
| | - Yan Liu
- Department of Anus and BowelsAffiliated Nanhua HospitalUniversity of South ChinaDongfeng South RoadHengyang421002HunanChina
| | - Jun Du
- State Key Laboratory of Cellular Stress BiologySchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamen361102FujianChina
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamen361102FujianChina
- Xiang An Biomedicine LaboratorySchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamen361102FujianChina
| | - Zi‐jing Wen
- State Key Laboratory of Cellular Stress BiologySchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamen361102FujianChina
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamen361102FujianChina
- Xiang An Biomedicine LaboratorySchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamen361102FujianChina
| | - Jun‐yi Liu
- State Key Laboratory of Molecular Vaccinology and Molecular DiagnosticsNational Institute of Diagnostics and Vaccine Development in Infectious DiseasesXiamen UniversityXiang'an South RoadXiamen361102FujianChina
| | - Hai‐hua Huang
- Department of PathologyThe Second Affiliated HospitalShantou University Medical CollegeDongxia North RoadShantou515041GuangdongChina
| | - Guo‐hui Tang
- Department of Anus and BowelsAffiliated Nanhua HospitalUniversity of South ChinaDongfeng South RoadHengyang421002HunanChina
| | - Wen Liu
- State Key Laboratory of Cellular Stress BiologySchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamen361102FujianChina
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamen361102FujianChina
- Xiang An Biomedicine LaboratorySchool of Pharmaceutical SciencesXiamen UniversityXiang'an South RoadXiamen361102FujianChina
| |
Collapse
|
35
|
Kim J, Kim Y, Lee B. Identification of Long Non-Coding RNA Profiles and Potential Therapeutic Agents for Fibrolamellar Carcinoma Based on RNA-Sequencing Data. Genes (Basel) 2023; 14:1709. [PMID: 37761849 PMCID: PMC10530820 DOI: 10.3390/genes14091709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Fibrolamellar carcinoma (FLC) is a rare type of liver cancer that primarily affects adolescents and young adults without prior liver disease or viral infections. Patients with FLC generally have non-specific symptoms, are often diagnosed at a later stage, and experience a higher frequency of metastases compared to patients with other liver cancers. A fusion transcript of DNAJB1 and PRKACA, which can lead to increased activity of PKA and cellular proliferation, has been identified in all FLC patients, but the exact mechanism through which FLC develops remains unclear. In this study, we investigated common lncRNA profiles in various FLC samples using bioinformatics analyses. METHODS We analyzed differentially expressed (DE) lncRNAs from three RNA sequencing datasets. Using lncRNAs and DE mRNAs, we predicted potential lncRNA target genes and performed Gene Ontology (GO) and KEGG analyses with the DE lncRNA target genes. Moreover, we screened for small-molecule compounds that could act as therapeutic targets for FLC. RESULTS We identified 308 DE lncRNAs from the RNA sequencing datasets. In addition, we performed a trans-target prediction analysis and identified 454 co-expressed pairs in FLC. The GO analysis showed that the lncRNA-related up-regulated mRNAs were enriched in the regulation of protein kinase C signaling and cAMP catabolic processes, while lncRNA-related down-regulated mRNAs were enriched in steroid, retinol, cholesterol, and xenobiotic metabolic processes. The analysis of small-molecule compounds for FLC treatment identified vitexin, chlorthalidone, triamterene, and amiloride, among other compounds. CONCLUSIONS We identified potential therapeutic targets for FLC, including lncRNA target genes as well as small-molecule compounds that could potentially be used as treatments. Our findings could contribute to furthering our understanding of FLC and providing potential avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Janghyun Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea (Y.K.)
| | - Young Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea (Y.K.)
| | - Bora Lee
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| |
Collapse
|
36
|
Guo X, Peng Y, Song Q, Wei J, Wang X, Ru Y, Xu S, Cheng X, Li X, Wu D, Chen L, Wei B, Lv X, Ji G. A Liquid Biopsy Signature for the Early Detection of Gastric Cancer in Patients. Gastroenterology 2023; 165:402-413.e13. [PMID: 36894035 DOI: 10.1053/j.gastro.2023.02.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND & AIMS Diagnosing gastric cancer (GC) while the disease remains eligible for surgical resection is challenging. In view of this clinical challenge, novel and robust biomarkers for early detection thus improving prognosis of GC are necessary. The present study is to develop a blood-based long noncoding RNA (LR) signature for the early-detection of GC. METHODS The present 3-step study incorporated data from 2141 patients, including 888 with GC, 158 with chronic atrophic gastritis, 193 with intestinal metaplasia, 501 healthy donors, and 401 with other gastrointestinal cancers. The LR profile of stage I GC tissue samples were analyzed using transcriptomic profiling in discovery phase. The extracellular vesicle (EV)-derived LR signature was identified with a training cohort (n = 554) and validated with 2 external cohorts (n = 429 and n = 504) and a supplemental cohort (n = 69). RESULTS In discovery phase, one LR (GClnc1) was found to be up-regulated in both tissue and circulating EV samples with an area under the curve (AUC) of 0.9369 (95% confidence interval [CI], 0.9073-0.9664) for early-stage GC (stage I/II). The diagnostic performance of this biomarker was further confirmed in 2 external validation cohorts (Xi'an cohort, AUC: 0.8839; 95% CI: 0.8336-0.9342; Beijing cohort, AUC: 0.9018; 95% CI: 0.8597-0.9439). Moreover, EV-derived GClnc1 robustly distinguished early-stage GC from precancerous lesions (chronic atrophic gastritis and intestinal metaplasia) and GC with negative traditional gastrointestinal biomarkers (CEA, CA72-4, and CA19-9). The low levels of this biomarker in postsurgery and other gastrointestinal tumor plasma samples indicated its GC specificity. CONCLUSIONS EV-derived GClnc1 serves as a circulating biomarker for the early detection of GC, thus providing opportunities for curative surgery and improved survival outcomes.
Collapse
Affiliation(s)
- Xin Guo
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Endoscopic Surgery, Air Force 986(th) Hospital, Fourth Military Medical University, Xi'an, China; Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qiying Song
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jiangpeng Wei
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinxin Wang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yi Ru
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Shenhui Xu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin Cheng
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaohua Li
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Di Wu
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lubin Chen
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Endoscopic Surgery, Air Force 986(th) Hospital, Fourth Military Medical University, Xi'an, China
| | - Bo Wei
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Xiaohui Lv
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Gang Ji
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
37
|
Duan X, Du H, Yuan M, Liu L, Liu R, Shi J. Bioinformatics analysis of necroptosis‑related lncRNAs and immune infiltration, and prediction of the prognosis of patients with esophageal carcinoma. Exp Ther Med 2023; 26:331. [PMID: 37346407 PMCID: PMC10280318 DOI: 10.3892/etm.2023.12030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/21/2023] [Indexed: 06/23/2023] Open
Abstract
Esophageal carcinoma (ESCA) is one of the most common malignancies in the world, and has high morbidity and mortality rates. Necrosis and long noncoding RNAs (lncRNAs) are involved in the progression of ESCA; however, the specific mechanism has not been clarified. The aim of the present study was to investigate the role of necrosis-related lncRNAs (nrlncRNAs) in patients with ESCA by bioinformatics analysis, and to establish a nrlncRNA model to predict ESCA immune infiltration and prognosis. To form synthetic matrices, ESCA transcriptome data and related information were obtained from The Cancer Genome Atlas. A nrlncRNA model was established by coexpression, univariate Cox (Uni-Cox), and least absolute shrinkage and selection operator analyses. The predictive ability of this model was evaluated by Kaplan-Meier, receiver operating characteristic (ROC) curve, Uni-Cox, multivariate Cox regression, nomogram and calibration curve analyses. A model containing eight nrlncRNAs was generated. The areas under the ROC curves for 1-, 3- and 5-year overall survival were 0.746, 0.671 and 0.812, respectively. A high-risk score according to this model could be used as an indicator for systemic therapy use, since the half-maximum inhibitory concentration values varied significantly between the high-risk and low-risk groups. Based on the expression of eight prognosis-related nrlncRNAs, the patients with ESCA were regrouped using the 'ConsensusClusterPlus' package to explore potential molecular subgroups responding to immunotherapy. The patients with ESCA were divided into three clusters based on the eight nrlncRNAs that constituted the risk model: The most low-risk group patients were classified into cluster 1, and the high-risk group patients were mainly concentrated in clusters 2 and 3. Survival analysis showed that Cluster 1 had a better survival than the other groups (P=0.016). This classification system could contribute to precision treatment. Furthermore, two nrlncRNAs (LINC02811 and LINC00299) were assessed in the esophageal epithelial cell line HET-1A, and in the human esophageal cancer cell lines KYSE150 and TE1. There were significant differences in the expression levels of these lncRNAs between tumor and normal cells. In conclusion, the present study suggested that nrlncRNA models may predict the prognosis of patients with ESCA, and provide guidance for immunotherapy and chemotherapy decision making. Furthermore, the present study provided strategies to promote the development of individualized and precise treatment for patients with ESCA.
Collapse
Affiliation(s)
- Xiaoyang Duan
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Huazhen Du
- Department of Emergency, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Meng Yuan
- Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 804-8550, Japan
| | - Lie Liu
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Rongfeng Liu
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jian Shi
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
38
|
Săsăran MO, Bănescu C. Role of salivary miRNAs in the diagnosis of gastrointestinal disorders: a mini-review of available evidence. Front Genet 2023; 14:1228482. [PMID: 37456668 PMCID: PMC10346860 DOI: 10.3389/fgene.2023.1228482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
MiRNAs are short, non-coding RNA molecules, which are involved in the regulation of gene expression and which play an important role in various biological processes, including inflammation and cell cycle regulation. The possibility of detecting their extracellular expression, within body fluids, represented the main background for their potential use as non-invasive biomarkers of various diseases. Salivary miRNAs particularly gained interest recently due to the facile collection of stimulated/unstimulated saliva and their stability among healthy subjects. Furthermore, miRNAs seem to represent biomarker candidates of gastrointestinal disorders, with miRNA-based therapeutics showing great potential in those conditions. This review aimed to highlight available evidence on the role of salivary miRNAs in different gastrointestinal conditions. Most salivary-based miRNA studies available in the literature that focused on pathologies of the gastrointestinal tract have so far been conducted on pancreatic cancer patients and delivered reliable results. A few studies also showed the diagnostic utility of salivary miRNAs in conditions such as esophagitis, esophageal cancer, colorectal cancer, or inflammatory bowel disease. Moreover, several authors showed that salivary miRNAs may confidently be used as biomarkers of gastric cancer, but the use of salivary miRNA candidates in gastric inflammation and pre-malignant lesions, essential stages of Correa's cascade, is still put into question. On the other hand, besides miRNAs, other salivary omics have shown biomarker potential in gastro-intestinal conditions. The limited available data suggest that salivary miRNAs may represent reliable biomarker candidates for gastrointestinal conditions. However, their diagnostic potential requires validation through future research, performed on larger cohorts.
Collapse
Affiliation(s)
- Maria Oana Săsăran
- Department of Pediatrics 3, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, Târgu Mureș, Romania
| | - Claudia Bănescu
- Genetics Department, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Targu Mures, Romania
| |
Collapse
|
39
|
Zhou J, Song G, Su M, Zhang H, Yang T, Song Z. Long noncoding RNA CASC9 promotes pancreatic cancer progression by acting as a ceRNA of miR-497-5p to upregulate expression of CCND1. ENVIRONMENTAL TOXICOLOGY 2023; 38:1251-1264. [PMID: 36947456 DOI: 10.1002/tox.23761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Pancreatic cancer (PC) is an aggressive malignancy with poor prognosis. Accumulating studies have showed that long non-coding RNA (lncRNA) is a crucial regulator in various tumorigenesis and progression including PC. This research aims to explore the roles and molecular mechanism of lncRNA cancer susceptibility candidate 9 (CASC9) in PC. METHODS The expression levels of lncRNA CASC9 and miR-497-5p were evaluated in PC tissues and paired adjacent healthy tissues by quantitative real-time PCR. PC cell lines were transfected with lentivirus targeting lncRNA CASC9, and cells proliferation, migration and invasion tests were conducted. Dual luciferase reporter assays were also carried out to explore the relationship between lncRNA CASC9, miR-497-5p and Cyclin D1 (CCND1). RESULTS LncRNA CASC9 was significantly up-regulated in PC tissues, while miR-497-5p expression was down-regulated. Down-regulation of lncRNA CASC9 in PC cells can significantly suppress the cell aggressiveness both in vitro and in vivo; moreover, knock-down of miR-497-5p could neutralize this impact. Additionally, the luciferase activity assay has assured that CCND1 was a downstream target of miR-497-5p. CONCLUSION LncRNA CASC9 can promote the PC progression by modulating miR-497-5p/CCND1 axis, which is potential target for PC treatment.
Collapse
Affiliation(s)
- Jia Zhou
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guodong Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Gastrointestinal Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Mingqi Su
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Zhang
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingsong Yang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Jin Y, Li J, Tang C, He K, Shan D, Yan S, Deng G. A risk signature of necroptosis-related lncRNA to predict prognosis and probe molecular characteristics for male with bladder cancer. Medicine (Baltimore) 2023; 102:e33664. [PMID: 37145007 PMCID: PMC10158872 DOI: 10.1097/md.0000000000033664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/10/2023] [Indexed: 05/06/2023] Open
Abstract
Bladder cancer (BC) is a frequently diagnosed cancer with high mortality. Male patients have a higher risk of developing BC than female patients. As a type of caspase-independent cell death, necroptosis plays a significant role in the occurrence and progression of BC. The aberrant function of long non-coding RNAs (lncRNAs) plays an indispensable role in GI. However, the relationship between lncRNA and necroptosis in male patients with BC remains unclear. The clinical information and RNA-sequencing profiles of all BC patients were retrieved from The Cancer Genome Atlas Program. A total of 300 male participants were selected for the study. We conducted to identify the necroptosis-related lncRNAs (NRLs) by Pearson correlation analysis. Subsequently, least absolute shrinkage and selection operator Cox regression were conducted to establish a risk signature with overall survival-related NRLs in the training set and to validate it in the testing set. Finally, we verified the effectiveness of the 15-NRLs signature in prognostic prediction and therapy via survival analysis, receiver operating characteristic curve analysis, and Cox regression. Furthermore, we analyzed the correlation between the signature risk score and pathway enrichment analysis, immune cell infiltration, anticancer drug sensitivity, and somatic gene mutations. We developed 15-NRLs (AC009974.1, AC140118.2, LINC00323, LINC02872, PCAT19, AC017104.1, AC134312.5, AC147067.2, AL139351.1, AL355922.1, LINC00844, AC069503.1, AP003721.1, DUBR, LINC02863) signature, and divided patients into a high-risk group and low-risk group through the median risk score. Kaplan-Meier and receiver operating characteristic curves showed that the prognosis prediction had satisfactory accuracy. Cox regression analysis indicated that the 15-NRLs signature was a risk factor independent of various clinical parameters. Additionally, immune cell infiltration, half-maximal inhibitory concentration, and somatic gene mutations differed significantly among different risk subsets, implying that the signature could assess the clinical efficacy of chemotherapy and immunotherapy. This 15-NRLs risk signature may be helpful in assessing the prognosis and molecular features of male patients with BC and improve treatment modalities, thus can be further applied clinically.
Collapse
Affiliation(s)
- Yuzhou Jin
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiacheng Li
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenhao Tang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Kangwei He
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Donggang Shan
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Shenze Yan
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Deng
- Hangzhou First People’s Hospital, Hangzhou, China
| |
Collapse
|
41
|
Development of a 5-FU modified miR-129 mimic as a therapeutic for non-small cell lung cancer. Mol Ther Oncolytics 2023; 28:277-292. [PMID: 36911069 PMCID: PMC9995506 DOI: 10.1016/j.omto.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths in the United States with non-small cell lung cancer (NSCLC) accounting for most cases. Despite advances in cancer therapeutics, the 5-year survival rate has remained poor due to several contributing factors, including its resistance to therapeutics. Therefore, there is a pressing need to develop therapeutics that can overcome resistance. Non-coding RNAs, including microRNAs (miRNAs), have been found to contribute to cancer resistance and therapeutics by modulating the expression of several targets involving multiple key mechanisms. In this study, we investigated the therapeutic potential of miR-129 modified with 5-fluorouracil (5-FU) in NSCLC. Our results show that 5-FU modified miR-129 (5-FU-miR-129) inhibits proliferation, induces apoptosis, and retains function as an miRNA in NSCLC cell lines A549 and Calu-1. Notably, we observed that 5-FU-miR-129 was able to overcome resistance to tyrosine kinase inhibitors and chemotherapy in cell lines resistant to erlotinib or 5-FU. Furthermore, we observed that the inhibitory effect of 5-FU-miR-129 can also be achieved in NSCLC cells under vehicle-free conditions. Finally, 5-FU-miR-129 inhibited NSCLC tumor growth and extended survival in vivo without toxic side effects. Altogether, our results demonstrate the potential of 5-FU-miR-129 as a highly potent cancer therapeutic in NSCLC.
Collapse
|
42
|
Doghish AS, Abulsoud AI, Elshaer SS, Abdelmaksoud NM, Zaki MB, El-Mahdy HA, Ismail A, Fathi D, Elsakka EGE. miRNAs as cornerstones in chronic lymphocytic leukemia pathogenesis and therapeutic resistance- An emphasis on the interaction of signaling pathways. Pathol Res Pract 2023; 243:154363. [PMID: 36764011 DOI: 10.1016/j.prp.2023.154363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Chronic lymphocytic leukemia (CLL) accounts for the vast majority of cases of leukemia. Patients of advanced age are more likely to develop the condition, which has a highly varied clinical course. Consideration of illness features and preceding treatment sequence, as well as patient preferences and comorbidities, is necessary for selecting the appropriate treatment for the appropriate patient. Therefore, there is an urgent need for novel biomarkers with high sensitivity and specificity to detect CLL early, monitor CLL patients, select the treatment responders, and reduce ineffective treatment, unwanted side effects, and unnecessary expenses. In both homeostasis and illness, microRNAs (miRNAs/miRs) play a vital role as master regulators of gene expression and, by extension, protein expression. MiRNAs typically reduce the stability of mRNAs, including those encoding genes involved in tumorigenesis processes as cell cycle regulation, inflammation, stress response, angiogenesis, differentiation, apoptosis, and invasion. Due to their unique properties, miRNAs are rapidly being exploited as accurate biomarkers for illness detection, and medicines based on miRNA targets are finding widespread application in clinical practice. Accordingly, the current review serves as a quick primer on CLL and the biogenesis of miRNAs. In addition to providing a brief overview of the miRNAs whose function in the progression of CLL has been established by recent in vitro or in vivo research through articulating the influence of these miRNAs on a wide variety of cellular functions, including increased proliferative potential; support for angiogenesis; cell cycle aberration; evasion of apoptosis; promotion of metastasis; and reduced sensitivity to specific treatments.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Doaa Fathi
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
43
|
Wang W, Ye Y, Zhang X, Sun W, Bao L. An angiogenesis-related three-long non-coding ribonucleic acid signature predicts the immune landscape and prognosis in hepatocellular carcinoma. Heliyon 2023; 9:e13989. [PMID: 36873490 PMCID: PMC9982620 DOI: 10.1016/j.heliyon.2023.e13989] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The tumour microenvironment is a key determinant of the efficacy of immunotherapy. Angiogenesis is closely linked to tumour immunity. We aimed to screen long non-coding ribonucleic acids (lncRNAs) associated with angiogenesis to predict the prognosis of individuals with hepatocellular carcinoma (HCC) and characterise the tumour immune microenvironment (TIME). Patient data, including transcriptome and clinicopathological parameters, were retrieved from The Cancer Genome Atlas database. Moreover, co-expression algorithm was utilized to obtain angiogenesis-related lncRNAs. Additionally, survival-related lncRNAs were identified using Cox regression and the least absolute shrinkage and selection operator algorithm, which aided in constructing an angiogenesis-related lncRNA signature (ARLs). The ARLs was validated using Kaplan-Meier method, time-dependent receiver operating characteristic analyses, and Cox regression. Additionally, an independent external HCC dataset was used for further validation. Then, gene set enrichment analysis, immune landscape, and drug sensitivity analyses were implemented to explore the role of the ARLs. Finally, cluster analysis divided the entire HCC dataset into two clusters to distinguish different subtypes of TIME. This study provides insight into the involvement of angiogenesis-associated lncRNAs in predicting the TIME characteristics and prognosis for individuals with HCC. Furthermore, the developed ARLs and clusters can predict the prognosis and TIME characteristics in HCC, thereby aiding in selecting the appropriate therapeutic strategies involving immune checkpoint inhibitors and targeted drugs.
Collapse
Affiliation(s)
- Wenjuan Wang
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, China
| | - Yingquan Ye
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuede Zhang
- Department of Oncology, Weifang People's Hospital, Weifang, China
| | - Weijie Sun
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lingling Bao
- Department of Hematology and Oncology, Beilun District People's Hospital, Ningbo, China
| |
Collapse
|
44
|
Wang H, Yuan H, Guo Q, Zeng X, Liu M, Ji R, Chen Z, Guan Q, Zheng Y, Wang Y, Zhou Y. A novel circRNA, hsa_circ_0069382, regulates gastric cancer progression. Cancer Cell Int 2023; 23:35. [PMID: 36841760 PMCID: PMC9960672 DOI: 10.1186/s12935-023-02871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/13/2023] [Indexed: 02/27/2023] Open
Abstract
Aberrant expression of circRNAs is closely associated with the progression of gastric cancer; however, the specific mechanisms involved remain unclear. Our aim was to identify new gastric cancer biomarkers and explore the molecular mechanisms of gastric cancer progression. Therefore, we analyzed miRNA and circRNA microarrays of paired early-stage gastric cancer samples. Our study identified a new circRNA called hsa_circ_0069382, that had not been reported before and was expressed at low levels in gastric cancer tissues. Our study also included bioinformatics analyses which determined that the high expression of hsa_circ_0069382 regulated the BTG anti-proliferation factor 2 (BTG2)/ focal adhesion kinase (FAK) axis in gastric cancer lines by sponging for miR-15a-5p. Therefore, proliferation, invasion, and migration of gastric cancer is impacted. miR-15a-5p overexpression partially restored the effects of hsa_circ_0069382. This study provides potential new therapeutic options and a future direction to explore for gastric cancer treatment, and biomarkers.
Collapse
Affiliation(s)
- Haoying Wang
- grid.32566.340000 0000 8571 0482The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000 China
| | - Hao Yuan
- grid.412643.60000 0004 1757 2902Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000 China
| | - Qinghong Guo
- grid.412643.60000 0004 1757 2902Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000 China
| | - Xi Zeng
- grid.32566.340000 0000 8571 0482The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000 China
| | - Mengxiao Liu
- grid.32566.340000 0000 8571 0482The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000 China
| | - Rui Ji
- grid.412643.60000 0004 1757 2902Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000 China
| | - Zhaofeng Chen
- grid.412643.60000 0004 1757 2902Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000 China
| | - Quanlin Guan
- grid.412643.60000 0004 1757 2902Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000 China
| | - Ya Zheng
- grid.412643.60000 0004 1757 2902Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000 China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China. .,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China. .,Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
45
|
Pham TT, Chen H, Nguyen PHD, Jayasinghe MK, Le AH, Le MT. Endosomal escape of nucleic acids from extracellular vesicles mediates functional therapeutic delivery. Pharmacol Res 2023; 188:106665. [PMID: 36657503 DOI: 10.1016/j.phrs.2023.106665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Extracellular vesicles hold great promise as a drug delivery platform for RNA-based therapeutics. However, there is a lack of experimental evidence for the intracellular trafficking of nucleic acid cargos, specifically, whether they are capable of escaping from the endolysosomal confinement in the recipient cells to be released into the cytosol and hence, interact with their cytoplasmic targets. Here, we demonstrated how red blood cell-derived extracellular vesicles (RBCEVs) release their therapeutic RNA/DNA cargos at specific intracellular compartments characteristic of late endosomes and lysosomes. The released cargos were functional and capable of knocking down genes of interest in recipient cells, resulting in tumor suppression in vitro and in an acute myeloid leukemia murine model without causing significant toxicity. Notably, surface functionalization of RBCEVs with an anti-human CXCR4 antibody facilitated their specific uptake by CXCR4+ leukemic cells, leading to enhanced gene silencing efficiency. Our results provide insights into the cellular uptake mechanisms and endosomal escape routes of nucleic acid cargos delivered by RBCEVs which have important implications for further improvements of the RBCEV-based delivery system.
Collapse
Affiliation(s)
- Tuan Thach Pham
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Huan Chen
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Phuong Hoang Diem Nguyen
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Migara Kavishka Jayasinghe
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anh Hong Le
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Minh Tn Le
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
46
|
Chen H, Peng L, Zhou D, Tan N, Qu G. A risk stratification and prognostic prediction model for lung adenocarcinoma based on aging-related lncRNA. Sci Rep 2023; 13:460. [PMID: 36627319 PMCID: PMC9832126 DOI: 10.1038/s41598-022-26897-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
To create a risk model of aging-related long non-coding RNAs (arlncRNAs) and determine whether they might be useful as markers for risk stratification, prognosis prediction, and targeted therapy guidance for patients with lung adenocarcinoma (LUAD). Data on aging genes and lncRNAs from LUAD patients were obtained from Human Aging Genomic Resources 3 and The Cancer Genome Atlas, and differential co-expression analysis of established differentially expressed arlncRNAs (DEarlncRNAs) was performed. They were then paired with a matrix of 0 or 1 by cyclic single pairing. The risk coefficient for each sample of LUAD individuals was obtained, and a risk model was constructed by performing univariate regression, least absolute shrinkage and selection operator regression analysis, and univariate and multivariate Cox regression analysis. Areas under the curve were calculated for the 1-, 3-, and 5-year receiver operating characteristic curves to determine Akaike information criterion-based cutoffs to identify high- and low-risk groups. The survival rate, correlation of clinical characteristics, malignant-infiltrating immune-cell expression, ICI-related gene expression, and chemotherapeutic drug sensitivity were contrasted with the high- and low-risk groups. We found that 99 DEarlncRNAs were upregulated and 12 were downregulated. Twenty pairs of DEarlncRNA pairs were used to create a prognostic model. The 1-, 3-, and 5-year survival curve areas of LUAD individuals were 0.805, 0.793, and 0.855, respectively. The cutoff value to classify patients into two groups was 0.992. The mortality rate was higher in the high-risk group. We affirmed that the LUAD outcome-related independent predictor was the risk score (p < 0.001). Validation of tumor-infiltrating immune cells and ICI-related gene expression differed substantially between the groups. The high-risk group was highly sensitive to docetaxel, erlotinib, gefitinib, and paclitaxel. Risk models constructed from arlncRNAs can be used for risk stratification in patients with LUAD and serve as prognostic markers to identify patients who might benefit from targeted and chemotherapeutic agents.
Collapse
Affiliation(s)
- HuiWei Chen
- grid.501248.aDepartment of Emergency, Zhuzhou Central Hospital, Zhuzhou, 412007 Hunan China
| | - Lihua Peng
- grid.501248.aDepartment of Otolaryngology Head and Neck Surgery, Zhuzhou Central Hospital, Zhuzhou, 412007 Hunan China
| | - Dujuan Zhou
- grid.501248.aDepartment of Teaching, Zhuzhou Central Hospital, Zhuzhou, 412007 Hunan China
| | - NianXi Tan
- Department of Cardiothoracic Vascular Surgery, Zhuzhou Central Hospital, Zhuzhou, 412007, Hunan, China.
| | - GenYi Qu
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou, 412007, China.
| |
Collapse
|
47
|
Li S, Sun J, Ma J, Zhou C, Yang X, Zhang S, Huang L, Jia H, Shao Y, Zhang E, Zheng M, Zhao Q, Zang L. LncRNA LENGA acts as a tumor suppressor in gastric cancer through BRD7/TP53 signaling. Cell Mol Life Sci 2022; 80:5. [PMID: 36477655 PMCID: PMC11071885 DOI: 10.1007/s00018-022-04642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
It has been established that long noncoding RNAs (lncRNAs) play a crucial role in various cancer types, and there are vast numbers of long noncoding RNA transcripts that have been identified by high-throughput methods. However, the biological function of many novel aberrantly expressed lncRNAs remains poorly elucidated, especially in gastric cancer (GC). Here, we first identified a novel lncRNA termed LENGA (Low Expression Noncoding RNA in Gastric Adenocarcinoma), which was significantly downregulated in GC tissues compared to adjacent normal tissues. Next, we found that reduced expression of LENGA in GC was also associated with a shorter life expectancy. The proliferation, migration, and invasion of GC cells were increased after LENGA knockdown but restrained after LENGA overexpression in vitro and in vivo. It was further demonstrated that LENGA physically binds to BRD7 (bromodomain-containing 7) in the bromodomain domain and acts as a scaffold that enhances the interaction between BRD7 and TP53 (tumor protein p53), regulating the expression of a subset of genes in the p53 pathway, including CDKN1A (cyclin-dependent kinase inhibitor 1A) and PCDH7 (protocadherin 7), at the transcriptional level. Consistently, the expression of CDKN1A has a positive correlation with LENGA in GC patients. Taken together, this study uncovers a novel tumor suppressor lncRNA, LENGA, and describes its biological function, molecular mechanism, and clinical significance. This highlights the potential importance of targeting the LENGA/BRD7/TP53 axis in GC treatment.
Collapse
Affiliation(s)
- Shuchun Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junjun Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cixiang Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Sen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ling Huang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongtao Jia
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanfei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Enkui Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Qian Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Lu Zang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
48
|
Fang D, Ou X, Sun K, Zhou X, Li Y, Shi P, Zhao Z, He Y, Peng J, Xu J. m6A modification-mediated lncRNA TP53TG1 inhibits gastric cancer progression by regulating CIP2A stability. Cancer Sci 2022; 113:4135-4150. [PMID: 36114757 DOI: 10.1111/cas.15581] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are associated with various types of cancer. However, the precise roles of many lncRNAs in tumor progression remain unclear. In this study, we found that the expression of the lncRNA TP53TG1 was downregulated in gastric cancer (GC) and it functioned as a tumor suppressor. In addition, low TP53TG1 expression was significantly associated with poor survival in patients with GC. TP53TG1 inhibited the proliferation, metastasis, and cell cycle progression of GC cells, while it promoted their apoptosis. m6A modification sites are highly abundant on TP53TG1, and demethylase ALKBH5 reduces TP53TG1 stability and downregulates its expression. TP53TG1 interacts with cancerous inhibitor of protein phosphatase 2A (CIP2A) and triggers its ubiquitination-mediated degradation, resulting in the inhibition of the PI3K/AKT pathway. These results suggest that TP53TG1 plays an important role in inhibiting the progression of GC and provides a crucial target for GC treatment.
Collapse
Affiliation(s)
- Deliang Fang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinde Ou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kaiyu Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xingyu Zhou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Youpei Li
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Shi
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Zirui Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yulong He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Digestive Disease Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jianjun Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianbo Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
49
|
He SL, Zhao X, Yi SJ. CircAHNAK upregulates EIF2B5 expression to inhibit the progression of ovarian cancer by modulating the JAK2/STAT3 signaling pathway. Carcinogenesis 2022; 43:941-955. [PMID: 35710311 DOI: 10.1093/carcin/bgac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 05/20/2022] [Accepted: 06/16/2022] [Indexed: 01/13/2023] Open
Abstract
Recent studies highlighted non-coding RNAs as potential therapeutic targets in ovarian cancer. We aimed to investigate the roles of circAHNAK in ovarian cancer pathogenesis. Here, RNA immunoprecipitation, dual-luciferase reporter assay and RNA fluorescence in situ hybridization were adopted to determine circAHNAK, miR-28 or EIF2B5 interaction. CCK-8 assay was used to detect cell proliferation. Wound healing and Transwell assays were employed to assess cell migration and invasion, respectively. Flow cytometry was performed to measure cell apoptosis. The roles of circAHNAK on tumor growth in vivo were evaluated using subcutaneous xenograft model. The expression levels of circAHNAK, miR-28, EIF2B5, markers of EMT and JAK2/STAT3 pathway were measured by qRT-PCR, western blotting or immunohistochemistry staining. We reported that circAHNAK was decreased in ovarian cancer tissues. Forced expression of circAHNAK promoted apoptosis and inhibited cell proliferation, migration, invasion, EMT and JAK2/STAT3 signaling pathway. Mechanistically, circAHNAK acted as a miR-28 sponge. CircAHNAK deficiency resulted in the amassing of miR-28, which was elevated in ovarian cancer and promoted cancer cell malignancy. MiR-28 in turn inhibited EIF2B5 expression. Silence of EIF2B5 abolished the anticancer effects of miR-28 inhibitor. CircAHNAK overexpression retarded tumor growth in vivo, along with the decreased miR-28 and increased EIF2B, as well as EMT inhibition. In conclusion, circAHNAK targets miR-28 to upregulate EIF2B5 expression, thus inhibits progression of ovarian cancer by suppressing JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Si-Li He
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Xingping Zhao
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Shui-Jing Yi
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| |
Collapse
|
50
|
Wang X, Cheng H, Zhao J, Li J, Chen Y, Cui K, Tian L, Zhang J, Li C, Sun S, Feng Y, Yao S, Bian Z, Huang S, Fei B, Huang Z. Long noncoding RNA DLGAP1-AS2 promotes tumorigenesis and metastasis by regulating the Trim21/ELOA/LHPP axis in colorectal cancer. Mol Cancer 2022; 21:210. [PMID: 36376892 PMCID: PMC9664729 DOI: 10.1186/s12943-022-01675-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have driven research focused on their effects as oncogenes or tumor suppressors involved in carcinogenesis. However, the functions and mechanisms of most lncRNAs in colorectal cancer (CRC) remain unclear. Methods The expression of DLGAP1-AS2 was assessed by quantitative RT-PCR in multiple CRC cohorts. The impacts of DLGAP1-AS2 on CRC growth and metastasis were evaluated by a series of in vitro and in vivo assays. Furthermore, the underlying mechanism of DLGAP1-AS2 in CRC was revealed by RNA pull down, RNA immunoprecipitation, RNA sequencing, luciferase assays, chromatin immunoprecipitation, and rescue experiments. Results We discovered that DLGAP1-AS2 promoted CRC tumorigenesis and metastasis by physically interacting with Elongin A (ELOA) and inhibiting its protein stability by promoting tripartite motif containing 21 (Trim21)-mediated ubiquitination modification and degradation of ELOA. In particular, we revealed that DLGAP1-AS2 decreases phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) expression by inhibiting ELOA-mediated transcriptional activating of LHPP and thus blocking LHPP-dependent suppression of the AKT signaling pathway. In addition, we also demonstrated that DLGAP1-AS2 was bound and stabilized by cleavage and polyadenylation specificity factor (CPSF2) and cleavage stimulation factor (CSTF3). Conclusions The discovery of DLGAP1-AS2, a promising prognostic biomarker, reveals a new dimension into the molecular pathogenesis of CRC and provides a prospective treatment target for this disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01675-w.
Collapse
|