1
|
Gao M, Zhao X. Insights into the tissue repair features of MAIT cells. Front Immunol 2024; 15:1432651. [PMID: 39086492 PMCID: PMC11289772 DOI: 10.3389/fimmu.2024.1432651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are a subset of innate-like non-conventional T cells characterized by multifunctionality. In addition to their well-recognized antimicrobial activity, increasing attention is being drawn towards their roles in tissue homeostasis and repair. However, the precise mechanisms underlying these functions remain incompletely understood and are still subject to ongoing exploration. Currently, it appears that the tissue localization of MAIT cells and the nature of the diseases or stimuli, whether acute or chronic, may induce a dynamic interplay between their pro-inflammatory and anti-inflammatory, or pathogenic and reparative functions. Therefore, elucidating the conditions and mechanisms of MAIT cells' reparative functions is crucial for fully maximizing their protective effects and advancing future MAIT-related therapies. In this review, we will comprehensively discuss the establishment and potential mechanisms of their tissue repair functions as well as the translational application prospects and current challenges in this field.
Collapse
Affiliation(s)
- Mengge Gao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaosu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|
2
|
Cui X, Wu Z, Zhou Y, Deng L, Chen Y, Huang H, Sun X, Li Y, Wang H, Zhang L, He J. A bibliometric study of global trends in T1DM and intestinal flora research. Front Microbiol 2024; 15:1403514. [PMID: 39027096 PMCID: PMC11254799 DOI: 10.3389/fmicb.2024.1403514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease that seriously jeopardizes human physical and mental health and reduces quality of life. Intestinal flora is one of the critical areas of exploration in T1DM research. Objective This study aims to explore the research hotspot and development trend of T1DM and intestinal flora to provide research direction and ideas for researchers. Methods We used the Web of Science (WOS) Core Collection and searched up to 18 November 2023, for articles on studies of the correlation between T1DM and intestinal flora. CiteSpace, VOSviewers and R package "bibliometrix" were used to conduct this bibliometric analysis. Results Eventually, 534 documents met the requirements to be included, and as of 18 November 2023, there was an upward trend in the number of publications in the field, with a significant increase in the number of articles published after 2020. In summary, F Susan Wong (UK) was the author with the most publications (21), the USA was the country with the most publications (198), and the State University System of Florida (the United States) was the institution with the most publications (32). The keywords that appeared more frequently were T cells, fecal transplants, and short-chain fatty acids. The results of keywords with the most robust citation bursts suggest that Faecalibacterium prausnitzii and butyrate may become a focus of future research. Conclusion In the future, intestinal flora will remain a research focus in T1DM. Future research can start from Faecalibacterium prausnitzii and combine T cells, fecal bacteria transplantation, and short-chain fatty acids to explore the mechanism by which intestinal flora affects blood glucose in patients with T1DM, which may provide new ideas for the prevention and treatment of T1DM.
Collapse
Affiliation(s)
- Xinxin Cui
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Zhen Wu
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yangbo Zhou
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Longji Deng
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yu Chen
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Hanqiao Huang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiangbin Sun
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yu Li
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Haixia Wang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Li Zhang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Jia He
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
3
|
Siqueira F, Rodrigues F, Ribeiro S, Veras H, Ferreira F, Siqueira R, dos Santos A, Havt A, Lima A. Induced acute hyperglycemia modifies the barrier function of the intestinal epithelium by tissue inflammation and tight junction disruption resulting in hydroelectrolytic secretion in an animal model. Braz J Med Biol Res 2024; 57:e13309. [PMID: 38656073 PMCID: PMC11027184 DOI: 10.1590/1414-431x2024e13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/21/2024] [Indexed: 04/26/2024] Open
Abstract
Diabetic-metabolic syndrome (MetS-D) has a high prevalence worldwide, in which an association with the rupture of the intestinal epithelium barrier function (IEBF) has been pointed out, but the functional and morphological properties are still not well understood. This study aimed to evaluate the impact of acute hyperglycemia diabetes on intestinal tight junction proteins, metabolic failure, intestinal ion and water transports, and IEBF parameters. Diabetes was induced in male Rattus norvegicus (200-310 g) with 0.5 mL of streptozotocin (70 mg/kg). Glycemic and clinical parameters were evaluated every 7 days, and intestinal parameters were evaluated on the 14th day. The MetS-D animals showed a clinical pattern of hyperglycemia, with increases in the area of villi and crypts, lactulose:mannitol ratio, myeloperoxidase (MPO) activity, and intestinal tissue concentrations of malondialdehyde (MDA), but showed a reduction in reduced glutathione (GSH) when these parameters were compared to the control. The MetS-D group had increased secretion of Na+, K+, Cl-, and water compared to the control group in ileal tissue. Furthermore, we observed a reduction in mRNA transcript of claudin-2, claudin-15, and NHE3 and increases of SGLT-1 and ZO-1 in the MetS-D group. These results showed that MetS-D triggered intestinal tissue inflammation, oxidative stress, complex alterations in gene regulatory protein transcriptions of intestinal transporters and tight junctions, damaging the IEBF and causing hydroelectrolyte secretion.
Collapse
Affiliation(s)
- F.J.W.S. Siqueira
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - F.A.P. Rodrigues
- Departamento de Educação Física e Esporte, Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Fortaleza, CE, Brasil
| | - S.A. Ribeiro
- Programa de Pós-Graduação em Ciências Médicas, Departamento de Patologia e Medicina Legal, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - H.N. Veras
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - F.C.S. Ferreira
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R.C.L. Siqueira
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A.A. dos Santos
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A. Havt
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A.A.M. Lima
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
4
|
Gao C, Koko MY, Hong W, Gankhuyag J, Hui M, Gantumur MA, Dong N. Protective Properties of Intestinal Alkaline Phosphatase Supplementation on the Intestinal Barrier: Interactions and Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27-45. [PMID: 37964463 DOI: 10.1021/acs.jafc.3c05119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The intestinal barrier is critical for maintaining intestinal homeostasis, and its dysfunction is associated with various diseases. Recent findings have revealed the multifunctional role of intestinal alkaline phosphatase (IAP) in diverse biological processes, including gut health maintenance and function. This review summarizes the protective effects of IAP on intestinal barrier integrity, encompassing the physical, chemical, microbial, and immune barriers. We discuss the results and insights from in vitro, animal model, and clinical studies as well as the available evidence regarding the impact of diet on IAP activity and expression. IAP can also be used as an indicator to assess intestinal-barrier-related diseases. Further research into the mechanisms of action and long-term health effects of IAP in maintaining overall intestinal health is essential for its future use as a dietary supplement or functional component in medical foods.
Collapse
Affiliation(s)
- Chenzhe Gao
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China 150030
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Marwa Yagoub Koko
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Weichen Hong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Javzan Gankhuyag
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Mizhou Hui
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Munkh-Amgalan Gantumur
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China 150030
| |
Collapse
|
5
|
Yang R, Chen Z, Cai J. Fecal microbiota transplantation: Emerging applications in autoimmune diseases. J Autoimmun 2023; 141:103038. [PMID: 37117118 DOI: 10.1016/j.jaut.2023.103038] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/12/2023] [Accepted: 04/06/2023] [Indexed: 04/30/2023]
Abstract
Both genetic susceptibility and environmental factors are important contributors to autoimmune disease pathogenesis. As an environmental factor, the gut microbiome plays a crucial role in the development and progression of autoimmune diseases. Thus, strategies targeting gut microbiome alterations can potentially be used to treat autoimmune disease. Microbiota-based interventions, such as prebiotics, probiotics, dietary interventions, and fecal microbiota transplantation (FMT), have attracted growing interest as novel treatment approaches. FMT is an effective method for treating recurrent Clostridioides difficile infections; moreover, it is emerging as a promising treatment for patients with inflammatory bowel disease and other autoimmune diseases. Although the mechanisms underpinning the interaction between the gut microbiome and host are not fully understood in patients with autoimmune disease, FMT has been shown to restore altered gut microbiota composition, rebuild the intestinal microecosystem, and mediate innate and adaptive immune responses to achieve a therapeutic effect. In this review, we provide an overview of FMT and discuss how FMT can be used as a novel treatment approach for autoimmune diseases. Furthermore, we discuss recent challenges and offer future research directions.
Collapse
Affiliation(s)
- Ruixue Yang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road 167, Xicheng District, Beijing, 100037, China
| | - Zhenzhen Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road 167, Xicheng District, Beijing, 100037, China
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road 167, Xicheng District, Beijing, 100037, China.
| |
Collapse
|
6
|
Bertrand L, Lehuen A. Lymph node sharing is caring for pancreatic immunity. Immunity 2023; 56:1980-1982. [PMID: 37703826 DOI: 10.1016/j.immuni.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/15/2023]
Abstract
Lymph nodes can be shared among several organs, notably in the gastrointestinal system. In this issue of Immunity, Brown et al. describe how pancreatic immunity is shaped by the mixing of different migratory dendritic cells issued from co-drainage from liver, pancreas, and duodenum.
Collapse
Affiliation(s)
- Léo Bertrand
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratoire d'Excellence Inflamex, F-75014, Paris, France
| | - Agnès Lehuen
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratoire d'Excellence Inflamex, F-75014, Paris, France.
| |
Collapse
|
7
|
Mooradian AD. Diabetes-related perturbations in the integrity of physiologic barriers. J Diabetes Complications 2023; 37:108552. [PMID: 37356233 DOI: 10.1016/j.jdiacomp.2023.108552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
One of the hallmarks of health is the integrity of barriers at the cellular and tissue levels. The two cardinal functions of barriers include preventing access of deleterious elements of the environment (barrier function) while facilitating the transport of essential ions, signaling molecules and nutrients needed to maintain the internal milieu (transport function). There are several cellular and subcellular barriers and some of these barriers can be interrelated. The principal physiologic barriers include blood-retinal barrier, blood-brain barrier, blood-testis barrier, renal glomerular/tubular barrier, intestinal barrier, pulmonary blood-alveolar barrier, blood-placental barrier and skin barrier. Tissue specific barriers are the result of the vasculature, cellular composition of the tissue and extracellular matrix within the tissue. Uncontrolled diabetes and acute hyperglycemia may disrupt the integrity of physiologic barriers, primarily through altering the vascular integrity of the tissues and may well contribute to the clinically recognized complications of diabetes. Although diabetes is a systemic disease, some of the organs display clinically significant deterioration in function while others undergo subclinical changes. The pathophysiology of the disruption of these barriers is not entirely clear but it may be related to diabetes-related cellular stress. Understanding the mechanisms of diabetes related dysfunction of various physiologic barriers might help identifying novel therapeutic targets for reducing clinically significant complications of diabetes.
Collapse
Affiliation(s)
- Arshag D Mooradian
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, Jacksonville, FL, USA.
| |
Collapse
|
8
|
Mousa WK, Chehadeh F, Husband S. Microbial dysbiosis in the gut drives systemic autoimmune diseases. Front Immunol 2022; 13:906258. [PMID: 36341463 PMCID: PMC9632986 DOI: 10.3389/fimmu.2022.906258] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/20/2022] [Indexed: 09/29/2023] Open
Abstract
Trillions of microbes survive and thrive inside the human body. These tiny creatures are crucial to the development and maturation of our immune system and to maintain gut immune homeostasis. Microbial dysbiosis is the main driver of local inflammatory and autoimmune diseases such as colitis and inflammatory bowel diseases. Dysbiosis in the gut can also drive systemic autoimmune diseases such as type 1 diabetes, rheumatic arthritis, and multiple sclerosis. Gut microbes directly interact with the immune system by multiple mechanisms including modulation of the host microRNAs affecting gene expression at the post-transcriptional level or production of microbial metabolites that interact with cellular receptors such as TLRs and GPCRs. This interaction modulates crucial immune functions such as differentiation of lymphocytes, production of interleukins, or controlling the leakage of inflammatory molecules from the gut to the systemic circulation. In this review, we compile and analyze data to gain insights into the underpinning mechanisms mediating systemic autoimmune diseases. Understanding how gut microbes can trigger or protect from systemic autoimmune diseases is crucial to (1) tackle these diseases through diet or lifestyle modification, (2) develop new microbiome-based therapeutics such as prebiotics or probiotics, (3) identify diagnostic biomarkers to predict disease risk, and (4) observe and intervene with microbial population change with the flare-up of autoimmune responses. Considering the microbiome signature as a crucial player in systemic autoimmune diseases might hold a promise to turn these untreatable diseases into manageable or preventable ones.
Collapse
Affiliation(s)
- Walaa K. Mousa
- Biology Department, Whitman College, Walla Walla, WA, United States
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Fadia Chehadeh
- Biology Department, Whitman College, Walla Walla, WA, United States
| | - Shannon Husband
- Biology Department, Whitman College, Walla Walla, WA, United States
| |
Collapse
|
9
|
Majumdar S, Lin Y, Bettini ML. Host-microbiota interactions shaping T-cell response and tolerance in type 1 diabetes. Front Immunol 2022; 13:974178. [PMID: 36059452 PMCID: PMC9434376 DOI: 10.3389/fimmu.2022.974178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Type-1 Diabetes (T1D) is a complex polygenic autoimmune disorder involving T-cell driven beta-cell destruction leading to hyperglycemia. There is no cure for T1D and patients rely on exogenous insulin administration for disease management. T1D is associated with specific disease susceptible alleles. However, the predisposition to disease development is not solely predicted by them. This is best exemplified by the observation that a monozygotic twin has just a 35% chance of developing T1D after their twin's diagnosis. This makes a strong case for environmental triggers playing an important role in T1D incidence. Multiple studies indicate that commensal gut microbiota and environmental factors that alter their composition might exacerbate or protect against T1D onset. In this review, we discuss recent literature highlighting microbial species associated with T1D. We explore mechanistic studies which propose how some of these microbial species can modulate adaptive immune responses in T1D, with an emphasis on T-cell responses. We cover topics ranging from gut-thymus and gut-pancreas communication, microbial regulation of peripheral tolerance, to molecular mimicry of islet antigens by microbial peptides. In light of the accumulating evidence on commensal influences in neonatal thymocyte development, we also speculate on the link between molecular mimicry and thymic selection in the context of T1D pathogenesis. Finally, we explore how these observations could inform future therapeutic approaches in this disease.
Collapse
Affiliation(s)
- Shubhabrata Majumdar
- Immunology Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Yong Lin
- Immunology Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Matthew L. Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
10
|
Hoffmanová I, Sánchez D, Szczepanková A, Hábová V, Tlaskalová-Hogenová H. Serological markers of intestinal barrier impairment do not correlate with duration of diabetes and glycated hemoglobin in adult patients with type 1 and type 2 diabetes mellitus. Physiol Res 2022; 71:357-368. [PMID: 35616045 DOI: 10.33549/physiolres.934874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Growing evidence suggests that diabetes mellitus is associated with impairment of the intestinal barrier. However, it is not clear so far if the impairment of the intestinal barrier is a consequence of prolonged hyperglycemia or the consequence of external factors influencing the gut microbiota and intestinal mucosa integrity. Aim of the study was to perform an estimation of relationship between serological markers of impairment of the intestinal barrier: intestinal fatty acid-binding protein (I-FABP), cytokeratin 18 caspase-cleaved fragment (cCK-18), and soluble CD14 (sCD14) and markers of prolonged hyperglycemia, such as the duration of diabetes mellitus and glycated hemoglobin (HbA1c) via a correlation analysis in patients with diabetes mellitus. In 40 adult patients with type 1 diabetes mellitus and 30 adult patients with type 2 diabetes mellitus the estimation has been performed. Statistically significant positive correlation was found between cCK-18 and HbA1c (r=0.5047, p=0.0275) in patients with type 1 diabetes mellitus with fading insulitis (T1D). In patients with type 1 diabetes mellitus with ongoing insulitis (T1D/INS) and in patients with type 2 diabetes mellitus (T2D), no statistically significant positive correlations were found between serological markers of intestinal barrier impairment (I-FABP, cCK-18, sCD14) and duration of diabetes or levels of HbA1c. Similarly, in cumulative cohort of patients with T1D/INS and patients with T1D we revealed statistically positive correlation only between HbA1c and cCK-18 (r=0.3414, p=0.0311). Surprisingly, we found statistically significant negative correlation between the duration of diabetes mellitus and cCK-18 (r=-0.3050, p=0.0313) only in cumulative group of diabetic patients (T1D, T1D/INS, and T2D). Based on our results, we hypothesize that the actual condition of the intestinal barrier in diabetic patients is much more dependent on variable interactions between host genetic factors, gut microbiota, and environmental factors rather than effects of long-standing hyperglycemia (assessed by duration of diabetes mellitus or HbA1c).
Collapse
Affiliation(s)
- I Hoffmanová
- Department of Internal Medicine, Second Faculty of Medicine, Charles University Prague, and Motol University Hospital, Prague, Czech Republic; Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences., Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
11
|
An J, Liu Y, Wang Y, Fan R, Hu X, Zhang F, Yang J, Chen J. The Role of Intestinal Mucosal Barrier in Autoimmune Disease: A Potential Target. Front Immunol 2022; 13:871713. [PMID: 35844539 PMCID: PMC9284064 DOI: 10.3389/fimmu.2022.871713] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune diseases are a series of diseases involving multiple tissues and organs, characterized by the over production of abnormal multiple antibodies. Although most studies support that the impaired immune balance participates in the development of autoimmune diseases, the specific pathogenesis of it is not fully understood. Intestinal immunity, especially the intestinal mucosal barrier has become a research hotspot, which is considered to be an upstream mechanism leading to the impaired immune balance. As an important defense barrier, the intestinal mucosal barrier regulates and maintains the homeostasis of internal environment. Once the intestinal barrier function is impaired under the effect of multiple factors, it will destroy the immune homeostasis, trigger inflammatory response, and participate in the development of autoimmune diseases in the final. However, the mechanism of the intestinal mucosal barrier how to regulate the homeostasis and inflammation is not clear. Some studies suggest that it maintains the balance of immune homeostasis through the zonulin pathway, intestinal microbiome, and Toll-like receptor signaling pathway. Our review focused on the composition and the function of the intestinal mucosal barrier to describe the research progress of it in regulating the immune homeostasis and inflammation, and also pointed that the intestinal mucosal barrier was the potential targets in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Jia An
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuqing Liu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yiqi Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ru Fan
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaorong Hu
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Fen Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinhua Yang
- Department of Internal Medicine, Central Hospital of Xinghualing District, Taiyuan, China
| | - Junwei Chen
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Junwei Chen,
| |
Collapse
|
12
|
Gueddouri D, Caüzac M, Fauveau V, Benhamed F, Charifi W, Beaudoin L, Rouland M, Sicherre F, Lehuen A, Postic C, Boudry G, Burnol AF, Guilmeau S. Insulin resistance per se drives early and reversible dysbiosis-mediated gut barrier impairment and bactericidal dysfunction. Mol Metab 2022; 57:101438. [PMID: 35007789 PMCID: PMC8814824 DOI: 10.1016/j.molmet.2022.101438] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE A common feature of metabolic diseases is their association with chronic low-grade inflammation. While enhanced gut permeability and systemic bacterial endotoxin translocation have been suggested as key players of this metaflammation, the mechanistic bases underlying these features upon the diabesity cascade remain partly understood. METHODS Here, we show in mice that, independently of obesity, the induction of acute and global insulin resistance and associated hyperglycemia, upon treatment with an insulin receptor (IR) antagonist (S961), elicits gut hyperpermeability without triggering systemic inflammatory response. RESULTS Of note, S961-treated diabetic mice display major defects of gut barrier epithelial functions, such as increased epithelial paracellular permeability and impaired cell-cell junction integrity. We also observed in these mice the early onset of a severe gut dysbiosis, as characterized by the bloom of pro-inflammatory Proteobacteria, and the later collapse of Paneth cells antimicrobial defense. Interestingly, S961 treatment discontinuation is sufficient to promptly restore both the gut microbial balance and the intestinal barrier integrity. Moreover, fecal transplant approaches further confirm that S961-mediated dybiosis contributes at least partly to the disruption of the gut selective epithelial permeability upon diabetic states. CONCLUSIONS Together, our results highlight that insulin signaling is an indispensable gatekeeper of intestinal barrier integrity, acting as a safeguard against microbial imbalance and acute infections by enteropathogens.
Collapse
Affiliation(s)
- Dalale Gueddouri
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Michèle Caüzac
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Véronique Fauveau
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Fadila Benhamed
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Wafa Charifi
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Lucie Beaudoin
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Matthieu Rouland
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Florian Sicherre
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Agnès Lehuen
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Catherine Postic
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Gaëlle Boudry
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, F35000 Rennes, France
| | | | - Sandra Guilmeau
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France.
| |
Collapse
|
13
|
Ilchmann-Diounou H, Buleon M, Bacquie V, Theodorou V, Denis C, Menard S. Revisiting definition and assessment of intestinal trans-epithelial passage. Cell Mol Life Sci 2021; 78:8157-8164. [PMID: 34731253 PMCID: PMC8629865 DOI: 10.1007/s00018-021-04000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/27/2021] [Accepted: 10/18/2021] [Indexed: 10/26/2022]
Abstract
This study aims to remind that Intestinal Passage (IP) measurement is a complex task that cannot be achieved by a unique measure of an orally given exogenous marker in blood or urine. This will be illustrated in the case of NOD mice. Indeed, various methods have been proposed to measure IP. Among them ex vivo measurement in Ussing chambers of luminal to serosal fluxes of exogenous markers and in vivo measurement of exogenous markers in blood or urine after oral gavage are the more commonly used. Even though they are commonly used indifferently, they do not give the same information and can provide contradictory results. Published data showed that diabetic status in female Non Obese Diabetic (NOD) mice increased FD4 concentration in blood after gavage but did not modify FD4 fluxes in Ussing chamber. We observed the same results in our experimental conditions and tracked FD4 concentrations in blood over a kinetic study (Area Under the Curve-AUC). In vivo measurements are a dynamic process and address not only absorption (IP and intestinal surface) but also distribution, metabolism and excretion (ADME). Diabetic status in NOD mice was associated with an increase of intestinal length (absorptive surface), itself positively correlated with AUC of FD4 in blood. We concluded that increased intestinal length induced by diabetic status will extend the absorptive surface and increase FD4 concentration in plasma (in vivo measurement) despite no modification on IP of FD4 (ex vivo measurement). In addition, this study characterized intestinal function in diabetic NOD mice. Diabetic status in NOD female mice increases intestinal length and decreases paracellular IP (FSS) without affecting transcellular IP (HRP, FD4). Histological studies of small and large intestine did not show any modification of intestinal circumference nor villi and crypt size. Finally, diabetic status was not associated with intestinal inflammation (ELISA).
Collapse
Affiliation(s)
- Hanna Ilchmann-Diounou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Marie Buleon
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Disease, Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Valérie Bacquie
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Vassilia Theodorou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Colette Denis
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Disease, Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Sandrine Menard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France. .,IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse, France.
| |
Collapse
|
14
|
Nel I, Beaudoin L, Gouda Z, Rousseau C, Soulard P, Rouland M, Bertrand L, Boitard C, Larger E, Lehuen A. MAIT cell alterations in adults with recent-onset and long-term type 1 diabetes. Diabetologia 2021; 64:2306-2321. [PMID: 34350463 PMCID: PMC8336671 DOI: 10.1007/s00125-021-05527-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/27/2021] [Indexed: 11/03/2022]
Abstract
AIMS/HYPOTHESIS Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes expressing an αβ T cell antigen receptor that recognises the MHC-related 1 molecule. MAIT cells are altered in children at risk for and with type 1 diabetes, and mouse model studies have shown MAIT cell involvement in type 1 diabetes development. Since several studies support heterogeneity in type 1 diabetes physiopathology according to the age of individuals, we investigated whether MAIT cells were altered in adults with type 1 diabetes. METHODS MAIT cell frequency, phenotype and function were analysed by flow cytometry, using fresh peripheral blood from 21 adults with recent-onset type 1 diabetes (2-14 days after disease onset) and 47 adults with long-term disease (>2 years after diagnosis) compared with 55 healthy blood donors. We also separately analysed 17 women with long-term type 1 diabetes and an associated autoimmune disease, compared with 30 healthy women and 27 women with long-term type 1 diabetes. RESULTS MAIT cells from adults with recent-onset type 1 diabetes, compared with healthy adult donors, harboured a strongly activated phenotype indicated by an elevated CD25+ MAIT cell frequency. In adults with long-term type 1 diabetes, MAIT cells displayed an activated and exhausted phenotype characterised by high CD25 and programmed cell death 1 (PD1) expression and a decreased production of proinflammatory cytokines, IL-2, IFN-γ and TNF-α. Even though MAIT cells from these patients showed upregulated IL-17 and IL-4 production, the polyfunctionality of MAIT cells was decreased (median 4.8 vs 13.14% of MAIT cells, p < 0.001) and the frequency of MAIT cells producing none of the effector molecules analysed increased (median 34.40 vs 19.30% of MAIT cells, p < 0.01). Several MAIT cell variables correlated with HbA1c level and more particularly in patients with recent-onset type 1 diabetes. In women with long-term type 1 diabetes, MAIT cell alterations were more pronounced in those with an associated autoimmune disease than in those without another autoimmune disease. In women with long-term type 1 diabetes and an associated autoimmune disease, there was an increase in CD69 expression and a decrease in the survival B-cell lymphoma 2 (BCL-2) (p < 0.05) and CD127 (IL-7R) (p < 0.01) marker expression compared with women without a concomitant autoimmune disorder. Concerning effector molecules, TNF-α and granzyme B production by MAIT cells was decreased. CONCLUSIONS/INTERPRETATION Alterations in MAIT cell frequency, phenotype and function were more pronounced in adults with long-term type 1 diabetes compared with adults with recent-onset type 1 diabetes. There were several correlations between MAIT cell variables and clinical characteristics. Moreover, the presence of another autoimmune disease in women with long-term type 1 diabetes further exacerbated MAIT cell alterations. Our results suggest that MAIT cell alterations in adults with type 1 diabetes could be associated with two aspects of the disease: impaired glucose homeostasis; and autoimmunity.
Collapse
Affiliation(s)
- Isabelle Nel
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Lucie Beaudoin
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Zouriatou Gouda
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Camille Rousseau
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Pauline Soulard
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Matthieu Rouland
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Léo Bertrand
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Christian Boitard
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
- Diabetology Department, Cochin Hospital, AP-HP Centre - Université de Paris, Paris, France
| | - Etienne Larger
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
- Diabetology Department, Cochin Hospital, AP-HP Centre - Université de Paris, Paris, France
| | - Agnès Lehuen
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France.
| |
Collapse
|
15
|
Yuan X, Zheng J, Ren L, Jiao S, Feng C, Du Y, Liu H. Glucosamine Ameliorates Symptoms of High-Fat Diet-Fed Mice by Reversing Imbalanced Gut Microbiota. Front Pharmacol 2021; 12:694107. [PMID: 34149435 PMCID: PMC8209492 DOI: 10.3389/fphar.2021.694107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022] Open
Abstract
Glucosamine (GlcN) is used as a supplement for arthritis and joint pain and has been proved to have effects on inflammation, cancer, and cardiovascular diseases. However, there are limited studies on the regulatory mechanism of GlcN against glucose and lipid metabolism disorder. In this study, we treated high-fat diet (HFD)-induced diabetic mice with GlcN (1 mg/ml, in drinking water) for five months. The results show that GlcN significantly reduced the fasting blood glucose of HFD-fed mice and improved glucose tolerance. The feces of intestinal contents in mice were analyzed using 16s rDNA sequencing. It was indicated that GlcN reversed the imbalanced gut microbiota in HFD-fed mice. Based on the PICRUSt assay, the signaling pathways of glucolipid metabolism and biosynthesis were changed in mice with HFD feeding. By quantitative real-time PCR (qPCR) and hematoxylin and eosin (H&E) staining, it was demonstrated that GlcN not only inhibited the inflammatory responses of colon and white adipose tissues, but also improved the intestinal barrier damage of HFD-fed mice. Finally, the correlation analysis suggests the most significantly changed intestinal bacteria were positively or negatively related to the occurrence of inflammation in the colon and fat tissues of HFD-fed mice. In summary, our studies provide a theoretical basis for the potential application of GlcN to glucolipid metabolism disorder through the regulation of gut microbiota.
Collapse
Affiliation(s)
- Xubing Yuan
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production and Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,Institute of Process Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Junping Zheng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production and Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,Institute of Process Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Lishi Ren
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production and Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Siming Jiao
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production and Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Cui Feng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production and Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production and Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Hongtao Liu
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production and Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
MAIT cells, guardians of skin and mucosa? Mucosal Immunol 2021; 14:803-814. [PMID: 33753874 PMCID: PMC7983967 DOI: 10.1038/s41385-021-00391-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
Mucosal Associated Invariant T (MAIT) cells are evolutionary conserved innate-like T cells able to recognize bacterial and fungal ligands derived from vitamin B biosynthesis. These cells are particularly present in liver and blood but also populate mucosal sites including skin, oral, intestinal, respiratory, and urogenital tracts that are in contact with the environment and microbiota of their host. Growing evidence suggests important involvement of MAIT cells in safeguarding the mucosa against external microbial threats. Simultaneously, mucosal MAIT cells have been implicated in immune and inflammatory pathologies affecting these organs. Here, we review the specificities of mucosal MAIT cells, their functions in the protection and maintenance of mucosal barriers, and their interactions with other mucosal cells.
Collapse
|