1
|
Bouzeineddine NZ, Philippi A, Gee K, Basta S. Granulocyte macrophage colony stimulating factor in virus-host interactions and its implication for immunotherapy. Cytokine Growth Factor Rev 2024:S1359-6101(24)00103-5. [PMID: 39755463 DOI: 10.1016/j.cytogfr.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Abstract
Viruses have evolved to strategically exploit cellular signaling pathways to evade host immune defenses. GM-CSF signaling plays a pivotal role in regulating inflammation, activating myeloid cells, and enhancing the immune response to infections. Due to its central role in the immune system, viruses may target this pathway to further establish infection. This review focuses on key studies elucidating virus interactions with GM-CSF signaling proteins and summarizes findings on the impact of viral infections on GM-CSF production. Additionally, therapeutic strategies centered around GM-CSF are investigated, such as the potential benefits of administering GM-CSF versus inhibiting GM-CSF signaling to mitigate viral-induced aberrant inflammation. Understanding these virus-host interactions provides valuable insights that help further our understanding to develop future therapeutic approaches in modulating the immune response during viral infections.
Collapse
Affiliation(s)
- Nasry Zane Bouzeineddine
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Alecco Philippi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Sam Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
2
|
Porro N, Spínola-Lasso E, Pastore M, Caligiuri A, di Tommaso L, Marra F, Gentilini A. New Relevant Evidence in Cholangiocarcinoma Biology and Characterization. Cancers (Basel) 2024; 16:4239. [PMID: 39766138 PMCID: PMC11674836 DOI: 10.3390/cancers16244239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Among solid tumors, cholangiocarcinoma (CCA) emerges as one of the most difficult to eradicate. The silent and asymptomatic nature of this tumor, particularly in its early stages, as well as the high heterogeneity at genomic, epigenetic, and molecular levels delay the diagnosis, significantly compromising the efficacy of current therapeutic options and thus contributing to a dismal prognosis. Extensive research has been conducted on the molecular pathobiology of CCA, and recent advances have been made in the classification and characterization of new molecular targets. Both targeted therapy and immunotherapy have emerged as effective and safe strategies for various types of cancers, demonstrating potential benefits in advanced CCA. Furthermore, the deeper comprehension of the cellular and molecular components in the tumor microenvironment (TME) has opened up possibilities for new innovative treatment methods. This review discusses recent evidence in the characterization and molecular biology of CCA, highlighting novel possible druggable targets.
Collapse
Affiliation(s)
- Nunzia Porro
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.P.); (E.S.-L.); (M.P.); (A.C.); (F.M.)
| | - Elena Spínola-Lasso
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.P.); (E.S.-L.); (M.P.); (A.C.); (F.M.)
| | - Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.P.); (E.S.-L.); (M.P.); (A.C.); (F.M.)
| | - Alessandra Caligiuri
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.P.); (E.S.-L.); (M.P.); (A.C.); (F.M.)
| | - Luca di Tommaso
- Department of Biomedical Sciences, Humanitas University, 20089 Milan, Italy;
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.P.); (E.S.-L.); (M.P.); (A.C.); (F.M.)
| | - Alessandra Gentilini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.P.); (E.S.-L.); (M.P.); (A.C.); (F.M.)
| |
Collapse
|
3
|
Laface C, Fina E, Ricci AD, Guven DC, Ambrogio F, De Summa S, Vitale E, Massafra R, Brunetti O, Rizzo A. Immunobiology of biliary tract cancer and recent clinical findings in approved and upcoming immune checkpoint inhibitors. Expert Opin Biol Ther 2024; 24:1363-1374. [PMID: 39545466 DOI: 10.1080/14712598.2024.2431088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Recently, immunotherapy has offered new hope for treating biliary tract cancer (BTC). However, several issues are to be considered, including the lack of validated predictive biomarkers that could help to identify patient groups which are most likely to benefit from such therapeutic approaches. AREAS COVERED In the current article, we will provide an overview of recent results and ongoing and future research directions of immunotherapy in BTC, with a special focus on recently published, practice-changing data, and ongoing active and recruiting clinical trials. EXPERT OPINION At this moment, dozens of clinical trials in phases I to III are evaluating the role of cancer immunotherapy in this setting, with the hope of adding more therapeutic options for BTC patients. Future research must focus on the development of novel agents and combinations, but the validation of biomarkers remains an urgent need. As more research results emerge, novel combinatorial strategies are destined to further transform the treatment paradigm for this heterogeneous and aggressive tumor type.
Collapse
Affiliation(s)
- Carmelo Laface
- Azienda Sanitaria Provinciale, Reggio Calabria (RC), Italy
| | - Emanuela Fina
- Thoracic Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Castellana Grotte, Italy
| | - Deniz Can Guven
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
- Medical Oncology Clinic, Elazig City Hospital, Health Sciences University, Elazig, Turkey
| | - Francesca Ambrogio
- Section of Dermatology, Department of Biomedical Science and Human Oncology, University of Bari, Bari, Italy
| | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori, "Giovanni Paolo II", Bari, Italy
| | - Elsa Vitale
- Scientific Directorate, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Raffaella Massafra
- Scientific Directorate, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Oronzo Brunetti
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Alessandro Rizzo
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| |
Collapse
|
4
|
Giangreco G, Rullan A, Naito Y, Biswas D, Liu YH, Hooper S, Nenclares P, Bhide S, Chon U Cheang M, Chakravarty P, Hirata E, Swanton C, Melcher A, Harrington K, Sahai E. Cancer cell - Fibroblast crosstalk via HB-EGF, EGFR, and MAPK signaling promotes the expression of macrophage chemo-attractants in squamous cell carcinoma. iScience 2024; 27:110635. [PMID: 39262776 PMCID: PMC11387794 DOI: 10.1016/j.isci.2024.110635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 04/09/2024] [Accepted: 07/30/2024] [Indexed: 09/13/2024] Open
Abstract
Interactions between cells in the tumor microenvironment (TME) shape cancer progression and patient prognosis. To gain insights into how the TME influences cancer outcomes, we derive gene expression signatures indicative of signaling between stromal fibroblasts and cancer cells, and demonstrate their prognostic significance in multiple and independent squamous cell carcinoma cohorts. By leveraging information within the signatures, we discover that the HB-EGF/EGFR/MAPK axis represents a hub of tumor-stroma crosstalk, promoting the expression of CSF2 and LIF and favoring the recruitment of macrophages. Together, these analyses demonstrate the utility of our approach for interrogating the extent and consequences of TME crosstalk.
Collapse
Affiliation(s)
- Giovanni Giangreco
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Antonio Rullan
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Radiotherapy and Imaging, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Head and Neck Unit, The Royal Marsden Hospital, 203 Fulham Road, London SW3 6JJ, UK
| | - Yutaka Naito
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Dhruva Biswas
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, 72 Huntley Street, London WC1E 6DD, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Bill Lyons Informatics Centre, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Yun-Hsin Liu
- Bioinformatics Platform, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Steven Hooper
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Pablo Nenclares
- Department of Radiotherapy and Imaging, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Head and Neck Unit, The Royal Marsden Hospital, 203 Fulham Road, London SW3 6JJ, UK
| | - Shreerang Bhide
- Department of Radiotherapy and Imaging, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Head and Neck Unit, The Royal Marsden Hospital, 203 Fulham Road, London SW3 6JJ, UK
| | - Maggie Chon U Cheang
- Department of Radiotherapy and Imaging, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Head and Neck Unit, The Royal Marsden Hospital, 203 Fulham Road, London SW3 6JJ, UK
| | - Probir Chakravarty
- Bioinformatics Platform, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Eishu Hirata
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Bill Lyons Informatics Centre, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - Alan Melcher
- Department of Radiotherapy and Imaging, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Head and Neck Unit, The Royal Marsden Hospital, 203 Fulham Road, London SW3 6JJ, UK
| | - Kevin Harrington
- Department of Radiotherapy and Imaging, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Head and Neck Unit, The Royal Marsden Hospital, 203 Fulham Road, London SW3 6JJ, UK
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
5
|
Chen F, Sheng J, Li X, Gao Z, Hu L, Chen M, Fei J, Song Z. Tumor-associated macrophages: orchestrators of cholangiocarcinoma progression. Front Immunol 2024; 15:1451474. [PMID: 39290697 PMCID: PMC11405194 DOI: 10.3389/fimmu.2024.1451474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a rare but highly invasive cancer, with its incidence rising in recent years. Currently, surgery remains the most definitive therapeutic option for CCA. However, similar to other malignancies, most CCA patients are not eligible for surgical intervention at the time of diagnosis. The chemotherapeutic regimen of gemcitabine combined with cisplatin is the standard treatment for advanced CCA, but its effectiveness is often hampered by therapeutic resistance. Recent research highlights the remarkable plasticity of tumor-associated macrophages (TAMs) within the tumor microenvironment (TME). TAMs play a crucial dual role in either promoting or suppressing tumor development, depending on the factors that polarize them toward pro-tumorigenic or anti-tumorigenic phenotypes, as well as their interactions with cancer cells and other stromal components. In this review, we critically examine recent studies on TAMs in CCA, detailing the expression patterns and prognostic significance of different TAM subtypes in CCA, the mechanisms by which TAMs influence CCA progression and immune evasion, and the potential for reprogramming TAMs to enhance anticancer therapies. This review aims to provide a framework for deeper future research.
Collapse
Affiliation(s)
- Fei Chen
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jian Sheng
- Department of Research and Teaching, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaoping Li
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Zhaofeng Gao
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Lingyu Hu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Minjie Chen
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jianguo Fei
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Zhengwei Song
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
6
|
Zhu L, Huang J, Zhang S, Cai Q, Guo X, Liu B, Chen L, Zheng C. oHSV2-mGM repolarizes TAMs and cooperates with αPD1 to reprogram the immune microenvironment of residual cancer after radiofrequency ablation. Biomed Pharmacother 2024; 178:117060. [PMID: 39053421 DOI: 10.1016/j.biopha.2024.117060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Due to the size and location of the tumor, incomplete radiofrequency ablation (iRFA) of the target tumor inhibits tumor immunity. In this study, a murine herpes simplex virus (oHSV2-mGM) armed with granulocyte-macrophage colony-stimulating factor (GM-CSF) was constructed to explore its effect on innate and adaptive immunity during iRFA, and the inhibitory effect of programmed cell death-1 (PD1) on tumor. METHODS We verified the polarization and activation of RAW264.7 cells mediated by oHSV2-mGM in vitro. Subsequently, we evaluated the efficacy of oHSV2-mGM alone and in combination with αPD1 in the treatment of residual tumors after iRFA in two mouse models. RNA-seq was used to characterize the changes of tumor microenvironment. RESULTS oHSV2-mGM lysate effectively stimulated RAW264.7 cells to polarize into M1 cells and activated M1 phenotypic function. In the macrophage clearance experiment, oHSV2-mGM activated the immune response of tumor in mice. The results in vivo showed that oHSV2-mGM showed better anti-tumor effect in several mouse tumor models. Finally, oHSV2-mGM combined with PD1 antibody can further enhance the anti-tumor effect of oHSV2-mGM and improve the complete remission rate of tumor in mice. CONCLUSION The application of oHSV2-mGM leads to the profound remodeling of the immune microenvironment of residual tumors. oHSV2-mGM also works in synergy with PD1 antibody to achieve complete remission of tumors that do not respond well to monotherapy at immune checkpoints. Our results support the feasibility of recombinant oncolytic virus in the treatment of residual tumors after iRFA, and propose a new strategy for oncolytic virus treatment of tumors.
Collapse
Affiliation(s)
- Licheng Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jia Huang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Siqi Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan 430068, China
| | - Qiying Cai
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan 430068, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Binlei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan 430068, China.
| | - Lei Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| |
Collapse
|
7
|
Yue S, Zhang Y, Zhang W. Recent Advances in Immunotherapy for Advanced Biliary Tract Cancer. Curr Treat Options Oncol 2024; 25:1089-1111. [PMID: 39066855 PMCID: PMC11329538 DOI: 10.1007/s11864-024-01243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
OPINION STATEMENT Biliary tract cancer (BTC) is a heterogeneous group of aggressive malignancies that arise from the epithelium of the biliary tract. Most patients present with locally advanced or metastatic disease at the time of diagnosis. For patients with unresectable BTC, the survival advantage provided by systemic chemotherapy was limited. Over the last decade, immunotherapy has significantly improved the therapeutic landscape of solid tumors. There is an increasing number of studies evaluating the application of immunotherapy in BTC, including immune checkpoint inhibitors (ICIs), cancer vaccines and adoptive cell therapy. The limited response to ICIs monotherapy in unselected patients prompted investigators to explore different combination therapy strategies. Early clinical trials of therapeutic cancer vaccination and adoptive cell therapy have shown encouraging clinical results. However, there still has been a long way to go via validation of therapeutic efficacy and exploration of strategies to increase the efficacy. Identifying biomarkers that predict the response to immunotherapy will allow a more accurate selection of candidates. This review will provide an up-to-date overview of the current clinical data on the role of immunotherapy, summarize the promising biomarkers predictive of the response to ICIs and discuss the perspective for future research direction of immunotherapy in advanced BTC.
Collapse
Affiliation(s)
- Shiwei Yue
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Yunpu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Wei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China.
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, 1095 Jiefang Avenue, 430030, Wuhan, China.
| |
Collapse
|
8
|
Burchard PR, Ruffolo LI, Ullman NA, Dale BS, Dave YA, Hilty BK, Ye J, Georger M, Jewell R, Miller C, De Las Casas L, Jarolimek W, Perryman L, Byrne MM, Loria A, Marin C, Chávez Villa M, Yeh JJ, Belt BA, Linehan DC, Hernandez-Alejandro R. Pan-lysyl oxidase inhibition disrupts fibroinflammatory tumor stroma, rendering cholangiocarcinoma susceptible to chemotherapy. Hepatol Commun 2024; 8:e0502. [PMID: 39101793 PMCID: PMC11299993 DOI: 10.1097/hc9.0000000000000502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/11/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) features highly desmoplastic stroma that promotes structural and functional resistance to therapy. Lysyl oxidases (LOX, LOXL1-4) catalyze collagen cross-linking, thereby increasing stromal rigidity and facilitating therapeutic resistance. Here, we evaluate the role of lysyl oxidases in stromal desmoplasia and the effects of pan-lysyl oxidase (pan-LOX) inhibition in CCA. METHODS Resected CCA and normal liver specimens were analyzed from archival tissues. Spontaneous and orthotopic murine models of intrahepatic CCA (iCCA) were used to assess the impact of the pan-LOX inhibitor PXS-5505 in treatment and correlative studies. The functional role of pan-LOX inhibition was interrogated through in vivo and ex vivo assays. RESULTS All 5 lysyl oxidases are upregulated in CCA and reduced lysyl oxidase expression is correlated with an improved prognosis in resected patients with CCA. Spontaneous and orthotopic murine models of intrahepatic cholangiocarcinoma upregulate all 5 lysyl oxidase isoforms. Pan-LOX inhibition reversed mechanical compression of tumor vasculature, resulting in improved chemotherapeutic penetrance and cytotoxic efficacy. The combination of chemotherapy with pan-LOX inhibition increased damage-associated molecular pattern release, which was associated with improved antitumor T-cell responses. Pan-LOX inhibition downregulated macrophage invasive signatures in vitro, rendering tumor-associated macrophages more susceptible to chemotherapy. Mice bearing orthotopic and spontaneously occurring intrahepatic cholangiocarcinoma tumors exhibited delayed tumor growth and improved survival following a combination of pan-LOX inhibition with chemotherapy. CONCLUSIONS CCA upregulates all 5 lysyl oxidase isoforms, and pan-LOX inhibition reverses tumor-induced mechanical forces associated with chemotherapy resistance to improve chemotherapeutic efficacy and reprogram antitumor immune responses. Thus, combination therapy with pan-LOX inhibition represents an innovative therapeutic strategy in CCA.
Collapse
Affiliation(s)
- Paul R. Burchard
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Luis I. Ruffolo
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Nicholas A. Ullman
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Benjamin S. Dale
- Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Yatee A. Dave
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Bailey K. Hilty
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Jian Ye
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Mary Georger
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Rachel Jewell
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Christine Miller
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Luis De Las Casas
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Lara Perryman
- Drug Discovery, Syntara Ltd., Sydney, New South Wales, Australia
| | - Matthew M. Byrne
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Anthony Loria
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Chelsea Marin
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Mariana Chávez Villa
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Jen Jen Yeh
- Departments of Surgery and Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina System, Chapel Hill, North Carolina, USA
| | - Brian A. Belt
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - David C. Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, Division of Surgical Oncology, University of Rochester Medical Center, Rochester, New York, USA
| | - Roberto Hernandez-Alejandro
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Division of Solid Organ Transplant Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
9
|
Hao J, Zhao X, Wang C, Cao X, Liu Y. Recent Advances in Nanoimmunotherapy by Modulating Tumor-Associated Macrophages for Cancer Therapy. Bioconjug Chem 2024; 35:867-882. [PMID: 38919067 DOI: 10.1021/acs.bioconjchem.4c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Cancer immunotherapy has yielded remarkable results across a variety of tumor types. Nevertheless, the complex and immunosuppressive microenvironment within solid tumors poses significant challenges to established therapies such as immune checkpoint blockade (ICB) and chimeric antigen receptor T-cell (CAR-T) therapy. Within the milieu, tumor-associated macrophages (TAMs) play a significant role by directly suppressing T-cell functionality and fostering an immunosuppressive environment. Effective regulation of TAMs is, therefore, crucial to enhancing the efficacy of immunotherapies. Various therapeutic strategies targeting TAM modulation have emerged, including blocking TAM recruitment, direct elimination, promoting repolarization toward the M1 phenotype, and enhancing phagocytic capacity against tumor cells. The recently introduced CAR macrophage (CAR-M) therapy opens new possibilities for macrophage-based immunotherapy. Compared with CAR-T, CAR-M may demonstrate superior targeting and infiltration capabilities toward solid tumors. This review predominantly delves into the origin and development process of TAMs, their role in promoting tumor growth, and provides a comprehensive overview of immunotherapies targeting TAMs. It underscores the significance of regulating TAMs in bolstering antitumor therapies while discussing the potential and challenges of developing TAMs as targets for immunotherapy.
Collapse
Affiliation(s)
- Jialei Hao
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xinzhi Zhao
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chun Wang
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xianghui Cao
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Kumar M, Leekha A, Nandy S, Kulkarni R, Martinez-Paniagua M, Rahman Sefat KMS, Willson RC, Varadarajan N. Enzymatic depletion of circulating glutamine is immunosuppressive in cancers. iScience 2024; 27:109817. [PMID: 38770139 PMCID: PMC11103382 DOI: 10.1016/j.isci.2024.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/13/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Although glutamine addiction in cancer cells is extensively reported, there is controversy on the impact of glutamine metabolism on the immune cells within the tumor microenvironment (TME). To address the role of extracellular glutamine, we enzymatically depleted circulating glutamine using PEGylated Helicobacter pylori gamma-glutamyl transferase (PEG-GGT) in syngeneic mouse models of breast and colon cancers. PEG-GGT treatment inhibits growth of cancer cells in vitro, but in vivo it increases myeloid-derived suppressor cells (MDSCs) and has no significant impact on tumor growth. By deriving a glutamine depletion signature, we analyze diverse human cancers within the TCGA and illustrate that glutamine depletion is not associated with favorable clinical outcomes and correlates with accumulation of MDSC. Broadly, our results help clarify the integrated impact of glutamine depletion within the TME and advance PEG-GGT as an enzymatic tool for the systemic and selective depletion (no asparaginase activity) of circulating glutamine in live animals.
Collapse
Affiliation(s)
- Monish Kumar
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Ankita Leekha
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Suman Nandy
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Rohan Kulkarni
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Melisa Martinez-Paniagua
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - K. M. Samiur Rahman Sefat
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Richard C. Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
11
|
Toledo B, Zhu Chen L, Paniagua-Sancho M, Marchal JA, Perán M, Giovannetti E. Deciphering the performance of macrophages in tumour microenvironment: a call for precision immunotherapy. J Hematol Oncol 2024; 17:44. [PMID: 38863020 PMCID: PMC11167803 DOI: 10.1186/s13045-024-01559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Macrophages infiltrating tumour tissues or residing in the microenvironment of solid tumours are known as tumour-associated macrophages (TAMs). These specialized immune cells play crucial roles in tumour growth, angiogenesis, immune regulation, metastasis, and chemoresistance. TAMs encompass various subpopulations, primarily classified into M1 and M2 subtypes based on their differentiation and activities. M1 macrophages, characterized by a pro-inflammatory phenotype, exert anti-tumoural effects, while M2 macrophages, with an anti-inflammatory phenotype, function as protumoural regulators. These highly versatile cells respond to stimuli from tumour cells and other constituents within the tumour microenvironment (TME), such as growth factors, cytokines, chemokines, and enzymes. These stimuli induce their polarization towards one phenotype or another, leading to complex interactions with TME components and influencing both pro-tumour and anti-tumour processes.This review comprehensively and deeply covers the literature on macrophages, their origin and function as well as the intricate interplay between macrophages and the TME, influencing the dual nature of TAMs in promoting both pro- and anti-tumour processes. Moreover, the review delves into the primary pathways implicated in macrophage polarization, examining the diverse stimuli that regulate this process. These stimuli play a crucial role in shaping the phenotype and functions of macrophages. In addition, the advantages and limitations of current macrophage based clinical interventions are reviewed, including enhancing TAM phagocytosis, inducing TAM exhaustion, inhibiting TAM recruitment, and polarizing TAMs towards an M1-like phenotype. In conclusion, while the treatment strategies targeting macrophages in precision medicine show promise, overcoming several obstacles is still necessary to achieve an accessible and efficient immunotherapy.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Linrui Zhu Chen
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - María Paniagua-Sancho
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain.
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain.
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, Pisa, 56017, Italy.
| |
Collapse
|
12
|
Tomlinson JL, Li B, Yang J, Loeuillard E, Stumpf HE, Kuipers H, Watkins R, Carlson DM, Willhite J, O'Brien DR, Graham RP, Chen X, Smoot RL, Dong H, Gores GJ, Ilyas SI. Syngeneic murine models with distinct immune microenvironments represent subsets of human intrahepatic cholangiocarcinoma. J Hepatol 2024; 80:892-903. [PMID: 38458319 PMCID: PMC11141161 DOI: 10.1016/j.jhep.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND & AIMS Cholangiocarcinoma (CCA) is a poorly immunogenic malignancy associated with limited survival. Syngeneic immunocompetent mouse models of CCA are an essential tool to elucidate the tumor immune microenvironment (TIME), understand mechanisms of tumor immune evasion, and test novel immunotherapeutic strategies. The scope of this study was to develop and characterize immunocompetent CCA models with distinct genetic drivers, and correlate tumor genomics, immunobiology, and therapeutic response. METHODS A multifaceted approach including scRNA-seq, CITE-seq, whole exome and bulk RNA sequencing was employed. FDA-approved PD-1/PD-L1 antibodies were tested in humanized PD-1/PD-L1 mice (HuPD-H1). RESULTS A genetic mouse model of intrahepatic CCA (iCCA) driven by intrabiliary transduction of Fbxw7ΔF/Akt that mimics human iCCA was generated. From the Fbxw7ΔF/Akt tumors, a murine cell line (FAC) and syngeneic model with genetic and phenotypic characteristics of human iCCA were developed. Established SB1 (YAPS127A/Akt) and KPPC (KrasG12Dp53L/L) models were compared to the FAC model. Although the models had transcriptomic similarities, they had substantial differences as well. Mutation patterns of FAC, SB1, and KPPC cells matched different mutational signatures in Western and Japanese CCA patient cohorts. KPPC tumors had a high tumor mutation burden. FAC tumors had a T cell-infiltrated TIME, while SB1 tumors had a preponderance of suppressive myeloid cells. FAC, SB1, and KPPC tumors matched different immune signatures in human iCCA cohorts. Moreover, FAC, SB1, and KPPC tumor-bearing HuPD-H1 mice displayed differential responses to nivolumab or durvalumab. CONCLUSIONS Syngeneic iCCA models display a correlation between tumor genotype and TIME phenotype, with differential responses to FDA-approved immunotherapies. This study underscores the importance of leveraging multiple preclinical models to understand responses to immunotherapy in different genetic subsets of human CCA. IMPACT AND IMPLICATIONS Understanding the relationship between tumor genotype and the phenotype of the immune microenvironment is an unmet need in cholangiocarcinoma (CCA). Herein, we use syngeneic murine models of intrahepatic CCA with different genetic drivers to demonstrate a correlation between tumor genotype and immune microenvironment phenotype in murine models, which is associated with differential responses to FDA-approved immunotherapies. This information will help guide other preclinical studies. Additionally, it emphasizes that immune checkpoint inhibition in patients with CCA is not a "one-size-fits-all" approach. Our observations suggest that, as for targeted therapies, patients should be stratified and selected for treatment according to their tumor genetics.
Collapse
Affiliation(s)
| | - Binbin Li
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Jingchun Yang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Emilien Loeuillard
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Hannah E Stumpf
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | | | - Ryan Watkins
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Jessica Willhite
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Daniel R O'Brien
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Xin Chen
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Rory L Smoot
- Department of Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Haidong Dong
- Department of Urology, Mayo Clinic, Rochester, MN, USA; Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA; Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
13
|
Wang DX, Liu H, Tian JC, Zhang DL, Yan LJ, Ding ZN, Li H, Yan YC, Dong ZR, Li T. Neoadjuvant immunotherapy based on PD-1/L1 inhibitors for gastrointestinal tumors: a review of the rationale and clinical advances. Int J Surg 2024; 110:3707-3722. [PMID: 38518083 PMCID: PMC11175801 DOI: 10.1097/js9.0000000000001357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/03/2024] [Indexed: 03/24/2024]
Abstract
The landscape of current tumor treatment has been revolutionized by the advent of immunotherapy based on PD-1/PD-L1 inhibitors. Leveraging its capacity to mobilize systemic antitumor immunity, which is primarily mediated by T cells, there is growing exploration and expansion of its potential value in various stages of clinical tumor treatment. Neoadjuvant immunotherapy induces a robust immune response against tumors prior to surgery, effectively facilitating tumor volume reduction, early eradication or suppression of tumor cell activity, and control of potential metastatic spread, to improve curative surgical resection rates, and prevent tumor recurrence. This review delineates the theoretical basis of neoadjuvant immunotherapy from preclinical research evidence, discusses specific challenges in clinical application, and provides a comprehensive overview of clinical research progress in neoadjuvant immunotherapy for gastrointestinal tumors. These findings suggest that neoadjuvant immunotherapy has the potential to ameliorate immunosuppressive states and enhance cytotoxic T cell function while preserving lymphatic drainage in the preoperative period. However, further investigations are needed on specific treatment regimens, suitable patient populations, and measurable endpoints. Despite numerous studies demonstrating the promising efficacy and manageable adverse events of neoadjuvant immunotherapy in gastrointestinal tumors, the availability of high-quality randomized controlled trials is limited, which highlights the necessity for further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
14
|
Nishida N, Kudo M. Genetic/Epigenetic Alteration and Tumor Immune Microenvironment in Intrahepatic Cholangiocarcinoma: Transforming the Immune Microenvironment with Molecular-Targeted Agents. Liver Cancer 2024; 13:136-149. [PMID: 38751556 PMCID: PMC11095601 DOI: 10.1159/000534443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/29/2023] [Indexed: 05/18/2024] Open
Abstract
Background Intrahepatic cholangiocarcinoma (iCCA) is often diagnosed at an advanced stage, leading to limited treatment options and a poor prognosis. So far, standard systemic therapy for advanced iCCA has been a combination of gemcitabine and cisplatin. However, recent advancements in the understanding of the molecular characteristics of iCCA have opened new possibilities for molecular-targeted therapies and immunotherapy. Summary Reportedly, 9-36% of iCCA cases have an inflamed tumor immune microenvironment (TME) based on the immune gene expression signature, which is characterized by the presence of immune cells involved in anti-tumor immune responses. The majority of iCCA cases have a non-inflamed TME with a lack of effector T cells, rendering immune checkpoint inhibitors (ICIs) ineffective in these cases. Interestingly, alterations in the fibroblast growth factor receptor (FGFR2) gene and IDH1/2 gene mutations are often observed in the non-inflamed TME in iCCA. Several mechanisms have been reported for the role of driver mutations on the establishment of TME unique for iCCA. For example, IDH1/2 mutations, which cause an increase in DNA methylation, are associated with the downregulation and hypermethylation of antigen processing and presentation machinery, which may contribute to the establishment of a non-inflamed TME. Therefore, inhibitors targeting IDH1/2 may restore the DNA methylation and expression status of molecules involved in antigen presentation, potentially improving the efficacy of ICIs. FGFR inhibitors may also have the potential to modulate immunosuppressive TME by inhibitingthe suppressor of cytokine signaling 1 and activating the interferon-γ signaling as a consequence of inhibition of the FGFR signal. From this perspective, understanding the molecular characteristics of iCCA, including the TME and driver mutations, is essential for the effective application of ICIs and molecular-targeted therapies. Key Messages Combination approaches that target both the tumor and immune system hold promise for improving the outcomes of patients with iCCA. Further research and clinical trials are needed to validate these approaches and optimize the treatment strategies for iCCA.
Collapse
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
15
|
Ramirez CFA, Taranto D, Ando-Kuri M, de Groot MHP, Tsouri E, Huang Z, de Groot D, Kluin RJC, Kloosterman DJ, Verheij J, Xu J, Vegna S, Akkari L. Cancer cell genetics shaping of the tumor microenvironment reveals myeloid cell-centric exploitable vulnerabilities in hepatocellular carcinoma. Nat Commun 2024; 15:2581. [PMID: 38519484 PMCID: PMC10959959 DOI: 10.1038/s41467-024-46835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Myeloid cells are abundant and plastic immune cell subsets in the liver, to which pro-tumorigenic, inflammatory and immunosuppressive roles have been assigned in the course of tumorigenesis. Yet several aspects underlying their dynamic alterations in hepatocellular carcinoma (HCC) progression remain elusive, including the impact of distinct genetic mutations in shaping a cancer-permissive tumor microenvironment (TME). Here, in newly generated, clinically-relevant somatic female HCC mouse models, we identify cancer genetics' specific and stage-dependent alterations of the liver TME associated with distinct histopathological and malignant HCC features. Mitogen-activated protein kinase (MAPK)-activated, NrasG12D-driven tumors exhibit a mixed phenotype of prominent inflammation and immunosuppression in a T cell-excluded TME. Mechanistically, we report a NrasG12D cancer cell-driven, MEK-ERK1/2-SP1-dependent GM-CSF secretion enabling the accumulation of immunosuppressive and proinflammatory monocyte-derived Ly6Clow cells. GM-CSF blockade curbs the accumulation of these cells, reduces inflammation, induces cancer cell death and prolongs animal survival. Furthermore, GM-CSF neutralization synergizes with a vascular endothelial growth factor (VEGF) inhibitor to restrain HCC outgrowth. These findings underscore the profound alterations of the myeloid TME consequential to MAPK pathway activation intensity and the potential of GM-CSF inhibition as a myeloid-centric therapy tailored to subsets of HCC patients.
Collapse
Affiliation(s)
- Christel F A Ramirez
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniel Taranto
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Masami Ando-Kuri
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marnix H P de Groot
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Efi Tsouri
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Zhijie Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Daniel de Groot
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Roelof J C Kluin
- Genomics Core facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan J Kloosterman
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joanne Verheij
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jing Xu
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Serena Vegna
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Leila Akkari
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Chen IY, Dunne RF, Liao X. Prognostic implications of tumor histology and microenvironment in surgically resected intrahepatic cholangiocarcinoma: a single institutional experience. Virchows Arch 2024:10.1007/s00428-024-03787-8. [PMID: 38499670 DOI: 10.1007/s00428-024-03787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/10/2024] [Accepted: 03/10/2024] [Indexed: 03/20/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive malignant neoplasm. Certain histologic features and the tumor microenvironment may impact disease progression. We aim to characterize the clinicopathologic features of ICC to identify prognostic factors. A total of 50 surgically resected ICC (partial or transplant) cases were analyzed. The cohort included 26 men and 24 women with a median age of 62 years. Eighteen (36%) cases were multifocal ICC with a mean largest tumor size of 6.5 cm. Neoadjuvant and adjuvant chemotherapy was done in eight (16%) and 33 (66%) patients, respectively. Histologically, 42 (84%) were small duct type, seven (14%) large duct type, and one mixed (2%). Thirty (60%) cases showed lymphovascular invasion (LVI) and 11 (22%) with perineural invasion (PNI). Twenty-eight (56%) cases demonstrated dense intratumoral hyaline fibrosis and 18 (36%) with tumor necrosis, each ≥ 10% tumor volume. On follow-up, 35 (70%) patients died of disease after a median disease-specific survival (DSS) of 21 months. Univariate analysis revealed that hyaline fibrosis and adjuvant chemotherapy were associated with better DSS, while tumor size, multifocality, necrosis, and peritumoral neutrophil to lymphocyte ratio were associated with worse DSS. In contrast, age, sex, small vs. large duct types, LVI, and individual inflammatory cell counts were not significant prognostic factors. In summary, ICC is a heterogeneous malignancy with variable clinical courses associated with tumor burden, histology, and microenvironment. Targeting specific components within the tumor microenvironments may be a promising approach for treatment in the future.
Collapse
Affiliation(s)
- Irene Y Chen
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard F Dunne
- Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Xiaoyan Liao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
17
|
Makawita S, Lee S, Kong E, Kwong LN, Abouelfetouh Z, Danner De Armas A, Xiao L, Murugesan K, Danziger N, Pavlick D, Korkut A, Ross JS, Javle M. Comprehensive Immunogenomic Profiling of IDH1-/ 2-Altered Cholangiocarcinoma. JCO Precis Oncol 2024; 8:e2300544. [PMID: 38547421 PMCID: PMC10994443 DOI: 10.1200/po.23.00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/13/2023] [Accepted: 02/01/2024] [Indexed: 04/02/2024] Open
Abstract
PURPOSE Isocitrate dehydrogenase (IDH)1/2 genomic alterations (GA) occur in 20% of intrahepatic cholangiocarcinoma (iCCA); however, the immunogenomic landscape of IDH1-/2-mutated iCCA is largely unknown. METHODS Comprehensive genomic profiling (CGP) was performed on 3,067 cases of advanced iCCA. Tumor mutational burden (TMB), PD-L1 expression (Dako 22C3), microsatellite instability (MSI), and genomic loss of heterozygosity (gLOH) as a surrogate marker for homologous recombination deficiency were examined. RNA sequencing of 73 patient samples was analyzed for differences in stromal/immune cell infiltration, immune marker expression, and T-cell inflammation. Tissue microarray arrays were subjected to multiplex immunohistochemistry and colocalization analysis in 100 surgical samples. Retrospective clinical data were collected for 501 patients with cholangiocarcinoma to examine median overall survival (mOS) in IDH1/2+ versus IDHwt. RESULTS Of 3,067 iCCA cases subjected to CGP, 426 (14%) were IDH1+ and 125 (4%) were IDH2+. IDH1 GA included R132C (69%) and R132L/G/S/H/F (16%/7%/4%/3%/<1%). IDH2 GA occurred at R172 (94.4%) and R140 (6.6%). No significant difference was seen in median gLOH between IDH1+ versus IDHwt iCCA (P = .37), although patterns of comutations differed. MSI-High (P = .009), TMB ≥10 mut/Mb (P < .0001), and PD-L1 positivity were lower in IDH1/2+ versus IDHwt iCCA. Resting natural killer cell population, CD70, and programmed cell death 1 expression were significantly higher in non-IDH1-mutated cases, whereas V-set domain containing T-cell activation inhibitor 1 (B7-H4) expression was significantly higher in IDH1+. No significant difference in mOS was observed between IDH1/2+ versus IDHwt patients. CONCLUSION Significant differences in GA and immune biomarkers are noted between IDH1/2+ and IDHwt iCCA. IDH1-/2-mutated tumors appear immunologically cold without gLOH. These immunogenomic data provide insight for precision targeting of iCCA with IDH alterations.
Collapse
Affiliation(s)
- Shalini Makawita
- Department of Hematology & Oncology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX
| | - Sunyoung Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elisabeth Kong
- Department of Bioinformatics and Computational Biology, The University of Texas MD, Houston, TX
| | - Lawrence N. Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Anaemy Danner De Armas
- Department of Pediatrics-Diabetes and Endocrinology, Baylor College of Medicine, Houston, TX
| | - Lianchun Xiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Natalie Danziger
- Cancer Genomics Research and Pathology, Foundation Medicine Inc, Cambridge, MA
| | - Dean Pavlick
- Cancer Genomics Research and Pathology, Foundation Medicine Inc, Cambridge, MA
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, The University of Texas MD, Houston, TX
| | - Jeffrey S. Ross
- Cancer Genomics Research and Pathology, Foundation Medicine Inc, Cambridge, MA
- Departments of Pathology, Urology and Medicine (Oncology), Upstate Medical University, Syracuse, NY
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
18
|
Loeuillard EJ, Li B, Stumpf HE, Yang J, Willhite JR, Tomlinson JL, Rohakhtar FR, Simon VA, Graham RP, Smoot RL, Dong H, Ilyas SI. Noncanonical TRAIL Signaling Promotes Myeloid-Derived Suppressor Cell Abundance and Tumor Growth in Cholangiocarcinoma. Cell Mol Gastroenterol Hepatol 2024; 17:853-876. [PMID: 38219900 PMCID: PMC10981132 DOI: 10.1016/j.jcmgh.2024.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND & AIMS Proapoptotic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling as a cause of cancer cell death is a well-established mechanism. However, TRAIL-receptor (TRAIL-R) agonists have had very limited anticancer activity in human beings, challenging the concept of TRAIL as a potent anticancer agent. Herein, we aimed to define mechanisms by which TRAIL+ cancer cells can leverage noncanonical TRAIL signaling in myeloid-derived suppressor cells (MDSCs) promoting their abundance in murine cholangiocarcinoma (CCA). METHODS Multiple immunocompetent syngeneic, orthotopic models of CCA were used. Single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing of CD45+ cells in murine tumors from the different CCA models was conducted. RESULTS In multiple immunocompetent murine models of CCA, implantation of TRAIL+ murine cancer cells into Trail-r-/- mice resulted in a significant reduction in tumor volumes compared with wild-type mice. Tumor-bearing Trail-r-/- mice had a significant decrease in the abundance of MDSCs owing to attenuation of MDSC proliferation. Noncanonical TRAIL signaling with consequent nuclear factor-κB activation in MDSCs facilitated enhanced MDSC proliferation. Single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing of immune cells from murine tumors showed enrichment of a nuclear factor-κB activation signature in MDSCs. Moreover, MDSCs were resistant to TRAIL-mediated apoptosis owing to enhanced expression of cellular FLICE inhibitory protein, an inhibitor of proapoptotic TRAIL signaling. Accordingly, cellular FLICE inhibitory protein knockdown sensitized murine MDSCs to TRAIL-mediated apoptosis. Finally, cancer cell-restricted deletion of Trail significantly reduced MDSC abundance and murine tumor burden. CONCLUSIONS Our findings highlight the therapeutic potential of targeting TRAIL+ cancer cells for treatment of a poorly immunogenic cancer.
Collapse
Affiliation(s)
- Emilien J Loeuillard
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Binbin Li
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Hannah E Stumpf
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota
| | - Jingchun Yang
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Jessica R Willhite
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Jennifer L Tomlinson
- Department of Surgery, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | | | | | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Rory L Smoot
- Department of Surgery, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Haidong Dong
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.
| |
Collapse
|
19
|
Yang S, Zou R, Dai Y, Hu Y, Li F, Hu H. Tumor immune microenvironment and the current immunotherapy of cholangiocarcinoma (Review). Int J Oncol 2023; 63:137. [PMID: 37888583 PMCID: PMC10631767 DOI: 10.3892/ijo.2023.5585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly heterogeneous malignancy originating from the epithelial system of the bile ducts, and its incidence in recent years is steadily increasing. The immune microenvironment of CCA is characterized by diversity and complexity, with a substantial presence of cancer‑associated fibroblasts and immune cell infiltration, which plays a key role in regulating the distinctive biological behavior of cholangiocarcinoma, including tumor growth, angiogenesis, lymphangiogenesis, invasion and metastasis. Despite the notable success of immunotherapy in the treatment of solid tumors in recent years, patients with CCA have responded poorly to immune checkpoint inhibitor therapy. The interaction of tumor cells with cellular components of the immune microenvironment can regulate the activity and function of immune cells and form an immunosuppressive microenvironment, which may cause ineffective immunotherapy. Therefore, the components of the tumor immune microenvironment appear to be novel targets for immune therapies. Combination therapy focusing on immune checkpoint inhibitors is a promising and valuable first‑line or translational treatment approach for intractable biliary tract malignancies. The present review discusses the compositional characteristics and regulatory factors of the CCA immune microenvironment and the possible immune escape mechanisms. In addition, a summary of the advances in immunotherapy for CCA is also provided. It is hoped that the present review may function as a valuable reference for the development of novel immunotherapeutic strategies for CCA.
Collapse
Affiliation(s)
- Siqi Yang
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ruiqi Zou
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yushi Dai
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yafei Hu
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fuyu Li
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Haijie Hu
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
20
|
Gehl V, O'Rourke CJ, Andersen JB. Immunogenomics of cholangiocarcinoma. Hepatology 2023:01515467-990000000-00649. [PMID: 37972940 DOI: 10.1097/hep.0000000000000688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
The development of cholangiocarcinoma spans years, if not decades, during which the immune system becomes corrupted and permissive to primary tumor development and metastasis. This involves subversion of local immunity at tumor sites, as well as systemic immunity and the wider host response. While immune dysfunction is a hallmark of all cholangiocarcinoma, the specific steps of the cancer-immunity cycle that are perturbed differ between patients. Heterogeneous immune functionality impacts the evolutionary development, pathobiological behavior, and therapeutic response of these tumors. Integrative genomic analyses of thousands of primary tumors have supported a biological rationale for immune-based stratification of patients, encompassing immune cell composition and functionality. However, discerning immune alterations responsible for promoting tumor initiation, maintenance, and progression from those present as bystander events remains challenging. Functionally uncoupling the tumor-promoting or tumor-suppressing roles of immune profiles will be critical for identifying new immunomodulatory treatment strategies and associated biomarkers for patient stratification. This review will discuss the immunogenomics of cholangiocarcinoma, including the impact of genomic alterations on immune functionality, subversion of the cancer-immunity cycle, as well as clinical implications for existing and novel treatment strategies.
Collapse
Affiliation(s)
- Virag Gehl
- Department of Health and Medical Sciences, Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
21
|
Han X, Wang X, Yan J, Song P, Wang Y, Shang C, Wu Y, Zhang H, Wang Z, Zhang H, Li X. Bacterial Magnetosome-Hitchhiked Quick-Frozen Neutrophils for Targeted Destruction of Pre-Metastatic Niche and Prevention of Tumor Metastasis. Adv Healthc Mater 2023; 12:e2301343. [PMID: 37586109 DOI: 10.1002/adhm.202301343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/13/2023] [Indexed: 08/18/2023]
Abstract
Premetastatic niche (PMN) is a prerequisite for tumor metastasis. Destruction of PMN can significantly suppress the tumor metastasis. Bone marrow-derived cells are usually recruited into the premetastatic organs to support PMN formation, which can be orchestrated by tumor-derived secreted factors. Neutrophils can chemotactically migrate towards the inflammatory sites and consume tumor-derived secreted factors, capable of acting as therapeutic agents for a broad-spectrum suppression of PMN formation and metastasis. However, neutrophils in response to inflammatory signals can release neutrophil extracellular traps (NETs), promoting the tumor metastasis. Herein, live neutrophils are converted into dead neutrophils (C NE) through a quick-frozen process to maintain PMN-targeting and tumor-derived secreted factor-consuming abilities but eliminate NET-releasing shortcomings. Considering macrophages-regulated remodeling of the extracellular matrix in PMN, bacterial magnetosomes (Mag) are further hitchhiked on the surface of C NE to form C NEMag , which can repolarize macrophages from M2 to M1 phenotype for further disruption of PMN formation. A series of in vitro and in vivo assessments have been applied to confirm the effectiveness of C NEMag in suppression of PMN formation and metastasis. This study presents a promising strategy for targeted anti-metastatic therapy in clinics.
Collapse
Affiliation(s)
- Xiaoqing Han
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xingbo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiao Yan
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Panpan Song
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yanjing Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chao Shang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Yunyun Wu
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, China
| | - Hua Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xi Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, China
| |
Collapse
|
22
|
Liu Y, Wang H, Zhao X, Zhang J, Zhao Z, Lian X, Zhang J, Kong F, Hu T, Wang T, Li X, Wang L, Wang D, Li C, Luan H, Liu X, Wang C, Jiang Y, Li X, Li F, Ji S, Wang Y, Li Z. Targeting the Immunoglobulin IGSF9 Enhances Antitumor T-cell Activity and Sensitivity to Anti-PD-1 Immunotherapy. Cancer Res 2023; 83:3385-3399. [PMID: 37506192 DOI: 10.1158/0008-5472.can-22-3115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/14/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
Immune checkpoints modulate the immune response and represent important immunotherapy targets for cancer treatment. However, as many tumors are resistant to current immune checkpoint inhibitors, the discovery of novel immune checkpoints could facilitate the development of additional immunotherapeutic strategies to improve patient responses. Here, we identified increased expression of the adhesion molecule immunoglobulin superfamily member 9 (IGSF9) in tumor cells and tumor-infiltrating immune cells across multiple cancer types. IGSF9 overexpression or knockout in tumor cells did not alter cell proliferation in vitro or tumor growth in immunocompromised mice. Alternatively, IGSF9 deficient tumor cells lost the ability to suppress T-cell proliferation and exhibited reduced growth in immunocompetent mice. Similarly, growth of tumor cells was reduced in IGSF9 knockout syngeneic and humanized mice, accompanied by increased tumor-infiltrating T cells. Mechanistically, the extracellular domain (ECD) of IGSF9 bound to T cells and inhibited their proliferation and activation, and the tumor-promoting effect of IGSF9 ECD was reversed by CD3+ T-cell depletion. Anti-IGSF9 antibody treatment inhibited tumor growth and enhanced the antitumor efficacy of anti-programmed cell death protein 1 immunotherapy. Single-cell RNA sequencing revealed tumor microenvironment remodeling from tumor promoting to tumor suppressive following anti-IGSF9 treatment. Together, these results indicate that IGSF9 promotes tumor immune evasion and is a candidate immune checkpoint target. SIGNIFICANCE IGSF9 is an immune checkpoint regulator that suppresses T-cell activation in cancer and can be targeted to stimulate antitumor immunity and inhibit tumor growth.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Hongying Wang
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Xinyu Zhao
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Jiashen Zhang
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shandong Agricultural University, Taian, Shandong, P.R. China
| | - Zhiling Zhao
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Xia Lian
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Feng Kong
- Shandong Institute of Clinical Medicine, Shandong Provincial Hospital, Jinan, Shandong, P.R. China
| | - Tao Hu
- Department of thoracic surgery, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, P.R. China
| | - Ting Wang
- Department of Pathology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, P.R. China
| | - Xiaohua Li
- Yantai Central Blood Station, Yantai, Shandong, P.R. China
| | - Lei Wang
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Dapeng Wang
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Chunling Li
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Huiwen Luan
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Xiaoli Liu
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Chunyan Wang
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Yun Jiang
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Xiaomin Li
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Fangmin Li
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Shuhao Ji
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Yaopeng Wang
- Department of thoracic surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, P.R. China
| | - Zunling Li
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| |
Collapse
|
23
|
Tomlinson JL, Valle JW, Ilyas SI. Immunobiology of cholangiocarcinoma. J Hepatol 2023; 79:867-875. [PMID: 37201670 PMCID: PMC10524996 DOI: 10.1016/j.jhep.2023.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
Recent literature has significantly advanced our knowledge and understanding of the tumour immune microenvironment of cholangiocarcinoma. Detailed characterisation of the immune landscape has defined new patient subtypes. While not utilised in clinical practice yet, these novel classifications will help inform decisions regarding immunotherapeutic approaches. Suppressive immune cells, such as tumour-associated macrophages and myeloid-derived suppressor cells, form a barrier that shields tumour cells from immune surveillance. The presence of this immunosuppressive barrier in combination with a variety of immune escape mechanisms employed by tumour cells leads to poor tumour immunogenicity. Broad strategies to re-equip the immune system include blockade of suppressive immune cell recruitment to priming cytotoxic effector cells against tumour antigens. While immunotherapeutic strategies are gaining traction for the treatment of cholangiocarcinoma, there is a long road of discovery ahead in order to make meaningful contributions to patient therapy and survival.
Collapse
Affiliation(s)
| | - Juan W Valle
- Division of Cancer Sciences, University of Manchester & Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA; Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
24
|
Zon RL, Berliner N. How I manage inpatient consultations for quantitative neutrophil abnormalities in adults. Blood 2023; 142:786-793. [PMID: 36279420 PMCID: PMC10562528 DOI: 10.1182/blood.2021014818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 11/20/2022] Open
Abstract
Neutrophilia and neutropenia commonly lead to inpatient hematology consultation. Quantitative neutrophil abnormalities have a broad differential and include diagnoses that are important to recognize because they may be associated with increased mortality. Neutrophilia can reflect etiologies such as infection, medications, inflammation, splenectomy, and congenital disorders. Neutropenia can arise from infection, medications, autoimmune destruction, sequestration, nutritional deficiency, malignancy, and congenital neutropenia syndromes. In the evaluation of all abnormalities of neutrophil number, the timing of the change, and the patient's historical neutrophil count are crucial.
Collapse
Affiliation(s)
- Rebecca L. Zon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Nancy Berliner
- Divison of Hematology, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
25
|
Fasolato S, Del Bianco P, Malacrida S, Mattiolo A, Gringeri E, Angeli P, Pontisso P, Calabrò ML. Studies on the Role of Compartmentalized Profiles of Cytokines in the Risk of Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:13432. [PMID: 37686245 PMCID: PMC10563083 DOI: 10.3390/ijms241713432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most common form of liver cancer, is frequently diagnosed late due to the absence of symptoms during early disease, thus heavily affecting the overall survival of these patients. Soluble immunological factors persistently produced during cirrhosis have been recognized as promoters of chronic inflammation and neoplastic transformation. The aim of this pilot study was to evaluate the predictive value of the cytokine profiles for HCC development. A Luminex xMAP approach was used for the quantification of 45 proteins in plasma and ascitic fluids of 44 cirrhotic patients without or with HCC of different etiologies. The association with patient survival was also evaluated. Univariate analyses revealed that very low levels of interleukin 5 (IL-5) (<15.86 pg/mL) in ascites and IL-15 (<12.40 pg/mL) in plasma were able to predict HCC onset with an accuracy of 81.8% and a sensitivity of 95.2%. Univariate analyses also showed that HCC, hepatitis B virus/hepatitis C virus infections, low levels of IL-5 and granulocyte-macrophage colony-stimulating factor in ascitic fluids, and high levels of eotaxin-1, hepatocyte growth factor and stromal-cell-derived factor 1α in plasma samples were factors potentially associated with a poor prognosis and decreased survival. Our results suggest a potential protective role of some immune modulators that may act in the peritoneal cavity to counteract disease progression leading to HCC development.
Collapse
Affiliation(s)
- Silvano Fasolato
- Department of Medicine, Padua University Hospital, I-35128 Padua, Italy; (P.A.); (P.P.)
| | - Paola Del Bianco
- Clinical Research Unit, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy;
| | - Sandro Malacrida
- Institute of Mountain Emergency Medicine, Eurac Research, I-39100 Bozen, Italy;
| | - Adriana Mattiolo
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy; (A.M.); (M.L.C.)
| | - Enrico Gringeri
- Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, I-35128 Padua, Italy;
| | - Paolo Angeli
- Department of Medicine, Padua University Hospital, I-35128 Padua, Italy; (P.A.); (P.P.)
| | - Patrizia Pontisso
- Department of Medicine, Padua University Hospital, I-35128 Padua, Italy; (P.A.); (P.P.)
| | - Maria Luisa Calabrò
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, I-35128 Padua, Italy; (A.M.); (M.L.C.)
| |
Collapse
|
26
|
Caligiuri A, Parola M, Marra F, Cannito S, Gentilini A. Cholangiocarcinoma tumor microenvironment highlighting fibrosis and matrix components. HEPATOMA RESEARCH 2023. [DOI: 10.20517/2394-5079.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cholangiocarcinoma (CCA) is an extremely aggressive malignancy characterized by a very limited prognosis and scarce treatment options. The majority of patients are diagnosed at an advanced stage and do not qualify for potentially curative surgical treatments, making CCA an increasingly prevalent global challenge. CCA is characterized by a highly reactive desmoplastic stroma, with complex mechanisms underlying the mutual interactions between tumor cells and stromal compartment. This review focuses on the recent studies examining CCA’s biological features, with particular reference to the tumor reactive stroma (TRS) and its role in CCA progression, including matrix remodeling, angiogenesis and lymphangiogenesis, metastasis, and immune evasion. After giving a panoramic view of the relationship between the tumoral and stromal compartment (cancer-associated fibroblast, CAFs and tumor-associated macrophages, TAMs), this review also discusses the current therapeutic approaches to counteract CAFs and TAMs effects on CCA progression.
Collapse
|
27
|
Lu X, Green BL, Xie C, Liu C, Chen X. Preclinical and clinical studies of immunotherapy for the treatment of cholangiocarcinoma. JHEP Rep 2023; 5:100723. [PMID: 37229173 PMCID: PMC10205436 DOI: 10.1016/j.jhepr.2023.100723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 05/27/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a rare primary liver cancer associated with high mortality and few systemic treatment options. The behaviour of the immune system has come into focus as a potential treatment modality for many cancer types, but immunotherapy has yet to dramatically alter the treatment paradigm for CCA as it has for other diseases. Herein, we review recent studies describing the relevance of the tumour immune microenvironment (TIME) in CCA. Various non-parenchymal cell types are critically important in controlling CCA progression, prognosis, and response to systemic therapy. Knowledge of the behaviour of these leukocytes could help generate hypotheses to guide the development of potential immune-directed therapies. Recently, an immunotherapy-containing combination was approved for the treatment of advanced-stage CCA. However, despite level 1 evidence demonstrating the improved efficacy of this therapy, survival remained suboptimal. In the current manuscript, we provide a comprehensive review of the TIME in CCA, preclinical studies of immunotherapies against CCA, as well as ongoing clinical trials applying immunotherapies for the treatment of CCA. Particular emphasis is placed on microsatellite unstable tumours, a rare CCA subtype that demonstrates heightened sensitivity to approved immune checkpoint inhibitors. We also discuss the challenges involved in applying immunotherapies to the treatment of CCA and the importance of understanding the TIME.
Collapse
Affiliation(s)
- Xinjun Lu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Benjamin L. Green
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Changqing Xie
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chao Liu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Chen
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| |
Collapse
|
28
|
Ilyas SI, Affo S, Goyal L, Lamarca A, Sapisochin G, Yang JD, Gores GJ. Cholangiocarcinoma - novel biological insights and therapeutic strategies. Nat Rev Clin Oncol 2023; 20:470-486. [PMID: 37188899 PMCID: PMC10601496 DOI: 10.1038/s41571-023-00770-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
In the past 5 years, important advances have been made in the scientific understanding and clinical management of cholangiocarcinoma (CCA). The cellular immune landscape of CCA has been characterized and tumour subsets with distinct immune microenvironments have been defined using molecular approaches. Among these subsets, the identification of 'immune-desert' tumours that are relatively devoid of immune cells emphasizes the need to consider the tumour immune microenvironment in the development of immunotherapy approaches. Progress has also made in identifying the complex heterogeneity and diverse functions of cancer-associated fibroblasts in this desmoplastic cancer. Assays measuring circulating cell-free DNA and cell-free tumour DNA are emerging as clinical tools for detection and monitoring of the disease. Molecularly targeted therapy for CCA has now become a reality, with three drugs targeting oncogenic fibroblast growth factor receptor 2 (FGFR2) fusions and one targeting neomorphic, gain-of-function variants of isocitrate dehydrogenase 1 (IDH1) obtaining regulatory approval. By contrast, immunotherapy using immune-checkpoint inhibitors has produced disappointing results in patients with CCA, underscoring the requirement for novel immune-based treatment strategies. Finally, liver transplantation for early stage intrahepatic CCA under research protocols is emerging as a viable therapeutic option in selected patients. This Review highlights and provides in-depth information on these advances.
Collapse
Affiliation(s)
- Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Silvia Affo
- Liver, Digestive System and Metabolism Research, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lipika Goyal
- Department of Medicine, Mass General Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Angela Lamarca
- Department of Oncology, OncoHealth Institute, Fundación Jiménez Díaz University Hospital, Madrid, Spain
- Department of Medical Oncology, The Christie NHS Foundation, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Gonzalo Sapisochin
- Ajmera Transplant Program and HPB Surgical Oncology, Toronto General Hospital, University of Toronto, Toronto, Canada
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
29
|
Sajan A, Fordyce S, Sideris A, Liou C, Toor Z, Filtes J, Krishnasamy V, Ahmad N, Reis S, Brejt S, Baig A, Khan S, Caplan M, Sperling D, Weintraub J. Minimally Invasive Treatment Options for Hepatic Uveal Melanoma Metastases. Diagnostics (Basel) 2023; 13:diagnostics13111836. [PMID: 37296688 DOI: 10.3390/diagnostics13111836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
Uveal melanoma is one of the most common primary intraocular malignancies that accounts for about 85% of all ocular melanomas. The pathophysiology of uveal melanoma is distinct from cutaneous melanoma and has separate tumor profiles. The management of uveal melanoma is largely dependent on the presence of metastases, which confers a poor prognosis with a one-year survival reaching only 15%. Although a better understanding of tumor biology has led to the development of novel pharmacologic agents, there is increasing demand for minimally invasive management of hepatic uveal melanoma metastases. Multiple studies have already summarized the systemic therapeutic options available for metastatic uveal melanoma. This review covers the current research for the most prevalent locoregional treatment options for metastatic uveal melanoma including percutaneous hepatic perfusion, immunoembolization, chemoembolization, thermal ablation, and radioembolization.
Collapse
Affiliation(s)
- Abin Sajan
- Department of Radiology, Columbia University Medical Center, 622 West 168th Street, New York, NY 10032, USA
| | - Samuel Fordyce
- Department of Radiology, Columbia University Medical Center, 622 West 168th Street, New York, NY 10032, USA
| | - Andrew Sideris
- Department of Radiology, Columbia University Medical Center, 622 West 168th Street, New York, NY 10032, USA
| | - Connie Liou
- Department of Radiology, Columbia University Medical Center, 622 West 168th Street, New York, NY 10032, USA
| | - Zeeshan Toor
- Department of Radiology, Columbia University Medical Center, 622 West 168th Street, New York, NY 10032, USA
| | - John Filtes
- Department of Radiology, Columbia University Medical Center, 622 West 168th Street, New York, NY 10032, USA
| | - Venkatesh Krishnasamy
- Department of Radiology, Columbia University Medical Center, 622 West 168th Street, New York, NY 10032, USA
| | - Noor Ahmad
- Department of Radiology, Columbia University Medical Center, 622 West 168th Street, New York, NY 10032, USA
| | - Stephen Reis
- Department of Radiology, Columbia University Medical Center, 622 West 168th Street, New York, NY 10032, USA
| | - Sidney Brejt
- Department of Radiology, Columbia University Medical Center, 622 West 168th Street, New York, NY 10032, USA
| | - Asad Baig
- Department of Radiology, Columbia University Medical Center, 622 West 168th Street, New York, NY 10032, USA
| | - Shaheer Khan
- Department of Medicine, Columbia University Medical Center, 161 Fort Washington Avenue, New York, NY 10032, USA
| | - Michael Caplan
- Department of Medicine, Columbia University Medical Center, 161 Fort Washington Avenue, New York, NY 10032, USA
| | - David Sperling
- Department of Radiology, Columbia University Medical Center, 622 West 168th Street, New York, NY 10032, USA
| | - Joshua Weintraub
- Department of Radiology, Columbia University Medical Center, 622 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
30
|
KIF14 promotes proliferation, lymphatic metastasis and chemoresistance through G3BP1/YBX1 mediated NF-κB pathway in cholangiocarcinoma. Oncogene 2023; 42:1392-1404. [PMID: 36922675 DOI: 10.1038/s41388-023-02661-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
Cholangiocarcinoma (CCA), a highly lethal and fetal cancer derived from the hepatobiliary system, is featured by aggressive growth and early lymphatic metastasis. Elucidating the underlying mechanism and identifying the effective therapy are critical for advanced CCA patients. In the study, we detected that KIF14 was upregulated in CCA samples, especially in patients with lymph node metastasis and vascular invasion. CCA patients with higher KIF14 were associated with worse overall survival and recurrence-free survival after surgery. Gain-of and loss-of function studies showed that KIF14 enhanced CCA cells proliferation, migration, invasion and lymphatic metastasis whereas its silencing abolished the effects in vivo and in vitro. Mechanistic investigation showed that KIF14 bound to the G3BP1/YBX1 complex and facilitated their interaction, causing increased activity of the NF-κB promoter and activation of NF-κB pathway. Furthermore, increased KIF14 level enhanced chemotherapy-resistance to gemcitabine-based regimen and induced immunosuppressive microenvironment. In addition, KIF14 was direct target of HNF4A and inversely regulated by HNF4A. Together, these findings suggested that KIF14 could be a potential oncogene and a good indicator in predicting prognosis and chemotherapy guidance for CCA patients.
Collapse
|
31
|
Vita F, Olaizola I, Amato F, Rae C, Marco S, Banales JM, Braconi C. Heterogeneity of Cholangiocarcinoma Immune Biology. Cells 2023; 12:cells12060846. [PMID: 36980187 PMCID: PMC10047186 DOI: 10.3390/cells12060846] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Cholangiocarcinomas (CCAs) are aggressive tumors arising along the biliary tract epithelium, whose incidence and mortality are increasing. CCAs are highly desmoplastic cancers characterized by a dense tumor microenvironment (TME), in which each single component plays a fundamental role in shaping CCA initiation, progression and resistance to therapies. The crosstalk between cancer cells and TME can affect the recruitment, infiltration and differentiation of immune cells. According to the stage of the disease and to intra- and inter-patient heterogeneity, TME may contribute to either protumoral or antitumoral activities. Therefore, a better understanding of the effect of each immune cell subtype may open the path to new personalized immune therapeutic strategies for the management of CCA. In this review, we describe the role of immune cells in CCA initiation and progression, and their crosstalk with both cancer-associated fibroblasts (CAFs) and the cancer-stem-cell-like (CSC) niche.
Collapse
Affiliation(s)
- Francesca Vita
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (F.V.); (F.A.); (C.R.); (S.M.)
- Department of Oncology, University of Turin, 10043 Turin, Italy
| | - Irene Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute–Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (I.O.); (J.M.B.)
| | - Francesco Amato
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (F.V.); (F.A.); (C.R.); (S.M.)
| | - Colin Rae
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (F.V.); (F.A.); (C.R.); (S.M.)
| | - Sergi Marco
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (F.V.); (F.A.); (C.R.); (S.M.)
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute–Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (I.O.); (J.M.B.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, “Instituto de Salud Carlos III”), 28029 Madrid, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (F.V.); (F.A.); (C.R.); (S.M.)
- Beatson West of Scotland Cancer Centre, Glasgow G12 0YN, UK
- Correspondence:
| |
Collapse
|
32
|
Zhu X, Fang Y, Chen Y, Chen Y, Hong W, Wei W, Tu J. Interaction of tumor-associated microglia/macrophages and cancer stem cells in glioma. Life Sci 2023; 320:121558. [PMID: 36889666 DOI: 10.1016/j.lfs.2023.121558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Glioma is the most common tumor of the primary central nervous system, and its malignant phenotype has been shown to be closely related to glioma stem cells (GSCs). Although temozolomide has significantly improved the therapeutic outcome of glioma with a high penetration rate of the blood-brain barrier, resistance is often present in patients. Moreover, evidence has shown that the crosstalk between GSCs and tumor-associated microglia/macrophages (TAMs) affect the clinical occurrence, growth, and multi-tolerance of chemoradiotherapy in gliomas. Here, we highlight its vital roles in the maintenance of the stemness of GSCs and the ability of GSCs to recruit TAMs to the tumor microenvironment and promote their polarization into tumor-promoting macrophages, hence providing groundwork for future research into new treatment strategies of cancer.
Collapse
Affiliation(s)
- Xiangling Zhu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yilong Fang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yizhao Chen
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu Chen
- Department of Gynecology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Wenming Hong
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
| | - Jiajie Tu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
| |
Collapse
|
33
|
Zhu D, Shi X, Tian Y, Li H, Tang B, Zhang Z, Zhang Z, Zuo L. Combining expression of RNF43 and infiltration level of CD163 + tumor associated macrophage predicts prognosis of clear cell renal cell carcinoma. Cancer Med 2023; 12:3962-3971. [PMID: 36097369 PMCID: PMC9972079 DOI: 10.1002/cam4.5229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022] Open
Abstract
Searching for reliable indicators for evaluating prognosis diagnosed with clear cell renal cell carcinoma (ccRCC) is crucial for improving clinical therapies. However, current researches have looked mainly at the prognostic value of a single intratumoral indicator, neglecting tumor-infiltrating immune cells (TIICs) in the microenvironment. This study examined whether the integration of Ring finger protein 43 (RNF43) expression and CD163+ tumor-associated macrophage (TAM) infiltration in combination with clinical indexes forecast ccRCC patient outcome with relatively high accuracy. Firstly, the expression of RNF43 and CD163 were detected with immunohistochemistry. Totally, 346 ccRCC patients were random separated evenly into training and validation datasets to make further analyses. We found that RNF43 expression was negatively correlated with infiltration level of CD163+ TAM in ccRCC, which was closely associated with the TNM stage and outcome of these patients. The multiple regression analysis demonstrated that RNF43, CD163, and TNM stage could function as independent risk factors in overall survival (OS) and progression-free survival (PFS) prediction of ccRCC. Furthermore, a better postoperative prognosis index for ccRCC patients was obtained by combining RNF43 and CD163+ TAMs, which assessed with time-dependent C-index analyses and a nomogram. Consequently, combining RNF43 and CD163+ TAMs along with TNM stage acquired robust accuracy in forecasting outcome of patients with ccRCC. In conclusion, combining intratumoral RNF43 expression, CD163+ TAM infiltration, and TNM stage could significantly enhance the veracity in forecasting postoperative outcomes.
Collapse
Affiliation(s)
- Dawei Zhu
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xiaokai Shi
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yijun Tian
- Department of Urinary Surgery, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hao Li
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Department of Graduate School, Dalian Medical University, Dalian, China
| | - Bowen Tang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Department of Graduate School, Dalian Medical University, Dalian, China
| | - Ziyi Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Department of Graduate School, Dalian Medical University, Dalian, China
| | - Ze Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Department of Graduate School, Dalian Medical University, Dalian, China
| | - Li Zuo
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
34
|
Saranaruk P, Waraasawapati S, Chamgramol Y, Sawanyawisuth K, Paungpan N, Somphud N, Wongkham C, Okada S, Wongkham S, Vaeteewoottacharn K. Dense GM-CSFR α-expressing immune infiltration is allied with longer survival of intrahepatic cholangiocarcinoma patients. PeerJ 2023; 11:e14883. [PMID: 36883059 PMCID: PMC9985900 DOI: 10.7717/peerj.14883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/22/2023] [Indexed: 03/06/2023] Open
Abstract
Background Intrahepatic cholangiocarcinoma (iCCA) is a cancer arising from intrahepatic bile duct epithelium. An iCCA incidence is increasing worldwide; however, the outcome of the disease is dismal. The linkage between chronic inflammation and iCCA progression is well established, but the roles of granulocyte-macrophage colony-stimulating factor (GM-CSF) remain unrevealed. Thus, a better understanding of GM-CSF functions in CCA may provide an alternative approach to CCA treatment. Methods Differential GM-CSF and GM-CSFRα mRNA expressions in CCA tissues were investigated by Gene Expression Profiling Interactive Analysis (GEPIA) based on The Cancer Genome Atlas (TCGA) database. The protein expressions and localizations of GM-CSF and its cognate receptor (GM-CSFRα) in iCCA patients' tissues were demonstrated by the immunohistochemistry (IHC) techniques. The survival analyses were performed using Kaplan-Meier survival analysis with log-rank test and Cox proportional hazard regression model for multivariate analysis. The GM-CSF productions and GM-CSFRα expressions on CCA cells were assessed by ELISA and flow cytometry. The effects of GM-CSF on CCA cell proliferation and migration were evaluated after recombinant human GM-CSF treatment. The relationship between GM-CSF or GM-CSFRα level and related immune cell infiltration was analyzed using the Tumor Immune Estimation Resource (TIMER). Results GEPIA analysis indicated GM-CSF and GM-CSFRα expressions were higher in CCA tissues than in normal counterparts, and high GM-CSFRα was related to the longer disease-free survival of the patients (p < 0.001). IHC analysis revealed that CCA cells differentially expressed GM-CSF, while GM-CSFRα was expressed on cancer-infiltrating immune cells. The patient whose CCA tissue contained high GM-CSF expressed CCA, and moderate to dense GM-CSFRα-expressing immune cell infiltration (ICI) acquired longer overall survival (OS) (p = 0.047), whereas light GM-CSFRα-expressing ICI contributed to an increased hazard ratio (HR) to 1.882 (95% CI [1.077-3.287]; p = 0.026). In non-papillary subtype, an aggressive CCA subtype, patients with light GM-CSFRα-expressing ICI had shorter median OS (181 vs. 351 days; p = 0.002) and the HR was elevated to 2.788 (95% CI [1.299-5.985]; p = 0.009). Additionally, TIMER analysis demonstrated GM-CSFRα expression was positively correlated with neutrophil, dendritic cell, and CD8+ T cell infiltrations, though it was conversely related to M2-macrophage and myeloid-derived suppressor cell infiltration. However, the direct effects of GM-CSF on CCA cell proliferation and migration were not observed in the current study. Conclusions Light GM-CSFRα-expressing ICI was an independent poor prognostic factor for iCCA patients. Anti-cancer functions of GM-CSFRα-expressing ICI were suggested. Altogether, the benefits of acquired GM-CSFRα-expressing ICI and GM-CSF for CCA treatment are proposed herein and require elucidation.
Collapse
Affiliation(s)
- Paksiree Saranaruk
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Sakda Waraasawapati
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Yaovalux Chamgramol
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Natnicha Paungpan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Narumon Somphud
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
35
|
Fang Q, Stehr AM, Naschberger E, Knopf J, Herrmann M, Stürzl M. No NETs no TIME: Crosstalk between neutrophil extracellular traps and the tumor immune microenvironment. Front Immunol 2022; 13:1075260. [PMID: 36618417 PMCID: PMC9816414 DOI: 10.3389/fimmu.2022.1075260] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The tumor immune microenvironment (TIME) controls tumorigenesis. Neutrophils are important components of TIME and control tumor progression and therapy resistance. Neutrophil extracellular traps (NETs) ejected by activated neutrophils are net-like structures composed of decondensed extracellular chromatin filaments decorated with a plethora of granules as well as cytoplasmic proteins. Many of these harbour post translational modifications. Cancer cells reportedly trigger NET formation, and conversely, NETs alter the TIME and promote tumor cell proliferation and migration. The specific interactions between NETs and TIME and the respective effects on tumor progression are still elusive. In certain tumors, a CD4+ T helper (Th) 2 cell-associated TIME induces NETs and exerts immunosuppressive functions via programmed death 1 (PD-1)/PD-L1, both associated with poorer prognosis. In other cases, NETs induce the proliferation of Th1 cells, associated with an improved prognosis in cancer. In addition, NETs can drive macrophage polarization and often rely on macrophages to promote cancer cell invasion and metastasis. In turn, macrophages can swiftly clear NETs in an immunologically silent manner. The aim of this review is to summarize the knowledge about the mutual interaction between NETs and TIME and its impact on tumor growth and therapy.
Collapse
Affiliation(s)
- Qi Fang
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Antonia Margarethe Stehr
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
36
|
Interleukin-17D promotes lung cancer progression by inducing tumor-associated macrophage infiltration via the p38 MAPK signaling pathway. Aging (Albany NY) 2022; 14:6149-6168. [PMID: 35939336 PMCID: PMC9417222 DOI: 10.18632/aging.204208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022]
Abstract
Cancer immunoediting is defined as the integration of the immune system’s dual host-protective and tumor-promoting roles, including three phases: elimination, equilibrium, and escape. Immune selective pressure causes tumor cells to lose major histocompatibility complex expression or acquire immunosuppressive gene expression, which promotes tumor immune evasion and tumor progression. Interleukin-17D (IL-17D), a member of the IL-17 family of cytokines, plays an important role in the host defense against infection and inflammation. However, the role of IL-17D in the progression of lung cancer remains unclear. In this study, we found that IL-17D was highly expressed in human lung cancer, and increased IL-17D expression was associated with tumor stage and short overall survival. IL-17D overexpression significantly promoted tumor growth in subcutaneous xenograft mouse models but only slightly affected cell proliferation in vitro. Using flow cytometry, we found that IL-17D overexpression enhances the recruitment of tumor-associated macrophages to the tumor microenvironment. Based on the expression profile of IL17D–overexpressing A549 cells, we found that IL-17D increased the expression levels of macrophage polarization– and recruitment–related genes through the MAPK signaling pathway. Moreover, inhibition of the p38 pathway blocked macrophage infiltration induced by IL-17D. These results suggest that IL-17D regulates the tumor immune microenvironment via the p38 MAPK signaling pathway, highlighting IL-17D as a potential therapeutic target for lung cancer.
Collapse
|
37
|
Kumar A, Taghi Khani A, Sanchez Ortiz A, Swaminathan S. GM-CSF: A Double-Edged Sword in Cancer Immunotherapy. Front Immunol 2022; 13:901277. [PMID: 35865534 PMCID: PMC9294178 DOI: 10.3389/fimmu.2022.901277] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that drives the generation of myeloid cell subsets including neutrophils, monocytes, macrophages, and dendritic cells in response to stress, infections, and cancers. By modulating the functions of innate immune cells that serve as a bridge to activate adaptive immune responses, GM-CSF globally impacts host immune surveillance under pathologic conditions. As with other soluble mediators of immunity, too much or too little GM-CSF has been found to promote cancer aggressiveness. While too little GM-CSF prevents the appropriate production of innate immune cells and subsequent activation of adaptive anti-cancer immune responses, too much of GM-CSF can exhaust immune cells and promote cancer growth. The consequences of GM-CSF signaling in cancer progression are a function of the levels of GM-CSF, the cancer type, and the tumor microenvironment. In this review, we first discuss the secretion of GM-CSF, signaling downstream of the GM-CSF receptor, and GM-CSF’s role in modulating myeloid cell homeostasis. We then outline GM-CSF’s anti-tumorigenic and pro-tumorigenic effects both on the malignant cells and on the non-malignant immune and other cells in the tumor microenvironment. We provide examples of current clinical and preclinical strategies that harness GM-CSF’s anti-cancer potential while minimizing its deleterious effects. We describe the challenges in achieving the Goldilocks effect during administration of GM-CSF-based therapies to patients with cancer. Finally, we provide insights into how technologies that map the immune microenvironment spatially and temporally may be leveraged to intelligently harness GM-CSF for treatment of malignancies.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Adeleh Taghi Khani
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Ashly Sanchez Ortiz
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
- Department of Hematological Malignancies, Beckman Research Institute of City of Hope, Monrovia, CA, United States
- *Correspondence: Srividya Swaminathan,
| |
Collapse
|
38
|
Nie W, Chen J, Wang B, Gao X. Nonviral vector system for cancer immunogene therapy. MEDCOMM – BIOMATERIALS AND APPLICATIONS 2022. [DOI: 10.1002/mba2.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wen Nie
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu PR China
| | - Jing Chen
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu PR China
| | - Bilan Wang
- Department of Pharmacy West China Second University Hospital of Sichuan University Chengdu PR China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu PR China
| |
Collapse
|
39
|
Cadamuro M, Fabris L, Zhang X, Strazzabosco M. Tumor microenvironment and immunology of cholangiocarcinoma. HEPATOMA RESEARCH 2022; 8:11. [PMID: 39301518 PMCID: PMC11412615 DOI: 10.20517/2394-5079.2021.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Cholangiocarcinoma (CCA), an aggressive tumor originating from both intra- and extra-hepatic biliary cells, represents an unmet need in liver oncology, as treatment remains largely unsatisfactory. A typical feature of CCA is the presence of a complex tumor microenvironment (TME) composed of neoplastic cells, a rich inflammatory infiltrate, and cancer-associated fibroblasts and desmoplastic matrix that makes it extremely chemoresistant to traditional chemotherapeutic drugs. In this review, we describe the cell populations within the TME, in particular those involved in the innate and adaptive immune response and how they interact with tumor cells and with matrix proteins. The TME is crucial for CCA to mount an immune escape response and is the battlefield where molecularly targeted therapies and immune therapy, particularly in combination, may actually prove their therapeutic value.
Collapse
Affiliation(s)
| | - Luca Fabris
- Department of Molecular Medicine (DMM), University of Padua, Padua 35131, Italy
| | - Xuchen Zhang
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mario Strazzabosco
- Liver Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|