1
|
Liu M, Peng R, Tian C, Shi J, Ma J, Shi R, Qi X, Zhao R, Guan H. Effects of the gut microbiota and its metabolite short-chain fatty acids on endometriosis. Front Cell Infect Microbiol 2024; 14:1373004. [PMID: 38938880 PMCID: PMC11208329 DOI: 10.3389/fcimb.2024.1373004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
In recent years, a growing body of research has confirmed that the gut microbiota plays a major role in the maintenance of human health and disease. A gut microbiota imbalance can lead to the development of many diseases, such as pregnancy complications, adverse pregnancy outcomes, polycystic ovary syndrome, endometriosis, and cancer. Short-chain fatty acids are metabolites of specific intestinal bacteria and are crucial for maintaining intestinal homeostasis and regulating metabolism and immunity. Endometriosis is the result of cell proliferation, escape from immune surveillance, and invasive metastasis. There is a strong correlation between the anti-proliferative and anti-inflammatory effects of short-chain fatty acids produced by gut microbes and the development of endometriosis. Given that the mechanism of action of gut microbiota and Short-chain fatty acids in endometriosis remain unclear, this paper aims to provide a comprehensive review of the complex interactions between intestinal flora, short-chain fatty acids and endometriosis. In addition, we explored potential microbial-based treatment strategies for endometriosis, providing new insights into the future development of diagnostic tests and prevention and treatment methods for endometriosis.
Collapse
Affiliation(s)
- Menghe Liu
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Ru Peng
- Department of Obstetrics and Gynecology, Hohhot Maternal and Child Health Care Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Chunfang Tian
- Department of Oncology, Inner Mongolia Traditional Chinese Medicine Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Jianping Shi
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Jiannan Ma
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Ruiwen Shi
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Xiao Qi
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Rongwei Zhao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Haibin Guan
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
2
|
Yadegar A, Bar-Yoseph H, Monaghan TM, Pakpour S, Severino A, Kuijper EJ, Smits WK, Terveer EM, Neupane S, Nabavi-Rad A, Sadeghi J, Cammarota G, Ianiro G, Nap-Hill E, Leung D, Wong K, Kao D. Fecal microbiota transplantation: current challenges and future landscapes. Clin Microbiol Rev 2024; 37:e0006022. [PMID: 38717124 PMCID: PMC11325845 DOI: 10.1128/cmr.00060-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYGiven the importance of gut microbial homeostasis in maintaining health, there has been considerable interest in developing innovative therapeutic strategies for restoring gut microbiota. One such approach, fecal microbiota transplantation (FMT), is the main "whole gut microbiome replacement" strategy and has been integrated into clinical practice guidelines for treating recurrent Clostridioides difficile infection (rCDI). Furthermore, the potential application of FMT in other indications such as inflammatory bowel disease (IBD), metabolic syndrome, and solid tumor malignancies is an area of intense interest and active research. However, the complex and variable nature of FMT makes it challenging to address its precise functionality and to assess clinical efficacy and safety in different disease contexts. In this review, we outline clinical applications, efficacy, durability, and safety of FMT and provide a comprehensive assessment of its procedural and administration aspects. The clinical applications of FMT in children and cancer immunotherapy are also described. We focus on data from human studies in IBD in contrast with rCDI to delineate the putative mechanisms of this treatment in IBD as a model, including colonization resistance and functional restoration through bacterial engraftment, modulating effects of virome/phageome, gut metabolome and host interactions, and immunoregulatory actions of FMT. Furthermore, we comprehensively review omics technologies, metagenomic approaches, and bioinformatics pipelines to characterize complex microbial communities and discuss their limitations. FMT regulatory challenges, ethical considerations, and pharmacomicrobiomics are also highlighted to shed light on future development of tailored microbiome-based therapeutics.
Collapse
Affiliation(s)
- Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haggai Bar-Yoseph
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tanya Marie Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Sepideh Pakpour
- School of Engineering, Faculty of Applied Sciences, UBC, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Andrea Severino
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ed J Kuijper
- Center for Microbiota Analysis and Therapeutics (CMAT), Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Wiep Klaas Smits
- Center for Microbiota Analysis and Therapeutics (CMAT), Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisabeth M Terveer
- Center for Microbiota Analysis and Therapeutics (CMAT), Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Sukanya Neupane
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Sadeghi
- School of Engineering, Faculty of Applied Sciences, UBC, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Estello Nap-Hill
- Department of Medicine, Division of Gastroenterology, St Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dickson Leung
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Karen Wong
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Guo J, Zhao Y, Kang SG, Huang K, Tong T. Differential effects of four laboratory animal control diets on gut microbiota in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4438-4452. [PMID: 38323712 DOI: 10.1002/jsfa.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND The gut microbiota is intricate and susceptible to multiple factors, with diet being a major contributor. The present study aimed to investigate the impact of four commonly used laboratory animal control diets, namely Keao Xieli's maintenance diet (KX), HFK's 1025 (HF), Research Diets' D12450B (RD), and Lab Diet's 5CC4 (LD), on the gut microbiota of mice. RESULTS A total of 40 mice were randomly assigned to four groups, and each group was fed one of the four diets for a duration of 8 weeks. The assessment of gut microbiota was conducted using 16S rRNA sequencing both at the beginning of the study (week 0) and the end (week 8), which served as the baseline and endpoint samples, respectively. Following the 8-week feeding period, no significant differences were observed in physiological parameters, including body weight, visceral weight, and blood biochemical indices, across the four groups. Nonetheless, relative to the baseline, discernible alterations in the gut microbiota were observed in all groups, encompassing shifts in beta-diversity, hierarchical clustering, and key genera. Among the four diets, HF diet exhibited a significant influence on alpha-diversity, RD diet brought about notable changes in microbial composition at the phylum level, and LD diet demonstrated an interconnected co-occurrence network. Mantel analysis indicated no significant correlation between physiological parameters and gut microbiota in the four groups. CONCLUSION Overall, our study demonstrated that the four control diets had a minimal impact on physiological parameters, while exerting a distinct influence on the gut microbiota after 8 weeks. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingya Guo
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
| | - Yuhan Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun, Republic of Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, P. R. China
- Beijing Laboratory for Food Quality and Safety, Beijing, P. R. China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, P. R. China
- Beijing Laboratory for Food Quality and Safety, Beijing, P. R. China
| |
Collapse
|
4
|
Fusco W, Lorenzo MB, Cintoni M, Porcari S, Rinninella E, Kaitsas F, Lener E, Mele MC, Gasbarrini A, Collado MC, Cammarota G, Ianiro G. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023; 15:2211. [PMID: 37432351 DOI: 10.3390/nu15092211] [Citation(s) in RCA: 185] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 07/12/2023] Open
Abstract
Short-chain fatty acids (SCFAs) play a key role in health and disease, as they regulate gut homeostasis and their deficiency is involved in the pathogenesis of several disorders, including inflammatory bowel diseases, colorectal cancer, and cardiometabolic disorders. SCFAs are metabolites of specific bacterial taxa of the human gut microbiota, and their production is influenced by specific foods or food supplements, mainly prebiotics, by the direct fostering of these taxa. This Review provides an overview of SCFAs' roles and functions, and of SCFA-producing bacteria, from their microbiological characteristics and taxonomy to the biochemical process that lead to the release of SCFAs. Moreover, we will describe the potential therapeutic approaches to boost the levels of SCFAs in the human gut and treat different related diseases.
Collapse
Affiliation(s)
- William Fusco
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Manuel Bernabeu Lorenzo
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), 46022 Valencia, Spain
| | - Marco Cintoni
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
| | - Serena Porcari
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Emanuele Rinninella
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
| | - Francesco Kaitsas
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Elena Lener
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Maria Cristina Mele
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), 46022 Valencia, Spain
| | - Giovanni Cammarota
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, Digestive Disease Center, Universitary Policlinic Agostino Gemelli Foundation IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|