1
|
Shang L, Ao Y, Huang X, Wu H, Feng K, Wang J, Yue Y, Zhou Z, Liu Q, Li H, Fu G, Liu K, Pan J, Huang Y, Chen J, Chen G, Liang M, Yao J, Huang S, Hou J, Wu Z. sVEGFR3 alleviates myocardial ischemia/reperfusion injury through regulating mitochondrial homeostasis and immune cell infiltration. Apoptosis 2025:10.1007/s10495-024-02068-8. [PMID: 39863719 DOI: 10.1007/s10495-024-02068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
Recent studies have suggested that sVEGFR3 is involved in cardiac diseases by regulating lymphangiogenesis; however, results are inconsistent. The aim of this study was to investigate the function and mechanism of sVEGFR3 in myocardial ischemia/reperfusion injury (MI/RI). sVEGFR3 effects were evaluated in vivo in mice subjected to MI/RI, and in vitro using HL-1 cells exposed to oxygen-glucose deprivation/reperfusion. Echocardiography, TTC-Evans blue staining, ELISA, electron microscopy, immunofluorescence, western blotting, and flow cytometry were used to investigate whether sVEGFR3 attenuates I/R injury. Transcriptome sequencing was used to investigate the downstream mechanism of sVEGFR3. Results showed that, in vivo, sVEGFR3 pretreatment reduced cardiac dysfunction, infarct area, and myocardial injury indicators by reducing ROS production, AIF expression, and apoptosis. In vitro, sVEGFR3 restored mitochondrial homeostasis by stabilizing the mitochondrial membrane potential (MMP) and preventing the opening of mitochondrial permeability transition pores (mPTP). And sVEGFR3 inhibits mitochondrial apoptosis through the Ras/MEK/ERK pathway. Furthermore, I/R injury increased the proportion of M1 macrophages and CD4 + T cells in myocardial tissue, as well as serum IFN-γ and TNF-α levels, whereas sVEGFR3 treatment attenuated these effects. sVEGFR3 attenuates MI/RI by regulating mitochondrial homeostasis and immune cell infiltration, and reduces intrinsic ROS-mediated mitochondrial apoptosis via the Ras/MEK/ERK pathway.
Collapse
Affiliation(s)
- Liqun Shang
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Yuanhan Ao
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Xiaolin Huang
- Department of Thoracic Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Huawei Wu
- Department of Surgery, Columbia University, New York, NY, USA
| | - Kangni Feng
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Junjie Wang
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Yuan Yue
- Department of Cardiovascular Surgery, Shenzhen People's Hospital, Shenzhen, China
| | - Zhuoming Zhou
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Quan Liu
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Huayang Li
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Guangguo Fu
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Kaizheng Liu
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Jinyu Pan
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Yang Huang
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Jiantao Chen
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Guangxian Chen
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Mengya Liang
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Jianping Yao
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China
| | - Suiqing Huang
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China.
| | - Jian Hou
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China.
- Department of Cardiology, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Zhongkai Wu
- Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Sharma N, Khatib MN, Roopashree R, Kaur M, Srivastava M, Barwal A, Siva Prasad GV, Rajput P, Syed R, Kundra K, Mittal V, Shabil M, Kumar A, Cajla P, Bushi G, Mehta R, Khan Z, Satapathy P, Gaidhane S, Daniel AS, Sah R. Association between vascular endothelial growth factor and atrial fibrillation: a systematic review. BMC Cardiovasc Disord 2025; 25:5. [PMID: 39757193 DOI: 10.1186/s12872-024-04460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is the most prevalent form of sustained cardiac arrhythmia, with vascular endothelial growth factor (VEGF) increasingly recognized for its potential role in the pathogenesis of AF through mechanisms involving atrial remodeling, inflammation, and fibrosis. This systematic review aims to synthesize available evidence on the association between VEGF and AF, exploring the implications of VEGF as a biomarker and therapeutic target. METHODS We conducted a comprehensive search across PubMed, Embase, and Web of Science until November 10 2024, selecting studies based on pre-defined criteria that involve adults with AF and measurements of VEGF levels. The selected studies included observational and experimental designs, excluding non-English and methodologically insufficient publications. Narrative synthesis was used for summarising the results. RESULTS Eight studies met the inclusion criteria. The studies show a general trend of elevated VEGF levels in AF patients compared to controls, with significant heterogeneity in findings across studies. VEGF subtypes such as VEGF-A and VEGF-D demonstrated stronger associations with AF risk compared to VEGF-C. These variations point to the complex role of VEGF in AF, influencing factors like angiogenesis, endothelial function, and inflammatory responses. CONCLUSION VEGF is potentially a significant contributor to AF pathophysiology, with its levels reflecting disease activity. The variability observed across studies suggests a need for standardized measurement approaches and further investigation into VEGF subtypes. Future research should focus on longitudinal studies to better understand the causal relationships and the potential of VEGF as a therapeutic target and biomarker in AF management. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Nikhil Sharma
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, India
| | - Mahalaqua Nazli Khatib
- Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mandeep Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, 303012, Rajasthan, India
| | | | - Amit Barwal
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, 140307, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, 531162, Andhra Pradesh, India
| | - Pranchal Rajput
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Rukshar Syed
- IES Institute of Pharmacy, IES University, Bhopal, 462044, Madhya Pradesh, India
| | - Kamal Kundra
- New Delhi Institute of Management, Tughlakabad Institutional Area, New Delhi, India
| | - Vinamra Mittal
- Graphic Era (Deemed to be University), Graphic Era Institute of Medical Sciences, Clement Town, Dehradun, India
| | - Muhammed Shabil
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India.
- University of Cyberjaya, Persiaran Bestari, Cyber 11, Selangor Darul Ehsan, 63000, Cyberjaya, Malaysia.
| | - Amit Kumar
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140417, Punjab, India
| | - Pancham Cajla
- Chitkara Centre for Research and Development, Chitkara University, 174103, Chandigarh, Himachal Pradesh, India
| | - Ganesh Bushi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rachana Mehta
- Clinical Microbiology, RDC, Manav Rachna International Institute of Research and Studies, 121004, Faridabad, Haryana, India
| | - Zaid Khan
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospital, Saveetha University, Chennai, India
| | - Prakasini Satapathy
- University Center for Research and Development, Chandigarh University, Mohali, Punjab, India
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Hillah, Babil, 51001, Iraq
| | - Shilpa Gaidhane
- One Health Centre (COHERD), Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education, Wardha, India.
| | - Afukonyo Shidoiku Daniel
- Global Health and Infectious Diseases Control Institute, Nasarawa State University, Keffi, Nigeria.
| | - Renu Sah
- SR Sanjeevani Hospital, 56517, Kalyanpur, Siraha, Nepal.
- Department of Paediatrics, Hospital and Research Centre, Dr. D. Y. Patil Medical College, Dr. D. Y. Patil Vidyapeeth, 411018, Pune, Maharashtra, India.
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, 411018, Pune, Maharashtra, India.
| |
Collapse
|
3
|
Han S, Xue L, Chen C, Xie J, Kong F, Zhang F. Causal effect of vascular endothelial growth factor on the risk of atrial fibrillation: a two-sample Mendelian randomization study. Front Cardiovasc Med 2024; 11:1416412. [PMID: 39494233 PMCID: PMC11527688 DOI: 10.3389/fcvm.2024.1416412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
Background Observational studies have found that vascular endothelial growth factor (VEGF) levels are associated with the risk of cardiovascular disease. However, it remains unclear whether VEGF levels have a causal effect on the risk of atrial fibrillation. Methods A two-sample Mendelian randomization (MR) study was conducted to explore the causal relationship between VEGF levels and the risk of atrial fibrillation. Genetic variants associated with VEGF [VEGF-A, VEGF-C, VEGF-D, VEGF receptor-2 (VEGFR-2), VEGFR-3] and atrial fibrillation (atrial fibrillation, atrial fibrillation and flutter) were used as instrumental variables. Data on genetic variants were obtained from published genome-wide association studies (GWAS) or the IEU Open GWAS project. Inverse-variance weighted (IVW) analysis was used as the primary basis for the results, and sensitivity analyses were used to reduce bias. Causal relationships were expressed as odds ratio (OR) with 95% confidence interval (CI), and a P-value of <0.1 corrected for False Discovery Rate (FDR) (PFDR < 0.1) was considered to have a significant causal relationship. Results Genetically predicted high levels of VEGF-A [OR = 1.025 (95%CI: 1.004-1.047), PFDR = 0.060] and VEGF-D [OR = 1.080 (95%CI: 1.039-1.123), PFDR = 0.001]] were associated with an increased risk of atrial fibrillation, while no causal relationship was observed between VEGF-C (PFDR = 0.419), VEGFR-2 (PFDR = 0.784), and VEGFR-3 (PFDR = 0.899) and atrial fibrillation risk. Moreover, only genetically predicted high levels of VEGF-D [OR = 1.071 (95%CI: 1.014-1.132), PFDR = 0.087] increased the risk of atrial fibrillation and flutter. Sensitivity analysis demonstrated that the relationship between VEGF-D levels and the risk of atrial fibrillation was robust. Conclusion This study supports a causal association between high VEGF-D levels and increased risk of atrial fibrillation.
Collapse
Affiliation(s)
- Siliang Han
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Ling Xue
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chunhong Chen
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Junmin Xie
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Fanchang Kong
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Fang Zhang
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| |
Collapse
|
4
|
Bakhashab S, Barber R, O’Neill J, Arden C, Weaver JU. Overexpression of miR-199b-5p in Colony Forming Unit-Hill's Colonies Positively Mediates the Inflammatory Response in Subclinical Cardiovascular Disease Model: Metformin Therapy Attenuates Its Expression. Int J Mol Sci 2024; 25:8087. [PMID: 39125657 PMCID: PMC11311364 DOI: 10.3390/ijms25158087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Well-controlled type 1 diabetes (T1DM) is characterized by inflammation and endothelial dysfunction, thus constituting a suitable model of subclinical cardiovascular disease (CVD). miR-199b-5p overexpression in murine CVD has shown proatherosclerotic effects. We hypothesized that miR-199b-5p would be overexpressed in subclinical CVD yet downregulated following metformin therapy. Inflammatory and vascular markers were measured in 29 individuals with T1DM and 20 matched healthy controls (HCs). miR-199b-5p expression in CFU-Hill's colonies was analyzed from each study group, and correlations with inflammatory/vascular health indices were evaluated. Significant upregulation of miR-199b-5p was observed in T1DM, which was significantly downregulated by metformin. miR-199b-5p correlated positively with vascular endothelial growth factor-D and c-reactive protein (CRP: nonsignificant). ROC analysis determined miR-199b-5p to define subclinical CVD by discriminating between HCs and T1DM individuals. ROC analyses of HbA1c and CRP showed that the upregulation of miR-199b-5p in T1DM individuals defined subclinical CVD at HbA1c > 44.25 mmol and CRP > 4.35 × 106 pg/mL. Ingenuity pathway analysis predicted miR-199b-5p to inhibit the target genes SIRT1, ETS1, and JAG1. Metformin was predicted to downregulate miR-199b-5p via NFATC2 and STAT3 and reverse its downstream effects. This study validated the antiangiogenic properties of miR-199b-5p and substantiated miR-199b-5p overexpression as a biomarker of subclinical CVD. The downregulation of miR-199b-5p by metformin confirmed its cardio-protective effect.
Collapse
Affiliation(s)
- Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, P.O. Box 80218, Jeddah 21589, Saudi Arabia;
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK (J.O.)
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Rosie Barber
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK (J.O.)
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Josie O’Neill
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK (J.O.)
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Catherine Arden
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Jolanta U. Weaver
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK (J.O.)
- Department of Diabetes, Queen Elizabeth Hospital, Gateshead, Newcastle upon Tyne NE9 6SH, UK
- Vascular Biology and Medicine Theme, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
5
|
Chen G, Lin T, Wu M, Cai G, Wu C, Ding Q, Xu J, Chen H, Li W, Xu G, Lan Y. Causal Association of Cytokines and Growth Factors with Stroke and Its Subtypes: a Mendelian Randomization Study. Mol Neurobiol 2024; 61:3212-3222. [PMID: 37979035 DOI: 10.1007/s12035-023-03752-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
Cytokines and growth factors contribute to nerve growth and angiogenesis and are associated with the development of vascular disease. This Mendelian randomization (MR) study was designed to examine the causal relationship between factors associated with stem cell paracrine mechanisms and with stroke and its subtypes. We used pooled statistics on cytokine levels from three studies (INTERIAL, Olink Proseek CVD array, and KORA) encompassing 7795 participants in Europe. Data for stroke and its subtypes were pooled from these European populations (40,585 cases and 406,111 controls) in a multiprogenitor genome-wide association study (GWAS). MR was performed using established analytical methods, including inverse variance weighting (IVW), weighted median (WM), and MR-Egger. Genetically determined high IGF-1 levels were found to associate negatively with risk of stroke, ischemic stroke (large-artery atherosclerosis), and ischemic stroke (cardiogenic embolism). Meanwhile, high IL-13 levels had a positive causal relationship with ischemic stroke (large-artery atherosclerosis). An additional 27 cytokines were found to have a causal association with stroke or its subtypes. However, these results should be interpreted with caution given that the power efficacy was <80%. This MR study supports the concept of a causal relationship of 29 cytokines with stroke or its subtypes. Our genetic analysis provides new insights into stroke prevention and treatment by demonstrating an association of stem cell paracrine-related cytokines with stroke risk.
Collapse
Affiliation(s)
- Gengbin Chen
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, China
| | - Tuo Lin
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Manfeng Wu
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Guiyuan Cai
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Cheng Wu
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou, 510080, China
| | - Qian Ding
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou, 510080, China
| | - Jiayue Xu
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hongying Chen
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wanqi Li
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Guangqing Xu
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106 Zhongshan Road II, Guangzhou, 510080, China.
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
- Guangzhou Key Laboratory of Aging Frailty and Neurorehabilitation, Guangzhou, China.
| |
Collapse
|
6
|
Rong JC, Chen XD, Jin NK, Hong J. Exploring the causal association of rheumatoid arthritis with atrial fibrillation: a Mendelian randomization study. Clin Rheumatol 2024; 43:29-40. [PMID: 37930596 DOI: 10.1007/s10067-023-06804-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND It has been proved that rheumatoid arthritis (RA) patients have high incidence of atrial fibrillation (AF). Nevertheless, whether they have causal relevance is uncertain. This study aimed to explore and verify the authenticity of causal relationship between RA and AF using Mendelian randomization (MR). METHODS The genome-wide association study (GWAS) summary data from Biobank Japan Project (BBJ) (RA, 4199 cases and 208,254 controls) were regarded as exposure data and the GWAS data from European Bio-informatics Institute database (EBI) (AF, 15,979 cases and 102,776 controls) as outcome data. The causal effect was appraised by the inverse variance weighted (IVW) method, MR-Egger regression, and weighted median estimator. MR-robust adjusted profile score (MR-RAPS) method was delivered to examine the robustness of causal relationship and MR Pleiotropy Residual Sum and Outlier (MR-PRESSO) method to control horizontal (directional) pleiotropy. RESULTS The results indicated that RA increased the risk of AF (IVW, the odds ratio (OR) = 1.060; 95% confidence interval (CI), 1.028 to 1.092; p = 1.411 × 10-4; weighted median, OR = 1.046, 95% CI, 1.002 to 1.093, p = 0.047). The MR analysis also showed this causal effect through all four IVW methods with various statistical algorithms. Both MR-RAPS and MR-PRESSO supported the causality of RA and AF. Also, the MR-PRESSO result indicated the absence of apparent pleiotropy. CONCLUSION There is a causal association between RA and AF. RA patients are genetically more vulnerable to AF. This study may contribute to further exploring early clinical prevention and fundamental mechanism of AF in patients with RA. Key Points • We provided some genetic evidence for the causal link between rheumatoid arthritis (RA) and atrial fibrillation (AF) with multiple Mendelian randomization (MR) methods. • RA patients were genetically more vulnerable to AF. • This study partly shed light on latent fundamental mechanisms underlying RA-induced AF and inspired future studies on RA-AF relationship.
Collapse
Affiliation(s)
- Jia-Cheng Rong
- Cardiovascular Department, Ningbo Hangzhou Bay Hospital, Hangzhou Bay New Area, Ningbo, Zhejiang, China
| | - Xu-Dong Chen
- Cardiovascular Department, Ningbo Hangzhou Bay Hospital, Hangzhou Bay New Area, Ningbo, Zhejiang, China
| | - Na-Ke Jin
- Cardiovascular Department, Ningbo Hangzhou Bay Hospital, Hangzhou Bay New Area, Ningbo, Zhejiang, China
| | - Jun Hong
- Cardiovascular Department, Ningbo Hangzhou Bay Hospital, Hangzhou Bay New Area, Ningbo, Zhejiang, China.
- Cardiovascular Department, Ningbo Hospital of Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Dungan GD, Kantarcioglu B, Odeh A, Hoppensteadt D, Siddiqui F, Rohde L, Fareed J, Syed MA. Vascular Endothelial Dysfunction and Immunothrombosis in the Pathogenesis of Atrial Fibrillation. Clin Appl Thromb Hemost 2024; 30:10760296241296138. [PMID: 39654486 PMCID: PMC11629412 DOI: 10.1177/10760296241296138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 12/12/2024] Open
Abstract
Atrial Fibrillation (AF) induces proinflammatory processes which incite vascular endothelial activation and dysfunction. This study seeks to examine the potential relationship between various endothelial, inflammatory, thrombotic, and renin-angiotensin-system (RAS) biomarkers in AF patients.Blood samples were from AF patients (n = 110) prospectively enrolled in this study prior to their first AF ablation. Control plasma samples (n = 100) were used as reference. All samples were analyzed for endothelial (NO, ICAM-1, VEGF, TF, TFPI, TM, Annexin V), inflammatory (IL-6, TNFα, CRP), thrombotic (vWF, tPA, PAI-1, TAFI, D-dimer), and RAS (Renin, Ang-II) biomarkers using ELISA methods. Biomarker average comparisons and Spearman correlations were performed.AF patients showed varying levels of biomarker increase compared to controls. We observed a significant decrease of Ang-II in the AF population relative to controls when stratified for the use of angiotensin-converting enzyme inhibitor (ACEI) or angiotensin II receptor blocker (ARB) upon study enrollment. AF patients showed statistically significant correlations between the following biomarkers: TNFα vs IL-6 (rs = 0.317, p = .004), ICAM-1 vs TNFα (rs = 0.527, p = .012), Annexin V vs VEGF (rs = 0.620, p < .001), CRP vs VEGF (rs = 0.342, p = .031), Ang-II vs tPA (rs = -0.592, p = .010), and tPA vs PAI-1 (rs = 0.672, p < .001).Our study demonstrated significant elevation of endothelial, inflammatory, and thrombotic biomarkers in AF patients compared to controls, with significant correlations between these biomarkers in the AF population. Future investigations are required to better elucidate the mechanistic pathways that lead to endothelial dysfunction and thromboinflammation in AF. This may provide novel therapeutic targets, that in addition to current anticoagulation practices, can best curtail thrombogenicity in AF.
Collapse
Affiliation(s)
- Gabriel D. Dungan
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Bulent Kantarcioglu
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Ameer Odeh
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Debra Hoppensteadt
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Fakiha Siddiqui
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, IL, USA
- Program in Health Sciences, UCAM- Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Luke Rohde
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Jawed Fareed
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Mushabbar A. Syed
- Department of Medicine, Division of Cardiology, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
8
|
Davidsson P, Eketjäll S, Eriksson N, Walentinsson A, Becker RC, Cavallin A, Bogstedt A, Collén A, Held C, James S, Siegbahn A, Stewart R, Storey RF, White H, Wallentin L. Vascular endothelial growth factor-D plasma levels and VEGFD genetic variants are independently associated with outcomes in patients with cardiovascular disease. Cardiovasc Res 2023; 119:1596-1605. [PMID: 36869765 DOI: 10.1093/cvr/cvad039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 03/05/2023] Open
Abstract
AIMS The vascular endothelial growth factor (VEGF) family is involved in pathophysiological mechanisms underlying cardiovascular (CV) diseases. The aim of this study was to investigate the associations between circulating VEGF ligands and/or soluble receptors and CV outcome in patients with acute coronary syndrome (ACS) and chronic coronary syndrome (CCS). METHODS AND RESULTS Levels of VEGF biomarkers, including bFGF, Flt-1, KDR (VEGFR2), PlGF, Tie-2, VEGF-A, VEGF-C, and VEGF-D, were measured in the PLATO ACS cohort (n = 2091, discovery cohort). Subsequently, VEGF-D was also measured in the STABILITY CCS cohort (n = 4015, confirmation cohort) to verify associations with CV outcomes. Associations between plasma VEGF-D and outcomes were analysed by multiple Cox regression models with hazard ratios (HR [95% CI]) comparing the upper vs. the lower quartile of VEGF-D. Genome-wide association study (GWAS) of VEGF-D in PLATO identified SNPs that were used as genetic instruments in Mendelian randomization (MR) meta-analyses vs. clinical endpoints. GWAS and MR were performed in patients with ACS from PLATO (n = 10 013) and FRISC-II (n = 2952), and with CCS from the STABILITY trial (n = 10 786). VEGF-D, KDR, Flt-1, and PlGF showed significant association with CV outcomes. VEGF-D was most strongly associated with CV death (P = 3.73e-05, HR 1.892 [1.419, 2.522]). Genome-wide significant associations with VEGF-D levels were identified at the VEGFD locus on chromosome Xp22. MR analyses of the combined top ranked SNPs (GWAS P-values; rs192812042, P = 5.82e-20; rs234500, P = 1.97e-14) demonstrated a significant effect on CV mortality [P = 0.0257, HR 1.81 (1.07, 3.04) per increase of one unit in log VEGF-D]. CONCLUSION This is the first large-scale cohort study to demonstrate that both VEGF-D plasma levels and VEGFD genetic variants are independently associated with CV outcomes in patients with ACS and CCS. Measurements of VEGF-D levels and/or VEGFD genetic variants may provide incremental prognostic information in patients with ACS and CCS.
Collapse
Affiliation(s)
- Pia Davidsson
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Susanna Eketjäll
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Niclas Eriksson
- Uppsala Clinical Research Center, Uppsala University, Dag Hammarskjölds väg 38, 751 85 Uppsala, Sweden
| | - Anna Walentinsson
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Richard C Becker
- Division of Cardiovascular Health and Disease, Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 0542, Cincinnati, OH, 45267, USA
| | - Anders Cavallin
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Anna Bogstedt
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Anna Collén
- Projects, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Claes Held
- Uppsala Clinical Research Center, Uppsala University, Dag Hammarskjölds väg 38, 751 85 Uppsala, Sweden
- Department of Medical Sciences, Cardiology, Uppsala University, Akademiska Sjukhuset, 751 85 Uppsala, Sweden
| | - Stefan James
- Uppsala Clinical Research Center, Uppsala University, Dag Hammarskjölds väg 38, 751 85 Uppsala, Sweden
- Department of Medical Sciences, Cardiology, Uppsala University, Akademiska Sjukhuset, 751 85 Uppsala, Sweden
| | - Agneta Siegbahn
- Uppsala Clinical Research Center, Uppsala University, Dag Hammarskjölds väg 38, 751 85 Uppsala, Sweden
- Department of Medical Sciences, Cardiology, Uppsala University, Akademiska Sjukhuset, 751 85 Uppsala, Sweden
- Clinical Chemistry, Uppsala University, Akademiska Sjukhuset, 751 85 Uppsala, Sweden
| | - Ralph Stewart
- Green Lane Cardiovascular Service, Auckland City Hospital, 2 Park Road, Grafton, Auckland 1023, New Zealand
| | - Robert F Storey
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Harvey White
- Green Lane Cardiovascular Service, Auckland City Hospital, 2 Park Road, Grafton, Auckland 1023, New Zealand
| | - Lars Wallentin
- Uppsala Clinical Research Center, Uppsala University, Dag Hammarskjölds väg 38, 751 85 Uppsala, Sweden
- Department of Medical Sciences, Cardiology, Uppsala University, Akademiska Sjukhuset, 751 85 Uppsala, Sweden
| |
Collapse
|
9
|
Zhao Y, Che Y, Liu Q, Zhou S, Xiao Y. Analyses of m6A regulatory genes and subtype classification in atrial fibrillation. Front Cell Neurosci 2023; 17:1073538. [PMID: 37435047 PMCID: PMC10330950 DOI: 10.3389/fncel.2023.1073538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/08/2023] [Indexed: 07/13/2023] Open
Abstract
Objective To explore the role of m6A regulatory genes in atrial fibrillation (AF), we classified atrial fibrillation patients into subtypes by two genotyping methods associated with m6A regulatory genes and explored their clinical significance. Methods We downloaded datasets from the Gene Expression Omnibus (GEO) database. The m6A regulatory gene expression levels were extracted. We constructed and compared random forest (RF) and support vector machine (SVM) models. Feature genes were selected to develop a nomogram model with the superior model. We identified m6A subtypes based on significantly differentially expressed m6A regulatory genes and identified m6A gene subtypes based on m6A-related differentially expressed genes (DEGs). Comprehensive evaluation of the two m6A modification patterns was performed. Results The data of 107 samples from three datasets, GSE115574, GSE14975 and GSE41177, were acquired from the GEO database for training models, comprising 65 AF samples and 42 sinus rhythm (SR) samples. The data of 26 samples from dataset GSE79768 comprising 14 AF samples and 12 SR samples were acquired from the GEO database for external validation. The expression levels of 23 regulatory genes of m6A were extracted. There were correlations among the m6A readers, erasers, and writers. Five feature m6A regulatory genes, ZC3H13, YTHDF1, HNRNPA2B1, IGFBP2, and IGFBP3, were determined (p < 0.05) to establish a nomogram model that can predict the incidence of atrial fibrillation with the RF model. We identified two m6A subtypes based on the five significant m6A regulatory genes (p < 0.05). Cluster B had a lower immune infiltration of immature dendritic cells than cluster A (p < 0.05). On the basis of six m6A-related DEGs between m6A subtypes (p < 0.05), two m6A gene subtypes were identified. Both cluster A and gene cluster A scored higher than the other clusters in terms of m6A score computed by principal component analysis (PCA) algorithms (p < 0.05). The m6A subtypes and m6A gene subtypes were highly consistent. Conclusion The m6A regulatory genes play non-negligible roles in atrial fibrillation. A nomogram model developed by five feature m6A regulatory genes could be used to predict the incidence of atrial fibrillation. Two m6A modification patterns were identified and evaluated comprehensively, which may provide insights into the classification of atrial fibrillation patients and guide treatment.
Collapse
Affiliation(s)
- Yingliang Zhao
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yanyun Che
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Phowira J, Ahmed FW, Bakhashab S, Weaver JU. Upregulated miR-18a-5p in Colony Forming Unit-Hill’s in Subclinical Cardiovascular Disease and Metformin Therapy; MERIT Study. Biomedicines 2022; 10:biomedicines10092136. [PMID: 36140236 PMCID: PMC9496122 DOI: 10.3390/biomedicines10092136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Colony forming unit-Hill’s (CFU-Hill’s) colonies are hematopoietic-derived cells that participate in neovasculogenesis and serve as a biomarker for vascular health. In animals, overexpression of miR-18a-5p was shown to be pro-atherogenic. We had shown that well-controlled type 1 diabetes mellitus (T1DM) is characterized by an inflammatory state, endothelial dysfunction, and reduced number of CFU-Hill’s, a model of subclinical cardiovascular disease (CVD). MERIT study explored the role of miR-18a-5p expression in CFU-Hill’s colonies in T1DM, and the cardioprotective effect of metformin in subclinical CVD. In T1DM, miR-18a-5p was significantly upregulated whereas metformin reduced it to HC levels. MiR-18a-5p was inversely correlated with CFU-Hill’s colonies, CD34+, CD34+CD133+ cells, and positively with IL-10, C-reactive protein, vascular endothelial growth factor-D (VEGF-D), and thrombomodulin. The receiver operating characteristic curve demonstrated, miR-18a-5p as a biomarker of T1DM, and upregulated miR-18a-5p defining subclinical CVD at HbA1c of 44.5 mmol/mol (pre-diabetes). Ingenuity pathway analysis documented miR-18a-5p inhibiting mRNA expression of insulin-like growth factor-1, estrogen receptor-1, hypoxia-inducible factor-1α cellular communication network factor-2, and protein inhibitor of activated STAT 3, whilst metformin upregulated these mRNAs via transforming growth factor beta-1 and VEGF. We confirmed the pro-atherogenic effect of miR-18a-5p in subclinical CVD and identified several target genes for future CVD therapies.
Collapse
Affiliation(s)
- Jason Phowira
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Fahad W. Ahmed
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Diabetes, Queen Elizabeth Hospital, Gateshead, Newcastle upon Tyne NE9 6SH, UK
- Department of Medical Oncology, King Faisal Specialist Hospital and Research Centre, Madinah 42522, Saudi Arabia
| | - Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, P.O. Box 80218, Jeddah 21589, Saudi Arabia
| | - Jolanta U. Weaver
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Diabetes, Queen Elizabeth Hospital, Gateshead, Newcastle upon Tyne NE9 6SH, UK
- Vascular Biology and Medicine Theme, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Correspondence: ; Tel.: +44-191-445-2181
| |
Collapse
|
11
|
Nguyen TTU, Kim H, Chae YJ, Jung JH, Kim W. Serum VEGF-D level is correlated with renal dysfunction and proteinuria in patients with diabetic chronic kidney disease. Medicine (Baltimore) 2022; 101:e28804. [PMID: 35363168 PMCID: PMC9282107 DOI: 10.1097/md.0000000000028804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/23/2022] [Indexed: 01/04/2023] Open
Abstract
Biomarkers associated with chronic kidney disease (CKD) may play a crucial role in the early diagnosis of diabetic kidney disease. However, there have been few reports published on serum vascular endothelial cell growth factor (VEGF)-D in patients with diabetic CKD. We divided patients with diabetic CKD into two groups: CKD 3-4 and CKD 5. In total, 42 patients with diabetic kidney disease and seven healthy controls without diabetes mellitus were enrolled in this study. An observational study was conducted to evaluate the serum VEGF-D levels and other clinical parameters in each group and to assess the relationship among these factors. The serum levels of VEGF-D were higher in the CKD 3-4 group and CKD 5 group than in the control group. However, there was no significant difference in serum levels of VEGF-D between CKD stage 3-4 group and CKD stage 5 group. Correlation analysis showed that serum VEGF-D was negatively correlated with estimated glomerular filtration rate but positively correlated with serum creatinine, urine albumin-to-creatinine ratio, and urine protein-to-creatinine ratio. Serum VEGF-D was a good biomarker in receiver operating characteristic analysis and independently associated with CKD stages in multiple linear regression analysis. Circulating VEGF-D was positively correlated with blood growth/differentiation factor-15, endostatin, and chemokine (C-X-C motif) ligand 16 levels. Serum VEGF-D levels were correlated with renal dysfunction, albuminuria, and proteinuria in patients with diabetic kidney disease. Elucidation of the role of VEGF-D as a biomarker requires further study.
Collapse
Affiliation(s)
- Thi Thuy Uyen Nguyen
- Department of Histology, Embryology, Pathology and Forensic Medicine, Hue University of Medicine and Pharmacy, Hue University, Hue City, Viet Nam
| | - Hyeongwan Kim
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Yoon Jung Chae
- Department of Nursing, Kunjang University, Kunsan, Republic of Korea
| | - Jong Hwan Jung
- Division of Nephrology, Department of Internal Medicine, Wonkwang University School of Medicine and Hospital, Iksan, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| |
Collapse
|
12
|
The Role of the VEGF Family in Atherosclerosis Development and Its Potential as Treatment Targets. Int J Mol Sci 2022; 23:ijms23020931. [PMID: 35055117 PMCID: PMC8781560 DOI: 10.3390/ijms23020931] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
The vascular endothelial growth factor (VEGF) family, the crucial regulator of angiogenesis, lymphangiogenesis, lipid metabolism and inflammation, is involved in the development of atherosclerosis and further CVDs (cardiovascular diseases). This review discusses the general regulation and functions of VEGFs, their role in lipid metabolism and atherosclerosis development and progression. These functions present the great potential of applying the VEGF family as a target in the treatment of atherosclerosis and related CVDs. In addition, we discuss several modern anti-atherosclerosis VEGFs-targeted experimental procedures, drugs and natural compounds, which could significantly improve the efficiency of atherosclerosis and related CVDs' treatment.
Collapse
|
13
|
Qu Q, Sun JY, Zhang ZY, Su Y, Li SS, Li F, Wang RX. Hub microRNAs and genes in the development of atrial fibrillation identified by weighted gene co-expression network analysis. BMC Med Genomics 2021; 14:271. [PMID: 34781940 PMCID: PMC8591905 DOI: 10.1186/s12920-021-01124-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023] Open
Abstract
Co-expression network may contribute to better understanding molecular interaction patterns underlying cellular processes. To explore microRNAs (miRNAs) expression patterns correlated with AF, we performed weighted gene co-expression network analysis (WGCNA) based on the dataset GSE28954. Thereafter, we predicted target genes using experimentally verified databases (ENOCRI, miRTarBase, and Tarbase), and overlapped genes with differentially expressed genes (DEGs) from GSE79768 were identified as key genes. Integrated analysis of association between hub miRNAs and key genes was conducted to screen hub genes. In general, we identified 3 differentially expressed miRNAs (DEMs) and 320 DEGs, predominantly enriched in inflammation-related functional items. Two significant modules (red and blue) and hub miRNAs (hsa-miR-146b-5p and hsa-miR-378a-5p), which highly correlated with AF-related phenotype, were detected by WGCNA. By overlapping the DEGs and predicted target genes, 38 genes were screened out. Finally, 9 genes (i.e. ATP13A3, BMP2, CXCL1, GABPA, LIF, MAP3K8, NPY1R, S100A12, SLC16A2) located at the core region in the miRNA-gene interaction network were identified as hub genes. In conclusion, our study identified 2 hub miRNAs and 9 hub genes, which may improve the understanding of molecular mechanisms and help to reveal potential therapeutic targets against AF.
Collapse
Affiliation(s)
- Qiang Qu
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China.,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jin-Yu Sun
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China.,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhen-Ye Zhang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Yue Su
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China.,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shan-Shan Li
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Feng Li
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Ru-Xing Wang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
14
|
Kapoor A, Gaubert A, Marshall A, Meier IB, Yew B, Ho JK, Blanken AE, Dutt S, Sible IJ, Li Y, Jang JY, Brickman AM, Rodgers K, Nation DA. Increased Levels of Circulating Angiogenic Cells and Signaling Proteins in Older Adults With Cerebral Small Vessel Disease. Front Aging Neurosci 2021; 13:711784. [PMID: 34650423 PMCID: PMC8510558 DOI: 10.3389/fnagi.2021.711784] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Cerebral small vessel disease (SVD) is associated with increased risk of stroke and dementia. Progressive damage to the cerebral microvasculature may also trigger angiogenic processes to promote vessel repair. Elevated levels of circulating endothelial progenitor cells (EPCs) and pro-angiogenic signaling proteins are observed in response to vascular injury. We aimed to examine circulating levels of EPCs and proangiogenic proteins in older adults with evidence of SVD. Methods: Older adults (ages 55–90) free of dementia or stroke underwent venipuncture and brain magnetic resonance imaging (MRI). Flow cytometry quantified circulating EPCs as the number of cells in the lymphocyte gate positively expressing EPC surface markers (CD34+CD133+CD309+). Plasma was assayed for proangiogenic factors (VEGF-A, VEGF-C, VEGF-D, Tie-2, and Flt-1). Total SVD burden score was determined based on MRI markers, including white matter hyperintensities, cerebral microbleeds and lacunes. Results: Sixty-four older adults were included. Linear regression revealed that older adults with higher circulating EPC levels exhibited greater total SVD burden [β = 1.0 × 105, 95% CI (0.2, 1.9), p = 0.019], after accounting for age and sex. Similarly, a positive relationship between circulating VEGF-D and total SVD score was observed, controlling for age and sex [β = 0.001, 95% CI (0.000, 0.001), p = 0.048]. Conclusion: These findings suggest that elevated levels of circulating EPCs and VEGF-D correspond with greater cerebral SVD burden in older adults. Additional studies are warranted to determine whether activation of systemic angiogenic growth factors and EPCs represents an early attempt to rescue the vascular endothelium and repair damage in SVD.
Collapse
Affiliation(s)
- Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, Irvine, CA, United States
| | - Aimée Gaubert
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Anisa Marshall
- Department of Psychology, University of Southern California, Los Angeles, CA, United States
| | - Irene B Meier
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States.,Chione GmbH, Binz, Switzerland
| | - Belinda Yew
- Department of Psychology, University of Southern California, Los Angeles, CA, United States
| | - Jean K Ho
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Anna E Blanken
- Department of Psychology, University of Southern California, Los Angeles, CA, United States
| | - Shubir Dutt
- Department of Psychology, University of Southern California, Los Angeles, CA, United States
| | - Isabel J Sible
- Department of Psychology, University of Southern California, Los Angeles, CA, United States
| | - Yanrong Li
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Jung Yun Jang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Adam M Brickman
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Kathleen Rodgers
- Center for Innovation in Brain Science, Department of Pharmacology, The University of Arizona, Tucson, AZ, United States
| | - Daniel A Nation
- Department of Psychological Science, University of California, Irvine, Irvine, CA, United States.,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
15
|
Zhou Y, Zhu X, Cui H, Shi J, Yuan G, Shi S, Hu Y. The Role of the VEGF Family in Coronary Heart Disease. Front Cardiovasc Med 2021; 8:738325. [PMID: 34504884 PMCID: PMC8421775 DOI: 10.3389/fcvm.2021.738325] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 01/04/2023] Open
Abstract
The vascular endothelial growth factor (VEGF) family, the regulator of blood and lymphatic vessels, is mostly investigated in the tumor and ophthalmic field. However, the functions it enjoys can also interfere with the development of atherosclerosis (AS) and further diseases like coronary heart disease (CHD). The source, regulating mechanisms including upregulation and downregulation, target cells/tissues, and known functions about VEGF-A, VEGF-B, VEGF-C, and VEGF-D are covered in the review. VEGF-A can regulate angiogenesis, vascular permeability, and inflammation by binding with VEGFR-1 and VEGFR-2. VEGF-B can regulate angiogenesis, redox, and apoptosis by binding with VEGFR-1. VEGF-C can regulate inflammation, lymphangiogenesis, angiogenesis, apoptosis, and fibrogenesis by binding with VEGFR-2 and VEGFR-3. VEGF-D can regulate lymphangiogenesis, angiogenesis, fibrogenesis, and apoptosis by binding with VEGFR-2 and VEGFR-3. These functions present great potential of applying the VEGF family for treating CHD. For instance, angiogenesis can compensate for hypoxia and ischemia by growing novel blood vessels. Lymphangiogenesis can degrade inflammation by providing exits for accumulated inflammatory cytokines. Anti-apoptosis can protect myocardium from impairment after myocardial infarction (MI). Fibrogenesis can promote myocardial fibrosis after MI to benefit cardiac recovery. In addition, all these factors have been confirmed to keep a link with lipid metabolism, the research about which is still in the early stage and exact mechanisms are relatively obscure. Because few reviews have been published about the summarized role of the VEGF family for treating CHD, the aim of this review article is to present an overview of the available evidence supporting it and give hints for further research.
Collapse
Affiliation(s)
- Yan Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xueping Zhu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hanming Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Shi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guozhen Yuan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuai Shi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
von Moos S, Segerer S, Davenport A, Sadoune M, Gerritsen K, Pottecher J, Ruschitzka F, Mebazaa A, Arrigo M, Cippà PE. Vascular endothelial growth factor D is a biomarker of fluid overload in haemodialysis patients. Nephrol Dial Transplant 2021; 36:529-536. [PMID: 31923307 DOI: 10.1093/ndt/gfz281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/27/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Improved understanding and assessment of the complex physiology of volume regulation in haemodialysis (HD) patients are required to improve patient care and reduce mortality associated with fluid overload (FO). METHODS We searched for FO-related biomarkers among 184 peptides associated with cardiovascular disease in a cohort of 30 HD patients. First, we assessed the direct impact of HD on the peptides of interest by comparing plasma concentrations before and after treatment. Then, we compared cardiovascular peptide profiles between patients with and without FO as defined by bioimpedance analysis (BIA). The plasma concentration of selected candidate biomarkers for FO was determined by enzyme-linked immunosorbent assay (ELISA) and correlated with previously described FO-related clinical and laboratory parameters. For validation, results were confirmed in an independent cohort of 144 HD patients. RESULTS We found seven peptides positively [NT-proBNP, B-type natriuretic peptide (BNP), vascular endothelial growth factor D (VEGFD), tumour necrosis factor-related apoptosis-inducing ligand receptor 2, growth differentiation factor 15, tumour necrosis factor ligand superfamily member 13B, chitinase-3-like protein 1] and five negatively (leptin, renin, epidermal growth factor receptor, interleukin-1 receptor antagonist, myeloblastin) correlated to FO. In addition to natriuretic peptides, VEGFD emerged as third peptide highly correlated with BIA (ρ = 0.619, P < 0.0001). In line with this, VEGFD concentration verified by ELISA correlated with BIA, BNP and soluble CD146 but not with vascular endothelial growth factor C (VEGFC). Notably, levels of VEGFD were unrelated to cardiac systolic function (P = 0.63), contrary to BNP (P = 0.0003). Finally, we observed that 1-year all-cause mortality was higher in patients with high BNP (P = 0.0002), FO (defined by BIA, P = 0.04) and high VEGFD (P = 0.02), but not with high VEGFC (P = 0.48). CONCLUSION VEGFD is a novel FO-related biomarker with unique diagnostic and prognostic properties.
Collapse
Affiliation(s)
- Seraina von Moos
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Stephan Segerer
- Department of Nephrology, Kantonsspital Aarau, Aarau, Switzerland
| | - Andrew Davenport
- UCL Centre for Nephrology, Royal Free Hospital, University College London Medical School, London, UK
| | - Malha Sadoune
- INSERM UMR-S 942, MASCOT, Université de Paris, Paris, France
| | - Kerem Gerritsen
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Julien Pottecher
- Department of Anaesthesiology and Intensive Care, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, EA3072, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Frank Ruschitzka
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Alexandre Mebazaa
- INSERM UMR-S 942, MASCOT, Université de Paris, Paris, France.,Department of Anesthesiology and Critical Care Medicine, St Louis and Lariboisière University Hospitals, Paris, France
| | - Mattia Arrigo
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Pietro E Cippà
- Division of Nephrology, Regional Hospital of Lugano, Lugano, Switzerland
| |
Collapse
|
17
|
Serum concentration of matrix metalloproteinases and angiogenic factors in patients with venous leg ulcers. Postepy Dermatol Alergol 2021; 38:230-234. [PMID: 34408591 PMCID: PMC8362752 DOI: 10.5114/ada.2021.106201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/14/2019] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION Leg ulcers are a frequently observed medical problem affecting 3-5% of the general population over 65 years of age. The most common factor responsible for the development of leg ulcers is chronic venous insufficiency (CVI). It is believed that during the formation of an ulcer there are two processes occurring simultaneously, extracellular matrix (ECM) degradation and angiogenesis in which several proteins including matrix metalloproteinases, angiogenic and regulatory factors are engaged. AIM To determine the serum concentration of matrix metalloproteinase-1 (MMP-1), -9 (MMP-9), tissue inhibitors of metalloproteinases-1 (TIMP-1), angiogenin and vascular endothelial growth factor (VEGF) in patients suffering from venous leg ulcers and in the healthy control group. MATERIAL AND METHODS The study group consisted of 71 Caucasians (39 patients, 32 controls). To evaluate the serum concentration of MMP-1, MMP-9, TIMP-1, VEGF and angiogenin, the ELISA technique was used. RESULTS Mean MMP-1 and MMP-9 concentrations in the study group were 14.16 ±2.98 and 12.45 ±3.85 ng/ml, respectively, and in controls 6.08 ±2.51 ng/ml and 6.77 ±2.41 ng/ml, respectively and both differences were statistically significant (p < 0.001). There was no significant difference between the study and the control group in TIMP-1 concentration. Mean VEGF and ANG concentrations in the study group were 589.3 ±346.2 pg/ml and 1802.0 ±415.7 pg/ml, respectively, and in controls 220.3 ±110.4 pg/ml and 1229.0 ±337.7 pg/ml, respectively and both differences were statistically significant (p < 0.001). CONCLUSIONS Lack of significant differences in the concentration of TIMP-1 between the control and the study group confirms that proteolysis is a hallmark of CVI, but increased concentration of VEGF and angiogenin in the study group compared to the control group shows that angiogenesis occurs simultaneously with ECM remodelling.
Collapse
|
18
|
Disproportionate left atrial myopathy in heart failure with preserved ejection fraction among participants of the PROMIS-HFpEF study. Sci Rep 2021; 11:4885. [PMID: 33649383 PMCID: PMC7921666 DOI: 10.1038/s41598-021-84133-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/01/2021] [Indexed: 01/10/2023] Open
Abstract
Impaired left atrial (LA) function in heart failure with preserved ejection fraction (HFpEF) is associated with adverse outcomes. A subgroup of HFpEF may have LA myopathy out of proportion to left ventricular (LV) dysfunction; therefore, we sought to characterize HFpEF patients with disproportionate LA myopathy. In the prospective, multicenter, Prevalence of Microvascular Dysfunction in HFpEF study, we defined disproportionate LA myopathy based on degree of LA reservoir strain abnormality in relation to LV myopathy (LV global longitudinal strain [GLS]) by calculating the residuals from a linear regression of LA reservoir strain and LV GLS. We evaluated associations of disproportionate LA myopathy with hemodynamics and performed a plasma proteomic analysis to identify proteins associated with disproportionate LA myopathy; proteins were validated in an independent sample. Disproportionate LA myopathy correlated with better LV diastolic function but was associated with lower stroke volume reserve after passive leg raise independent of atrial fibrillation (AF). Additionally, disproportionate LA myopathy was associated with higher pulmonary artery systolic pressure, higher pulmonary vascular resistance, and lower coronary flow reserve. Of 248 proteins, we identified and validated 5 proteins (involved in cardiomyocyte stretch, extracellular matrix remodeling, and inflammation) that were associated with disproportionate LA myopathy independent of AF. In HFpEF, LA myopathy may exist out of proportion to LV myopathy. Disproportionate LA myopathy is a distinct HFpEF subtype associated with worse hemodynamics and a distinct proteomic signature, independent of AF.
Collapse
|
19
|
Babapoor-Farrokhran S, Gill D, Alzubi J, Mainigi SK. Atrial fibrillation: the role of hypoxia-inducible factor-1-regulated cytokines. Mol Cell Biochem 2021; 476:2283-2293. [PMID: 33575876 DOI: 10.1007/s11010-021-04082-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/25/2021] [Indexed: 11/25/2022]
Abstract
Atrial fibrillation (AF) is a common arrhythmia that has major morbidity and mortality. Hypoxia plays an important role in AF initiation and maintenance. Hypoxia-inducible factor (HIF), the master regulator of oxygen homeostasis in cells, plays a fundamental role in the regulation of multiple chemokines and cytokines that are involved in different physiological and pathophysiological pathways. HIF is also involved in the pathophysiology of AF induction and propagation mostly through structural remodeling such as fibrosis; however, some of the cytokines discussed have even been implicated in electrical remodeling of the atria. In this article, we highlight the association between HIF and some of its related cytokines with AF. Additionally, we provide an overview of the potential diagnostic benefits of using the mentioned cytokines as AF biomarkers. Research discussed in this review suggests that the expression of these cytokines may correlate with patients who are at an increased risk of developing AF. Furthermore, cytokines that are elevated in patients with AF can assist clinicians in the diagnosis of suspect paroxysmal AF patients. Interestingly, some of the cytokines have been elevated specifically when AF is associated with a hypercoagulable state, suggesting that they could be helpful in the clinician's and patient's decision to begin anticoagulation. Finally, more recent research has demonstrated the promise of targeting these cytokines for the treatment of AF. While still in its early stages, tools such as neutralizing antibodies have proved to be efficacious in targeting the HIF pathway and treating or preventing AF.
Collapse
Affiliation(s)
- Savalan Babapoor-Farrokhran
- Division of Cardiology, Department of Medicine, Einstein Medical Center, 5501 Old York Road, Philadelphia, PA, 19141, USA.
| | - Deanna Gill
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jafar Alzubi
- Division of Cardiology, Department of Medicine, Einstein Medical Center, 5501 Old York Road, Philadelphia, PA, 19141, USA
| | - Sumeet K Mainigi
- Division of Cardiology, Department of Medicine, Einstein Medical Center, 5501 Old York Road, Philadelphia, PA, 19141, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
20
|
Todd N, Lai YC. Current Understanding of Circulating Biomarkers in Pulmonary Hypertension Due to Left Heart Disease. Front Med (Lausanne) 2020; 7:570016. [PMID: 33117832 PMCID: PMC7575769 DOI: 10.3389/fmed.2020.570016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/31/2020] [Indexed: 01/19/2023] Open
Abstract
Pulmonary hypertension due to left heart disease (PH-LHD; Group 2), especially in the setting of heart failure with preserved ejection fraction (HFpEF), is the most frequent cause of PH. Despite its prevalence, no effective therapies for PH-LHD are available at present. This is largely due to the lack of a concise definition for hemodynamic phenotyping, existence of significant gaps in the understanding of the underlying pathology and the impact of associated comorbidities, as well as the absence of specific biomarkers that can aid in the early diagnosis and management of this challenging syndrome. Currently, B-type natriuretic peptide (BNP) and N-terminal proBNP (NT-proBNP) are guideline-recommended biomarkers for the diagnosis and prognosis of heart failure (HF) and PH. Endothelin-1 (ET-1), vascular endothelial growth factor-D (VEGF-D), and microRNA-206 have also been recently identified as new potential circulating biomarkers for patients with PH-LHD. In this review, we aim to present the current state of knowledge of circulating biomarkers that can be used to guide future research toward diagnosis, refine specific patient phenotype, and develop therapeutic approaches for PH-LHD, with a particular focus on PH-HFpEF. Potential circulating biomarkers identified in pre-clinical models of PH-LHD are also summarized here.
Collapse
Affiliation(s)
- Noah Todd
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yen-Chun Lai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
21
|
Wada H, Suzuki M, Matsuda M, Ajiro Y, Shinozaki T, Sakagami S, Yonezawa K, Shimizu M, Funada J, Takenaka T, Morita Y, Nakamura T, Fujimoto K, Matsubara H, Kato T, Unoki T, Takagi D, Wada K, Wada M, Iguchi M, Masunaga N, Ishii M, Yamakage H, Kusakabe T, Yasoda A, Shimatsu A, Kotani K, Satoh-Asahara N, Abe M, Akao M, Hasegawa K. Distinct Characteristics of VEGF-D and VEGF-C to Predict Mortality in Patients With Suspected or Known Coronary Artery Disease. J Am Heart Assoc 2020; 9:e015761. [PMID: 32319336 PMCID: PMC7428571 DOI: 10.1161/jaha.119.015761] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background VEGF‐D (vascular endothelial growth factor D) and VEGF‐C are secreted glycoproteins that can induce lymphangiogenesis and angiogenesis. They exhibit structural homology but have differential receptor binding and regulatory mechanisms. We recently demonstrated that the serum VEGF‐C level is inversely and independently associated with all‐cause mortality in patients with suspected or known coronary artery disease. We investigated whether VEGF‐D had distinct relationships with mortality and cardiovascular events in those patients. Methods and Results We performed a multicenter, prospective cohort study of 2418 patients with suspected or known coronary artery disease undergoing elective coronary angiography. The serum level of VEGF‐D was measured. The primary outcome was all‐cause death. The secondary outcomes were cardiovascular death and major adverse cardiovascular events defined as a composite of cardiovascular death, nonfatal myocardial infarction, and nonfatal stroke. During the 3‐year follow‐up, 254 patients died from any cause, 88 died from cardiovascular disease, and 165 developed major adverse cardiovascular events. After adjustment for possible clinical confounders, cardiovascular biomarkers (N‐terminal pro‐B‐type natriuretic peptide, cardiac troponin‐I, and high‐sensitivity C‐reactive protein), and VEGF‐C, the VEGF‐D level was significantly associated with all‐cause death and cardiovascular death but not with major adverse cardiovascular events.. Moreover, the addition of VEGF‐D, either alone or in combination with VEGF‐C, to the model with possible clinical confounders and cardiovascular biomarkers significantly improved the prediction of all‐cause death but not that of cardiovascular death or major adverse cardiovascular events. Consistent results were observed within patients over 75 years old. Conclusions In patients with suspected or known coronary artery disease undergoing elective coronary angiography, an elevated VEGF‐D value seems to independently predict all‐cause mortality.
Collapse
Affiliation(s)
- Hiromichi Wada
- Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Masahiro Suzuki
- Department of Clinical Research National Hospital Organization Saitama Hospital Wako Japan
| | - Morihiro Matsuda
- Institute for Clinical Research National Hospital Organization Kure Medical Center and Chugoku Cancer Center Kure Japan
| | - Yoichi Ajiro
- Division of Clinical Research National Hospital Organization Yokohama Medical Center Yokohama Japan
| | - Tsuyoshi Shinozaki
- Department of Cardiology National Hospital Organization Sendai Medical Center Sendai Japan
| | - Satoru Sakagami
- Department of Cardiovascular Medicine National Hospital Organization Kanazawa Medical Center Kanazawa Japan
| | - Kazuya Yonezawa
- Division of Clinical Research National Hospital Organization Hakodate National Hospital Hakodate Japan
| | - Masatoshi Shimizu
- Department of Cardiology National Hospital Organization Kobe Medical Center Kobe Japan
| | - Junichi Funada
- Department of Cardiology National Hospital Organization Ehime Medical Center Toon Japan
| | - Takashi Takenaka
- Division of Cardiology National Hospital Organization Hokkaido Medical Center Sapporo Japan
| | - Yukiko Morita
- Department of Cardiology National Hospital Organization Sagamihara National Hospital Sagamihara Japan
| | - Toshihiro Nakamura
- Department of Cardiology National Hospital Organization Kyushu Medical Center Fukuoka Japan
| | - Kazuteru Fujimoto
- Department of Cardiology National Hospital Organization Kumamoto Medical Center Kumamoto Japan
| | - Hiromi Matsubara
- Department of Cardiology National Hospital Organization Okayama Medical Center Okayama Japan
| | - Toru Kato
- Department of Clinical Research National Hospital Organization Tochigi Medical Center Utsunomiya Japan
| | - Takashi Unoki
- Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan.,Intensive Care Unit Saiseikai Kumamoto Hospital Kumamoto Japan
| | - Daisuke Takagi
- Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan.,Department of Acute Care and General Medicine Saiseikai Kumamoto Hospital Kumamoto Japan
| | - Kyohma Wada
- Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Miyaka Wada
- Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Moritake Iguchi
- Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan.,Department of Cardiology National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Nobutoyo Masunaga
- Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan.,Department of Cardiology National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Mitsuru Ishii
- Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan.,Department of Cardiology National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Hajime Yamakage
- Department of Endocrinology, Metabolism, and Hypertension Clinical Research Institute National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Toru Kusakabe
- Department of Endocrinology, Metabolism, and Hypertension Clinical Research Institute National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Akihiro Yasoda
- Clinical Research Institute National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Akira Shimatsu
- Clinical Research Institute National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Kazuhiko Kotani
- Division of Community and Family Medicine Jichi Medical University Shimotsuke Japan
| | - Noriko Satoh-Asahara
- Department of Endocrinology, Metabolism, and Hypertension Clinical Research Institute National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Mitsuru Abe
- Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan.,Department of Cardiology National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Masaharu Akao
- Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan.,Department of Cardiology National Hospital Organization Kyoto Medical Center Kyoto Japan
| | - Koji Hasegawa
- Division of Translational Research National Hospital Organization Kyoto Medical Center Kyoto Japan
| | | |
Collapse
|
22
|
Chung CC, Lin YK, Chen YC, Kao YH, Lee TI, Chen YJ. Vascular endothelial growth factor enhances profibrotic activities through modulation of calcium homeostasis in human atrial fibroblasts. J Transl Med 2020; 100:285-296. [PMID: 31748680 DOI: 10.1038/s41374-019-0341-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/14/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022] Open
Abstract
Vascular endothelial growth factor (VEGF), a pivotal activator of angiogenesis and calcium (Ca2+) signaling in endothelial cells, was shown to increase collagen production in atrial fibroblasts. In this study, we evaluated whether VEGF may regulate Ca2+ homeostasis in atrial fibroblasts and contribute to its profibrogenesis. Migration, and proliferation analyses, patch-clamp assay, Ca2+ fluorescence imaging, and western blotting were performed using VEGF-treated (300 pg/mL or 1000 pg/mL) human atrial fibroblasts with or without coadministration of Ethylene glycol tetra-acetic acid (EGTA, 1 mmol/L), or KN93 (a Ca2+/calmodulin-dependent protein kinase II [CaMKII] inhibitor, 10 μmol/L). VEGF (1000 pg/mL) increased migration, myofibroblast differentiation, pro-collagen type I, pro-collagen type III production, and phosphorylated VEGF receptor 1 expression of fibroblasts. VEGF (1000 pg/mL) increased the nonselective cation current (INSC) of transient receptor potential (TRP) channels and potassium current of intermediate-conductance Ca2+-activated K+ (KCa3.1) channels thereby upregulating Ca2+ entry. VEGF upregulated phosphorylated ERK expression. An ERK inhibitor (PD98059, 50 μmol/L) attenuated VEGF-activated INSC of TRP channels. The presence of EGTA attenuated the profibrotic effects of VEGF on pro-collagen type I, pro-collagen type III production, myofibroblast differentiation, and migratory capabilities of fibroblasts. VEGF upregulated the expression of phosphorylated CaMKII in fibroblasts, which was attenuated by EGTA. In addition, KN93 reduced VEGF-increased pro-collagen type I, pro-collagen type III production, myofibroblast differentiation, and the migratory capabilities of fibroblasts. In conclusion, we found that VEGF increases atrial fibroblast activity through CaMKII signaling by enhancing Ca2+ entry. Our findings provide benchside evidence leading to a potential novel strategy targeting atrial myopathy and arrhythmofibrosis.
Collapse
Affiliation(s)
- Cheng-Chih Chung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ting-I Lee
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
23
|
De Pascale MR, Della Mura N, Vacca M, Napoli C. Useful applications of growth factors for cardiovascular regenerative medicine. Growth Factors 2020; 38:35-63. [PMID: 33028111 DOI: 10.1080/08977194.2020.1825410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Novel advances for cardiovascular diseases (CVDs) include regenerative approaches for fibrosis, hypertrophy, and neoangiogenesis. Studies indicate that growth factor (GF) signaling could promote heart repair since most of the evidence is derived from preclinical models. Observational studies have evaluated GF serum/plasma levels as feasible biomarkers for risk stratification of CVDs. Noteworthy, two clinical interventional published studies showed that the administration of growth factors (GFs) induced beneficial effect on left ventricular ejection fraction (LVEF), myocardial perfusion, end-systolic volume index (ESVI). To date, large scale ongoing studies are in Phase I-II and mostly focussed on intramyocardial (IM), intracoronary (IC) or intravenous (IV) administration of vascular endothelial growth factor (VEGF) and fibroblast growth factor-23 (FGF-23) which result in the most investigated GFs in the last 10 years. Future data of ongoing randomized controlled studies will be crucial in understanding whether GF-based protocols could be in a concrete way effective in the clinical setting.
Collapse
Affiliation(s)
| | | | - Michele Vacca
- Division of Immunohematology and Transfusion Medicine, Cardarelli Hospital, Naples, Italy
| | - Claudio Napoli
- IRCCS Foundation SDN, Naples, Italy
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
24
|
Wang K, Liu Y, Huang S, Li H, Hou J, Huang J, Chen J, Feng K, Liang M, Chen G, Wu Z. Does an imbalance in circulating vascular endothelial growth factors (VEGFs) cause atrial fibrillation in patients with valvular heart disease? J Thorac Dis 2019; 11:5509-5516. [PMID: 32030270 DOI: 10.21037/jtd.2019.11.32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background The pathogenesis of atrial fibrillation (AF) remains unclear. Vascular endothelial growth factors (VEGFs) can stimulate fibrosis within the atrium and ventricle. We hypothesized that there is a relationship between the serum VEGFs/soluble vascular endothelial growth factor receptor (sVEGFRs) levels and AF in patients with valvular heart disease (VHD). This provides a new paradigm for studying AF. Methods The plasma levels of VEGF-A, VEGF-C, sVEGFR-1 and sVEGFR-2 were detected by enzyme-linked immunosorbent assay (ELISA). A total of 100 people, consisting of AF patients (long-standing, persistent AF; n=49), sinus rhythm (SR) patients (n=31) and healthy controls (n=20), were included in this study. Results The plasma levels of VEGF-A were significantly higher in AF patients compared to healthy control (P<0.05). The plasma levels of sVEGFR-1 were significantly higher in AF compared to SR (P<0.05). The plasma levels of sVEGFR-2 were significantly lower in AF patients compared to SR patients and healthy controls (both P<0.05). There was a significant and negative correlation between AF and the sVEGFR-2 levels in the groups (r=-0.432, P=0.000). Conclusions An imbalance in VEGFs and sVEGFRs may contribute to AF by breaking the balance of angiogenesis and lymphangiogenesis. Additionally, sVEGFR-2 may be an important biomarker of AF.
Collapse
Affiliation(s)
- Keke Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.,Department of Emergency, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yanyan Liu
- Department of Pathology, The First Affiliated Hospital of Traditional Medicine University, Guangzhou 510405, China
| | - Suiqing Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.,Key Laboratory of Assisted Circulation, Ministry of Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huayang Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jian Hou
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.,Key Laboratory of Assisted Circulation, Ministry of Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiaxing Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jiantao Chen
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Kangni Feng
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Mengya Liang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Guangxian Chen
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhongkai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.,Key Laboratory of Assisted Circulation, Ministry of Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
25
|
Wu DM, Zhou ZK, Fan SH, Zheng ZH, Wen X, Han XR, Wang S, Wang YJ, Zhang ZF, Shan Q, Li MQ, Hu B, Lu J, Chen GQ, Hong XW, Zheng YL. Comprehensive RNA-Seq Data Analysis Identifies Key mRNAs and lncRNAs in Atrial Fibrillation. Front Genet 2019; 10:908. [PMID: 31632440 PMCID: PMC6783610 DOI: 10.3389/fgene.2019.00908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/28/2019] [Indexed: 01/22/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are an emerging class of RNA species that may play a critical regulatory role in gene expression. However, the association between lncRNAs and atrial fibrillation (AF) is still not fully understood. In this study, we used RNA sequencing data to identify and quantify the both protein coding genes (PCGs) and lncRNAs. The high enrichment of these up-regulated genes in biological functions concerning response to virus and inflammatory response suggested that chronic viral infection may lead to activated inflammatory pathways, thereby alter the electrophysiology, structure, and autonomic remodeling of the atria. In contrast, the downregulated GO terms were related to the response to saccharides. To identify key lncRNAs involved in AF, we predicted lncRNAs regulating expression of the adjacent PCGs, and characterized biological function of the dysregulated lncRNAs. We found that two lncRNAs, ETF1P2, and AP001053.11, could interact with protein-coding genes (PCGs), which were implicated in AF. In conclusion, we identified key PCGs and lncRNAs, which may be implicated in AF, which not only improves our understanding of the roles of lncRNAs in AF, but also provides potentially functional lncRNAs for AF researchers.
Collapse
Affiliation(s)
- Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zheng-Kun Zhou
- College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Shao-Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zi-Hui Zheng
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xin-Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yong-Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Meng-Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| | - Gui-Quan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xiao-Wu Hong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
26
|
Citicoline affects serum angiostatin and neurospecific protein levels in patients with atrial fibrillation and ischemic stroke. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
27
|
Warnecke A, Prenzler NK, Schmitt H, Daemen K, Keil J, Dursin M, Lenarz T, Falk CS. Defining the Inflammatory Microenvironment in the Human Cochlea by Perilymph Analysis: Toward Liquid Biopsy of the Cochlea. Front Neurol 2019; 10:665. [PMID: 31293504 PMCID: PMC6603180 DOI: 10.3389/fneur.2019.00665] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
The molecular pathomechanisms in the majority of patients suffering from acute or progressive sensorineural hearing loss cannot be determined yet. The size and the complex architecture of the cochlea make biopsy and in-depth histological analyses impossible without severe damage of the organ. Thus, histopathology correlated to inner disease is only possible after death. The establishment of a technique for perilymph sampling during cochlear implantation may enable a liquid biopsy and characterization of the cochlear microenvironment. Inflammatory processes may not only participate in disease onset and progression in the inner ear, but may also control performance of the implant. However, little is known about cytokines and chemokines in the human inner ear as predictive markers for cochlear implant performance. First attempts to use multiplex protein arrays for inflammatory markers were successful for the identification of cytokines, chemokines, and endothelial markers present in the human perilymph. Moreover, unsupervised cluster and principal component analyses were used to group patients by lead cytokines and to correlate certain proteins to clinical data. Endothelial and epithelial factors were detected at higher concentrations than typical pro-inflammatory cytokines such as TNF-a or IL-6. Significant differences in VEGF family members have been observed comparing patients with deafness to patients with residual hearing with significantly reduced VEGF-D levels in patients with deafness. In addition, there is a trend toward higher IGFBP-1 levels in these patients. Hence, endothelial and epithelial factors in combination with cytokines may present robust biomarker candidates and will be investigated in future studies in more detail. Thus, multiplex protein arrays are feasible in very small perilymph samples allowing a qualitative and quantitative analysis of inflammatory markers. More results are required to advance this method for elucidating the development and course of specific inner ear diseases or for perioperative characterization of cochlear implant patients.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence of the German Research Foundation (DFG; "Deutsche Forschungsgemeinschaft") "Hearing4all", Oldenburg, Germany
| | - Nils K Prenzler
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Heike Schmitt
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence of the German Research Foundation (DFG; "Deutsche Forschungsgemeinschaft") "Hearing4all", Oldenburg, Germany
| | - Kerstin Daemen
- Hannover Medical School, Institute of Transplant Immunology, Hanover, Germany
| | - Jana Keil
- Hannover Medical School, Institute of Transplant Immunology, Hanover, Germany
| | - Martin Dursin
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence of the German Research Foundation (DFG; "Deutsche Forschungsgemeinschaft") "Hearing4all", Oldenburg, Germany
| | - Christine S Falk
- Hannover Medical School, Institute of Transplant Immunology, Hanover, Germany
| |
Collapse
|
28
|
Tirronen A, Hokkanen K, Vuorio T, Ylä-Herttuala S. Recent advances in novel therapies for lipid disorders. Hum Mol Genet 2019; 28:R49-R54. [DOI: 10.1093/hmg/ddz132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/02/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022] Open
Abstract
Abstract
The prevalence of lipid disorders is alarmingly increasing in the Western world. They are the result of either primary causes, such as unhealthy lifestyle choices or inherited risk factors, or secondary causes like other diseases or medication. Atypical changes in the synthesis, processing and catabolism of lipoprotein particles may lead to severe hypercholesterolemia, hypertriglyceridemia or elevated Lp(a). Although cholesterol-lowering drugs are the most prescribed medications, not all patients achieve guideline recommended cholesterol levels with the current treatment options, emphasising the need for new therapies. Also, some lipid disorders do not have any treatment options but rely only on stringent dietary restriction. Patients with untreated lipid disorders carry a severe risk of cardiovascular disease, diabetes, non-alcoholic fatty liver disease and pancreatitis among others. To achieve better treatment outcome, novel selective gene expression and epigenetic targeting therapies are constantly being developed. Therapeutic innovations employing targeted RNA technology utilise small interfering RNAs, antisense oligonucleotides, long non-coding RNAs and microRNAs to regulate target protein production whereas viral gene therapy provides functional therapeutic genes and CRISPR/Cas technology relies on gene editing and transcriptional regulation. In this review, we will discuss the latest advances in clinical trials for novel lipid-lowering therapies and potential new targets in pre-clinical phase.
Collapse
Affiliation(s)
- Annakaisa Tirronen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Krista Hokkanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Taina Vuorio
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital P.O. Box 1777, FIN-70211 Kuopio, Finland
| |
Collapse
|