1
|
Deora N, Venkatraman K. Potential use of plant-based therapeutics for the management of SARS-COV2 infection in diabetes mellitus – a review. J Herb Med 2024; 47:100923. [DOI: 10.1016/j.hermed.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Ayoub M, Tomanguillo J, Faris C, Anwar N, Chela H, Daglilar E. SARS-CoV-2 Infection Is an Independent Risk Factor for Decompensation in Cirrhosis Patients. Diseases 2024; 12:46. [PMID: 38534970 PMCID: PMC10968826 DOI: 10.3390/diseases12030046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND SARS-CoV-2 causes varied gastrointestinal symptoms. Cirrhosis patients face higher mortality rates from it, especially those with decompensated cirrhosis. This study examines SARS-CoV-2's impact on decompensation in previously compensated cirrhotic patients. METHODS We analyzed the Global Collaborative Network, comprising 98 healthcare organizations across sixteen countries, using TriNetX's deidentified research database. Compensated cirrhosis patients were split into two groups: one with SARS-CoV-2-positive patients and another testing negative. Using a 1:1 propensity score matching model based on baseline characteristics and comorbidities, we created comparable cohorts. We then assessed decompensation, mortality, and GI bleed at 1 and 3 months. RESULTS Out of 252,631 identified compensated cirrhosis patients, 27.3% (69,057) tested SARS-CoV-2-positive, while 72.6% (183,574) remained negative. Post PSM, 61,963 patients were in each group. SARS-CoV-2-positive patients showed significantly higher decompensation rates (4.4% vs. 1.9% at 1 month; 6% vs. 2.6% overall). Rates of complications, like ascites, SBP, HE, and HRS, increased notably. Mortality (2.5% vs. 1.7% at 1 month; 3.6% vs. 2.7% at 3 months) and GI bleed (1.3% vs. 0.9% at 1 month; 1.9% vs. 1.2% at 3 months) were also elevated in SARS-CoV-2 patients. CONCLUSIONS SARS-CoV-2 increases decompensation over 2-fold in compensated cirrhosis patients and raises mortality and increases rates of complications at 1 and 3 months.
Collapse
Affiliation(s)
- Mark Ayoub
- Department of Internal Medicine, Charleston Area Medical Center, West Virginia University, Charleston, WV 25304, USA;
| | - Julton Tomanguillo
- Department of Internal Medicine, Charleston Area Medical Center, West Virginia University, Charleston, WV 25304, USA;
| | - Carol Faris
- Department of General Surgery, Marshall University, Huntington, WV 25755, USA
| | - Nadeem Anwar
- Division of Gastroenterology and Hepatology, Charleston Area Medical Center, West Virginia University, Charleston, WV 25304, USA; (N.A.); (H.C.)
| | - Harleen Chela
- Division of Gastroenterology and Hepatology, Charleston Area Medical Center, West Virginia University, Charleston, WV 25304, USA; (N.A.); (H.C.)
| | - Ebubekir Daglilar
- Division of Gastroenterology and Hepatology, Charleston Area Medical Center, West Virginia University, Charleston, WV 25304, USA; (N.A.); (H.C.)
| |
Collapse
|
3
|
Wang Q, Qin Y, Ma J, Zhou K, Xia G, Li Y, Xie L, Afful RG, Lan Q, Huo X, Zou J, Yang H. An early warning indicator of mortality risk in patients with COVID-19: the neutrophil extracellular traps/neutrophilic segmented granulocyte ratio. Front Immunol 2024; 15:1287132. [PMID: 38348024 PMCID: PMC10859410 DOI: 10.3389/fimmu.2024.1287132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Background Neutrophil extracellular traps (NETs) play a key role in thrombus formation in patients with coronavirus disease 2019 (COVID-19). However, the existing detection and observation methods for NETs are limited in their ability to provide quantitative, convenient, and accurate descriptions of in situ NETs. Therefore, establishing a quantitative description of the relationship between NETs and thrombosis remains a challenge. Objective We employed morphological observations of blood cells and statistical analyses to investigate the correlation between the NETs/neutrophilic segmented granulocyte ratio and mortality risk in patients with COVID-19. Methods Peripheral blood samples were collected from 117 hospitalized patients with COVID-19 between November 2022 and February 2023, and various blood cell parameters were measured. Two types of smudge cells were observed in the blood and counted: lymphatic and neutral smudge cells. Statistical data analysis was used to establish COVID-19 mortality risk assessment indicators. Results Morphological observations of neutrophilic smudge cells revealed swelling, eruption, and NETs formation in the neutrophil nuclei. Subsequently, the NETs/neutrophilic segmented granulocyte ratio (NNSR) was calculated. A high concentration of NETs poses a fatal risk for thrombus formation in patients. Statistical analysis indicated that a high NNSR was more suitable for evaluating the risk of death in patients with COVID-19 compared to elevated fibrinogen (FIB) and D-dimer (DD) levels. Conclusion Observing blood cell morphology is an effective method for the detection of NETs, NNSR are important markers for revealing the mortality risk of patients with COVID-19.
Collapse
Affiliation(s)
- Qiong Wang
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Yu Qin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jingyun Ma
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Kehao Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guiping Xia
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Ya Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Li Xie
- School of Internet of Things Engineering, Jiangnan University, Wuxi, China
| | - Richmond Godwin Afful
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qian Lan
- School of Internet of Things Engineering, Jiangnan University, Wuxi, China
| | - Xingyu Huo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian Zou
- The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Hailin Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Klenk C, Erber J, Fresacher D, Röhrl S, Lengl M, Heim D, Irl H, Schlegel M, Haller B, Lahmer T, Diepold K, Rasch S, Hayden O. Platelet aggregates detected using quantitative phase imaging associate with COVID-19 severity. COMMUNICATIONS MEDICINE 2023; 3:161. [PMID: 37935793 PMCID: PMC10630365 DOI: 10.1038/s43856-023-00395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND The clinical spectrum of acute SARS-CoV-2 infection ranges from an asymptomatic to life-threatening disease. Considering the broad spectrum of severity, reliable biomarkers are required for early risk stratification and prediction of clinical outcomes. Despite numerous efforts, no COVID-19-specific biomarker has been established to guide further diagnostic or even therapeutic approaches, most likely due to insufficient validation, methodical complexity, or economic factors. COVID-19-associated coagulopathy is a hallmark of the disease and is mainly attributed to dysregulated immunothrombosis. This process describes an intricate interplay of platelets, innate immune cells, the coagulation cascade, and the vascular endothelium leading to both micro- and macrothrombotic complications. In this context, increased levels of immunothrombotic components, including platelet and platelet-leukocyte aggregates, have been described and linked to COVID-19 severity. METHODS Here, we describe a label-free quantitative phase imaging approach, allowing the identification of cell-aggregates and their components at single-cell resolution within 30 min, which prospectively qualifies the method as point-of-care (POC) testing. RESULTS We find a significant association between the severity of COVID-19 and the amount of platelet and platelet-leukocyte aggregates. Additionally, we observe a linkage between severity, aggregate composition, and size distribution of platelets in aggregates. CONCLUSIONS This study presents a POC-compatible method for rapid quantitative analysis of blood cell aggregates in patients with COVID-19.
Collapse
Affiliation(s)
- Christian Klenk
- Heinz-Nixdorf-Chair of Biomedical Electronics, School of Computation, Information and Technology, Technical University of Munich, TranslaTUM, 81675, Munich, Germany
| | - Johanna Erber
- TUM School of Medicine and Health, Department of Clinical Medicine - Clinical Department for Internal Medicine II, University Medical Centre, Technical University of Munich, 81675, Munich, Germany
| | - David Fresacher
- Heinz-Nixdorf-Chair of Biomedical Electronics, School of Computation, Information and Technology, Technical University of Munich, TranslaTUM, 81675, Munich, Germany
- Chair for Data Processing, School of Computation, Information and Technology, Technical University of Munich, 80333, Munich, Germany
| | - Stefan Röhrl
- Chair for Data Processing, School of Computation, Information and Technology, Technical University of Munich, 80333, Munich, Germany
| | - Manuel Lengl
- Chair for Data Processing, School of Computation, Information and Technology, Technical University of Munich, 80333, Munich, Germany
| | - Dominik Heim
- Heinz-Nixdorf-Chair of Biomedical Electronics, School of Computation, Information and Technology, Technical University of Munich, TranslaTUM, 81675, Munich, Germany
| | - Hedwig Irl
- TUM School of Medicine and Health, Department of Clinical Medicine - Clinical Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre, Technical University of Munich, 81675, Munich, Germany
| | - Martin Schlegel
- TUM School of Medicine and Health, Department of Clinical Medicine - Clinical Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre, Technical University of Munich, 81675, Munich, Germany
| | - Bernhard Haller
- TUM School of Medicine and Health, Department of Clinical Medicine - Institute of AI and Informatics in Medicine, University Medical Centre, Technical University of Munich, 81675, Munich, Germany
| | - Tobias Lahmer
- TUM School of Medicine and Health, Department of Clinical Medicine - Clinical Department for Internal Medicine II, University Medical Centre, Technical University of Munich, 81675, Munich, Germany
| | - Klaus Diepold
- Chair for Data Processing, School of Computation, Information and Technology, Technical University of Munich, 80333, Munich, Germany
| | - Sebastian Rasch
- TUM School of Medicine and Health, Department of Clinical Medicine - Clinical Department for Internal Medicine II, University Medical Centre, Technical University of Munich, 81675, Munich, Germany
| | - Oliver Hayden
- Heinz-Nixdorf-Chair of Biomedical Electronics, School of Computation, Information and Technology, Technical University of Munich, TranslaTUM, 81675, Munich, Germany.
| |
Collapse
|
5
|
Abenavoli L, Aquila I, Sacco MA, Scarlata GGM, Procopio AC, Boccuto L, Scarpellini E, Greco M, Foti DP, Ricci P, Luzza F. Liver Damage and Impaired Coagulation in COVID-19 Patients: A Case Series. Diseases 2023; 11:141. [PMID: 37873785 PMCID: PMC10594514 DOI: 10.3390/diseases11040141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has generated an unprecedented challenge for healthcare systems worldwide. Currently, the scientific community wonders if liver injury in patients suffering from severe forms is a direct consequence of the virus or secondary manifestations of systemic inflammation. The liver plays an essential role in the development of the inflammatory storm typical of this disease, and its involvement is associated with worse clinical outcomes and a higher risk of morbidity and mortality from Coronavirus disease 2019 (COVID-19). METHODS Ten patients suffering from severe COVID-19 disease who died between January 2020 and December 2021 were included in the present analysis. These subjects underwent a post mortem examination with a focused evaluation of the hepatic injury. Also, several laboratory parameters have been evaluated, with a primary focus on prothrombin time, partial thromboplastin time, fibrinogen, antithrombin III, and D-dimers to detect coagulative changes. RESULTS The main cause of death was represented by pulmonary thromboembolism events (50%). The analysis of coagulation laboratory parameters and liver biomarkers revealed a statistically significant rise in aPTT and ALP, and a decrease in albumin, when comparing the blood value at admission and death. We also found high levels of D-dimers in most of the subjects at the time of hospitalization. Interestingly, the post mortem analysis of the liver showed ample morphologic variability, with several disease features. In detail, the liver histology revealed the following: the presence of a variable degree of micro- and macrovacuolar steatosis, inflammation (also, hepato-cholangitis), and variable fibrosis. Of mention, we were also able to detect organized fibrinous material. CONCLUSIONS Our results indicate that in subjects with a severe form of COVID-19, liver disease is related to changes in coagulative and fibrinolytic pathways. In particular, we noted low fibrinogen levels and high D-dimer levels with histological liver findings. Our data suggest that fibrinogen and D-dimers may be used as prognostic markers to detect the severity of liver disease in patients with COVID-19. Finally, we underline the crucial role of coagulation balance in subjects with severe forms of COVID-19.
Collapse
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University “Magna Græcia”, Viale Europa, 88100 Catanzaro, Italy; (G.G.M.S.); (A.C.P.); (M.G.); (F.L.)
| | - Isabella Aquila
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy; (I.A.); (M.A.S.); (P.R.)
| | - Matteo Antonio Sacco
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy; (I.A.); (M.A.S.); (P.R.)
| | - Giuseppe Guido Maria Scarlata
- Department of Health Sciences, University “Magna Græcia”, Viale Europa, 88100 Catanzaro, Italy; (G.G.M.S.); (A.C.P.); (M.G.); (F.L.)
| | - Anna Caterina Procopio
- Department of Health Sciences, University “Magna Græcia”, Viale Europa, 88100 Catanzaro, Italy; (G.G.M.S.); (A.C.P.); (M.G.); (F.L.)
| | - Luigi Boccuto
- Healthcare Genetics and Genomics Doctoral Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC 29631, USA;
| | - Emidio Scarpellini
- Translationeel Onderzoek van Gastroenterologische Aandoeningen (T.A.R.G.I.D.), Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
| | - Marta Greco
- Department of Health Sciences, University “Magna Græcia”, Viale Europa, 88100 Catanzaro, Italy; (G.G.M.S.); (A.C.P.); (M.G.); (F.L.)
| | - Daniela Patrizia Foti
- Department of Experimental and Clinical Medicine, University “Magna Græcia”, Viale Europa, 88100 Catanzaro, Italy;
| | - Pietrantonio Ricci
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy; (I.A.); (M.A.S.); (P.R.)
| | - Francesco Luzza
- Department of Health Sciences, University “Magna Græcia”, Viale Europa, 88100 Catanzaro, Italy; (G.G.M.S.); (A.C.P.); (M.G.); (F.L.)
| |
Collapse
|
6
|
Cheng J, Zeng H, Chen H, Fan L, Xu C, Huang H, Tang T, Li M. Current knowledge of thrombocytopenia in sepsis and COVID-19. Front Immunol 2023; 14:1213510. [PMID: 37841241 PMCID: PMC10568455 DOI: 10.3389/fimmu.2023.1213510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Thrombocytopenia, characterized by a decrease in platelet count, is commonly observed in sepsis and COVID-19. In sepsis, thrombocytopenia can result from various mechanisms, including impaired platelet production in the bone marrow, accelerated platelet destruction due to increased inflammation, sequestration of platelets in the spleen, immune-mediated platelet destruction, or dysregulated host responses. Similarly, thrombocytopenia has been reported in COVID-19 patients, but the immune-related mechanisms underlying this association remain unclear. Notably, interventions targeting thrombocytopenia have shown potential for improving outcomes in both sepsis and COVID-19 patients. Understanding these mechanisms is crucial for developing effective treatments.
Collapse
Affiliation(s)
- Junjie Cheng
- Intensive Care Unit, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Hanhai Zeng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huaijun Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Linfeng Fan
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chaoran Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huaping Huang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tianchi Tang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Min Li
- Intensive Care Unit, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
7
|
Attia H, El Nagdy M, Abdel Halim RM. Preliminary Study of sCD14 and sCD163 as Predictors of Disease Severity and ICU Admission in COVID-19: Relation to Hematological Parameters, Blood Morphological Changes and Inflammatory Biomarkers. Mediterr J Hematol Infect Dis 2023; 15:e2023046. [PMID: 37705527 PMCID: PMC10497305 DOI: 10.4084/mjhid.2023.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/08/2023] [Indexed: 09/15/2023] Open
Abstract
Background and Objectives Research supports the role of monocyte/macrophage activation in COVID-19 immunopathology. This study aimed to evaluate sCD14 and sCD163 - the monocyte activation markers - and to investigate their relation to hematological parameters and blood morphology in COVID-19 infection. Methods This is a case-control study that included 70 COVID-19 patients. Patients were subdivided into two groups: 23 severely diseased ICU-admitted patients and another group of 47 non-ICU-admitted patients. sCD163 and sCD14 levels were determined using ELISA. Results sCD163 and sCD14 showed significantly higher levels in sera of patients compared to the control group, with significantly higher levels of sCD163 in ICU-admitted patients than non-ICU admitted patients. Receiver operating characteristic curve analysis demonstrated the usefulness of sCD163 with a cut-off value of 734 ng/mL as a potential marker to discriminate between ICU and non-ICU admitted COVID-19 patients (sensitivity of 81.16%; specificity of 96.67% and positive predictive value of 98% with area under the curve of 0.930). sCD163 levels showed a positive correlation with total white blood cells, absolute neutrophilic count, Neutrophil/Lymphocyte ratio, and a negative correlation with platelet count. sCD14 levels positively correlated with D-dimer values associated with a shift to the left and neutrophilic toxic granulations in blood morphology. Conclusion High sCD163 and sCD14 levels, hematological parameters, and blood morphology reflect monocyte activation in COVID-19 infection. sCD163 is a potential marker of disease severity. These findings support further study of therapeutics targeting macrophage activity in COVID-19 patients with high sCD163 levels.
Collapse
Affiliation(s)
- Hend Attia
- Clinical and Chemical Pathology-Haematology, School of Medicine, Newgiza University, Giza, Egypt
| | - Mona El Nagdy
- Clinical and Chemical Pathology, Kasr Alainy, Cairo University, Cairo, Egypt
| | - Radwa M Abdel Halim
- Clinical and Chemical Pathology, Kasr Alainy, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Abstract
Although thrombosis frequently occurs in infectious diseases, the coagulopathy associated with COVID-19 has unique characteristics. Compared with bacterial sepsis, COVID-19-associated coagulopathy presents with minimal changes in platelet counts, normal prothrombin times, and increased D-dimer and fibrinogen levels. These differences can be explained by the distinct pathophysiology of the thromboinflammatory responses. In sepsis-induced coagulopathy, leukocytes are primarily responsible for the coagulopathy by expressing tissue factor, releasing neutrophil extracellular traps, multiple procoagulant substances, and systemic endothelial injury that is often associated with vasoplegia and shock. In COVID-19-associated coagulopathy, platelet activation is a major driver of inflammation/thrombogenesis and von Willebrand factor and platelet factor 4 are deeply involved in the pathogenesis. Although the initial responses are localized to the lung, they can spread systemically if the disease is severe. Since the platelets play major roles, arterial thrombosis is not uncommon in COVID-19. Despite platelet activation, platelet count is usually normal at presentation, but sensitive biomarkers including von Willebrand factor activity, soluble P-selectin, and soluble C-type lectin-like receptor-2 are elevated, and they increase as the disease progresses. Although the role of antiplatelet therapy is still unproven, current studies are ongoing to determine its potential effects.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideo Wada
- Department of General Medicine, Mie Prefectural General Medical Center, Mie, Japan
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
9
|
Goudswaard LJ, Williams CM, Khalil J, Burley KL, Hamilton F, Arnold D, Milne A, Lewis PA, Heesom KJ, Mundell SJ, Davidson AD, Poole AW, Hers I. Alterations in platelet proteome signature and impaired platelet integrin α IIbβ 3 activation in patients with COVID-19. J Thromb Haemost 2023; 21:1307-1321. [PMID: 36716966 PMCID: PMC9883069 DOI: 10.1016/j.jtha.2023.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Patients with COVID-19 are at increased risk of thrombosis, which is associated with altered platelet function and coagulopathy, contributing to excess mortality. OBJECTIVES To characterize the mechanism of altered platelet function in COVID-19 patients. METHODS The platelet proteome, platelet functional responses, and platelet-neutrophil aggregates were compared between patients hospitalized with COVID-19 and healthy control subjects using tandem mass tag proteomic analysis, Western blotting, and flow cytometry. RESULTS COVID-19 patients showed a different profile of platelet protein expression (858 altered of the 5773 quantified). Levels of COVID-19 plasma markers were enhanced in the platelets of COVID-19 patients. Gene ontology pathway analysis demonstrated that the levels of granule secretory proteins were raised, whereas those of platelet activation proteins, such as the thrombopoietin receptor and protein kinase Cα, were lowered. Basally, platelets of COVID-19 patients showed enhanced phosphatidylserine exposure, with unaltered integrin αIIbβ3 activation and P-selectin expression. Agonist-stimulated integrin αIIbβ3 activation and phosphatidylserine exposure, but not P-selectin expression, were decreased in COVID-19 patients. COVID-19 patients had high levels of platelet-neutrophil aggregates, even under basal conditions, compared to controls. This association was disrupted by blocking P-selectin, demonstrating that platelet P-selectin is critical for the interaction. CONCLUSIONS Overall, our data suggest the presence of 2 platelet populations in patients with COVID-19: one of circulating platelets with an altered proteome and reduced functional responses and another of P-selectin-expressing neutrophil-associated platelets. Platelet-driven thromboinflammation may therefore be one of the key factors enhancing the risk of thrombosis in COVID-19 patients.
Collapse
Affiliation(s)
- Lucy J Goudswaard
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK; Population Health Sciences, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK. https://twitter.com/lucygoudswaard
| | - Christopher M Williams
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Jawad Khalil
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Kate L Burley
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Fergus Hamilton
- Population Health Sciences, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK; Department of Infection Sciences, North Bristol NHS Trust, Bristol, BS10 5NB, UK
| | - David Arnold
- Academic Respiratory Unit, North Bristol NHS Trust, Bristol, BS10 5NB, UK
| | - Alice Milne
- Academic Respiratory Unit, North Bristol NHS Trust, Bristol, BS10 5NB, UK
| | - Phil A Lewis
- Proteomics Facility, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Kate J Heesom
- Proteomics Facility, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Stuart J Mundell
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Andrew D Davidson
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Alastair W Poole
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
10
|
Zhao SW, Li YM, Li YL, Su C. Liver injury in COVID-19: Clinical features, potential mechanisms, risk factors and clinical treatments. World J Gastroenterol 2023; 29:241-256. [PMID: 36687127 PMCID: PMC9846943 DOI: 10.3748/wjg.v29.i2.241] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/11/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been a serious threat to global health for nearly 3 years. In addition to pulmonary complications, liver injury is not uncommon in patients with novel COVID-19. Although the prevalence of liver injury varies widely among COVID-19 patients, its incidence is significantly increased in severe cases. Hence, there is an urgent need to understand liver injury caused by COVID-19. Clinical features of liver injury include detectable liver function abnormalities and liver imaging changes. Liver function tests, computed tomography scans, and ultrasound can help evaluate liver injury. Risk factors for liver injury in patients with COVID-19 include male sex, preexisting liver disease including liver transplantation and chronic liver disease, diabetes, obesity, and hypertension. To date, the mechanism of COVID-19-related liver injury is not fully understood. Its pathophysiological basis can generally be explained by systemic inflammatory response, hypoxic damage, ischemia-reperfusion injury, and drug side effects. In this review, we systematically summarize the existing literature on liver injury caused by COVID-19, including clinical features, underlying mechanisms, and potential risk factors. Finally, we discuss clinical management and provide recommendations for the care of patients with liver injury.
Collapse
Affiliation(s)
- Shu-Wu Zhao
- Department of Anesthesiology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha 410013, Hunan Province, China
| | - Yi-Ming Li
- School of Basic Medical Science, Naval Medical University/Second Military University, Shanghai 200433, China
| | - Yi-Lin Li
- Department of Pathology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha 410013, Hunan Province, China
| | - Chen Su
- Department of Anesthesiology and Pain, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha 410013, Hunan Province, China
| |
Collapse
|
11
|
Shen L, Chen L, Chi H, Luo L, Ruan J, Zhao X, Jiang Y, Tung TH, Zhu H, Zhou K, Shen B, Xu J. Parameters and Morphological Changes of Erythrocytes and Platelets of COVID-19 Subjects: A Longitudinal Cohort Study. Infect Drug Resist 2023; 16:1657-1668. [PMID: 36992967 PMCID: PMC10041993 DOI: 10.2147/idr.s400735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/25/2023] [Indexed: 03/31/2023] Open
Abstract
Purpose Information about dynamic changes occurring in the parameters and morphology of erythrocytes and platelets during the coronavirus disease 2019 (COVID-19) infection and convalescence is scarce. To explore potential associations between dynamic erythrocyte and platelet parameters, morphological changes, and the course or severity of the disease is essential. Patients and Methods From January 17th, 2020, to February 20th, 2022, we followed up on 35 patients with non-severe and 11 patients with severe COVID-19 following their discharge. We collected clinical features, dynamic complete blood count (CBC), and peripheral blood smears (PBS) and analyzed parameter and morphological changes of erythrocytes and platelets depending on the course or severity of the disease. The course of the disease included four periods, namely onset (T1), discharge (T2), 1-year follow-up (T3), and 2-year follow-up (T4). Results Red blood cell (RBC) counts and hemoglobin were the lowest in T2, followed by T1, and lower in T1 and T2 than in T3 and T4. Inversely, the red blood cell distribution width (RDW) was the highest in T2, followed by T1, and higher than in T3 and T4. Compared to non-severe patients, the platelet of severe patients was lower in T1 and T2. In contrast, the mean platelet volume (MPV) and platelet distribution width (PDW) tended to be higher in severe patients. Similarly, anisocytosis was more common in peripheral blood smears at early stages and in severe patients. Finally, large platelets were more common in severe patients. Conclusion Anisocytosis of erythrocytes and large platelets are found in patients with severe COVID-19, these changes may help primary hospitals to identify patients with a high risk of severe COVID-19 at an early stage.
Collapse
Affiliation(s)
- Liping Shen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, People’s Republic of China
| | - Linping Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, People’s Republic of China
| | - Hongbo Chi
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, People’s Republic of China
| | - Lifei Luo
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, People’s Republic of China
| | - Jinsu Ruan
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, People’s Republic of China
| | - Xinzhuan Zhao
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, People’s Republic of China
| | - Yi Jiang
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, People’s Republic of China
| | - Tao-Hsin Tung
- Evidence-Based Medicine Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, People’s Republic of China
| | - Hongguo Zhu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, People’s Republic of China
| | - Kai Zhou
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, People’s Republic of China
| | - Bo Shen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, People’s Republic of China
| | - Jiaqin Xu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, People’s Republic of China
- Correspondence: Jiaqin Xu; Bo Shen, Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, People’s Republic of China, Tel +86-13968607148; +86 13586121278, Email ;
| |
Collapse
|
12
|
Shanmukham B, Srivijayan A, Venugopal S, Ravikoti S, Kaliappan A, Gaur A, Geetha J, Sakthivadivel V, Balan Y, Sundaramurthy R. Clinical and Inflammatory Profile of COVID-19 Infection at a Tertiary Care Centre in Northern Part of Tamil Nadu – A Retrospective Study. Cureus 2022; 14:e30139. [PMID: 36381779 PMCID: PMC9645526 DOI: 10.7759/cureus.30139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction The coronavirus disease (COVID-19) pandemic has incurred high costs for the entire planet. The complex interactions between the host, virus, and environment have resulted in various clinical outcomes. It is crucial to comprehend sickness severity and outcome predictors to provide early preventative measures for a better outcome. The current study aimed to determine the association of clinical and inflammatory profiles with the outcome of COVID-19 infection in patients admitted to the intensive care unit. Methods This retrospective study was done in patients admitted to intensive care units for COVID-19 with a positive reverse transcriptase polymerase chain reaction (RTPCR) assay. A total of 125 patients above 18 years were included in the study. The patient’s age, gender, and co-morbidities like type 2 diabetes mellitus, hypertension, respiratory illness, and coronary artery disease were noted. The patient’s symptomatology, vital signs, oxygen saturation (Spo2), need for inotropes, and non-invasive positive pressure ventilator support (NIPPV) were observed. Computed tomography severity score (CTSS) and hematological and inflammatory parameters at the time of admission were noticed. Patient’s management and treatment outcomes as survivors and non-survivors were noted. Results The mean age was significantly greater in non-survivors. The common symptoms were fever, respiratory distress, cough, muscle pain, and sore throat. The leucocyte count, C-reactive protein (CRP), urea, creatinine, interleukin-6 (IL-6), and lactate dehydrogenase (LDH) were greater, and platelet counts were lower significantly in the non-survivors group. On multivariable logistic regression, CT severity score, NIPPV, and IL-6 had an odds ratio of 1.17, 0.052, and 1.03, respectively. IL-6 had a sensitivity of 81.5% and a specificity of 81.8% with a cut-off value of 37.5. Conclusion Vigilant monitoring of leucocyte count, CRP, urea, creatinine, IL-6, LDH, platelet count, and CT severity score is essential for managing COVID-19 infection. IL-6 was found to be a significant marker as a predictor of outcome in our study.
Collapse
|
13
|
Ghorban Movahed M, Abdi Ali A, Ghazanfari T, Modaresi M. Cytokine patterns in cystic fibrosis patients with different microbial infections in oropharyngeal samples. Cytokine 2022; 160:156038. [PMID: 36150317 DOI: 10.1016/j.cyto.2022.156038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cytokines play a crucial role in the immune system's regulation by mediating protective responses to infections. anti-inflammatory and pro-inflammatory cytokines are in equilibrium. Therefore, any alteration in cytokine production or cytokine receptor expression might result in pathological illnesses and health issues. Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane regulator (CFTR) gene. Lung infection in these patients is related to chronic bacterial airway infection and inflammation, which is triggered by some inflammatory cytokines. Our goal was to compare the cytokine patterns in CF patient's serum and PBMCs caused by microbial pathogens that colonized their airways to controls. METHODS ELISA and Real-time PCR were used to determine the levels of IL-10, IFN-γ, IL-4, TGF-β, IL-8, and IL-17 in serum and PBMC cells. Blood parameters in both patients and healthy people were studied. RESULTS An increase in IL-10, IFN-γ, IL-4 (p-v = 0.03, 0.024 and 0.003) levels and a decrease in IL-17 (p-v = 0.004) was found in Pseudomonas aeruginosa positive patients. There were no different in TGF-β and IL-8 (p-value = 0.778 and 0.903) in this patients. IL-10, IFN-γ, and IL-4 (p-value = 0.023, 0.001 and 0.002) levels were high in Staphylococcus aureus positive patients and TGF-β, IL-17, and IL-8 (p-value = 0.085, 0.167 and 0.362) were not significantly different in the patient and control groups. IFN-γ and IL-4 levels were higher in patients without infection who had normal microbiota (p-v = 0.002 and 0.024). In patients with P. aeruginosa, WBC and platelets increased, and MCH and MCV decreased. Patients with normal microbiota had less MCV. CONCLUSION According to our research, patients with P. aeruginosa, S. aureus, and normal microbiota are exposed to cytokine alterations and changes in blood factors. The link between the CF patient's airway microbiota and the kind of generated cytokines might lead to the modulation of inflammatory cytokines alone or in combination with antibiotics, reducing disease-causing effects while avoiding drug resistance.
Collapse
Affiliation(s)
- Mahtab Ghorban Movahed
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Ahya Abdi Ali
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran.
| | - Mohammadreza Modaresi
- Pdiatric Pulmonary Disease and Sleep Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Moraes ECDS, Martins-Gonçalves R, da Silva LR, Mandacaru SC, Melo RM, Azevedo-Quintanilha I, Perales J, Bozza FA, Souza TML, Castro-Faria-Neto HC, Hottz ED, Bozza PT, Trugilho MRO. Proteomic Profile of Procoagulant Extracellular Vesicles Reflects Complement System Activation and Platelet Hyperreactivity of Patients with Severe COVID-19. Front Cell Infect Microbiol 2022; 12:926352. [PMID: 35937696 PMCID: PMC9354812 DOI: 10.3389/fcimb.2022.926352] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/20/2022] [Indexed: 01/08/2023] Open
Abstract
Background Extracellular vesicles (EVs) are a valuable source of biomarkers and display the pathophysiological status of various diseases. In COVID-19, EVs have been explored in several studies for their ability to reflect molecular changes caused by SARS-CoV-2. Here we provide insights into the roles of EVs in pathological processes associated with the progression and severity of COVID-19. Methods In this study, we used a label-free shotgun proteomic approach to identify and quantify alterations in EV protein abundance in severe COVID-19 patients. We isolated plasma extracellular vesicles from healthy donors and patients with severe COVID-19 by size exclusion chromatography (SEC). Then, flow cytometry was performed to assess the origin of EVs and to investigate the presence of circulating procoagulant EVs in COVID-19 patients. A total protein extraction was performed, and samples were analyzed by nLC-MS/MS in a Q-Exactive HF-X. Finally, computational analysis was applied to signify biological processes related to disease pathogenesis. Results We report significant changes in the proteome of EVs from patients with severe COVID-19. Flow cytometry experiments indicated an increase in total circulating EVs and with tissue factor (TF) dependent procoagulant activity. Differentially expressed proteins in the disease groups were associated with complement and coagulation cascades, platelet degranulation, and acute inflammatory response. Conclusions The proteomic data reinforce the changes in the proteome of extracellular vesicles from patients infected with SARS-CoV-2 and suggest a role for EVs in severe COVID-19.
Collapse
Affiliation(s)
- Emilly Caroline dos Santos Moraes
- Laboratory of Toxinology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Remy Martins-Gonçalves
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Luana Rocha da Silva
- Laboratory of Toxinology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Samuel Coelho Mandacaru
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Reynaldo Magalhães Melo
- Laboratory Protein Chemistry and Biochemistry and Laboratory of Gene Biology, Department of Cell Biology, University of Brasília, Brasília, Brazil
| | | | - Jonas Perales
- Laboratory of Toxinology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Fernando A. Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- D’Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Thiago Moreno Lopes Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Eugenio D. Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Patricia T. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Monique R. O. Trugilho
- Laboratory of Toxinology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Marchi G, Bozzini C, Bertolone L, Dima F, Busti F, Castagna A, Stranieri C, Fratta Pasini AM, Friso S, Lippi G, Girelli D, Vianello A. Red Blood Cell Morphologic Abnormalities in Patients Hospitalized for COVID-19. Front Physiol 2022; 13:932013. [PMID: 35860651 PMCID: PMC9289213 DOI: 10.3389/fphys.2022.932013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/14/2022] [Indexed: 12/16/2022] Open
Abstract
Peripheral blood smear is a simple laboratory tool, which remains of invaluable help for diagnosing primary and secondary abnormalities of blood cells despite advances in automated and molecular techniques. Red blood cells (RBCs) abnormalities are known to occur in many viral infections, typically in the form of mild normo-microcytic anemia. While several hematological alterations at automated complete blood count (including neutrophilia, lymphopenia, and increased red cell distribution width—RDW) have been consistently associated with severity of COVID-19, there is scarce information on RBCs morphological abnormalities, mainly as case-reports or small series of patients, which are hardly comparable due to heterogeneity in sampling times and definition of illness severity. We report here a systematic evaluation of RBCs morphology at peripheral blood smear in COVID-19 patients within the first 72 h from hospital admission. One hundred and fifteen patients were included, with detailed collection of other clinical variables and follow-up. A certain degree of abnormalities in RBCs morphology was observed in 75 (65%) patients. Heterogenous alterations were noted, with spiculated cells being the more frequent morphology. The group with >10% RBCs abnormalities had more consistent lymphopenia and thrombocytopenia compared to those without abnormalities or <10% RBCs abnormalities (p < 0.018, and p < 0.021, respectively), thus underpinning a possible association with an overall more sustained immune-inflammatory “stress” hematopoiesis. Follow-up analysis showed a different mortality rate across groups, with the highest rate in those with more frequent RBCs morphological alterations compared to those with <10% or no abnormalities (41.9%, vs. 20.5%, vs. 12.5%, respectively, p = 0.012). Despite the inherent limitations of such simple association, our results point out towards further studies on erythropoiesis alterations in the pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Giacomo Marchi
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center for Rare Hematological Disorders, University of Verona, Verona, Italy
| | - Claudia Bozzini
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center for Rare Hematological Disorders, University of Verona, Verona, Italy
| | - Lorenzo Bertolone
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center for Rare Hematological Disorders, University of Verona, Verona, Italy
| | - Francesco Dima
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Fabiana Busti
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center for Rare Hematological Disorders, University of Verona, Verona, Italy
| | - Annalisa Castagna
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center for Rare Hematological Disorders, University of Verona, Verona, Italy
| | - Chiara Stranieri
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center for Rare Hematological Disorders, University of Verona, Verona, Italy
| | | | - Simonetta Friso
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Domenico Girelli
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center for Rare Hematological Disorders, University of Verona, Verona, Italy
| | - Alice Vianello
- Section of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center for Rare Hematological Disorders, University of Verona, Verona, Italy
- *Correspondence: Alice Vianello, , orcid.org/0000-0002-2428-4760
| |
Collapse
|
16
|
Gorog DA, Storey RF, Gurbel PA, Tantry US, Berger JS, Chan MY, Duerschmied D, Smyth SS, Parker WAE, Ajjan RA, Vilahur G, Badimon L, Berg JMT, Cate HT, Peyvandi F, Wang TT, Becker RC. Current and novel biomarkers of thrombotic risk in COVID-19: a Consensus Statement from the International COVID-19 Thrombosis Biomarkers Colloquium. Nat Rev Cardiol 2022; 19:475-495. [PMID: 35027697 PMCID: PMC8757397 DOI: 10.1038/s41569-021-00665-7] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) predisposes patients to thrombotic and thromboembolic events, owing to excessive inflammation, endothelial cell activation and injury, platelet activation and hypercoagulability. Patients with COVID-19 have a prothrombotic or thrombophilic state, with elevations in the levels of several biomarkers of thrombosis, which are associated with disease severity and prognosis. Although some biomarkers of COVID-19-associated coagulopathy, including high levels of fibrinogen and D-dimer, were recognized early during the pandemic, many new biomarkers of thrombotic risk in COVID-19 have emerged. In this Consensus Statement, we delineate the thrombotic signature of COVID-19 and present the latest biomarkers and platforms to assess the risk of thrombosis in these patients, including markers of platelet activation, platelet aggregation, endothelial cell activation or injury, coagulation and fibrinolysis as well as biomarkers of the newly recognized post-vaccine thrombosis with thrombocytopenia syndrome. We then make consensus recommendations for the clinical use of these biomarkers to inform prognosis, assess disease acuity, and predict thrombotic risk and in-hospital mortality. A thorough understanding of these biomarkers might aid risk stratification and prognostication, guide interventions and provide a platform for future research.
Collapse
Affiliation(s)
- Diana A Gorog
- National Heart and Lung Institute, Imperial College, London, UK.
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK.
| | - Robert F Storey
- Cardiovascular Research Unit, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Paul A Gurbel
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Udaya S Tantry
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Baltimore, MD, USA
| | - Jeffrey S Berger
- New York University Grossman School of Medicine, New York, NY, USA
| | - Mark Y Chan
- Yong Loo-Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Heart Centre, Singapore, Singapore
| | - Daniel Duerschmied
- Cardiology and Angiology I and Medical Intensive Care, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Cardiology, Medical Intensive Care, Angiology and Haemostaseology, University Medical Centre Mannheim, Mannheim, Germany
| | - Susan S Smyth
- UAMS College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - William A E Parker
- Cardiovascular Research Unit, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ramzi A Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Gemma Vilahur
- Cardiovascular Research Center-ICCC, Research Institute - Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
- CiberCV, Institute Carlos III, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Research Center-ICCC, Research Institute - Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
- CiberCV, Institute Carlos III, Madrid, Spain
- Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Hugo Ten Cate
- Cardiovascular Research Institute Maastricht (CARIM) and Thrombosis Expertise Center, Maastricht University Medical Center, Maastricht, Netherlands
- Center for Thrombosis and Haemostasis, University Medical Center of Gutenberg University, Mainz, Germany
| | - Flora Peyvandi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
- Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Taia T Wang
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Richard C Becker
- Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
17
|
Asrie F, Tekle E, Gelaw Y, Dagnew M, Gelaw A, Negash M, Kassa E, Bizuneh S, Wudineh D. Baseline Thrombocytopenia and Disease Severity Among COVID-19 Patients, Tibebe Ghion Specialized Hospital COVID-19 Treatment Center, Northwest Ethiopia. J Blood Med 2022; 13:315-325. [PMID: 35712680 PMCID: PMC9196661 DOI: 10.2147/jbm.s366478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/31/2022] [Indexed: 01/08/2023] Open
Abstract
Background Thrombocytopenia and platelet indices in COVID-19 patients were important for prompt treatment and management of the disease. Therefore, the main objective of this study was to assess the prevalence of thrombocytopenia, platelet indices, and its association with disease severity among COVID-19 patients at the Tibebe Ghion Specialized Hospital, COVID-19 treatment center, Northwest Ethiopia. Methods A cross-sectional study was conducted among 117 conveniently recruited COVID-19 patients from March to June 2021. Socio-demographic and clinical data were collected using a structured questionnaire and checklist, respectively. The platelet parameters were analyzed by the Mindray-BC 5800 automated hematological analyzer. ANOVA and Kruskal-Wallis tests were used to compare the difference between parametric and non-parametric continuous variables, respectively. Binary logistic regression was used to identify the factors associated with thrombocytopenia. A P-value < 0.05 was defined as statistically significant for all statistical tests. Results Among COVID-19 patients, 45, 43 and 29 were mild, moderate and severe, respectively. 65.8% of the patients were males and 34.2% were alcohol drinkers with a mean age of 50.6 ± 15.4. Moreover, 44.4% of the patients had co-morbidity. Thrombocytopenia was presented in 23.9% of the patients. It was 4.57 (95% CI: 1.30-16.07) and 6.10 (95% CI: 1.54-24.08) times more likely in the moderate and severe cases compared to mild cases, respectively. Disease severity was also associated with PDW (P-value = 0.001). Conclusion Even though thrombocytopenia was not presented in most moderate and severe COVID-19 patients, thrombocytopenia and PDW were associated with disease severity.
Collapse
Affiliation(s)
- Fikir Asrie
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Esayas Tekle
- Department of Medical and Laboratory Sciences, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia
| | - Yemataw Gelaw
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mulat Dagnew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Aschalew Gelaw
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Markos Negash
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Eyuel Kassa
- University of Gondar Comprehensive Specialized Hospital Laboratory, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Segenet Bizuneh
- Department of Internal Medicine, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Dessalew Wudineh
- Department of Medical Laboratory Sciences, Institute of Health Sciences, Mizan Tepi University, Mizan Tepi, Ethiopia
| |
Collapse
|
18
|
Srivastava S, Garg I, Dogra V, Bargotya M, Bhattar S, Gupta U, Jain S, Hussain J, Hembrom AA, Ghosh N, Kumar V, Varshney R, Ganju L. Implications of COVID-19 on Thrombotic Profile of Severely Affected Patients. Pathobiology 2022; 89:407-417. [PMID: 35344951 PMCID: PMC9059048 DOI: 10.1159/000522543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/09/2022] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19) is a novel viral disease that spread as a global pandemic in 2020 by infecting millions of people across the world. Its clinical prognosis is dependent on various coagulatory parameters since thrombotic events are frequently associated with infection severity. METHODS A total of 383 COVID-19 patients enrolled in Rajiv Gandhi Super Specialty Hospital, Delhi, India, were included in the present retrospective study. Patients were divided into three categories, severe (n = 141), moderate (n = 138), and mild (n = 104) based on infection severity. Various thrombotic parameters and anticoagulant levels were measured in 70 patients and further analyzed. RESULTS Coagulopathy is seen in COVID-19 patients (n = 70) with a significant increase in fibrinogen, D-dimer levels, and prothrombin time in patients with severe and moderate disease compared to patients with a mild infection. Approximately, 70% of patients with severe and moderate disease demonstrated fibrinogen levels higher than the standard reference range. 60.41% of patients with severe disease showed significantly higher D-dimer levels. Thrombotic parameters were notably elevated in the nonsurvivors group compared to COVID-19 survivors. Nearly, 91% of patients with severe infection had anticoagulant protein S levels below the reference range. CONCLUSION COVID-19 infection severely impacts the blood coagulation cascade, which might lead to the manifestation of severe symptoms and increased mortality in patients.
Collapse
Affiliation(s)
- Swati Srivastava
- Defence Institute of Physiology and Allied Science, Timarpur, India,*Swati Srivastava,
| | - Iti Garg
- Defence Institute of Physiology and Allied Science, Timarpur, India,**Iti Garg,
| | - Vikas Dogra
- Pulmonary Medicine, Rajiv Gandhi Super Specialty Hospital (RGSSH), Delhi, India
| | - Mona Bargotya
- Pulmonary Medicine, Rajiv Gandhi Super Specialty Hospital (RGSSH), Delhi, India
| | - Sonali Bhattar
- Pulmonary Medicine, Rajiv Gandhi Super Specialty Hospital (RGSSH), Delhi, India
| | - Utkarsh Gupta
- Pulmonary Medicine, Rajiv Gandhi Super Specialty Hospital (RGSSH), Delhi, India
| | - Shruti Jain
- Pulmonary Medicine, Rajiv Gandhi Super Specialty Hospital (RGSSH), Delhi, India
| | - Javid Hussain
- Pulmonary Medicine, Rajiv Gandhi Super Specialty Hospital (RGSSH), Delhi, India
| | - Anju A. Hembrom
- Defence Institute of Physiology and Allied Science, Timarpur, India
| | - Nilanjana Ghosh
- Defence Institute of Physiology and Allied Science, Timarpur, India
| | - Vinay Kumar
- Defence Institute of Physiology and Allied Science, Timarpur, India
| | - Rajeev Varshney
- Defence Institute of Physiology and Allied Science, Timarpur, India
| | - Lilly Ganju
- Defence Institute of Physiology and Allied Science, Timarpur, India
| |
Collapse
|
19
|
Wilson JC, Kealy D, James SR, Plowman T, Newling K, Jagger C, Filbey K, Mann ER, Konkel JE, Menon M, Knight SB, Simpson A, Prihartadi A, Forshaw G, Todd N, Yates DR, Grainger JR, Hussell T, Kaye PM, Signoret N, Lagos D. Integrated miRNA/cytokine/chemokine profiling reveals severity-associated step changes and principal correlates of fatality in COVID-19. iScience 2022; 25:103672. [PMID: 34957382 PMCID: PMC8686203 DOI: 10.1016/j.isci.2021.103672] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
Inflammatory cytokines and chemokines (CC) drive COVID-19 pathology. Yet, patients with similar circulating CC levels present with different disease severity. Here, we determined 171 microRNAomes from 58 hospitalized COVID-19 patients (Cohort 1) and levels of 25 cytokines and chemokines (CC) in the same samples. Combining microRNA (miRNA) and CC measurements allowed for discrimination of severe cases with greater accuracy than using miRNA or CC levels alone. Severity group-specific associations between miRNAs and COVID-19-associated CC (e.g., IL6, CCL20) or clinical hallmarks of COVID-19 (e.g., neutrophilia, hypoalbuminemia) separated patients with similar CC levels but different disease severity. Analysis of an independent cohort of 108 patients from a different center (Cohort 2) demonstrated feasibility of CC/miRNA profiling in leftover hospital blood samples with similar severe disease CC and miRNA profiles, and revealed CCL20, IL6, IL10, and miR-451a as key correlates of fatal COVID-19. These findings highlight that systemic miRNA/CC networks underpin severe COVID-19.
Collapse
Affiliation(s)
- Julie C. Wilson
- Department of Mathematics, University of York, York YO10 5DD, UK
| | - David Kealy
- Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Sally R. James
- York Biosciences Technology Facility, University of York, Wentworth Way, York YO10 5DD, UK
| | - Tobias Plowman
- Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Katherine Newling
- York Biosciences Technology Facility, University of York, Wentworth Way, York YO10 5DD, UK
| | - Christopher Jagger
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Room 2.16, 46 Grafton Street, Manchester M13 9PL, UK
| | - Kara Filbey
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Room 2.16, 46 Grafton Street, Manchester M13 9PL, UK
| | - Elizabeth R. Mann
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Room 2.16, 46 Grafton Street, Manchester M13 9PL, UK
- Maternal and Fetal Health Centre, Division of Developmental Biology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 5th Floor St. Mary's Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Joanne E. Konkel
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Room 2.16, 46 Grafton Street, Manchester M13 9PL, UK
| | - Madhvi Menon
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Room 2.16, 46 Grafton Street, Manchester M13 9PL, UK
| | - Sean B. Knight
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Room 2.16, 46 Grafton Street, Manchester M13 9PL, UK
- Respiratory Department, Salford Royal NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, Manchester NIHR BRC, Education and Research Centre, Wythenshawe Hospital, Manchester, UK
| | | | - Aliya Prihartadi
- Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
| | - Greg Forshaw
- York and Scarborough Teaching Hospitals NHS Foundation Trust, York YO31 8HE, UK
| | - Neil Todd
- York and Scarborough Teaching Hospitals NHS Foundation Trust, York YO31 8HE, UK
| | - David R.A. Yates
- Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
- The Members of the Coronavirus Immune Response and Clinical Outcomes (CIRCO) Collaborative Group
| | - John R. Grainger
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Room 2.16, 46 Grafton Street, Manchester M13 9PL, UK
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Room 2.16, 46 Grafton Street, Manchester M13 9PL, UK
| | - Paul M. Kaye
- Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Nathalie Signoret
- Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Dimitris Lagos
- Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
- Corresponding author
| |
Collapse
|
20
|
Ryan FJ, Hope CM, Masavuli MG, Lynn MA, Mekonnen ZA, Yeow AEL, Garcia-Valtanen P, Al-Delfi Z, Gummow J, Ferguson C, O'Connor S, Reddi BAJ, Hissaria P, Shaw D, Kok-Lim C, Gleadle JM, Beard MR, Barry SC, Grubor-Bauk B, Lynn DJ. Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection. BMC Med 2022; 20:26. [PMID: 35027067 PMCID: PMC8758383 DOI: 10.1186/s12916-021-02228-6] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious respiratory virus which is responsible for the coronavirus disease 2019 (COVID-19) pandemic. It is increasingly clear that recovered individuals, even those who had mild COVID-19, can suffer from persistent symptoms for many months after infection, a condition referred to as "long COVID", post-acute sequelae of COVID-19 (PASC), post-acute COVID-19 syndrome, or post COVID-19 condition. However, despite the plethora of research on COVID-19, relatively little is known about the molecular underpinnings of these long-term effects. METHODS We have undertaken an integrated analysis of immune responses in blood at a transcriptional, cellular, and serological level at 12, 16, and 24 weeks post-infection (wpi) in 69 patients recovering from mild, moderate, severe, or critical COVID-19 in comparison to healthy uninfected controls. Twenty-one of these patients were referred to a long COVID clinic and > 50% reported ongoing symptoms more than 6 months post-infection. RESULTS Anti-Spike and anti-RBD IgG responses were largely stable up to 24 wpi and correlated with disease severity. Deep immunophenotyping revealed significant differences in multiple innate (NK cells, LD neutrophils, CXCR3+ monocytes) and adaptive immune populations (T helper, T follicular helper, and regulatory T cells) in convalescent individuals compared to healthy controls, which were most strongly evident at 12 and 16 wpi. RNA sequencing revealed significant perturbations to gene expression in COVID-19 convalescents until at least 6 months post-infection. We also uncovered significant differences in the transcriptome at 24 wpi of convalescents who were referred to a long COVID clinic compared to those who were not. CONCLUSIONS Variation in the rate of recovery from infection at a cellular and transcriptional level may explain the persistence of symptoms associated with long COVID in some individuals.
Collapse
Affiliation(s)
- Feargal J Ryan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
| | - Christopher M Hope
- Women's and Children's Health Network, North Adelaide, SA, Australia.,Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Makutiro G Masavuli
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Miriam A Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia
| | - Zelalem A Mekonnen
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Arthur Eng Lip Yeow
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Pablo Garcia-Valtanen
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Zahraa Al-Delfi
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Jason Gummow
- Gene Silencing and Expression Core Facility, Adelaide Health and Medical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Catherine Ferguson
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Stephanie O'Connor
- Intensive Care Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Benjamin A J Reddi
- Intensive Care Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Pravin Hissaria
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - David Shaw
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Chuan Kok-Lim
- Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia.,Microbiology and Infectious Diseases Department, SA Pathology, Adelaide, SA, Australia
| | - Jonathan M Gleadle
- Department of Renal Medicine, Flinders Medical Centre, Flinders University, Bedford Park, SA, 5042, Australia.,Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, 5042, Australia
| | - Michael R Beard
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Simon C Barry
- Women's and Children's Health Network, North Adelaide, SA, Australia. .,Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia.
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia. .,Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
21
|
Lindsay PJ, Rosovsky R, Bittner EA, Chang MG. Nuts and bolts of COVID-19 associated coagulopathy: the essentials for management and treatment. Postgrad Med 2021; 133:899-911. [PMID: 34470540 PMCID: PMC8442752 DOI: 10.1080/00325481.2021.1974212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION COVID-19-associated coagulopathy (CAC) is a well-recognized hematologic complication among patients with severe COVID-19 disease, where macro- and micro-thrombosis can lead to multiorgan injury and failure. Major societal guidelines that have published on the management of CAC are based on consensus of expert opinion, with the current evidence available. As a result of limited studies, there are many clinical scenarios that are yet to be addressed, with expert opinion varying on a number of important clinical issues regarding CAC management. METHODS In this review, we utilize current societal guidelines to provide a framework for practitioners in managing their patients with CAC. We have also provided three clinical scenarios that implement important principles of anticoagulation in patients with COVID-19. CONCLUSION Overall, decisions should be made on acase by cases basis and based on the providers understanding of each patient's medical history, clinical course and perceived risk.
Collapse
Affiliation(s)
| | - Rachel Rosovsky
- Division of Hematology & Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Edward A Bittner
- Department of Anesthesia Critical Care and Pain, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marvin G Chang
- Department of Anesthesia Critical Care and Pain, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Delshad M, Safaroghli-Azar A, Pourbagheri-Sigaroodi A, Poopak B, Shokouhi S, Bashash D. Platelets in the perspective of COVID-19; pathophysiology of thrombocytopenia and its implication as prognostic and therapeutic opportunity. Int Immunopharmacol 2021; 99:107995. [PMID: 34304001 PMCID: PMC8295197 DOI: 10.1016/j.intimp.2021.107995] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Despite endorsed and exponential research to improve diagnostic and therapeutic strategies, efforts have not yet converted into a better prospect for patients infected with the novel coronavirus (2019nCoV), and still, the name of SARS-CoV-2 is coupled with numerous unanswered questions. One of these questions is concerning how this respiratory virus reduces the number of platelets (PLTs)? The results of laboratory examinations showed that about a quarter of COVID-19 cases experience thrombocytopenia, and more remarkably, about half of these patients succumb to the infection due to coagulopathy. These findings have positioned PLTs as a pillar in the management as well as stratifying COVID-19 patients; however, not all the physicians came into a consensus about the prognostic value of these cells. The current review aims to unravel the contributory role of PLTs s in COVID-19; and alsoto summarize the original data obtained from international research laboratories on the association between COVID-19 and PLT production, activation, and clearance. In addition, we provide a special focus on the prognostic value of PLTs and their related parameters in COVID-19. Questions on how SARS-CoV-2 induces thrombocytopenia are also responded to. The last section provides a general overview of the most recent PLT- or thrombocytopenia-related therapeutic approaches. In conclusion, since SARS-CoV-2 reduces the number of PLTs by eliciting different mechanisms, treatment of thrombocytopenia in COVID-19 patients is not as simple as it appears and serious cautions should be considered to deal with the problem through scrutiny awareness of the causal mechanisms.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Poopak
- Department of Hematology, Faculty of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shervin Shokouhi
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Papadopoulou A, Musa H, Sivaganesan M, McCoy D, Deloukas P, Marouli E. COVID-19 susceptibility variants associate with blood clots, thrombophlebitis and circulatory diseases. PLoS One 2021; 16:e0256988. [PMID: 34478452 PMCID: PMC8415605 DOI: 10.1371/journal.pone.0256988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Epidemiological studies suggest that individuals with comorbid conditions including diabetes, chronic lung, inflammatory and vascular disease, are at higher risk of adverse COVID-19 outcomes. Genome-wide association studies have identified several loci associated with increased susceptibility and severity for COVID-19. However, it is not clear whether these associations are genetically determined or not. We used a Phenome-Wide Association (PheWAS) approach to investigate the role of genetically determined COVID-19 susceptibility on disease related outcomes. PheWAS analyses were performed in order to identify traits and diseases related to COVID-19 susceptibility and severity, evaluated through a predictive COVID-19 risk score. We utilised phenotypic data in up to 400,000 individuals from the UK Biobank, including Hospital Episode Statistics and General Practice data. We identified a spectrum of associations between both genetically determined COVID-19 susceptibility and severity with a number of traits. COVID-19 risk was associated with increased risk for phlebitis and thrombophlebitis (OR = 1.11, p = 5.36e-08). We also identified significant signals between COVID-19 susceptibility with blood clots in the leg (OR = 1.1, p = 1.66e-16) and with increased risk for blood clots in the lung (OR = 1.12, p = 1.45 e-10). Our study identifies significant association of genetically determined COVID-19 with increased blood clot events in leg and lungs. The reported associations between both COVID-19 susceptibility and severity and other diseases adds to the identification and stratification of individuals at increased risk, adverse outcomes and long-term effects.
Collapse
Affiliation(s)
- Areti Papadopoulou
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Genomic Health, Life Sciences, Queen Mary University of London, London, United Kingdom
| | - Hanan Musa
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mathura Sivaganesan
- Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - David McCoy
- Population Health Sciences, Queen Mary University of London, London, United Kingdom
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Genomic Health, Life Sciences, Queen Mary University of London, London, United Kingdom
| | - Eirini Marouli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Genomic Health, Life Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
24
|
Van Dijck R, Lauw MN, Swinkels M, Russcher H, Jansen AJG. COVID-19-associated pseudothrombocytopenia. ACTA ACUST UNITED AC 2021; 2:475-477. [PMID: 34226896 PMCID: PMC8242368 DOI: 10.1002/jha2.239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 01/08/2023]
Affiliation(s)
- Ruben Van Dijck
- Department of Haematology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - Mandy N Lauw
- Department of Haematology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - Maurice Swinkels
- Department of Haematology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - Henk Russcher
- Department of Clinical Chemistry Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - A J Gerard Jansen
- Department of Haematology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| |
Collapse
|
25
|
International COVID-19 thrombosis biomarkers colloquium: COVID-19 diagnostic tests. J Thromb Thrombolysis 2021; 52:992-998. [PMID: 34021852 PMCID: PMC8140326 DOI: 10.1007/s11239-021-02465-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 01/20/2023]
|
26
|
Zhou Y, Isozaki A, Yasumoto A, Xiao TH, Yatomi Y, Lei C, Goda K. Intelligent Platelet Morphometry. Trends Biotechnol 2021; 39:978-989. [PMID: 33509656 DOI: 10.1016/j.tibtech.2020.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022]
Abstract
Technological advances in image-based platelet analysis or platelet morphometry are critical for a better understanding of the structure and function of platelets in biological research as well as for the development of better clinical strategies in medical practice. Recently, the advent of high-throughput optical imaging and deep learning has boosted platelet morphometry to the next level by providing a new set of capabilities beyond what is achievable with traditional platelet morphometry, shedding light on the unexplored domain of platelet analysis. This Opinion article introduces emerging opportunities in 'intelligent' platelet morphometry, which are expected to pave the way for a new class of diagnostics, pharmacometrics, and therapeutics.
Collapse
Affiliation(s)
- Yuqi Zhou
- Department of Chemistry, University of Tokyo, Tokyo 113-0033, Japan
| | - Akihiro Isozaki
- Department of Chemistry, University of Tokyo, Tokyo 113-0033, Japan; Kanagawa Institute of Industrial Science and Technology, Kanagawa 213-0012, Japan
| | - Atsushi Yasumoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Ting-Hui Xiao
- Department of Chemistry, University of Tokyo, Tokyo 113-0033, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Cheng Lei
- Department of Chemistry, University of Tokyo, Tokyo 113-0033, Japan; Institute of Technological Sciences, Wuhan University, Hubei 430072, China
| | - Keisuke Goda
- Department of Chemistry, University of Tokyo, Tokyo 113-0033, Japan; Institute of Technological Sciences, Wuhan University, Hubei 430072, China; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|