1
|
Abstract
Beriberi is a nutritional complication of gastric surgery, caused by deficiency of vitamin B1, or thiamine. Thiamine deficiency leads to impaired glucose metabolism, decreased delivery of oxygen by red blood cells, cardiac dysfunction, failure of neurotransmission, and neuronal death. This review describes the history and pathophysiology of beriberi as well as the relationship between beriberi and nutritional deficiencies after gastric surgery. A literature review of the history and pathophysiology of beriberi and the risk factors for thiamine deficiency, particularly after gastric resection or bariatric surgery, was performed. Recommendations for nutritional follow-up post gastric surgery are based on current national guidelines. Patients may have subclinical thiamine deficiency after upper gastrointestinal surgery, and thus beriberi may be precipitated by acute illness such as sepsis or poor dietary intake. This may occur very soon or many years after gastrectomy or bariatric surgery, even in apparently well-nourished patients. Prompt recognition and administration of supplemental thiamine can decrease morbidity and mortality in patients with beriberi. Dietary education post surgery and long-term follow-up to determine nutritional status, including vitamin and mineral assessment, is recommended for patients who undergo gastric surgery.
Collapse
Affiliation(s)
- Robert Beaumont Wilson
- Upper Gastrointestinal Surgery Department, University of New South Wales, Liverpool Public Hospital, Liverpool, Sydney, New South Wales, Australia, and the Sydney Institute for Obesity Surgery, Ashfield, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Huang J, Du J, Lin W, Long Z, Zhang N, Huang X, Xie Y, Liu L, Ma W. Regulation of lactate production through p53/β-enolase axis contributes to statin-associated muscle symptoms. EBioMedicine 2019; 45:251-260. [PMID: 31201144 PMCID: PMC6642070 DOI: 10.1016/j.ebiom.2019.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/12/2019] [Accepted: 06/03/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Statin-associated muscle symptoms (SAMS) are the major adverse effects of the class of widely used lipid-lowering agents, and the underlying mechanism remains elusive. In this study, we investigated the potential contribution and molecular mechanism of increased lactate production to SAMS in mice. METHODS C57BL/6 J mice were administrated with lovastatin and exercise capacity and blood and muscle lactate levels were measured. A variety of metabolic and molecular experiments were carried out on skeletal muscle cell lines A-204 and C2C12 to confirm the in vivo findings, and to delineate the molecular pathway regulating lactate production by statins. FINDINGS Blood lactate levels of mice treated with lovastatin increased 23% compared to the control group, which was reproduced in type II predominant glycolytic muscles, accompanied with a 23.1% decrease of maximum swim duration time. The in vitro evidence revealed that statins increased the expression of muscle specific glycolytic enzyme β-enolase through promoting the degradation of basal p53 proteins, resulting in increased of lactate production. Co-administered with dichloroacetate (DCA), a reagent effective in treating lactic acidosis, reverted the elevated lactate levels and the decreased exercise capacity. INTERPRETATION Elevated lactate production by statins through the p53/β-enolase axis contributes to SAMS. FUND: This work was supported by grants from the Science and Technology Development Fund (FDCT) of Macau (Project codes: 034/2015/A1 and 0013/2019/A1).
Collapse
Affiliation(s)
- Jiajun Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jingjing Du
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wanjun Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ze Long
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Na Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaoming Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
3
|
Hockstein M, Diercks D. Significant Lactic Acidosis from Albuterol. Clin Pract Cases Emerg Med 2018; 2:128-131. [PMID: 29849230 PMCID: PMC5965110 DOI: 10.5811/cpcem.2018.1.36024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 12/22/2017] [Accepted: 01/10/2018] [Indexed: 12/17/2022] Open
Abstract
Lactic acidosis is a clinical entity that demands rapid assessment and treatment to prevent significant morbidity and mortality. With increased lactate use across many clinical scenarios, lactate values themselves cannot be interpreted apart from their appropriate clinical picture. The significance of Type B lactic acidosis is likely understated in the emergency department (ED). Given the mortality that sepsis confers, a serum lactate is an important screening study. That said, it is with extreme caution that we should interpret and react to the resultant elevated value. We report a patient with a significant lactic acidosis. Though he had a high lactate value, he did not require aggressive resuscitation. A different classification scheme for lactic acidosis that focuses on the bifurcation of the “dangerous” and “not dangerous” causes of lactic acidosis may be of benefit. In addition, this case is demonstrative of the potential overuse of lactates in the ED.
Collapse
Affiliation(s)
- Maxwell Hockstein
- University of Texas Southwestern, Department of Emergency Medicine, Dallas, Texas
| | - Deborah Diercks
- University of Texas Southwestern, Department of Emergency Medicine, Dallas, Texas
| |
Collapse
|
4
|
Melvin SD, Habener LJ, Leusch FDL, Carroll AR. 1H NMR-based metabolomics reveals sub-lethal toxicity of a mixture of diabetic and lipid-regulating pharmaceuticals on amphibian larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 184:123-132. [PMID: 28131079 DOI: 10.1016/j.aquatox.2017.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 06/06/2023]
Abstract
Pharmaceuticals are widely used for the treatment of various physical and psychological ailments. Due to incomplete removal during sewage treatment many pharmaceuticals are frequently detected in aquatic waterways at trace concentrations. The diversity of pharmaceutical contaminants and potential for complex mixtures to occur makes it very difficult to predict the toxicity of these compounds on wildlife, and robust methods are therefore needed to explore sub-lethal effects. Metabolic syndrome is one of the most widespread health concerns currently facing the human population, and various drugs, including anti-diabetic medications and lipid- and cholesterol-lowering fibrates and statins, are widely prescribed as treatment. In this study, we exposed striped marsh frog (Limnodynastes peronii) tadpoles to a mixture of the drugs metformin, atorvastatin and bezafibrate at 0.5, 5, 50 and 500μg/L to explore possible effects on growth and development, energy reserves (triglycerides and cholesterol), and profiles of small polar metabolites extracted from hepatic tissues. It was hypothesised that exposure would result in a general reduction in energy reserves, and that this would subsequently correspond with reduced growth and development. Responses differed from expected outcomes based on the known mechanisms of these compounds in humans, with no changes to hepatic triglycerides or cholesterol and a general increase in mass and condition with increasing exposure concentration. Deviation from the expected response patterns may be explained by differences in the receptivity or uptake of the compounds in non-mammalian species. Proton nuclear magnetic resonance (1H NMR) spectroscopy revealed evidence of broad metabolic dysregulation in exposed animals, and possible interaction between the solvent and mixture. Specifically, increased lactic acid and branched-chain amino acids were observed, with responses tending to follow a non-monotonic pattern. Overall, results demonstrate that a mixture of drugs commonly prescribed to treat human metabolic syndrome is capable of eliciting physiological and developmental effects on larval amphibians. Importantly, outcomes further suggest that it may not be possible to predict toxicological effects in non-target wildlife based on our knowledge of how these compounds act in humans.
Collapse
Affiliation(s)
- Steven D Melvin
- Australian Rivers Institute, Griffith University, Southport, QLD 4222, Australia.
| | - Leesa J Habener
- Griffith School of Environment, Griffith University, Southport, QLD 4222, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith University, Southport, QLD 4222, Australia; Griffith School of Environment, Griffith University, Southport, QLD 4222, Australia
| | - Anthony R Carroll
- Griffith School of Environment, Griffith University, Southport, QLD 4222, Australia
| |
Collapse
|
5
|
El-Ganainy SO, El-Mallah A, Abdallah D, Khattab MM, Mohy El-Din MM, El-Khatib AS. Rosuvastatin safety: An experimental study of myotoxic effects and mitochondrial alterations in rats. Toxicol Lett 2016; 265:23-29. [PMID: 27815113 DOI: 10.1016/j.toxlet.2016.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 01/14/2023]
Abstract
Myopathy is the most commonly reported adverse effect of statins. All statins are associated with myopathy, though with different rates. Rosuvastatin is a potent statin reported to induce myopathy comparable to earlier statins. However, in clinical practice most patients could tolerate rosuvastatin over other statins. This study aimed to evaluate the myopathic pattern of rosuvastatin in rats using biochemical, functional and histopathological examinations. The possible deleterious effects of rosuvastatin on muscle mitochondria were also examined. The obtained results were compared to myopathy induced by atorvastatin in equimolar dose. Results showed that rosuvastatin induced a rise in CK, a slight increase in myoglobin level together with mild muscle necrosis. Motor activity, assessed by rotarod, showed that rosuvastatin decreased rats' performance. All these manifestations were obviously mild compared to the prominent effects of atorvastatin. Parallel results were obtained in mitochondrial dysfunction parameters. Rosuvastatin only induced a slight increase in LDH and a minor decrease in ATP (∼14%) and pAkt (∼12%). On the other hand, atorvastatin induced an increase in LDH, lactate/pyruvate ratio and a pronounced decline in ATP (∼80%) and pAkt (∼65%). These findings showed that rosuvastatin was associated with mild myotoxic effects in rats, especially when compared to atorvastatin.
Collapse
Affiliation(s)
- Samar O El-Ganainy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharos University, Alexandria, Egypt.
| | - Ahmed El-Mallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharos University, Alexandria, Egypt
| | - Dina Abdallah
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud M Mohy El-Din
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharos University, Alexandria, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
El-Ganainy SO, El-Mallah A, Abdallah D, Khattab MM, Mohy El-Din MM, El-Khatib AS. Elucidation of the mechanism of atorvastatin-induced myopathy in a rat model. Toxicology 2016; 359-360:29-38. [PMID: 27345130 DOI: 10.1016/j.tox.2016.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 12/31/2022]
Abstract
Myopathy is among the well documented and the most disturbing adverse effects of statins. The underlying mechanism is still unknown. Mitochondrial dysfunction related to coenzyme Q10 decline is one of the proposed theories. The present study aimed to investigate the mechanism of atorvastatin-induced myopathy in rats. In addition, the mechanism of the coenzyme Q10 protection was investigated with special focus of mitochondrial alterations. Sprague-Dawely rats were treated orally either with atorvastatin (100mg/kg) or atorvastatin and coenzyme Q10 (100mg/kg). Myopathy was assessed by measuring serum creatine kinase (CK) and myoglobin levels together with examination of necrosis in type IIB fiber muscles. Mitochondrial dysfunction was evaluated by measuring muscle lactate/pyruvate ratio, ATP level, pAkt as well as mitochondrial ultrastructure examination. Atorvastatin treatment resulted in a rise in both CK (2X) and myoglobin (6X) level with graded degrees of muscle necrosis. Biochemical determinations showed prominent increase in lactate/pyruvate ratio and a decline in both ATP (>80%) and pAkt (>50%) levels. Ultrastructure examination showed mitochondrial swelling with disrupted organelle membrane. Co-treatment with coenzyme Q10 induced reduction in muscle necrosis as well as in CK and myoglobin levels. In addition, coenzyme Q10 improved all mitochondrial dysfunction parameters including mitochondrial swelling and disruption. These results presented a model for atorvastatin-induced myopathy in rats and proved that mitochondrial dysfunction is the main contributor in statin-myopathy pathophysiology.
Collapse
Affiliation(s)
- Samar O El-Ganainy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharos University, Alexandria, Egypt.
| | - Ahmed El-Mallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharos University, Alexandria, Egypt
| | - Dina Abdallah
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud M Mohy El-Din
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharos University, Alexandria, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Sahoo S, Haraldsdóttir HS, Fleming RMT, Thiele I. Modeling the effects of commonly used drugs on human metabolism. FEBS J 2014; 282:297-317. [PMID: 25345908 DOI: 10.1111/febs.13128] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 09/21/2014] [Accepted: 10/13/2014] [Indexed: 02/02/2023]
Abstract
Metabolism contributes significantly to the pharmacokinetics and pharmacodynamics of a drug. In addition, diet and genetics have a profound effect on cellular metabolism with respect to both health and disease. In the present study, we assembled a comprehensive, literature-based drug metabolic reconstruction of the 18 most highly prescribed drug groups, including statins, anti-hypertensives, immunosuppressants and analgesics. This reconstruction captures in detail our current understanding of their absorption, intracellular distribution, metabolism and elimination. We combined this drug module with the most comprehensive reconstruction of human metabolism, Recon 2, yielding Recon2_DM1796, which accounts for 2803 metabolites and 8161 reactions. By defining 50 specific drug objectives that captured the overall drug metabolism of these compounds, we investigated the effects of dietary composition and inherited metabolic disorders on drug metabolism and drug-drug interactions. Our main findings include: (a) a shift in dietary patterns significantly affects statins and acetaminophen metabolism; (b) disturbed statin metabolism contributes to the clinical phenotype of mitochondrial energy disorders; and (c) the interaction between statins and cyclosporine can be explained by several common metabolic and transport pathways other than the previously established CYP3A4 connection. This work holds the potential for studying adverse drug reactions and designing patient-specific therapies.
Collapse
Affiliation(s)
- Swagatika Sahoo
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | | | | | | |
Collapse
|
8
|
Stringer HAJ, Sohi GK, Maguire JA, Côté HCF. Decreased skeletal muscle mitochondrial DNA in patients with statin-induced myopathy. J Neurol Sci 2013; 325:142-7. [PMID: 23312852 DOI: 10.1016/j.jns.2012.12.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 01/01/2023]
Abstract
Statins are widely used to treat hyperlipidemia and lower cardiovascular disease risk. While statins are generally well tolerated, some patients experience statin-induced myopathy (SIM). Statin treatment has been associated with mitochondrial dysfunction and mitochondrial DNA (mtDNA) depletion. In this retrospective study, skeletal muscle biopsies from patients diagnosed with SIM were studied. These were compared with biopsies from patients clinically assessed as having statin-unrelated myopathy but whose biopsy showed no or negligible pathology. For each biopsy sample, mtDNA was quantified relative to nuclear DNA (mtDNA content) by qPCR, mtDNA deletions were investigated by long-template PCR followed by gel densitometry, and mtDNA oxidative damage was quantified using a qPCR-based assay. For a subset of matched samples, mtDNA heteroplasmy and mutations were investigated by cloning/sequencing. Skeletal muscle mtDNA content was significantly lower in SIM patients (N=23, mean±SD, 2036±1146) than in comparators (N=24, 3220±1594), p=0.006. There was no difference in mtDNA deletion score or oxidative mtDNA damage between the two groups, and no evidence of increased mtDNA heteroplasmy or somatic mutations was detected. The significant difference in skeletal muscle mtDNA suggests that SIM or statin treatments are associated with depletion of skeletal muscle mtDNA or that patients with an underlying predisposition to SIM have lower mtDNA levels. If statins induce mtDNA depletion, this would likely reflect decreased mitochondria biogenesis and/or increased mitochondria autophagy. Further work is necessary to distinguish between the lower mtDNA as a predisposition to SIM or an effect of SIM or statin treatment.
Collapse
Affiliation(s)
- Henry A J Stringer
- University of British Columbia, Department of Pathology & Laboratory Medicine, G227-2211 Wesbrook Mall, Vancouver, British Columbia, Canada V6T2B5.
| | | | | | | |
Collapse
|
9
|
Vernon C, Letourneau JL. Lactic acidosis: recognition, kinetics, and associated prognosis. Crit Care Clin 2010; 26:255-83, table of contents. [PMID: 20381719 DOI: 10.1016/j.ccc.2009.12.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lactic acidosis is a common condition encountered by critical care providers. Elevated lactate and decreased lactate clearance are important for prognostication. Not all lactate in the intensive care unit is due to tissue hypoxia or ischemia and other sources should be evaluated. Lactate, in and of itself, is unlikely to be harmful and is a preferred fuel for many cells. Treatment of lactic acidosis continues to be aimed the underlying source.
Collapse
Affiliation(s)
- Christopher Vernon
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN 67, Portland, OR 97239, USA
| | | |
Collapse
|
10
|
Duncan AJ, Hargreaves IP, Damian MS, Land JM, Heales SJR. Decreased ubiquinone availability and impaired mitochondrial cytochrome oxidase activity associated with statin treatment. Toxicol Mech Methods 2010; 19:44-50. [PMID: 19778232 DOI: 10.1080/15376510802305047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In order to investigate the potential involvement of mitochondrial electron transport chain (ETC) dysfunction in myotoxicity associated with 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor (statin) treatment, assessment was made of ETC activity and ubiquinone status in two patients experiencing myopathy following treatment with simvastatin (40 mg/day) and cyclosporin (patient 1) and simvastatin (40 mg/day) and itraconazole (patient 2). Analysis of skeletal muscle biopsies revealed a decreased ubiquinone status (77 and 132; reference range: 140-580 pmol/mg) and cytochrome oxidase (complex IV) activity (0.006 and 0.007 reference range: 0.014-0.034). To assess statin treatment in the absence of possible pharmacological interference from cyclosporin or itraconazole, primary astrocytes were cultured with lovastatin (100 microM). Lovastatin treatment resulted in a decrease in ubiquinone (97.9 +/- 14.9; control: 202.9 +/- 18.4 pmol/mg; p < 0.05), and complex IV activity (0.008 +/- 0.001; control: 0.011 +/- 0.001; p < 0.05) relative to control. These data, coupled with the patient findings, indicate a possible association between statin treatment, decreased ubiquinone status, and loss of complex IV activity.
Collapse
Affiliation(s)
- Andrew J Duncan
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 1BG, UK
| | | | | | | | | |
Collapse
|
11
|
Abstract
Metabolic acidosis may occasionally develop in the course of treatment with drugs used in everyday clinical practice, as well as with the exposure to certain chemicals. Drug-induced metabolic acidosis, although usually mild, may well be life-threatening, as in cases of lactic acidosis complicating antiretroviral therapy or treatment with biguanides. Therefore, a detailed medical history, with special attention to the recent use of culprit medications, is essential in patients with acid-base derangements. Effective clinical management can be handled through awareness of the adverse effect of certain pharmaceutical compounds on the acid-base status. In this review, we evaluate relevant literature with regard to metabolic acidosis associated with specific drug treatment, and discuss the clinical setting and underlying pathophysiological mechanisms. These mechanisms involve renal inability to excrete the dietary H+ load (including types I and IV renal tubular acidoses), metabolic acidosis owing to increased H+ load (including lactic acidosis, ketoacidosis, ingestion of various substances, administration of hyperalimentation solutions and massive rhabdomyolysis) and metabolic acidosis due to HCO3- loss (including gastrointestinal loss and type II renal tubular acidosis). Determinations of arterial blood gases, the serum anion gap and, in some circumstances, the serum osmolar gap are helpful in delineating the pathogenesis of the acid-base disorder. In all cases of drug-related metabolic acidosis, discontinuation of the culprit medications and avoidance of readministration is advised.
Collapse
Affiliation(s)
- George Liamis
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | | | | |
Collapse
|
12
|
Smit DJA, Boersma M, van Beijsterveldt CEM, Posthuma D, Boomsma DI, Stam CJ, de Geus EJC. Endophenotypes in a dynamically connected brain. Behav Genet 2010; 40:167-77. [PMID: 20111993 PMCID: PMC2829652 DOI: 10.1007/s10519-009-9330-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 12/29/2009] [Indexed: 02/08/2023]
Abstract
We examined the longitudinal genetic architecture of three parameters of functional brain connectivity. One parameter described overall connectivity (synchronization likelihood, SL). The two others were derived from graph theory and described local (clustering coefficient, CC) and global (average path length, L) aspects of connectivity. We measured resting state EEG in 1,438 subjects from four age groups of about 16, 18, 25 and 50 years. Developmental curves for SL and L indicate that connectivity is more random at adolescence and old age, and more structured in middle-aged adulthood. Individual variation in SL and L were moderately to highly heritable at each age (SL: 40–82%; L: 29–63%). Genetic factors underlying these phenotypes overlapped. CC was also heritable (25–49%) but showed no systematic overlap with SL and L. SL, CC, and L in the alpha band showed high phenotypic and genetic stability from 16 to 25 years. Heritability for parameters in the beta band was lower, and less stable across ages, but genetic stability was high. We conclude that the connectivity parameters SL, CC, and L in the alpha band show the hallmarks of a good endophenotype for behavior and developmental disorders.
Collapse
Affiliation(s)
- D J A Smit
- Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
13
|
Golomb BA, Kwon EK, Koperski S, Evans MA. Amyotrophic lateral sclerosis-like conditions in possible association with cholesterol-lowering drugs: an analysis of patient reports to the University of California, San Diego (UCSD) Statin Effects Study. Drug Saf 2009; 32:649-61. [PMID: 19591530 DOI: 10.2165/00002018-200932080-00004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND While cases of amyotrophic lateral sclerosis (ALS) or ALS-like conditions have arisen in apparent association with HMG-CoA reductase inhibitors ('statins') and/or other lipid-lowering drugs (collectively termed 'statins' in this paper for brevity), additional information is needed to understand whether the connection may be causal. The University of California, San Diego (UCSD) Statin Effects Study is a patient-targeted adverse event surveillance project focused on lipid-lowering agents, whose aim is to capitalize on patient reporting to further define characteristics and natural history of statin adverse effects (AEs), and to ascertain whether a patient-targeted surveillance system might lead to presumptive identification of previously unrecognized AEs. ALS was a candidate 'new' AE identified through this process. The aim of the analysis presented here was to examine characteristics and natural history of reported statin-associated ALS-like conditions with attention to factors that may bear on the issue of causality. METHODS For the present analysis, we focused on cases of statin-associated ALS that were reported to our study group prior to publication of a possible statin-ALS association. Of 35 identified subjects who had contacted the UCSD Statin Effects Study group to report ALS or an ALS-like condition, 18 could not be reached (e.g. contact information was no longer valid). Six were unable to participate (e.g. due to progression of their disease). Of the 11 who could be contacted and were able to participate, one declined to give informed consent. The remaining ten, with either a formal or probable diagnosis of ALS in the context of progressive muscle wasting/weakness arising in association with lipid-lowering drug therapy, completed a mail or phone survey eliciting information about ALS symptom onset and change in association with drug use/modification and development of statin-associated AEs. We reviewed findings in the context of literature on statin antioxidant/pro-oxidant balance, as well as ALS mechanisms involving oxidative stress and mitochondrial dysfunction. RESULTS All ten subjects reported amelioration of symptoms with drug discontinuation and/or onset or exacerbation of symptoms with drug change, rechallenge or dose increase. Three subjects initiated coenzyme Q10 supplementation; all reported initial benefit. All subjects reportedly developed statin AEs (not indicative of ALS) prior to ALS symptom onset, strongly disproportionate to expectation (p < 0.001). Since this reflects induction of pro-oxidant effects from statins, these findings lend weight to a literature-supported mechanism by which induction by statins of oxidative stress with amplification of mitochondrial dysfunction, arising in a vulnerable subgroup, may propel mechanisms underlying both AEs and, more rarely, ALS. CONCLUSION A theoretical foundation and preliminary clinical observations suggest that statins (and other lipid-lowering drugs) may rarely be associated with ALS in vulnerable individuals in whom pro-oxidant effects of statins predominate. Our observations have explanatory relevance extending to ALS causes that are not statin associated and to statin-associated neurodegenerative conditions that are not ALS. They suggest means for identification of a possible vulnerable subgroup. Indeed whether statins may, in contrast, confer ALS protection when antioxidant effects predominate merits examination.
Collapse
Affiliation(s)
- Beatrice A Golomb
- Department of Medicine, University of California, San Diego, California 92093-0995, USA.
| | | | | | | |
Collapse
|
14
|
Navaneethan SD, Mooney R, Sloand J. Pseudo-anion gap acidosis. NDT Plus 2008; 1:94-96. [PMID: 28657030 PMCID: PMC5477902 DOI: 10.1093/ndtplus/sfm032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 11/30/2007] [Indexed: 12/02/2022] Open
Affiliation(s)
- Sankar D Navaneethan
- Division of Nephrology, University of Rochester School of Medicine, Rochester, NY, USA
| | - Robert Mooney
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - James Sloand
- Division of Nephrology, University of Rochester School of Medicine, Rochester, NY, USA
| |
Collapse
|
15
|
Measuring statistical agreement between four point of care (POC) lactate meters and a laboratory blood analyzer in cats. J Feline Med Surg 2007; 10:110-4. [PMID: 17904887 DOI: 10.1016/j.jfms.2007.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2007] [Indexed: 11/29/2022]
Abstract
The use of blood lactate concentrations as a prognostic indicator and therapeutic gauge in feline medicine has been hindered by the inability to obtain values in a timely manner with minimal quantities of blood. Recently, hand-held point-of-care (POC) lactate meters have become commercially available. The objective of this prospective study was to determine if lactate values produced by three commercially available and one medical grade POC meter were in agreement with a laboratory blood analyzer. Blood samples from 47 cats were collected on presentation to an emergency service and processed on four POC meters and a Stat Profile Critical Care Xpress blood analyzer. The results were analyzed using the Bland-Altman method. The blood lactate values produced by the hospital grade POC meter and one of the commercially POC meters were in good agreement with the Critical Care Xpress blood analyzer. Other commercially available POC meters produced acceptable agreement.
Collapse
|
16
|
Blazes DL, Decker CF. Symptomatic hyperlactataemia precipitated by the addition of tetracycline to combination antiretroviral therapy. THE LANCET. INFECTIOUS DISEASES 2006; 6:249-52. [PMID: 16554250 DOI: 10.1016/s1473-3099(06)70440-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hyperlactataemia in the setting of combination antiretroviral therapy for HIV infection occurs on a spectrum ranging from common, asymptomatic laboratory abnormalities to rare, potentially life-threatening lactic acidosis. Some other medications, including the biguanides, tetracycline, and even linezolid, have rarely been reported to cause lactic acidosis. Recently, cases of lactic acidosis or hyperlactataemia have been reported in patients receiving combination antiretroviral therapy that have been precipitated by the addition of other medications-eg, metformin or ribavirin. We report a case of symptomatic hyperlactataemia in a patient on combination antiretroviral therapy that was likely precipitated by the addition of tetracycline and discuss the broader implications of other medications with the potential to cause hyperlactataemia in the setting of combination antiretroviral therapy.
Collapse
|
17
|
Seachrist JL, Loi CM, Evans MG, Criswell KA, Rothwell CE. Roles of exercise and pharmacokinetics in cerivastatin-induced skeletal muscle toxicity. Toxicol Sci 2005; 88:551-61. [PMID: 16141437 DOI: 10.1093/toxsci/kfi305] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Three-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors are associated with adverse skeletal muscle effects, but the underlying mechanisms remain unclear. To determine whether toxicity involves the level of drug exposure in muscle tissue and to test the effect of exercise on cerivastatin (CVA)-induced skeletal muscle damage, female rats were administered vehicle or CVA at 0.1, 0.5, and 1.0 mg/kg/day by gavage for two weeks and exercised or not on treadmills for 20 min/day. Clinical chemistry and plasma and tissue pharmacokinetics were evaluated; light and transmission electron microscopy (TEM) of Type I and Type II fiber-predominant skeletal muscles were performed. Serum levels of AST, ALT, CK, and plasma lactic acid were significantly elevated dose-dependently. CVA treatment decreased psoas and quadriceps weights. At 1 mg/kg all muscles except soleus demonstrated degeneration. Exercise-exacerbated severity of CVA-induced degeneration was evident in all muscles sampled except soleus and quadriceps. Early mitochondrial involvement in toxicity is suggested by the numerous membranous whorls and degenerate mitochondria observed in muscles at 0.5 mg/kg. No significant differences in CVA concentrations between either EDL and soleus or plasma and muscle were found. We found that CVA had no effect on cleaved caspase 3. In summary, we found that treadmill exercise exacerbated the incidence and severity of CVA-induced damage in Type II fiber-predominant muscles. Tissue exposure is likely not the key factor mediating CVA-induced skeletal muscle toxicity.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Apoptosis/drug effects
- Caspase 3
- Caspases/metabolism
- Dose-Response Relationship, Drug
- Female
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/toxicity
- Microscopy, Electron, Transmission
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/ultrastructure
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/ultrastructure
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/ultrastructure
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Physical Conditioning, Animal/physiology
- Pyridines/pharmacokinetics
- Pyridines/toxicity
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Jennifer L Seachrist
- Safety Sciences Department, Pfizer Global Research & Development, Ann Arbor, Michigan 48105, USA.
| | | | | | | | | |
Collapse
|
18
|
Current awareness: Pharmacoepidemiology and drug safety. Pharmacoepidemiol Drug Saf 2005. [DOI: 10.1002/pds.1028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Abstract
The HMG-CoA reductase inhibitors, also known as statins, have an enviable safety profile; however, myotoxicity and to a lesser extent hepatotoxicity have been noted in some patients following treatment. Statins target several tissues, depending upon their lipophilicity, where they competitively inhibit HMG-CoA reductase, the rate-limiting enzyme for mevalonic acid synthesis and subsequently cholesterol biosynthesis. HMG-CoA reductase is also the first committed rate-limiting step for the synthesis of a range of other compounds including steroid hormones and ubidecarenone (ubiquinone), otherwise known as coenzyme Q(10) (CoQ(10)). Recent interest has focused on the possible role CoQ(10) deficiency may have in the pathophysiology of the rare adverse effects of statin treatment. Currently, there is insufficient evidence from human studies to link statin therapy unequivocally to pathologically significantly decreased tissue CoQ(10) levels. Although statin treatment has been reported to lower plasma/serum CoQ(10) status, few human studies have assessed tissue CoQ(10) status. The plasma/serum CoQ(10) level is influenced by a number of physiological factors and, therefore, has limited value as a means of assessing intracellular CoQ(10) status. In those limited studies that have assessed the effect of statin treatment upon tissue CoQ(10) levels, none have shown evidence of a fall in CoQ(10) levels. This may reflect the doses of statins used, since many appear to have been used at doses below those recommended for their maximum therapeutic effects. Moreover, the poor bioavailability in those peripheral tissues tested may not reflect the effects the agents are having in liver and muscle, the tissues commonly affected in those patients who do not tolerate statins. This article reviews the biochemistry of CoQ(10), its role in cellular metabolism and the available evidence linking possible CoQ(10) deficiency to statin therapy.
Collapse
Affiliation(s)
- Iain P Hargreaves
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK.
| | | | | | | |
Collapse
|