1
|
Ba H, Guo Q, Shang Y, Hu P, Ma C, Li J, Coates DE, Li C. Insights into the molecular characteristics of embryonic cranial neural crest cells and their derived mesenchymal cell pools. Commun Biol 2024; 7:1347. [PMID: 39424998 PMCID: PMC11489408 DOI: 10.1038/s42003-024-07056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Neural crest cells (NCCs) are central to vertebrate embryonic development, giving rise to diverse cell types with unique migratory and differentiation capacities. This study examines the molecular characteristics of cranial neural crest cell (CNCC)-derived mesenchymal cells, specifically those from teeth which in deer show continuous but limited growth, and antlers, which exhibit remarkable regenerative capabilities. Here, through single-cell RNA sequencing analysis, we uncover shared gene expression profiles between adult antlerogenic and dental mesenchymal cells, indicating common developmental pathways. We identify a striking resemblance in transcriptomic features between antlerogenic progenitor cells and dental pulp mesenchymal cells. Comparative analysis of CNCC-derived and non-CNCC-derived mesenchymal cell pools across species reveals core signature genes associated with CNCCs and their derivatives, delineating essential connections between CNCCs and CNCC-derived adult mesenchymal pools. Furthermore, whole-genome DNA methylation analysis unveils hypomethylation of CNCC derivate signature genes in regenerative antlerogenic periosteum, implying a role in maintaining multipotency. These findings offer crucial insights into the developmental biology and regenerative potential of CNCC-derived mesenchymal cells, laying a foundation for innovative therapeutic strategies in tissue regeneration.
Collapse
Affiliation(s)
- Hengxing Ba
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China.
| | - Qianqian Guo
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China
| | - Yudong Shang
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China
| | - Pengfei Hu
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China
| | - Chao Ma
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China
| | - Jiping Li
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China
| | - Dawn Elizabeth Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | - Chunyi Li
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
2
|
Kano J, Wang H, Zhang H, Noguchi M. Roles of DKK3 in cellular adhesion, motility, and invasion through extracellular interaction with TGFBI. FEBS J 2022; 289:6385-6399. [DOI: 10.1111/febs.16529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/23/2022] [Accepted: 05/13/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Junko Kano
- Department of Diagnostic Pathology, Faculty of Medicine University of Tsukuba Japan
| | - Hongxin Wang
- Research Center for Advanced Measurement and Characterization National Institute for Materials Science Tsukuba Japan
| | - Han Zhang
- Research Center for Advanced Measurement and Characterization National Institute for Materials Science Tsukuba Japan
| | - Masayuki Noguchi
- Department of Diagnostic Pathology, Faculty of Medicine University of Tsukuba Japan
| |
Collapse
|
3
|
Lim HK, Hughes CO, Lim MJS, Li JJ, Rakshit M, Yeo C, Chng KR, Li A, Chan JSH, Ng KW, Leavesley DI, Smith BPC. Development of reconstructed intestinal micronucleus cytome (RICyt) assay in 3D human gut model for genotoxicity assessment of orally ingested substances. Arch Toxicol 2022; 96:1455-1471. [PMID: 35226136 PMCID: PMC9013689 DOI: 10.1007/s00204-022-03228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/12/2022] [Indexed: 11/30/2022]
Abstract
The micronucleus (MN) assay is widely used as part of a battery of tests applied to evaluate the genotoxic potential of chemicals, including new food additives and novel food ingredients. Micronucleus assays typically utilise homogenous in vitro cell lines which poorly recapitulate the physiology, biochemistry and genomic events in the gut, the site of first contact for ingested materials. Here we have adapted and validated the MN endpoint assay protocol for use with complex 3D reconstructed intestinal microtissues; we have named this new protocol the reconstructed intestine micronucleus cytome (RICyt) assay. Our data suggest the commercial 3D microtissues replicate the physiological, biochemical and genomic responses of native human small intestine to exogenous compounds. Tissues were shown to maintain log-phase proliferation throughout the period of exposure and expressed low background MN. Analysis using the RICyt assay protocol revealed the presence of diverse cell types and nuclear anomalies (cytome) in addition to MN, indicating evidence for comprehensive DNA damage and mode(s) of cell death reported by the assay. The assay correctly identified and discriminated direct-acting clastogen, aneugen and clastogen requiring exogenous metabolic activation, and a non-genotoxic chemical. We are confident that the genotoxic response in the 3D microtissues more closely resembles the native tissues due to the inherent tissue architecture, surface area, barrier effects and tissue matrix interactions. This proof-of-concept study highlights the RICyt MN cytome assay in 3D reconstructed intestinal microtissues is a promising tool for applications in predictive toxicology.
Collapse
Affiliation(s)
- Hui Kheng Lim
- Innovations in Food and Chemical Safety (IFCS) Programme, Agency for Science, Technology and Research, Singapore, Singapore.
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research, Singapore, Singapore.
- Future Ready Food Safety Hub (a Joint Initiative of A*STAR, SFA and NTU), Nanyang Technological University, Singapore, Singapore.
| | - Christopher Owen Hughes
- Innovations in Food and Chemical Safety (IFCS) Programme, Agency for Science, Technology and Research, Singapore, Singapore
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research, Singapore, Singapore
| | - Michelle Jing Sin Lim
- Innovations in Food and Chemical Safety (IFCS) Programme, Agency for Science, Technology and Research, Singapore, Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research, Singapore, Singapore
| | - Jia'En Jasmine Li
- National Centre for Food Science, Singapore Food Agency, Singapore, Singapore
| | - Moumita Rakshit
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Calvin Yeo
- National Centre for Food Science, Singapore Food Agency, Singapore, Singapore
| | - Kern Rei Chng
- National Centre for Food Science, Singapore Food Agency, Singapore, Singapore
| | - Angela Li
- National Centre for Food Science, Singapore Food Agency, Singapore, Singapore
| | | | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Singapore, Singapore
- Harvard T. H. Chan School of Public Health, Harvard University, Cambridge, USA
| | - David Ian Leavesley
- Innovations in Food and Chemical Safety (IFCS) Programme, Agency for Science, Technology and Research, Singapore, Singapore
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research, Singapore, Singapore
| | - Benjamin Paul Chapman Smith
- Innovations in Food and Chemical Safety (IFCS) Programme, Agency for Science, Technology and Research, Singapore, Singapore
- Future Ready Food Safety Hub (a Joint Initiative of A*STAR, SFA and NTU), Nanyang Technological University, Singapore, Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
4
|
Mori T, Onodera Y, Itokazu M, Takehara T, Shigi K, Iwawaki N, Akagi M, Teramura T. Depletion of NIMA-related kinase Nek2 induces aberrant self-renewal and apoptosis in stem/progenitor cells of aged muscular tissues. Mech Ageing Dev 2022; 201:111619. [PMID: 34995645 DOI: 10.1016/j.mad.2022.111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022]
Abstract
Frailty of the locomotory organs has become a widespread problem in the geriatric population. The major factor leading to frailty is an age-associated decrease in muscular mass and a reduced number of muscular cells and myofibers. In aged muscular tissues, muscular satellite cells (MuSCs) are reduced due to abnormalities in their self-renewal and the induction of apoptosis. However, the molecular mechanisms connecting aging-associated physiological changes and the reduction of MuSCs are largely unknown. NIMA-related kinase 2 (Nek2), a member of the Nek family of serine/threonine kinases, was found to be downregulated in aged MuSCs/progenitors. Further, Nek2 downregulation was found to inhibit self-renewal and apoptotic cell death by activating the p53-dependent checkpoint. Attenuated NEK2 expression was also observed in the muscular tissues of elderly donors, and its function was confirmed to be conserved in humans. Overall, this study proposes a novel mechanism for inducing muscular atrophy to understand aging-associated muscular diseases.
Collapse
Affiliation(s)
| | - Yuta Onodera
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Japan
| | - Maki Itokazu
- Department of Rehabilitation Medicine, Kindai University Faculty of Medicine, Japan
| | - Toshiyuki Takehara
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Japan
| | - Kanae Shigi
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Japan
| | - Natsumi Iwawaki
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Japan
| | - Masao Akagi
- Department of Orthopedic Surgery, Kindai University Faculty of Medicine, Japan
| | - Takeshi Teramura
- Institute of Advanced Clinical Medicine, Kindai University Hospital, Japan.
| |
Collapse
|
5
|
Sremac M, Paic F, Grubelic Ravic K, Serman L, Pavicic Dujmovic A, Brcic I, Krznaric Z, Nikuseva Martic T. Aberrant expression of SFRP1, SFRP3, DVL2 and DVL3 Wnt signaling pathway components in diffuse gastric carcinoma. Oncol Lett 2021; 22:822. [PMID: 34691249 PMCID: PMC8527567 DOI: 10.3892/ol.2021.13083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Diffuse gastric carcinoma (DGC) is characterized by poorly cohesive cells, highly invasive growth patterns, poor prognosis and resistance to the majority of available systemic therapeutic strategies. It has been previously reported that the Wnt/β-catenin signaling pathway serves a prominent role in the tumorigenesis of gastric carcinoma. However, the mechanism underlying the dysregulation of this pathway in DGC has not been fully elucidated. Therefore, the present study aimed to investigate the expression profiles of Wnt antagonists, secreted frizzled-related protein 1 (SFRP1) and secreted frizzled-related protein 3 (SFRP3), and dishevelled protein family members, dishevelled segment polarity protein 2 (DVL2) and dishevelled segment polarity protein 3 (DVL3), in DGC tissues. The association between the expression levels of these factors and the clinicopathological parameters of the patients was determined. Protein and mRNA expression levels in 62 DGC tumor tissues and 62 normal gastric mucosal tissues obtained from patients with non-malignant disease were measured using immunohistochemical and reverse transcription-quantitative PCR (RT-qPCR) analysis. Significantly lower protein expression levels of SFRP1 (P<0.001) and SFRP3 (P<0.001), but significantly higher protein expression levels of DVL2 (P<0.001) and DVL3 (P<0.001) were observed in DGC tissues compared with in control tissues by immunohistochemistry. In addition, significantly lower expression levels of SFRP1 (P<0.05) and higher expression levels of DVL3 (P<0.05) were found in in DGC tissues compared with those in normal gastric mucosal tissues using RT-qPCR. According to correlation analysis between the SFRP1, SFRP3, DVL2 and DVL3 protein expression levels and the clinicopathological characteristics of patients with DGC, a statistically significant correlation was found between the SFRP3 volume density and T stage (r=0.304; P=0.017) and between the SFRP3 volume density and clinical stage (r=0.336; P=0.008). In conclusion, the findings of the present study suggested that the Wnt signaling pathway components SFRP1, SFRP3, DVL2 and DVL3 may be aberrantly expressed in DGC tissues, implicating their possible role in the development of this malignant disease. The present data also revealed a positive relationship between SFRP3 protein expression and the clinical and T stage of DGC.
Collapse
Affiliation(s)
- Maja Sremac
- Division of Gastroenterology and Hepatology, University Hospital Center, 10000 Zagreb, Croatia
| | - Frane Paic
- Laboratory for Epigenetics and Molecular Medicine, Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Katja Grubelic Ravic
- Division of Gastroenterology and Hepatology, University Hospital Center, 10000 Zagreb, Croatia
| | - Ljiljana Serman
- Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.,Centre of Excellence in Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Aja Pavicic Dujmovic
- Department of Radiology, General Hospital 'Dr. Ivo Pedisic', 44000 Sisak, Croatia
| | - Iva Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, A-8010 Graz, Austria
| | - Zeljko Krznaric
- Division of Gastroenterology and Hepatology, University Hospital Center, 10000 Zagreb, Croatia
| | - Tamara Nikuseva Martic
- Department of Medical Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.,Centre of Excellence in Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Muller PA, Matheis F, Schneeberger M, Kerner Z, Jové V, Mucida D. Microbiota-modulated CART + enteric neurons autonomously regulate blood glucose. Science 2020; 370:314-321. [PMID: 32855216 PMCID: PMC7886298 DOI: 10.1126/science.abd6176] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
The gut microbiota affects tissue physiology, metabolism, and function of both the immune and nervous systems. We found that intrinsic enteric-associated neurons (iEANs) in mice are functionally adapted to the intestinal segment they occupy; ileal and colonic neurons are more responsive to microbial colonization than duodenal neurons. Specifically, a microbially responsive subset of viscerofugal CART+ neurons, enriched in the ileum and colon, modulated feeding and glucose metabolism. These CART+ neurons send axons to the prevertebral ganglia and are polysynaptically connected to the liver and pancreas. Microbiota depletion led to NLRP6- and caspase 11-dependent loss of CART+ neurons and impaired glucose regulation. Hence, iEAN subsets appear to be capable of regulating blood glucose levels independently from the central nervous system.
Collapse
Affiliation(s)
- Paul A Muller
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.
| | - Fanny Matheis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Marc Schneeberger
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Zachary Kerner
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Veronica Jové
- Laboratory of Neurogenetics and Behavior, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
7
|
Jiang Y, Wang W, Wu X, Shi J. Pizotifen inhibits the proliferation and invasion of gastric cancer cells. Exp Ther Med 2019; 19:817-824. [PMID: 32010241 PMCID: PMC6966152 DOI: 10.3892/etm.2019.8308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 07/07/2019] [Indexed: 01/04/2023] Open
Abstract
Gastric cancer is the fifth most common malignancy and the third highest cause of cancer-associated mortality worldwide. Therefore, research on the pathogenesis of gastric cancer is of utmost importance. It has been reported that aberrant activation of the Wnt/β-catenin signaling pathway is involved in the occurrence and development of gastric cancer. In the present study, it was found that pizotifen could inhibit the viability of gastric cancer cell lines MNK45 and AGS cells in a dose-dependent manner. Pizotifen treatment suppressed cell migration and invasion in MNK45 and AGS cells, whilst also inducing apoptosis. Western blot analysis demonstrated that pizotifen blocked the expression of Wnt3a, β-catenin and N-cadherin, whilst increasing E-cadherin expression. In addition, BML-284, a pharmacological Wnt signaling activator, partially reversed the changes in the expression levels of β-catenin, N-cadherin and E-cadherin in MNK45 and AGS cells induced by pizotifen. Collectively, these findings suggested that pizotifen demonstrates potential as a novel anti-cancer drug for the treatment of gastric cancer by inhibiting the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Gastroenterology, National Center of Gerontology, Beijing Hospital, Beijing 100730, P.R. China
| | - Wei Wang
- Department of Gastroenterology, National Center of Gerontology, Beijing Hospital, Beijing 100730, P.R. China
| | - Xi Wu
- Department of Gastroenterology, National Center of Gerontology, Beijing Hospital, Beijing 100730, P.R. China
| | - Jihua Shi
- Department of Gastroenterology, National Center of Gerontology, Beijing Hospital, Beijing 100730, P.R. China
| |
Collapse
|
8
|
Ai J, Ketabchi N, Verdi J, Gheibi N, Khadem Haghighian H, Kavianpour M. Mesenchymal stromal cells induce inhibitory effects on hepatocellular carcinoma through various signaling pathways. Cancer Cell Int 2019; 19:329. [PMID: 31827403 PMCID: PMC6894473 DOI: 10.1186/s12935-019-1038-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent type of malignant liver disease worldwide. Molecular changes in HCC collectively contribute to Wnt/β-catenin, as a tumor proliferative signaling pathway, toll-like receptors (TLRs), nuclear factor-kappa B (NF-κB), as well as the c-Jun NH2-terminal kinase (JNK), predominant signaling pathways linked to the release of tumor-promoting cytokines. It should also be noted that the Hippo signaling pathway plays an important role in organ size control, particularly in promoting tumorigenesis and HCC development. Nowadays, mesenchymal stromal cells (MSCs)-based therapies have been the subject of in vitro, in vivo, and clinical studies for liver such as cirrhosis, liver failure, and HCC. At present, despite the importance of basic molecular pathways of malignancies, limited information has been obtained on this background. Therefore, it can be difficult to determine the true concept of interactions between MSCs and tumor cells. What is known, these cells could migrate toward tumor sites so apply effects via paracrine interaction on HCC cells. For example, one of the inhibitory effects of MSCs is the overexpression of dickkopf-related protein 1 (DKK-1) as an important antagonist of the Wnt signaling pathway. A growing body of research challenging the therapeutic roles of MSCs through the secretion of various trophic factors in HCC. This review illustrates the complex behavior of MSCs and precisely how their inhibitory signals interface with HCC tumor cells.
Collapse
Affiliation(s)
- Jafar Ai
- 1Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Ketabchi
- 2Department of Medical Laboratory Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Javad Verdi
- 1Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nematollah Gheibi
- 3Department of Physiology and Medical Physics, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Khadem Haghighian
- 4Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Maria Kavianpour
- 1Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,5Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Norollahi SE, Alipour M, Rashidy-Pour A, Samadani AA, Larijani LV. Regulatory Fluctuation of WNT16 Gene Expression Is Associated with Human Gastric Adenocarcinoma. J Gastrointest Cancer 2019; 50:42-47. [PMID: 29110228 DOI: 10.1007/s12029-017-0022-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Gastric cancer is one of the most serious and lethal kinds of cancer in the world. It is a multi-step, multi-factor, and elaborated process that is associated to gene abnormal expression. This study intended to investigate the WNT16 gene's expression in human gastric tumor and the margin tissues of the stomach (normal tissues). METHODS Correspondingly, 40 samples (20 tumoral tissues and 20 non tumoral or margins tissues) were investigated in Imam Khomeini Hospital in Sari City, Mazandaran Province, Iran. In this way, real-time PCR, Taqman assay was employed to evaluate the upregulation and downregulation of this gene in both tissues in triplicate form. The GAPDH gene was selected as housekeeping gene. RESULTS Conspicuously, the results have shown a remarkable modification in tumoral tissues, and the gene expression increased significantly in tumoral tissue. CONCLUSIONS Conclusively, the upregulation of WNTt16 gene expression in tumoral tissues was impressive and the P value was 0.005 and the SE range was 0.064-142.154.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Faculty of Medicine, Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Alipour
- Department of Biology, Islamic Azad University of Babol, Babol, Iran
| | - Ali Rashidy-Pour
- Faculty of Medicine, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.,Faculty of Medicine, Department of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Akbar Samadani
- Faculty of Medicine, Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran. .,Faculty of Medicine, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Laleh Vahedi Larijani
- Faculty of Medicine, Department of Pathology, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
10
|
Yousefi B, Mohammadlou M, Abdollahi M, Salek Farrokhi A, Karbalaei M, Keikha M, Kokhaei P, Valizadeh S, Rezaiemanesh A, Arabkari V, Eslami M. Epigenetic changes in gastric cancer induction by
Helicobacter pylori. J Cell Physiol 2019; 234:21770-21784. [PMID: 31169314 DOI: 10.1002/jcp.28925] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Bahman Yousefi
- Department of Immunology Semnan University of Medical Sciences Semnan Iran
| | - Maryam Mohammadlou
- Department of Immunology Semnan University of Medical Sciences Semnan Iran
| | - Maryam Abdollahi
- Department of Immunology Semnan University of Medical Sciences Semnan Iran
| | | | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine Jiroft University of Medical Sciences Jiroft Iran
| | - Masoud Keikha
- Department of Microbiology and Virology, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Parviz Kokhaei
- Department of Immunology Semnan University of Medical Sciences Semnan Iran
- Immune and Gene Therapy Lab, Cancer Centre Karolinska Karolinska University Hospital Stockholm Sweden
| | - Saeid Valizadeh
- Department of Bacteriology and Virology Semnan University of Medical Sciences Semnan Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine Kermanshah University of Medical Sciences Kermanshah Iran
| | - Vahid Arabkari
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology University College Dublin Dublin Ireland
| | - Majid Eslami
- Cancer Research Center Semnan University of Medical Sciences Semnan Iran
| |
Collapse
|
11
|
Saberi S, Piryaei A, Mirabzadeh E, Esmaeili M, Karimi T, Momtaz S, Abdirad A, Sodeifi N, Mohagheghi MA, Baharvand H, Mohammadi M. Immunohistochemical Analysis of LGR5 and TROY Expression in Gastric Carcinogenesis Demonstrates an Inverse Trend. IRANIAN BIOMEDICAL JOURNAL 2019; 23. [PMID: 30501144 PMCID: PMC6707110 DOI: 10.29252/.23.2.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background Two of the Wnt signaling pathway target genes, tumor necrosis factor receptor family member (TROY) and leucine-rich G-protein coupled receptor (LGR5), are involved in the generation and maintenance of gastrointestinal epithelium. A negative modulatory role has recently been assigned to TROY, in this pathway. Here, we have examined their simultaneous expression in gastric carcinogenesis. Methods Tumor and paired adjacent tissues of intestinal-type gastric cancer (GC) patients (n = 30) were evaluated for LGR5 and TROY expression by immunohistochemistry. The combination of the percentage of positively¬ stained cells and the intensity of staining was defined as the composite score and compared between groups. The obtained findings were re-evaluated in a mouse model. Results TROY expression in the tumor tissue was significantly lower than that of the adjacent tissue (2.5 ± 0.9 vs. 3.3 ± 0.9, p = 0.004), which was coincident with higher LGR5 expression (3.6 ± 1.1 vs. 2.7 ± 0.9, p = 0.001). This observation was prominent at stages II/III of GC, leading to a statistically significant mean difference of expression between these two molecules (p = 0.005). In the H. pylori infected-mouse model, this inverse expression was observed in transition from early (8-16 w) to late (26-50 w) time points, post treatment (p = 0.002). Conclusion Our data demonstrates an inverse trend between TROY down-regulation and LGR5 up-regulation in GC tumors, as well as in response to H. pylori infection in mice. These findings support a potential negative modulatory role for TROY on LGR5 expression.
Collapse
Affiliation(s)
- Samaneh Saberi
- HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; ,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Esmat Mirabzadeh
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Esmaeili
- HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Toktam Karimi
- HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sara Momtaz
- HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Afshin Abdirad
- Department of Pathology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Sodeifi
- Department of Andrology at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; ,Corresponding Authors: Marjan Mohammadi, HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; E-mail: marjan.mohammadi2010@gmail or . Hossein Baharvand , Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; E-mail:
| | - Marjan Mohammadi
- HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; ,Corresponding Authors: Marjan Mohammadi, HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; E-mail: marjan.mohammadi2010@gmail or . Hossein Baharvand , Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; E-mail:
| |
Collapse
|
12
|
Yan H, Konstorum A, Lowengrub JS. Three-Dimensional Spatiotemporal Modeling of Colon Cancer Organoids Reveals that Multimodal Control of Stem Cell Self-Renewal is a Critical Determinant of Size and Shape in Early Stages of Tumor Growth. Bull Math Biol 2018; 80:1404-1433. [PMID: 28681151 PMCID: PMC5756149 DOI: 10.1007/s11538-017-0294-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/11/2017] [Indexed: 12/16/2022]
Abstract
We develop a three-dimensional multispecies mathematical model to simulate the growth of colon cancer organoids containing stem, progenitor and terminally differentiated cells, as a model of early (prevascular) tumor growth. Stem cells (SCs) secrete short-range self-renewal promoters (e.g., Wnt) and their long-range inhibitors (e.g., Dkk) and proliferate slowly. Committed progenitor (CP) cells proliferate more rapidly and differentiate to produce post-mitotic terminally differentiated cells that release differentiation promoters, forming negative feedback loops on SC and CP self-renewal. We demonstrate that SCs play a central role in normal and cancer colon organoids. Spatial patterning of the SC self-renewal promoter gives rise to SC clusters, which mimic stem cell niches, around the organoid surface, and drive the development of invasive fingers. We also study the effects of externally applied signaling factors. Applying bone morphogenic proteins, which inhibit SC and CP self-renewal, reduces invasiveness and organoid size. Applying hepatocyte growth factor, which enhances SC self-renewal, produces larger sizes and enhances finger development at low concentrations but suppresses fingers at high concentrations. These results are consistent with recent experiments on colon organoids. Because many cancers are hierarchically organized and are subject to feedback regulation similar to that in normal tissues, our results suggest that in cancer, control of cancer stem cell self-renewal should influence the size and shape in similar ways, thereby opening the door to novel therapies.
Collapse
Affiliation(s)
- Huaming Yan
- Department of Mathematics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Anna Konstorum
- Center for Quantitative Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - John S Lowengrub
- Department of Mathematics, Department of Biomedical Engineering, Center for Complex Biological Systems, and Chao Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
13
|
Lin B, Hong H, Jiang X, Li C, Zhu S, Tang N, Wang X, She F, Chen Y. c‑Jun suppresses the expression of WNT inhibitory factor 1 through transcriptional regulation and interaction with DNA methyltransferase 1 in gallbladder cancer. Mol Med Rep 2018; 17:8180-8188. [PMID: 29693707 PMCID: PMC5983991 DOI: 10.3892/mmr.2018.8890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 07/04/2017] [Indexed: 11/22/2022] Open
Abstract
WNT inhibitory factor 1 (WIF-1) is involved in the tumorigenicity and progression of several types of tumor, which has been attributed to aberrant hypermethylation of its promoter. However, the role of WIF-1 in the pathogenesis of gallbladder cancer (GBC) remains to be fully elucidated, and the data available are insufficient to identify the upstream molecular mechanisms involved. In the present study, the methylation status of the WIF-1 promoter was investigated using methylation-specific polymerase chain reaction (PCR) and bisulfate sequencing PCR in GBC cells. Immunohistochemistry, reverse transcription-quantitative PCR and western blotting were used to analyze the expression of WIF-1 and c-Jun. In addition, a co-immunoprecipitation assay was designed to determine the DNA methyltransferase that was implicated in WIF-1 methylation. The results revealed that the expression of WIF-1 was low in GBC, and that this was caused by aberrant DNA hypermethylation. However, there were no significant correlations between the expression of WIF-1 and certain key clinicopathological characteristics of GCB. Subsequently, a negative correlation was found between the protein expression of c-Jun and WIF-1 in 50 GBC specimens using immunohistochemistry. The demethylation and re-expression of WIF-1 was observed when the expression of c-Jun was silenced. Finally, it was found that the knockdown of c-Jun downregulated the expression of DNA methyltransferase 1 (DNMT1) and that c-Jun interacted with DNMT1. Taken together, the present study suggested that c-Jun suppressed the expression of WIF-1 through transcriptional regulation and interaction with DNMT1 in GBC. These findings provide an alternative pathogenesis of GBC, which may be promising as a novel reference for early diagnosis or future treatment.
Collapse
Affiliation(s)
- Bin Lin
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Haijie Hong
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Xiaojie Jiang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Chengzong Li
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Siyuan Zhu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Xiaoqian Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Feifei She
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Yanling Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
14
|
Xu W, He L, Li Y, Tan Y, Zhang F, Xu H. Silencing of lncRNA ZFAS1 inhibits malignancies by blocking Wnt/β-catenin signaling in gastric cancer cells. Biosci Biotechnol Biochem 2018; 82:456-465. [PMID: 29424266 DOI: 10.1080/09168451.2018.1431518] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gastric cancer is a common malignancy with high mortality. Long noncoding RNA (lncRNA) zinc finger antisense (ZFAS)1 is upregulated in gastric cancer specimens compared with the para-carcinoma tissues. The silencing of ZFAS1 inhibited the growth, proliferation, cell cycle progress, migration, invasion and epithelial-mesenchymal transition (EMT), and enhanced the sensitivity to cis-platinum or paclitaxel in SGC7901 cells, as evidenced by the expression changes of proliferating cell nuclear antigen, Cyclin D1, Cyclin E, Cyclin B1, E-cadherin, N-cadherin, vimentin, matrix metalloproteinase (MMP)-2 and MMP-14. The ZFAS1 also activated the Wnt/β-catenin signaling. Subsequently, the ZFAS1 knockdown-induced the inhibition of migration, invasion, EMT and resistance to chemotherapeutic reagens was reversed by the overexpression of β-catenin. In summary, the silencing of ZFAS1 inhibited the growth, proliferation, cell cycle progress, migration, invasion, EMT and chemotherapeutic tolerance by blocking the Wnt/β-catenin signaling in gastric cancer cells.
Collapse
Affiliation(s)
- Weiran Xu
- a Department of Gastroenterology , The First Hospital of Jilin University , Changchun , People's Republic of China
| | - Liang He
- b Department of Gastrointestinal Surgery , The First Hospital of Jilin University , Changchun , People's Republic of China
| | - Ying Li
- a Department of Gastroenterology , The First Hospital of Jilin University , Changchun , People's Republic of China
| | - Yan Tan
- c Tumor Biotherapy Center , The People's Hospital of Jilin Province , Changchun , People's Republic of China
| | - Fan Zhang
- a Department of Gastroenterology , The First Hospital of Jilin University , Changchun , People's Republic of China
| | - Hong Xu
- a Department of Gastroenterology , The First Hospital of Jilin University , Changchun , People's Republic of China
| |
Collapse
|
15
|
Durand S, Trillet K, Uguen A, Saint-Pierre A, Le Jossic-Corcos C, Corcos L. A transcriptome-based protein network that identifies new therapeutic targets in colorectal cancer. BMC Genomics 2017; 18:758. [PMID: 28962550 PMCID: PMC5622428 DOI: 10.1186/s12864-017-4139-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/13/2017] [Indexed: 01/22/2023] Open
Abstract
Background Colon cancer occurrence is increasing worldwide, making it the third most frequent cancer. Although many therapeutic options are available and quite efficient at the early stages, survival is strongly decreased when the disease has spread to other organs. The identification of molecular markers of colon cancer is likely to help understanding its course and, eventually, to uncover novel genes to be targeted by drugs. In this study, we compared gene expression in a set of 95 human colon cancer samples to that in 19 normal colon mucosae, focusing on 401 genes from 5 selected pathways (Apoptosis, Cancer, Cholesterol metabolism and lipoprotein signaling, Drug metabolism, Wnt/beta-catenin). Deregulation of mRNA levels largely matched that of proteins, leading us to build in silico protein networks, starting from mRNA levels, to identify key proteins central to network activity. Results Among the analyzed genes, 10.5% (42) had no reported link with colon cancer, including the SFRP1, IGF1 and ADH1B (down), and MYC and IL8 (up), whose encoded proteins were most interacting with other proteins from the same or even distinct networks. Analyzing all pathways globally led us to uncover novel functional links between a priori unrelated or rather remotely connected pathways, such as the Drug metabolism and the Cancer pathways or, even more strikingly, between the Cholesterol metabolism and lipoprotein signaling and the Cancer pathways. In addition, we analyzed the responsiveness of some of the deregulated genes essential to network activities, to chemotherapeutic agents used alone or in presence of Lovastatin, a lipid-lowering drug. Some of these treatments could oppose the deregulations occurring in cancer samples, including those of the CHECK2, CYP51A1, HMGCS1, ITGA2, NME1 or VEGFA genes. Conclusions Our network-based approach allowed discovering genes not previously known to play regulatory roles in colon cancer. Our results also showed that selected drug treatments might revert the cancer-specific deregulation of genes playing prominent roles within the networks operating to maintain colon homeostasis. Among those genes, some could constitute novel testable targets to eliminate colon cancer cells, either directly or, potentially, through the use of lipid-lowering drugs such as statins, in association with selected anticancer drugs. Electronic supplementary material The online version of this article (10.1186/s12864-017-4139-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stéphanie Durand
- INSERM 1078 Unit, "Cancérologie appliquée et épissage alternatif" team, Brest Institute of Health, Agronomy and Material (IBSAM), Faculty of medicine, University of Western Brittany (UBO), 22 avenue Camille Desmoulins, F-29200, Brest, France
| | - Killian Trillet
- INSERM 1078 Unit, "Cancérologie appliquée et épissage alternatif" team, Brest Institute of Health, Agronomy and Material (IBSAM), Faculty of medicine, University of Western Brittany (UBO), 22 avenue Camille Desmoulins, F-29200, Brest, France
| | - Arnaud Uguen
- INSERM 1078 Unit, "Cancérologie appliquée et épissage alternatif" team, Brest Institute of Health, Agronomy and Material (IBSAM), Faculty of medicine, University of Western Brittany (UBO), 22 avenue Camille Desmoulins, F-29200, Brest, France.,Department of Pathology, Brest University Hospital, F-29200, Brest, France
| | - Aude Saint-Pierre
- INSERM 1078 Unit, "Epidemiology, genetic Epidemiology and population genetics" team, 46 rue Félix Le Dantec, F-29200, Brest, France
| | - Catherine Le Jossic-Corcos
- INSERM 1078 Unit, "Cancérologie appliquée et épissage alternatif" team, Brest Institute of Health, Agronomy and Material (IBSAM), Faculty of medicine, University of Western Brittany (UBO), 22 avenue Camille Desmoulins, F-29200, Brest, France
| | - Laurent Corcos
- INSERM 1078 Unit, "Cancérologie appliquée et épissage alternatif" team, Brest Institute of Health, Agronomy and Material (IBSAM), Faculty of medicine, University of Western Brittany (UBO), 22 avenue Camille Desmoulins, F-29200, Brest, France. .,INSERM 1078 Unit, "Cancérologie appliquée et épissage alternatif" laboratory, University of Western Brittany (UBO), Faculty of medicine, 22, rue Camille Desmoulins, 29200, Brest, France.
| |
Collapse
|
16
|
Qui S, Kano J, Noguchi M. Dickkopf 3 attenuates xanthine dehydrogenase expression to prevent oxidative stress-induced apoptosis. Genes Cells 2017; 22:406-417. [PMID: 28299863 DOI: 10.1111/gtc.12484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/07/2017] [Indexed: 01/25/2023]
Abstract
Dickkopf (DKK) 3 is a DKK glycoprotein family member that controls cell fate during embryogenesis and exerts opposing effects on survival in a cell type-dependent manner; however, the mechanisms governing its pro-apoptosis versus pro-survival functions remain unclear. Here, we investigated DKK3 function in Li21 hepatoma cells and tPH5CH immortalized hepatocytes. DKK3 knockdown by siRNA resulted in reactive oxygen species accumulation and subsequent apoptosis, which were abrogated by administration of the antioxidant N-acetyl-cysteine. Moreover, forced DKK3 over-expression induced resistance to hydrogen peroxide (H2 O2 )-induced apoptosis. Expression analysis by cDNA microarray showed that xanthine dehydrogenase (XDH) expression was significantly lower in Li21 and tPH5CHDKK3-over-expressing cells in response to H2 O2 treatment when compared to that in their respective mock-transfected controls, whereas a marked increase was observed in H2 O2 -treated DKK3 knockdown cells. Thus, these data suggest that DKK3 promotes cell survival during oxidative stress by suppressing the expression of the superoxide-producing enzyme XDH.
Collapse
Affiliation(s)
- Shuang Qui
- Department of Diagnostic Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Junko Kano
- Department of Diagnostic Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masayuki Noguchi
- Department of Diagnostic Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
17
|
Genetic variants in the 3' untranslated region of sFRP1 gene and risk of gastric cancer in a Chinese population. Int J Biol Markers 2017; 32:e102-e107. [PMID: 27739564 DOI: 10.5301/jbm.5000233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Secreted frizzled-related protein 1 (sFRP1), a negative regulator of the Wnt signaling pathway, is frequently inactivated in human gastric cancer. Genetic variants in the 3' untranslated region (UTR) of the gene may influence the strength of miRNA binding and the regulation of mRNA transcription, affecting the individual's cancer risk. This study aims to investigate the impact of variants in the 3' UTR of sFRP1 on the gastric cancer susceptibility in a Chinese population. PATIENTS AND METHODS The association between 2 sFRP1 gene variation loci (rs1127379 and rs10088390) with minor allele frequency more than 0.1 in the 3' UTR and gastric cancer risk was assessed in a case-control study including 419 gastric cancer cases and 571 healthy controls. PCR-restriction fragment length polymorphism analysis was used for genotyping; the odds ratio and 95% confidence interval were calculated to estimate the relative risk. RESULTS Compared with the AA genotype, the GG genotype of rs1127379 was significantly associated with a reduced risk of gastric cancer overall. In the subgroup analysis, the protective effect of the GG genotype was also found for noncardia cancer and intestinal gastric cancer. Furthermore, haplotype analysis showed that the A rs1127379 G rs10088390 haplotype conferred a risk effect for gastric cancer. CONCLUSIONS Genetic variants at the sFRP1 gene may be involved in gastric tumorigenesis, especially in noncardia and intestinal gastric cancer. Further prospective studies with different ethnicities and large sample sizes are needed to confirm our findings.
Collapse
|
18
|
Inoue J, Fujita H, Bando T, Kondo Y, Kumon H, Ohuchi H. Expression analysis of Dickkopf-related protein 3 (Dkk3) suggests its pleiotropic roles for a secretory glycoprotein in adult mouse. J Mol Histol 2016; 48:29-39. [DOI: 10.1007/s10735-016-9703-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/08/2016] [Indexed: 12/18/2022]
|
19
|
Huang Y, Du Q, Wu W, She F, Chen Y. Rescued expression of WIF-1 in gallbladder cancer inhibits tumor growth and induces tumor cell apoptosis with altered expression of proteins. Mol Med Rep 2016; 14:2573-81. [PMID: 27430608 PMCID: PMC4991677 DOI: 10.3892/mmr.2016.5532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 06/24/2016] [Indexed: 01/08/2023] Open
Abstract
As a highly conserved metabolic pathway, the Wnt signaling pathway is involved in cell differentiation, proliferation and several other processes. In normal cells, this pathway is suppressed, and abnormal activation is often associated with tumor occurrence and development. In certain types of tumor, Wnt inhibitory factor 1 (WIF-1), an inhibitor of the Wnt pathway, inhibits tumor growth. However, the effect of the expression of WIF-1 on gallbladder cancer remains to be fully elucidated. In the current study, reverse transcription-quantitative polymerase chain reaction and western blotting were conducted. The present study demonstrated that, in gallbladder cancer, WIF-1 generally exhibited low levels of expression as a result of gene promoter methylation. Treatment with the drug, 5-aza-2-deoxycytidine, increased the expression of WIF-1 in the GBC-SD gallbladder cell line. In addition, a WIF-1-expression plasmid was transfected into GBC-SD cells, and it was found that cell proliferation, invasion and metastasis declined significantly, whereas the apoptotic rate increased. A nude mouse tumor transplantation experiment showed that the oncogenicity of the GBC-SD cells expressing WIF-1 was substantially lower, compared with that of the untransfected GBC-SD cells and of GBD-SD cells expressing the control plasmid. A fluorescent protein chip experiment showed that the restored expression of WIF-1 affected the expression of several cellular proteins. These alterations may explain the different biological behavior of the tumor cells expressing WIF-1. As an effective inhibitory factor of the Wnt signaling pathway, WIF-1 modulated the expression of proteins controlling the proliferation, apoptosis and metastasis of gallbladder tumor cells, thus suppressing the tumor. Therefore, WIF-1 may be an effective treatment target for gallbladder cancer.
Collapse
Affiliation(s)
- Yan Huang
- Department of Hepatobiliary Surgery, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Qiang Du
- Department of Hepatobiliary Surgery, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Weibao Wu
- Department of Hepatobiliary Surgery, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Feifei She
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yanling Chen
- Department of Hepatobiliary Surgery, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
20
|
Seko Y, Azuma N, Yokoi T, Kami D, Ishii R, Nishina S, Toyoda M, Shimokawa H, Umezawa A. Anteroposterior Patterning of Gene Expression in the Human Infant Sclera: Chondrogenic Potential and Wnt Signaling. Curr Eye Res 2016; 42:145-154. [PMID: 27336854 DOI: 10.3109/02713683.2016.1143015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose/Aim: We sought to identify the anteroposterior spatial gene expression hierarchy in the human sclera to develop a hypothesis for axial elongation and deformity of the eyeball. MATERIALS AND METHODS We analyzed the global gene expression of human scleral cells derived from distinct parts of the human infant sclera obtained from surgically enucleated eyes with retinoblastoma, using Affymetrix GeneChip oligonucleotide arrays, and compared, in particular, gene expression levels between the anterior and posterior parts of the sclera. The ages of three donors were 10M, 4M, and 1Y9M. RESULTS K-means clustering analysis of gene expression revealed that expression levels of cartilage-associated genes such as COLXIA and ACAN increased from the anterior to the posterior part of the sclera. Microarray analyses and RT-PCR data showed that the expression levels of MGP, COLXIA, BMP4, and RARB were significantly higher in the posterior than in the anterior sclera of two independent infant eyes. Conversely, expression levels of WNT2, DKK2, GREM1, and HOXB2 were significantly higher in the anterior sclera. Among several Wnt-family genes examined, WNT2B was found to be expressed at a significantly higher level in the posterior sclera, and the reverse order was observed for WNT2. The results of luciferase reporter assays suggested that a GSK-3β inhibitor stimulated Wnt/β-catenin signaling particularly strongly in the posterior sclera. The expression pattern of RARB, a myopia-related gene, was similar in three independent eyes. CONCLUSIONS Chondrogenic potential was higher and Wnt/β-catenin signaling was more potently activated by a GSK-3β inhibitor in the posterior than in the anterior part of the human infant sclera. Although the differences in the gene expression profiles between the anterior and posterior sclera might be involved only in normal growth processes, this anteroposterior hierarchy in the sclera might contribute to disorders involving abnormal elongation and deformity of the eyeball, including myopia.
Collapse
Affiliation(s)
- Yuko Seko
- a Visual Functions Section, Department of Rehabilitation for Sensory Functions , Research Institute, National Rehabilitation Center for Persons with Disabilities , Saitama , Japan.,b Department of Reproductive Biology , Center for Regenerative Medicine, National Institute for Child Health and Development , Tokyo , Japan
| | - Noriyuki Azuma
- c Department of Ophthalmology , National Center for Child Health and Development , Tokyo , Japan
| | - Tadashi Yokoi
- c Department of Ophthalmology , National Center for Child Health and Development , Tokyo , Japan
| | - Daisuke Kami
- b Department of Reproductive Biology , Center for Regenerative Medicine, National Institute for Child Health and Development , Tokyo , Japan.,d Department of Regenerative Medicine , Kyoto Prefectural University of Medicine , Kyoto , Japan
| | - Ryuga Ishii
- b Department of Reproductive Biology , Center for Regenerative Medicine, National Institute for Child Health and Development , Tokyo , Japan
| | - Sachiko Nishina
- c Department of Ophthalmology , National Center for Child Health and Development , Tokyo , Japan
| | - Masashi Toyoda
- b Department of Reproductive Biology , Center for Regenerative Medicine, National Institute for Child Health and Development , Tokyo , Japan.,e Department of Vascular Medicine , Tokyo Metropolitan Institute of Gerontology , Tokyo , Japan
| | - Hitoyata Shimokawa
- a Visual Functions Section, Department of Rehabilitation for Sensory Functions , Research Institute, National Rehabilitation Center for Persons with Disabilities , Saitama , Japan.,f Department of Pediatric Dentistry , Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University , Tokyo , Japan
| | - Akihiro Umezawa
- b Department of Reproductive Biology , Center for Regenerative Medicine, National Institute for Child Health and Development , Tokyo , Japan
| |
Collapse
|
21
|
Chiurillo MA. Role of the Wnt/β-catenin pathway in gastric cancer: An in-depth literature review. World J Exp Med 2015; 5:84-102. [PMID: 25992323 PMCID: PMC4436943 DOI: 10.5493/wjem.v5.i2.84] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 12/05/2014] [Accepted: 03/20/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer remains one of the most common cancers worldwide and one of the leading cause for cancer-related deaths. Gastric adenocarcinoma is a multifactorial disease that is genetically, cytologically and architecturally more heterogeneous than other gastrointestinal carcinomas. The aberrant activation of the Wnt/β-catenin signaling pathway is involved in the development and progression of a significant proportion of gastric cancer cases. This review focuses on the participation of the Wnt/β-catenin pathway in gastric cancer by offering an analysis of the relevant literature published in this field. Indeed, it is discussed the role of key factors in Wnt/β-catenin signaling and their downstream effectors regulating processes involved in tumor initiation, tumor growth, metastasis and resistance to therapy. Available data indicate that constitutive Wnt signalling resulting from Helicobacter pylori infection and inactivation of Wnt inhibitors (mainly by inactivating mutations and promoter hypermethylation) play an important role in gastric cancer. Moreover, a number of recent studies confirmed CTNNB1 and APC as driver genes in gastric cancer. The identification of specific membrane, intracellular, and extracellular components of the Wnt pathway has revealed potential targets for gastric cancer therapy. High-throughput “omics” approaches will help in the search for Wnt pathway antagonist in the near future.
Collapse
|
22
|
Kang P, Wan M, Huang P, Li C, Wang Z, Zhong X, Hu Z, Tai S, Cui Y. The Wnt antagonist sFRP1 as a favorable prognosticator in human biliary tract carcinoma. PLoS One 2014; 9:e90308. [PMID: 24594839 PMCID: PMC3940873 DOI: 10.1371/journal.pone.0090308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 02/01/2014] [Indexed: 12/11/2022] Open
Abstract
Inactivation of Secreted Frizzled-Related Protein-1 (SFRP1) and overexpression of β-catenin play important roles in the development and progression of a wide range of malignancies. We sought to determine whether the expression of SFRP1 and β-catenin correlates with clinicopathologic parameters in human biliary tract cancer (BTC) and to evaluate the potential roles of these proteins as prognostic indicators. The expression of SFRP1 and β-catenin in 78 patients with BTC and 36 control patients as investigated by immunohistochemistry. A wide variety of statistical parameters were assessed to determine the association between these proteins and the occurrence, clinical features, and overall survival rate in BTC.SFRP1 and β-catenin had an inverse correlation (r = -0.636, P<0.0001) as assessed by Spearman rank analysis, with 52 (66.7%) of the BTC samples negative for SFRP1 expression and 53 (68.0%) positive for β-catenin expression. Expression of each protein was associated with the histological type and lymph node invasion of BTC. A significantly poorer overall survival rate was observed for patients with low SFRP1 expression (P<0.0001) or high β-catenin expression (P = 0.007). SFRP1 expression (P<0.0001), β-catenin expression (P<0.01) and histological type (P<0.01) were correlated with overall survival rate as assessed by univariate analysis; while multivariate analysis suggested that SFRP1 (hazard ratio, 10.514; 95% confidence intervals, 2.381-39.048; P<0.0001) may serve as an independent prognostic factor for BTC. Collectively, these results demonstrate that SFRP1 is a favorable prognostic factor for human BTC and that its expression inversely correlates with that of β-catenin.
Collapse
Affiliation(s)
- Pengcheng Kang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Ming Wan
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Peng Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Chunlong Li
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Zhidong Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Zhanliang Hu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Sheng Tai
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| |
Collapse
|
23
|
Aberrant methylation of NPY, PENK, and WIF1 as a promising marker for blood-based diagnosis of colorectal cancer. BMC Cancer 2013; 13:566. [PMID: 24289328 PMCID: PMC4219483 DOI: 10.1186/1471-2407-13-566] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/25/2013] [Indexed: 12/26/2022] Open
Abstract
Background DNA methylation is a well-known epigenetic mechanism involved in epigenetic gene regulation. Several genes were reported hypermethylated in CRC, althought no gene marker was proven to be individually of sufficient sensitivity or specificity in routine clinical practice. Here, we identified novel epigenetic markers and assessed their combined use for diagnostic accuracy. Methods We used methylation arrays on samples from several effluents to characterize methylation profiles in CRC samples and controls, as established by colonoscopy and pathology findings, and selected two differentially methylated candidate epigenetic genes (NPY, PENK). To this gene panel we added WIF, on the basis of being reported in literature as silenced by promoter hypermethylation in several cancers, including CRC. We measured their methylation degrees by quantitative multiplex-methylation specific PCR (QM-MSP) on 15 paired carcinomas and adjacent non-cancerous colorectal tissues and we subsequently performed a clinical validation on two different series of 266 serums, subdivided in 32 CRC, 26 polyps, 47 other cancers and 161 with normal colonoscopy. We assessed the results by receiver operating characteristic curve (ROC), using cumulative methylation index (CMI) as variable threshold. Results We obtained CRC detection on tissues with both sensitivity and specificity of 100%. On serum CRC samples, we obtained sensitivity/specificity values of, e.g., 87%/80%, 78%/90% and 59%/95%, and negative predictive value/positive predictive value figures of 97%/47%, 95%/61% and 92%/70%. On serum samples from other cancers we obtained sensitivity/specificity of, e.g, 89%/25%, 43%/80% and 28%/91%. Conclusions We showed the potential of NPY, PENK, and WIF1 as combined epigenetic markers for CRC diagnosis, both in tissue and serum and tested their use as serum biomarkers in other cancers. We optimized a QM-MSP for simultaneously quantifying their methylation levels. Our assay can be an effective blood test for patients where CRC risk is present but difficult to assess (e.g. mild symptoms with no CRC family history) and who would therefore not necessarily choose to go for further examination. This panel of markers, if validated, can also be a cost effective screening tool for the detection of asymptomatic cancer patients for colonoscopy.
Collapse
|
24
|
Begenik H, Kemik AS, Emre H, Dulger AC, Demirkiran D, Ebinc S, Kemik O. The association between serum Dickkopf-1 levels and esophageal squamous cell carcinoma. Hum Exp Toxicol 2013; 33:785-8. [PMID: 24220876 DOI: 10.1177/0960327113510537] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Serum Dickkopf-1(DKK-1) is elevated in many malignancies and is an important indicator of malignant potential. However, its significance in esophageal squamous cell cancer (ESCC) has not yet been clarified. We hypothesized a role for DKK-1 in patients with ESCC. The study consisted of 90 ESCC patients and 85 healthy controls. After diagnosis, the level of DKK-1 was measured in the serum samples by enzyme-linked immunosorbent assay and the levels of DKK-1 were much higher in the ESCC patients than in the healthy control group (p < 0.0001). For serum DKK-1, the sensitivity and specificity of the assay were 70 and 80%, respectively. The preoperative serum DKK-1 level was elevated in the ESCC patients. Although serum DKK-1 is not a specific biomarker for ESCC, it might be a useful marker for the diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- H Begenik
- Department of Internal Medicine, Medical Faculty, Yuzuncu Yil University, Van, Turkey
| | - A S Kemik
- Department of Biochemistry, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - H Emre
- Department of Internal Medicine, Medical Faculty, Yuzuncu Yil University, Van, Turkey
| | - A C Dulger
- Department of Gastroenterology, Medical Faculty, Yuzuncu Yil University, Van, Turkey
| | - D Demirkiran
- Department of Internal Medicine, Medical Faculty, Yuzuncu Yil University, Van, Turkey
| | - S Ebinc
- Department of Internal Medicine, Medical Faculty, Yuzuncu Yil University, Van, Turkey
| | - O Kemik
- Department of General Surgery, Medical Faculty, Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
25
|
Ma S, Liang S, Jiao H, Chi L, Shi X, Tian Y, Yang B, Guan F. Human umbilical cord mesenchymal stem cells inhibit C6 glioma growth via secretion of dickkopf-1 (DKK1). Mol Cell Biochem 2013; 385:277-86. [PMID: 24104453 DOI: 10.1007/s11010-013-1836-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/26/2013] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) represent a potential therapeutic target for glioma. We determined the molecular mechanism of inhibitory effect of human umbilical cord-derived MSCs (hUC-MSCs) on the growth of C6 glioma cells. We demonstrated that hUC-MSCs inhibited C6 cell growth and modulated the cell cycle to G0/G1 phase. The expression of β-catenin and c-Myc was downregulated in C6 cells by conditioned media from hUC-MSCs, and the levels of secreted DKK1 were positively correlated with concentrations of hUCMSCs-CM. The inhibitory effect of hUC-MSCs on C6 cell proliferation was enhanced as the concentration of DKK1 in hUCMSCs-CM increased. When DKK1 was neutralized by anti-DKK1 antibody, the inhibitory effect of hUC-MSCs on C6 cells was attenuated. Furthermore, we found that conditioned media from hUC-MSCs transfection with siRNA targeting DKK1 mRNA or pEGFPN1-DKK1 plasmid lost or enhanced the abilities to regulate the Wnt signaling in C6 cells. Therefore, hUC-MSCs inhibited C6 glioma cell growth via secreting DKK1, an inhibitor of Wnt pathway, may represent a novel therapeutic strategy for malignant glioma.
Collapse
Affiliation(s)
- Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cao L, Kuratnik A, Xu W, Gibson JD, Kolling F, Falcone ER, Ammar M, Van Heyst MD, Wright DL, Nelson CE, Giardina C. Development of intestinal organoids as tissue surrogates: cell composition and the epigenetic control of differentiation. Mol Carcinog 2013; 54:189-202. [PMID: 24115167 DOI: 10.1002/mc.22089] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/26/2013] [Accepted: 08/14/2013] [Indexed: 01/14/2023]
Abstract
Intestinal organoids are multicellular crypt-like structures that can be derived from adult intestinal stem cells (ISCs), embryonic stem cells (ESCs) or induced pluripotent stem cells (IPSCs). Here we show that intestinal organoids generated from mouse ESCs were enriched in ISCs and early progenitors. Treatment of these organoids with a γ-secretase inhibitor increased Math1 and decreased Hes1 expression, indicating Notch signaling regulates ISC differentiation in these organoids. Lgr5 and Tert positive ISCs constituted approximately 10% and 20% of the organoids. As found in native tissue, Lgr5 and Tert expressing cells resolved into two discreet populations, which were stable over time. Intestinal organoids derived from cancer-prone Apc(Min/+) mice showed similar numbers of ISCs, but had reduced Math1 expression, indicating a suppressed secretory cell differentiation potential (as found in intestinal tissue). Apc(Min/+) organoids were used to screen epigenetically active compounds for those that increased Math1 expression and organoid differentiation (including HDAC inhibitors, Sirtuin (SIRT) modulators and methyltransferase inhibitors). Broad-spectrum HDAC inhibitors increased both Math1 and Muc2 expression, indicating an ability to promote the suppressed secretory cell differentiation pathway. Other epigenetic compounds had a diverse impact on cell differentiation, with a strong negative correlation between those that activated the secretory marker Muc2 and those that activated the absorptive cell marker Fabp2. These data show that ESC-derived intestinal organoids can be derived in large numbers, contain distinct ISC types and can be used to screen for agents that promote cell differentiation through different lineage pathways.
Collapse
Affiliation(s)
- Li Cao
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, 06269-3125
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Gastric cancer (GC) remains one of the most common cancers worldwide. Its prevalence is still on the rise in the developing countries due to the ageing population. The cancer stem cell (CSC) theory provides a new insight into the interpretation of tumor initiation, aggressive growth, recurrence, and metastasis of cancer, as well as the development of new strategies for cancer treatment. This review will focus on the progress of biomarkers and signaling pathways of CSCs, the complex crosstalk networks between the microenvironment and CSCs, and the development of therapeutic approaches against CSCs, predominantly focusing on GC.
Collapse
|
28
|
Vanuytsel T, Senger S, Fasano A, Shea-Donohue T. Major signaling pathways in intestinal stem cells. Biochim Biophys Acta Gen Subj 2012; 1830:2410-26. [PMID: 22922290 DOI: 10.1016/j.bbagen.2012.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/05/2012] [Accepted: 08/07/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND The discovery of markers to identify the intestinal stem cell population and the generation of powerful transgenic mouse models to study stem cell physiology have led to seminal discoveries in stem cell biology. SCOPE OF REVIEW In this review we give an overview of the current knowledge in the field of intestinal stem cells (ISCs) highlighting the most recent progress on markers defining the ISC population and pathways governing intestinal stem cell maintenance and differentiation. Furthermore we review their interaction with other stem cell related pathways. Finally we give an overview of alteration of these pathways in human inflammatory gastrointestinal diseases. MAJOR CONCLUSIONS We highlight the complex network of interactions occurring among different pathways and put in perspective the many layers of regulation that occur in maintaining the intestinal homeostasis. GENERAL SIGNIFICANCE Understanding the involvement of ISCs in inflammatory diseases can potentially lead to new therapeutic approaches to treat inflammatory GI pathologies such as IBD and celiac disease and could reveal the molecular mechanisms leading to the pathogenesis of dysplasia and cancer in inflammatory chronic conditions. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Tim Vanuytsel
- Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
29
|
Youssefpour H, Li X, Lander AD, Lowengrub JS. Multispecies model of cell lineages and feedback control in solid tumors. J Theor Biol 2012; 304:39-59. [PMID: 22554945 PMCID: PMC3436435 DOI: 10.1016/j.jtbi.2012.02.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 02/15/2012] [Accepted: 02/29/2012] [Indexed: 12/18/2022]
Abstract
We develop a multispecies continuum model to simulate the spatiotemporal dynamics of cell lineages in solid tumors. The model accounts for protein signaling factors produced by cells in lineages, and nutrients supplied by the microenvironment. Together, these regulate the rates of proliferation, self-renewal and differentiation of cells within the lineages, and control cell population sizes and distributions. Terminally differentiated cells release proteins (e.g., from the TGFβ superfamily) that feedback upon less differentiated cells in the lineage both to promote differentiation and decrease rates of proliferation (and self-renewal). Stem cells release a short-range factor that promotes self-renewal (e.g., representative of Wnt signaling factors), as well as a long-range inhibitor of this factor (e.g., representative of Wnt inhibitors such as Dkk and SFRPs). We find that the progression of the tumors and their response to treatment is controlled by the spatiotemporal dynamics of the signaling processes. The model predicts the development of spatiotemporal heterogeneous distributions of the feedback factors (Wnt, Dkk and TGFβ) and tumor cell populations with clusters of stem cells appearing at the tumor boundary, consistent with recent experiments. The nonlinear coupling between the heterogeneous expressions of growth factors and the heterogeneous distributions of cell populations at different lineage stages tends to create asymmetry in tumor shape that may sufficiently alter otherwise homeostatic feedback so as to favor escape from growth control. This occurs in a setting of invasive fingering, and enhanced aggressiveness after standard therapeutic interventions. We find, however, that combination therapy involving differentiation promoters and radiotherapy is very effective in eradicating such a tumor.
Collapse
Affiliation(s)
- H Youssefpour
- Department of Chemical Engineering and Materials Science, University of California, Irvine, USA
| | | | | | | |
Collapse
|
30
|
Yang ZR, Dong WG, Lei XF, Liu M, Liu QS. Overexpression of Dickkopf-3 induces apoptosis through mitochondrial pathway in human colon cancer. World J Gastroenterol 2012; 18:1590-601. [PMID: 22529687 PMCID: PMC3325524 DOI: 10.3748/wjg.v18.i14.1590] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/23/2011] [Accepted: 09/30/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the mechanisms of the biological roles of Dickkopf-3 (Dkk-3) in cell invasion, survival and apoptosis in colon cancer cells.
METHODS: Three human colon cancer cell lines, i.e., HT-29, LoVo and SW480, were used. Overexpression of Dkk-3 induced by pEGFP-N1-Dkk-3-GFP plasmid in LoVo cells was performed using Lipofectamine 2000 reagent. Reverse transcription polymerase chain reaction and Western blotting were performed to determine the mRNA and protein expression levels of Dkk-3, respectively. Cell proliferation assay, cell cycle analysis, hoechst 33258 assay and Matrigel invasion assay were performed on Dkk-3 overexpressing transfectants.
RESULTS: The mRNA and protein expressions of Dkk-3 in HT-29 (mRNA: 0.06 ± 0.02, protein: 0.06 ± 0.01) and LoVo (mRNA: 0.07 ± 0.02, protein: 0.07 ± 0.02) cells were significantly lower than that in SW480 cells (mRNA: 0.92 ± 0.04, protein: 0.69 ± 0.13; all P < 0.05), and the greatest levels of invasiveness was in LoVo cells. Dkk-3 overexpression inhibited the proliferation and invasion of LoVo cells and induced cell cycle arrest at G0/G1 phase and subsequent apoptosis, as indicated by increased chromatin condensation and fragments, upregulated Bax and cytochrome c protein, downregulated survivin and Bcl-2 protein, and the activation of caspase-3 and caspase-9. Furthermore, Dkk-3 overexpression reduced the accumulation of cytosolic fraction of β-catenin.
CONCLUSION: Dkk-3 overexpression induced apoptosis in human colon cancer possibly through the mitochondrial pathway. Dkk-3 may be involved in the Wnt/β-catenin signaling pathways in colon cancer.
Collapse
|
31
|
Wnt inhibitory factor 1 induces apoptosis and inhibits cervical cancer growth, invasion and angiogenesis in vivo. Oncogene 2011; 31:2725-37. [PMID: 22002305 DOI: 10.1038/onc.2011.455] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aberrant activation of Wingless-type (Wnt)/β-catenin signaling is widespread in human cervical cancer. However, the underlying mechanisms of Wnt activation and the therapeutic potential of Wnt inhibition remain largely unknown. Here, we demonstrate that the Wnt inhibitory factor 1 (WIF1), a secreted Wnt antagonist, is downregulated in all human primary cervical tumors and cell lines analyzed. Our data reveal that WIF1 downregulation occurs due to promoter hypermethylation and is an early event in cervical oncogenesis. WIF1 re-expression upon 5-aza-2'-deoxycytidine treatment or WIF1 gene transfer induces significant apoptosis and G(2)/M arrest, and inhibits cervical cancer cell proliferation in vitro. Consistent with this, treatment of established mice tumor xenografts with peritumoral WIF1 gene transfer results in a significant inhibition of cancer growth and invasion. WIF1 treatment causes a significant decrease in intracellular WNT1 and TCF-4 proteins revealing novel Wnt-regulatory mechanisms. Thus, WIF1 causes a major cellular re-distribution of β-catenin and a significant inhibition of the Wnt/β-catenin pathway in tumor cells, as documented by a remarkable reversion in the expression of Wnt/β-catenin transcriptional target genes (E-cadherin, c-Myc, cyclin D1, CD44 and VEGF). Consequently, multiple critical events in tumor progression and metastasis such as cell proliferation, angiogenesis and invasion were inhibited by WIF1. In addition, WIF1 modulated the expression of specific anti-apoptotic and apoptotic proteins, thereby inducing significant apoptosis in vivo. Our findings demonstrate for the first time that WIF1 downregulation by epigenetic gene silencing is an important mechanism of Wnt activation in cervical oncogenesis. Of major clinical relevance, we show that peritumoral WIF1 gene transfer reduces not only cancer growth but also invasion in well-established tumors. Therefore, our data provide novel mechanistic insights into the role of WIF1 in cervical cancer progression, and the important preclinical validation of WIF1 as a potent drug target in cervical cancer treatment.
Collapse
|
32
|
Proulx-Bonneau S, Annabi B. The primary cilium as a biomarker in the hypoxic adaptation of bone marrow-derived mesenchymal stromal cells: a role for the secreted frizzled-related proteins. Biomark Insights 2011; 6:107-18. [PMID: 22084569 PMCID: PMC3201088 DOI: 10.4137/bmi.s8247] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A pivotal role in guiding mesenchymal stem cell (MSC) differentiation has recently been attributed to the primary cilium. This solitary, non-motile microtubule-based organelle emerging from the cell surface acts as a sensorial membrane structure reflecting developmental and adaptive processes associated with pathologies including human cystic kidney disease, skeletal malformations, obesity and cancer. Given that the intrinsic hypoxic adaptation of MSC remains poorly understood within ischemic tissues or hypoxic tumours, we questioned whether the hypoxia inducible factor-1α (HIF-1α) might be a downstream effector regulating cilium maintenance. We show that murine bone marrow-derived MSC cultured under hypoxic conditions (1.2% O(2)) lose their primary cilia in a time-dependent manner. Gene silencing of HIF-1α prevented cilia loss in hypoxic cultures, and generation of MSC expressing a constitutively active HIF-1α (MSC-HIF) was found to decrease primary cilium formation. A Wnt pathway-related gene expression array was also performed on MSC-HIF and indicated that the secreted Frizzled-related proteins (sFRP)-1, -3 and -4 were down-regulated, while sFRP-2 was up-regulated. Overexpression of recombinant sFRP-2 or gene silencing of sFRP-1, -3 and -4 in MSC led to primary cilium disruption. These results indicate a molecular signalling mechanism for the hypoxic disruption of the primary cilium in MSC involving an HIF-1α/sFRP axis. This mechanism contributes to our understanding of the adaptive processes possibly involved in the oncogenic transformation and tumour-supporting potential of MSC. Our current observations also open up the possibility for the primary cilia to serve as a biomarker in MSC adaptation to low oxygen tension within (patho)physiological microenvironments.
Collapse
Affiliation(s)
- Sébastien Proulx-Bonneau
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMED, Département de Chimie, Université du Québec à Montréal, Quebec, Canada
| | | |
Collapse
|
33
|
Ji H, Goode RJA, Vaillant F, Mathivanan S, Kapp EA, Mathias RA, Lindeman GJ, Visvader JE, Simpson RJ. Proteomic profiling of secretome and adherent plasma membranes from distinct mammary epithelial cell subpopulations. Proteomics 2011; 11:4029-39. [DOI: 10.1002/pmic.201100102] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/07/2011] [Accepted: 07/29/2011] [Indexed: 12/29/2022]
|
34
|
Du G, Kataoka K, Sakaguchi M, Abarzua F, Than SS, Sonegawa H, Makino T, Shimizu T, Huh NH. Expression of REIC/Dkk-3 in normal and hyperproliferative epidermis. Exp Dermatol 2011; 20:273-7. [PMID: 21323747 DOI: 10.1111/j.1600-0625.2010.01244.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dickkopf (Dkk) family members are known as Wnt modulators involved in the development, cell growth/differentiation and cancer. REIC/Dkk-3, which does not interfere with Wnt signalling, has been proposed to be a tumor suppressor gene, but its physiological function has remained unclear. In this study, we analysed the expression of REIC/Dkk-3 in normal interfollicular epidermis (IFE) and hyperproliferative epidermis. REIC/Dkk-3 was expressed in human and mouse IFE, being localized at the interface of upper spinous layer and granular layer. Skin cancer cell lines lost REIC/Dkk-3 expression as reported previously. When we analysed patient samples, REIC/Dkk-3 expression was down-regulated in the hyperproliferative epidermis including skin cancers and non-cancerous proliferative diseases. REIC/Dkk-3 expression was also suppressed in the regenerative and inflammative epidermis of model mice. These findings will certainly contribute to the extension of studies on REIC/Dkk-3.
Collapse
Affiliation(s)
- Gang Du
- Department of Cell Biology, Okayama University Graduate, School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Holmes K, Egan B, Swan N, O'Morain C. Genetic Mechanisms and Aberrant Gene Expression during the Development of Gastric Intestinal Metaplasia and Adenocarcinoma. Curr Genomics 2011; 8:379-97. [PMID: 19412438 PMCID: PMC2671722 DOI: 10.2174/138920207783406460] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/21/2007] [Accepted: 09/28/2007] [Indexed: 02/07/2023] Open
Abstract
Gastric adenocarcinoma occurs via a sequence of molecular events known as the Correa’s Cascade which often progresses over many years. Gastritis, typically caused by infection with the bacterium H. pylori, is the first step of the cascade that results in gastric cancer; however, not all cases of gastritis progress along this carcinogenic route. Despite recent antibiotic intervention of H. pylori infections, gastric adenocarcinoma remains the second most common cause of cancer deaths worldwide. Intestinal metaplasia is the next step along the carcinogenic sequence after gastritis and is considered to be a precursor lesion for gastric cancer; however, not all patients with intestinal metaplasia develop adenocarcinoma and little is known about the molecular and genetic events that trigger the progression of intestinal metaplasia into adenocarcinoma. This review aims to highlight the progress to date in the genetic events involved in intestinal-type gastric adenocarcinoma and its precursor lesion, intestinal metaplasia. The use of technologies such as whole genome microarray analysis, immunohistochemical analysis and DNA methylation analysis has allowed an insight into some of the events which occur in intestinal metaplasia and may be involved in carcinogenesis. There is still much that is yet to be discovered surrounding the development of this lesion and how, in many cases, it develops into a state of malignancy.
Collapse
Affiliation(s)
- K Holmes
- Department of Clinical Medicine, Trinity College Dublin, The Adelaide and Meath Hospital, Tallaght, Dublin 24, Ireland
| | | | | | | |
Collapse
|
36
|
Abstract
Self-renewal in the intestinal epithelia is fueled by a population of undifferentiated intestinal stem cells (ISCs) that give rise to daughter or progenitor cells, which can subsequently differentiate into the mature cell types required for normal gut function. The cellular signals that regulate self-renewal are poorly understood and the factors that mediate the transition from a stem cell to a progenitor cell in the gut are unknown. Recent studies have suggested that ISCs are located either at the crypt base interspersed between the Paneth cells (eg, Lgr-5+ve cells) or at or near position 4 within the intestinal crypt (eg, DCAMKL-1 or Bmi-1+ve cells). This raises the possibility that distinct stem cell regions exist in the crypts and that ISC's state of activation will determine how the self-renewal is regulated in the intestinal tract.
Collapse
Affiliation(s)
- Shahid Umar
- Department of Internal Medicine, Division of Digestive Diseases, University of Oklahoma Health Sciences Center, 975 NE 10th Street, SL Young BRC West 1268B, Oklahoma City, OK 73104, USA.
| |
Collapse
|
37
|
Abstract
Self-renewal in the intestinal epithelia is fueled by a population of undifferentiated intestinal stem cells (ISCs) that give rise to daughter or progenitor cells, which can subsequently differentiate into the mature cell types required for normal gut function. The cellular signals that regulate self-renewal are poorly understood and the factors that mediate the transition from a stem cell to a progenitor cell in the gut are unknown. Recent studies have suggested that ISCs are located either at the crypt base interspersed between the Paneth cells (eg, Lgr-5+ve cells) or at or near position 4 within the intestinal crypt (eg, DCAMKL-1 or Bmi-1+ve cells). This raises the possibility that distinct stem cell regions exist in the crypts and that ISC's state of activation will determine how the self-renewal is regulated in the intestinal tract.
Collapse
|
38
|
Udd L, Katajisto P, Kyyrönen M, Ristimäki AP, Mäkelä TP. Impaired gastric gland differentiation in Peutz-Jeghers syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2467-76. [PMID: 20363912 DOI: 10.2353/ajpath.2010.090519] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gastrointestinal hamartomatous polyps in the Peutz-Jeghers cancer predisposition syndrome and its mouse model (Lkb1(+/-)) are presumed to contain all cell types native to the site of their occurrence. This study aimed to explore the pathogenesis of Peutz-Jeghers syndrome polyposis by characterizing cell types and differentiation of the epithelium of gastric polyps and predisposed mucosa. Both antral and fundic polyps were characterized by a deficit of pepsinogen C-expressing differentiated gland cells (antral gland, mucopeptic, and chief cells); in large fundic polyps, parietal cells were also absent. Gland cell loss was associated with an increase in precursor neck cells, an expansion of the proliferative zone, and an increase in smooth muscle alpha-actin expressing myofibroblasts in the polyp stroma. Lack of pepsinogen C-positive gland cells identified incipient polyps, and even the unaffected mucosa of young predisposed mice displayed an increase in pepsinogen C negative glands (25%; P = 0045). In addition, in small intestinal polyps, gland cell differentiation was defective, with the absence of Paneth cells. There were no signs of metaplastic differentiation in any of the tissues studied, and both the gastric and small intestinal defects were seen in Lkb1(+/-) mice, as well as polyps from patients with Peutz-Jeghers syndrome. These results identify impaired epithelial differentiation as the earliest pathological sign likely to contribute to tumorigenesis in individuals with inherited Lkb1 mutations.
Collapse
Affiliation(s)
- Lina Udd
- Institute of Biotechnology and Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
39
|
Upper gastrointestinal carcinogenesis: H. pylori and stem cell cross-talk. J Surg Res 2010; 166:255-64. [PMID: 20452613 DOI: 10.1016/j.jss.2010.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/29/2010] [Accepted: 02/09/2010] [Indexed: 02/06/2023]
Abstract
Chronic inflammation of the gastric epithelium has been associated with the pathogenesis of gastric cancer, as it was postulated by Corea's model of gastric carcinogenesis. Helicobacter pylori (Hp) regulates this inflammatory process and promotes gastric carcinogenesis through induction of gene mutations and protein modulation. Recent data raise the cancer stem cell hypothesis, which implies a central role of multipotent cancer cells in oncogenesis of various solid tumors. This review provides a synopsis of gastric cancer initiation and promotion through Hp and stem cell signaling pathways. The expanding research field of Hp-related cancer stem cell biology may offer novel implications for future treatment of upper gastrointestinal cancer.
Collapse
|
40
|
Gieni RS, Hendzel MJ. Polycomb group protein gene silencing, non-coding RNA, stem cells, and cancer. Biochem Cell Biol 2010; 87:711-46. [PMID: 19898523 DOI: 10.1139/o09-057] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epigenetic programming is an important facet of biology, controlling gene expression patterns and the choice between developmental pathways. The Polycomb group proteins (PcGs) silence gene expression, allowing cells to both acquire and maintain identity. PcG silencing is important for stemness, X chromosome inactivation (XCI), genomic imprinting, and the abnormally silenced genes in cancers. Stem and cancer cells commonly share gene expression patterns, regulatory mechanisms, and signalling pathways. Many microRNA species have oncogenic or tumor suppressor activity, and disruptions in these networks are common in cancer; however, long non-coding (nc)RNA species are also important. Many of these directly guide PcG deposition and gene silencing at the HOX locus, during XCI, and in examples of genomic imprinting. Since inappropriate HOX expression and loss of genomic imprinting are hallmarks of cancer, disruption of long ncRNA-mediated PcG silencing likely has a role in oncogenesis. Aberrant silencing of coding and non-coding loci is critical for both the genesis and progression of cancers. In addition, PcGs are commonly abnormally overexpressed years prior to cancer pathology, making early PcG targeted therapy an option to reverse tumor formation, someday replacing the blunt instrument of eradication in the cancer therapy arsenal.
Collapse
Affiliation(s)
- Randall S Gieni
- Cross Cancer Institute and Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G1Z2, Canada
| | | |
Collapse
|
41
|
Jaspers JE, Rottenberg S, Jonkers J. Therapeutic options for triple-negative breast cancers with defective homologous recombination. Biochim Biophys Acta Rev Cancer 2009; 1796:266-80. [PMID: 19616605 DOI: 10.1016/j.bbcan.2009.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/05/2009] [Accepted: 07/08/2009] [Indexed: 12/27/2022]
Abstract
Breast cancer is the most common malignancy among women in developed countries, affecting more than a million women per year worldwide. Over the last decades, our increasing understanding of breast cancer biology has led to the development of endocrine agents against hormone receptor-positive tumors and targeted therapeutics against HER2-expressing tumors. However, no targeted therapy is available for patients with triple-negative breast cancer, lacking expression of hormone receptors and HER2. Overlap between BRCA1-mutated breast cancers and triple-negative tumors suggests that an important part of the triple-negative tumors may respond to therapeutics targeting BRCA1-deficient cells. Here, we review the features shared between triple-negative, basal-like and BRCA1-related breast cancers. We also discuss the development of novel therapeutic strategies to target BRCA1-mutated tumors and triple-negative tumors with BRCA1-like features. Finally, we highlight the utility of mouse models for BRCA1-mutated breast cancer to optimize (combination) therapy and to understand drug resistance.
Collapse
Affiliation(s)
- Janneke E Jaspers
- Division of Molecular Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
42
|
Pei Y, Kano J, Iijima T, Morishita Y, Inadome Y, Noguchi M. Overexpression of Dickkopf 3 in hepatoblastomas and hepatocellular carcinomas. Virchows Arch 2009; 454:639-46. [PMID: 19437037 DOI: 10.1007/s00428-009-0772-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Revised: 04/03/2009] [Accepted: 04/07/2009] [Indexed: 12/21/2022]
Abstract
Dickkopf 3 (Dkk3) is a protein expressed at a very early stage of hepatogenesis. In this study, we examined whether Dkk3 was related to a premature or dedifferentiated nature in hepatoblastomas (HBLs) and hepatocellular carcinomas (HCCs). It was demonstrated that Dkk3 was overexpressed in HBLs and HCCs and that its expression was more frequent in the former than in the latter, being consistent with the fact that most HBLs show an embryonal or fetal hepatic histology, whereas there was no distinct relationship between Dkk3 expression and clinical data or histology. All of the HBLs expressed Dkk3, alpha-fetoprotein (AFP), or both proteins, suggesting that, similar to AFP, Dkk3 is another potentially useful biomarker detecting a wide range of HBLs. Furthermore, Dkk3 and AFP were expressed reciprocally in the tumors. These results suggest that Dkk3 may be related to the premature or dedifferentiated nature of HBLs and HCCs, whereas AFP may be related to a more differentiated nature. Thus, assessment of Dkk3 and AFP may be useful in the diagnosis of hepatic tumors.
Collapse
Affiliation(s)
- Yihua Pei
- Department of Pathology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Cancers of the gastrointestinal tract are amongst the most common causes of death from cancer, but there is substantial variation in incidence across populations. This is consistent with a major causative role for diet. There is convincing evidence that fruits and vegetables protect against cancers of the upper alimentary tract and the large bowel, and this has focused attention on biologically active phytochemicals, and on flavonoids in particular. Many flavonoids exert anticarcinogenic effects in vitro and in animals, and many of these effects occur via signalling pathways known to be important in the pathogenesis of colorectal, gastric and oesophageal cancers. However dietary flavonoid intakes are generally low and their metabolism in humans is extremely complex. The advent of new post-genomic technologies will do much to address these problems by making it possible to monitor patterns of gene expression in humans to provide essential molecular biomarkers of early disease. By combining such data with knowledge of the dietary exposure and bioavailability of the most effective compounds it will be possible to predict the most effective dietary sources and to properly evaluate the potential role of flavonoids in clinical nutrition.
Collapse
|
44
|
Yao W, Cheng Z, Pham A, Busse C, Zimmermann EA, Ritchie RO, Lane NE. Glucocorticoid-induced bone loss in mice can be reversed by the actions of parathyroid hormone and risedronate on different pathways for bone formation and mineralization. ACTA ACUST UNITED AC 2009; 58:3485-97. [PMID: 18975341 DOI: 10.1002/art.23954] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Glucocorticoid excess decreases bone mineralization and microarchitecture and leads to reduced bone strength. Both anabolic (parathyroid hormone [PTH]) and antiresorptive agents are used to prevent and treat glucocorticoid-induced bone loss, yet these bone-active agents alter bone turnover by very different mechanisms. This study was undertaken to determine how PTH and risedronate alter bone quality following glucocorticoid excess. METHODS Five-month-old male Swiss-Webster mice were treated with the glucocorticoid prednisolone (5 mg/kg in a 60-day slow-release pellet) or placebo. From day 28 to day 56, 2 groups of glucocorticoid-treated animals received either PTH (5 microg/kg) or risedronate (5 microg/kg) 5 times per week. Bone quality and quantity were measured using x-ray tomography for the degree of bone mineralization, microfocal computed tomography for bone microarchitecture, compression testing for trabecular bone strength, and biochemistry and histomorphometry for bone turnover. In addition, real-time polymerase chain reaction (PCR) and immunohistochemistry were performed to monitor the expression of several key genes regulating Wnt signaling (bone formation) and mineralization. RESULTS Compared with placebo, glucocorticoid treatment decreased trabecular bone volume (bone volume/total volume [BV/TV]) and serum osteocalcin, but increased serum CTX and osteoclast surface, with a peak at day 28. Glucocorticoids plus PTH increased BV/TV, and glucocorticoids plus risedronate restored BV/TV to placebo levels after 28 days. The average degree of bone mineralization was decreased after glucocorticoid treatment (-27%), but was restored to placebo levels after treatment with glucocorticoids plus risedronate or glucocorticoids plus PTH. On day 56, RT-PCR revealed that expression of genes that inhibit bone mineralization (Dmp1 and Phex) was increased by continuous exposure to glucocorticoids and glucocorticoids plus PTH and decreased by glucocorticoids plus risedronate, compared with placebo. Wnt signaling antagonists Dkk-1, Sost, and Wif1 were up-regulated by glucocorticoid treatment but down-regulated after glucocorticoid plus PTH treatment. Immunohistochemistry of bone sections showed that glucocorticoids increased N-terminal Dmp-1 staining while PTH treatment increased both N- and C-terminal Dmp-1 staining around osteocytes. CONCLUSION Our findings indicate that both PTH and risedronate improve bone mass, degree of bone mineralization, and bone strength in glucocorticoid-treated mice, and that PTH increases bone formation while risedronate reverses the deterioration of bone mineralization.
Collapse
Affiliation(s)
- Wei Yao
- University of California Davis Medical Center, Sacramento
| | | | | | | | | | | | | |
Collapse
|
45
|
Qiao L, Xu ZL, Zhao TJ, Ye LH, Zhang XD. Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett 2008; 269:67-77. [DOI: 10.1016/j.canlet.2008.04.032] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 04/13/2008] [Accepted: 04/14/2008] [Indexed: 12/26/2022]
|
46
|
Caspi E, Rosin-Arbesfeld R. A novel functional screen in human cells identifies MOCA as a negative regulator of Wnt signaling. Mol Biol Cell 2008; 19:4660-74. [PMID: 18716063 DOI: 10.1091/mbc.e07-10-1046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aberrant Wnt signal transduction is involved in many human diseases such as cancer and neurodegenerative disorders. The key effector protein of the canonical Wnt pathway is beta-catenin, which functions with T-cell factor/lymphoid enhancer factor (TCF/LEF) to activate gene transcription that leads to expression of Wnt target genes. In this study we provide results obtained from a novel functional screen of a human brain cDNA library used to identify 63 genes that are putative negative Wnt regulators. These genes were divided into eight functional groups that include known canonical and noncanonical Wnt pathway components and genes that had not yet been assigned to the Wnt pathway. One of the groups, the presenilin-binding proteins, contains the modifier of cell adhesion (MOCA) gene. We show that MOCA is a novel inhibitor of Wnt/beta-catenin signaling. MOCA forms a complex with beta-catenin and inhibits transcription of known Wnt target genes. Epistasis experiments indicate that MOCA acts to reduce the levels of nuclear beta-catenin, increase the levels of membrane-bound beta-catenin, and enhances cell-cell adhesion. Therefore, our data indicate that MOCA is a novel Wnt negative regulator and demonstrate that this screening approach can be a rapid means for isolation of new Wnt regulators.
Collapse
Affiliation(s)
- Elanite Caspi
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
47
|
Yao W, Cheng Z, Busse C, Pham A, Nakamura MC, Lane NE. Glucocorticoid excess in mice results in early activation of osteoclastogenesis and adipogenesis and prolonged suppression of osteogenesis: a longitudinal study of gene expression in bone tissue from glucocorticoid-treated mice. ACTA ACUST UNITED AC 2008; 58:1674-86. [PMID: 18512788 DOI: 10.1002/art.23454] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Glucocorticoid (GC) excess induces alterations in bone metabolism that weaken bone structure and increase fracture risk. The aim of this study was to identify genes associated with bone metabolism in GC-treated mice, by performing a microarray analysis. METHODS Long bones from mice exposed to GC excess were collected after 0, 7, 28, and 56 days of treatment, to measure bone microarchitecture and extract RNA for microarray analyses. RESULTS Bone loss in this animal model was confirmed by changes in bone turnover markers as well as bone architecture, as measured by microfocal computed tomography. GC excess induced an early up-regulation of genes involved in osteoclast activation, function, and adipogenesis, which peaked on day 7. The expression of genes associated with osteoclast cytoskeletal reorganization and genes associated with matrix degradation peaked on day 28. On day 28 and day 56, the expression of genes associated with osteoblast activation and maturation was decreased from baseline, while the expression of Wnt antagonists was increased. In addition, the expression of genes expressed in osteocytes associated with bone mineralization was significantly higher at the later time points, day 28 and day 56. Reverse transcription-polymerase chain reaction confirmed the results of microarray analysis in selected genes. CONCLUSION GC excess is associated with early activation of genes associated with osteoclastogenesis and adipogenesis and a later suppression of genes associated with osteogenesis and mineralization. Novel interventions with agents that modulate either Wnt signaling or mineralization may be effective in GC-induced osteoporosis.
Collapse
Affiliation(s)
- Wei Yao
- University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
48
|
Profiling CpG island field methylation in both morphologically normal and neoplastic human colonic mucosa. Br J Cancer 2008; 99:136-42. [PMID: 18542073 PMCID: PMC2453007 DOI: 10.1038/sj.bjc.6604432] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aberrant CpG island (CGI) methylation occurs early in colorectal neoplasia. Quantitative methylation-specific PCR profiling applied to biopsies was used to quantify low levels of CGI methylation of 18 genes in the morphologically normal colonic mucosa of neoplasia-free subjects, adenomatous polyp patients, cancer patients and their tumours. Multivariate statistical analyses distinguished tumour from mucosa with a sensitivity of 78.9% and a specificity of 100% (P=3 x 10(-7)). In morphologically normal mucosa, age-dependent CGI methylation was observed for APC, AXIN2, DKK1, HPP1, N33, p16, SFRP1, SFRP2 and SFRP4 genes, and significant differences in CGI methylation levels were detected between groups. Multinomial logistic regression models based on the CGI methylation profiles from normal mucosa correctly identified 78.9% of cancer patients and 87.9% of non-cancer (neoplasia-free+polyp) patients (P=4.93 x 10(-7)) using APC, HPP1, p16, SFRP4, WIF1 and ESR1 methylation as the most informative variables. Similarly, CGI methylation of SFRP4, SFRP5 and WIF1 correctly identified 61.5% of polyp patients and 78.9% of neoplasia-free subjects (P=0.0167). The apparently normal mucosal field of patients presenting with neoplasia has evidently undergone significant epigenetic modification. Methylation of the genes selected by the models may play a role in the earliest stages of the development of colorectal neoplasia.
Collapse
|
49
|
Bu XM, Zhao CH, Zhang N, Gao F, Lin S, Dai XW. Hypermethylation and aberrant expression of secreted fizzled-related protein genes in pancreatic cancer. World J Gastroenterol 2008; 14:3421-4. [PMID: 18528941 PMCID: PMC2716598 DOI: 10.3748/wjg.14.3421] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the methylation status and aberrant expression of some secreted frizzled-related protein (SFRP) genes in pancreatic cancer and explore their role in pancreatic carcinogenesis.
METHODS: Methylation status and expression of SFRP genes were detected by methylation-specific PCR (MSPCR) and reverse-transcription PCR (RT-PCR) respectively.
RESULTS: The frequencies of methylation for SFRP genes 1, 2, 4, 5 were 70%, 48.3%, 60% and 76.7% in pancreatic cancer samples, and 21.7%, 20%, 10% and 36.7% in matched cancer adjacent normal tissue samples, respectively (χ2 = 28.23, P < 0.0001 for SFRP gene 1; χ2 = 10.71, P = 0.001 for SFRP gene 2; χ2 = 32.97, P < 0.0001 for SFRP gene 4; χ2 = 19.55, P < 0.0001 for SFRP gene 5). Expression loss of SFRP genes 1, 2, 4 and 5 was found in 65%, 40%, 55% and 71.7% of 60 pancreatic cancer samples, and 25%, 15%, 18.3% and 31.7% of matched cancer adjacent normal tissue samples, respectively (χ2 = 19.39, P < 0.0001 for SFRP gene 1; χ2 = 9.40, P = 0.002 for SFRP gene 2; χ2 = 17.37, P < 0.0001 for SFRP gene 4; χ2 = 19.22, P < 0.0001 for SFRP gene 5). SFRP gene 1 was methylated but not expressed in PC-3 and PANC-1, SFRP gene 2 was methylated but not expressed in PANC-1 and CFPAC-1, SFRP gene 4 was methylated but not expressed in PC-3, and SFRP gene 5 was methylated but not expressed in CFPAC-1.
CONCLUSION: Hypermethylation and aberrant expression of SFRP genes are common in pancreatic cancer, which may be involved in pancreatic carcinogenesis.
Collapse
|
50
|
|