1
|
Sun L, Xu L, Duan T, Xi Y, Deng Z, Luo S, Liu C, Yang C, Liu H, Sun L. CAV1 Exacerbates Renal Tubular Epithelial Cell Senescence by Suppressing CaMKK2/AMPK-Mediated Autophagy. Aging Cell 2025:e14501. [PMID: 39887553 DOI: 10.1111/acel.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
Renal proximal tubular epithelial cell (PTEC) senescence and defective autophagy contribute to kidney aging, but the mechanisms remain unclear. Caveolin-1 (CAV1), a crucial component of cell membrane caveolae, regulates autophagy and is associated with cellular senescence. However, its specific role in kidney aging is poorly understood. In this study, we generated Cav1 gene knockout mice and induced kidney aging using D-galactose (D-gal). The results showed that CAV1 expression increased in the renal cortex of the aging mice, which was accompanied by exacerbated renal interstitial fibrosis, elevated levels of senescence-associated proteins γH2AX and p16INK4a, and increased β-galactosidase activity. Moreover, autophagy and AMPK phosphorylation in PTECs were reduced. These phenotypes were partially reversed in D-gal-induced Cav1 knockout mice. Similar results were observed in D-gal-induced human proximal tubular epithelial (HK-2) cells, but these effects were blocked when AMPK activation was inhibited. Additionally, in CaMKK2 knockdown HK-2 cells, siCAV1 failed to promote AMPK phosphorylation, whereas this effect persisted when STK11 was knocked down. Besides, we examined the phosphorylation of CaMKK2 and found that siCAV1 increased its activity. Given that CaMKK2 activity is affected by intracellular Ca2+, we examined Ca2+ levels in HK-2 cells and found that D-gal treatment reduced intracellular Ca2+ concentration, but CAV1 knockdown did not alter these levels. Through GST pull-down assays, we demonstrated a direct interaction between CAV1 and CaMKK2. In conclusion, these findings suggest that CAV1 exacerbates renal tubular epithelial cell senescence by directly interacting with CaMKK2, suppressing its activity and AMPK-mediated autophagy via a Ca2+-independent pathway.
Collapse
Affiliation(s)
- Liya Sun
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lujun Xu
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tongyue Duan
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yiyun Xi
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zebin Deng
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huafeng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lin Sun
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Rodrigues MC, Oliveira LBF, Vieira MAR, Caruso-Neves C, Peruchetti DB. Receptor-mediated endocytosis in kidney cells during physiological and pathological conditions. CURRENT TOPICS IN MEMBRANES 2024; 93:1-25. [PMID: 39181576 DOI: 10.1016/bs.ctm.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Mammalian cell membranes are very dynamic where they respond to several environmental stimuli by rearranging the membrane composition by basic biological processes, including endocytosis. In this context, receptor-mediated endocytosis, either clathrin-dependent or caveolae-dependent, is involved in different physiological and pathological conditions. In the last years, an important amount of evidence has been reported that kidney function involves the modulation of different types of endocytosis, including renal protein handling. In addition, the dysfunction of the endocytic machinery is involved with the development of proteinuria as well as glomerular and tubular injuries observed in kidney diseases associated with hypertension, diabetes, and others. In this present review, we will discuss the mechanisms underlying the receptor-mediated endocytosis in different glomerular cells and proximal tubule epithelial cells as well as their modulation by different factors during physiological and pathological conditions. These findings could help to expand the current understanding regarding renal protein handling as well as identify possible new therapeutic targets to halt the progression of kidney disease.
Collapse
Affiliation(s)
- Mariana C Rodrigues
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Laura B F Oliveira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Aparecida R Vieira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAUDE/FAPERJ, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTI, Rio de Janeiro, RJ, Brazil
| | - Diogo B Peruchetti
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nanobiofarmacêutica, INCT-NANOBiofar, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTI, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Liu Q, Chen J, Zeng A, Song L. Pharmacological functions of salidroside in renal diseases: facts and perspectives. Front Pharmacol 2024; 14:1309598. [PMID: 38259279 PMCID: PMC10800390 DOI: 10.3389/fphar.2023.1309598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Rhodiola rosea is a valuable functional medicinal plant widely utilized in China and other Asian countries for its anti-fatigue, anti-aging, and altitude sickness prevention properties. Salidroside, a most active constituent derived from Rhodiola rosea, exhibits potent antioxidative, hypoxia-resistant, anti-inflammatory, anticancer, and anti-aging effects that have garnered significant attention. The appreciation of the pharmacological role of salidroside has burgeoned over the last decade, making it a beneficial option for the prevention and treatment of multiple diseases, including atherosclerosis, Alzheimer's disease, Parkinson's disease, cardiovascular disease, and more. With its anti-aging and renoprotective effects, in parallel with the inhibition of oxidative stress and inflammation, salidroside holds promise as a potential therapeutic agent for kidney damage. This article provides an overview of the microinflammatory state in kidney disease and discuss the current therapeutic strategies, with a particular focus on highlighting the recent advancements in utilizing salidroside for renal disease. The potential mechanisms of action of salidroside are primarily associated with the regulation of gene and protein expression in glomerular endothelial cells, podocytes, renal tubule cells, renal mesangial cells and renal cell carcinoma cell, including TNF-α, TGF-β, IL-1β, IL-17A, IL-6, MCP-1, Bcl-2, VEGF, ECM protein, caspase-3, HIF-1α, BIM, as well as the modulation of AMPK/SIRT1, Nrf2/HO-1, Sirt1/PGC-1α, ROS/Src/Cav-1, Akt/GSK-3β, TXNIP-NLRP3, ERK1/2, TGF-β1/Smad2/3, PI3K/Akt, Wnt1/Wnt3a β-catenin, TLR4/NF-κB, MAPK, JAK2/STAT3, SIRT1/Nrf2 pathways. To the best of our knowledge, this review is the first to comprehensively cover the protective effects of salidroside on diverse renal diseases, and suggests that salidroside has great potential to be developed as a drug for the prevention and treatment of metabolic syndrome, cardiovascular and cerebrovascular diseases and renal complications.
Collapse
Affiliation(s)
- Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jianzhu Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Shu Y, Xiong Y, Song Y, Jin S, Bai X. Positive association between circulating Caveolin-1 and microalbuminuria in overt diabetes mellitus in pregnancy. J Endocrinol Invest 2024; 47:201-212. [PMID: 37358699 DOI: 10.1007/s40618-023-02137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
AIMS Mounting evidence has shown that caveolin-1 plays a pathological role in the progression of albuminuria. Our study aimed to provide clinical evidence showing whether circulating caveolin-1 levels were associated with microalbuminuria (MAU) in women with overt diabetes mellitus in pregnancy (ODMIP). METHODS A total of 150 pregnant women were enrolled in different groups, including 40 women with ODMIP and MAU (ODMIP + MAU), 40 women with ODMIP, and 70 women without ODMIP (Non-ODMIP). Plasma caveolin-1 levels were determined by ELISA. The presence of caveolin-1 in the human umbilical vein vascular wall was evaluated by immunohistochemical and western blot analysis, respectively. Albumin transcytosis across endothelial cells was measured using an established nonradioactive in vitro approach. RESULTS Significantly increased levels of plasma caveolin-1 were detected in ODMIP + MAU women. The Pearson's correlation analysis revealed a positive correlation between plasma caveolin-1 levels and Hemoglobin A1c (HbA1c %) as well as with MAU in the ODMIP + MAU group. Simultaneously, experimental knockdown or overexpression of caveolin-1 significantly decreased or increased the level of albumin transcytosis across both human and mouse glomerular endothelial cells (GECs), respectively. CONCLUSIONS Our data showed a positive association between plasma caveolin-1 levels and microalbuminuria in ODMIP + MAU.
Collapse
Affiliation(s)
- Y Shu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China
| | - Y Xiong
- Department of Laboratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China
| | - Y Song
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China
| | - S Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China.
| | - X Bai
- Department of Laboratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China.
| |
Collapse
|
5
|
Vasuri F, Lisi AP, Ciavarella C, Degiovanni A, Fabbrizio B, Valente S, Vischini G, La Manna G, D'Errico A, Pasquinelli G. Caveolin-1 in situ expression in glomerular and peritubular capillaries as a marker of ultrastructural progression and severity of renal thrombotic microangiopathy. J Nephrol 2023; 36:2327-2333. [PMID: 37480399 DOI: 10.1007/s40620-023-01645-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/06/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Thrombotic microangiopathy is a severe and potentially life-threatening condition inducing severe endothelial injury in many organs, particularly native and transplanted kidneys. Current pathological studies by our group have identified the use of Caveolin-1 immunohistochemistry as a potential marker of endothelial damage and progression degree of thrombotic microangiopathy. The aim of the present work was to evaluate Caveolin-1 as a marker of severity in thrombotic microangiopathy kidney disease, according to the ultrastructural progression of the disease evaluated by transmission electron microscopy. MATERIALS AND METHODS Twenty-nine patients (17 non-transplanted and 12 transplanted) were retrospectively selected, biopsied for suspected or histologically-confirmed thrombotic microangiopathy. Transmission electron microscopy was performed in all cases, and an ultrastructural score of thrombotic microangiopathy-related glomerular disease was assessed (from 0 to 3+). Immunohistochemistry for Caveolin-1 was automatically performed. RESULTS The mean percentage of Caveolin-1-positive glomerular capillaries was 53.2 ± 40.6% and 28.0 ± 42.8% in the active thrombotic microangiopathy versus previous thrombotic microangiopathy cases (p = 0.085), considering both native and transplanted kidneys. The presence of progressive disease correlated with diffuse Caveolin-1 immunoreactivity (p = 0.031), and ultrastructural score correlated with glomerular Caveolin-1 positivity, progressively increasing from 22.5% of the Score 0 group to 95.5% of the Score 3 group (p = 0.036). DISCUSSION Caveolin-1 proved to be a very useful marker of early endothelial damage in the course of thrombotic microangiopathy for both native and transplanted kidneys, therefore worth considering in routine practice. Diffuse glomerular Caveolin-1 immunoreactivity correlates with the severity of the thrombotic disease and it can appear very early, even before ultrastructurally evident endothelial damage.
Collapse
Affiliation(s)
- Francesco Vasuri
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy.
| | - Anthony P Lisi
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Carmen Ciavarella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Alessio Degiovanni
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Benedetta Fabbrizio
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
| | - Sabrina Valente
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Gisella Vischini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Gaetano La Manna
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Antonia D'Errico
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Gianandrea Pasquinelli
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Juin SK, Ouseph R, Gondim DD, Jala VR, Sen U. Diabetic Nephropathy and Gaseous Modulators. Antioxidants (Basel) 2023; 12:antiox12051088. [PMID: 37237955 DOI: 10.3390/antiox12051088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic nephropathy (DN) remains the leading cause of vascular morbidity and mortality in diabetes patients. Despite the progress in understanding the diabetic disease process and advanced management of nephropathy, a number of patients still progress to end-stage renal disease (ESRD). The underlying mechanism still needs to be clarified. Gaseous signaling molecules, so-called gasotransmitters, such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), have been shown to play an essential role in the development, progression, and ramification of DN depending on their availability and physiological actions. Although the studies on gasotransmitter regulations of DN are still emerging, the evidence revealed an aberrant level of gasotransmitters in patients with diabetes. In studies, different gasotransmitter donors have been implicated in ameliorating diabetic renal dysfunction. In this perspective, we summarized an overview of the recent advances in the physiological relevance of the gaseous molecules and their multifaceted interaction with other potential factors, such as extracellular matrix (ECM), in the severity modulation of DN. Moreover, the perspective of the present review highlights the possible therapeutic interventions of gasotransmitters in ameliorating this dreaded disease.
Collapse
Affiliation(s)
- Subir Kumar Juin
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Microbiology & Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Rosemary Ouseph
- Division of Nephrology & Hypertension, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Dibson Dibe Gondim
- Department of Pathology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Venkatakrishna Rao Jala
- Department of Microbiology & Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
7
|
Sawada A, Kawanishi K, Igarashi Y, Taneda S, Hattori M, Ishida H, Tanabe K, Koike J, Honda K, Nagashima Y, Nitta K. Overexpression of Plasmalemmal Vesicle-Associated Protein-1 Reflects Glomerular Endothelial Injury in Cases of Proliferative Glomerulonephritis with Monoclonal IgG Deposits. Kidney Int Rep 2022; 8:151-163. [PMID: 36644361 PMCID: PMC9831946 DOI: 10.1016/j.ekir.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction Proliferative glomerulonephritis with monoclonal IgG deposits (PGNMID) occasionally presents refractory nephrotic syndrome resulting in poor renal prognosis, but its etiology is not fully elucidated. Given that glomerular endothelial cell (GEC) stress or damage may lead to podocytopathy and subsequent proteinuria, as in thrombotic microangiopathy (TMA), diabetic kidney disease, and focal segmental glomerulosclerosis, we investigated the evidence of glomerular endothelial injury by evaluating the expression of plasmalemmal vesicle-associated protein-1 (PV-1), a component of caveolae in the cases of PGNMID. Methods We measured the immunofluorescent PV-1 intensities of 23 PGNMID cases and compared with those of primary membranoproliferative glomerulonephritis (MPGN) (n = 5) and IgA nephropathy (IgAN) (n = 54) cases. PV-1 localization was evaluated with Caveolin-1, and CD31 staining, and the ultrastructural analysis was performed using a low-vacuum scanning electron microscope (LVSEM). To check the association of podocyte injury, we also conducted 8-oxoguanine and Wilms tumor 1 (WT1) double stain. We then evaluated PV-1 expression in other glomerulitis and glomerulopathy such as lupus nephritis and minimal change disease. Results The intensity of glomerular PV-1 expression in PGNMID is significantly higher than that in the other glomerular diseases, although the intensity is not associated with clinical outcomes such as urinary protein levels or renal prognosis. Immunostaining and LVSEM analysis revealed that glomerular PV-1 expression is localized in GECs in PGNMID. 8-oxoguanine accumulation was detected in WT1-positive podocytes but not in PV-1-expressing GECs, suggesting GEC-derived podocyte injury in PGNMID. Conclusion PV-1 overexpression reflects glomerular endothelial injury, which could be associated with podocyte oxidative stress in PGNMID cases.
Collapse
Affiliation(s)
- Anri Sawada
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan,Department of Surgical Pathology, Tokyo Women’s Medical University Hospital, Tokyo, Japan
| | - Kunio Kawanishi
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan,Correspondence: Kunio Kawanishi or Anri Sawada, Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki Japan.
| | - Yuto Igarashi
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Sekiko Taneda
- Department of Surgical Pathology, Tokyo Women’s Medical University Hospital, Tokyo, Japan
| | - Motoshi Hattori
- Department of Pediatric Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Hideki Ishida
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan,Department of Organ Transplant Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Kazunari Tanabe
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Junki Koike
- Department of Pathology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Kazuho Honda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Yoji Nagashima
- Department of Surgical Pathology, Tokyo Women’s Medical University Hospital, Tokyo, Japan
| | - Kosaku Nitta
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
8
|
Yin J, Wang K, Zhu X, Lu G, Jin D, Qiu J, Zhou F. Procyanidin B2 suppresses hyperglycemia‑induced renal mesangial cell dysfunction by modulating CAV‑1‑dependent signaling. Exp Ther Med 2022; 24:496. [PMID: 35837062 PMCID: PMC9257762 DOI: 10.3892/etm.2022.11423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/27/2022] [Indexed: 11/06/2022] Open
Abstract
The dysfunction of renal mesangial cells (MCs) is a hallmark of diabetic kidney disease (DKD), which triggers glomerulosclerosis leading to end-stage renal disease. Procyanidin B2 (PB2), the main component of proanthocyanidin, is well known for its antioxidant and anti-inflammatory effects; however, it remains unclear as to whether it has protective effects on DKD. The present study investigated the protective effect of PB2 against hyperglycemia-induced renal MC dysfunction in mouse SV40-Mes13 (Mes13) cells. The Mes13 cells were treated with or without PB2 under HG conditions. Cell proliferation was assessed using an MTT assay and oxidative stress was assessed by examining intracellular ROS generation and H2O2 production. The changes in extracellular matrix accumulation- and cellular inflammation-related proteins were measured by western blot analysis, ELISA and immunofluorescence analysis. The results showed that PB2 treatment markedly attenuated hyperglycemia-induced cell proliferation, oxidative stress, extracellular matrix accumulation and cellular inflammation in Mes13 cells, which was accompanied by an inactivation of redoxosomes, TGF-β1/SMAD and IL-1β/TNF-α/NF-κB signaling pathways. The present study also demonstrated that hyperglycemia upregulated and activated caveolin-1 (CAV-1), whereas PB2 treatment potently reversed this effect. In accordance, CAV-1 overexpression abolished the protective effects of PB2 against hyperglycemia in Mes13 cells, indicating that the cytoprotective effect of PB2 was CAV-1-dependent. These findings form the basis of the potential clinical applications of PB2 in the treatment of DKD.
Collapse
Affiliation(s)
- Jun Yin
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ke Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, P.R. China
| | - Xue Zhu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, P.R. China
| | - Guoyuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Donghua Jin
- Department of Nephrology, People's Hospital of Suzhou New District, Suzhou, Jiangsu 215129, P.R. China
| | - Junsi Qiu
- Department of Nephrology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Fanfan Zhou
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales A-2006, Australia
| |
Collapse
|
9
|
Bauer C, Piani F, Banks M, Ordoñez FA, de Lucas-Collantes C, Oshima K, Schmidt EP, Zakharevich I, Segarra A, Martinez C, Roncal-Jimenez C, Satchell SC, Bjornstad P, Lucia MS, Blaine J, Thurman JM, Johnson RJ, Cara-Fuentes G. Minimal Change Disease Is Associated With Endothelial Glycocalyx Degradation and Endothelial Activation. Kidney Int Rep 2022; 7:797-809. [PMID: 35497798 PMCID: PMC9039905 DOI: 10.1016/j.ekir.2021.11.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/03/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
Introduction Minimal change disease (MCD) is considered a podocyte disorder triggered by unknown circulating factors. Here, we hypothesized that the endothelial cell (EC) is also involved in MCD. Methods We studied 45 children with idiopathic nephrotic syndrome (44 had steroid sensitive nephrotic syndrome [SSNS], and 12 had biopsy-proven MCD), 21 adults with MCD, and 38 healthy controls (30 children, 8 adults). In circulation, we measured products of endothelial glycocalyx (EG) degradation (syndecan-1, heparan sulfate [HS] fragments), HS proteoglycan cleaving enzymes (matrix metalloprotease-2 [MMP-2], heparanase activity), and markers of endothelial activation (von Willebrand factor [vWF], thrombomodulin) by enzyme-linked immunosorbent assay (ELISA) and mass spectrometry. In human kidney tissue, we assessed glomerular EC (GEnC) activation by immunofluorescence of caveolin-1 (n = 11 MCD, n = 5 controls). In vitro, we cultured immortalized human GEnC with sera from control subjects and patients with MCD/SSNS sera in relapse (n = 5 per group) and performed Western blotting of thrombomodulin of cell lysates as surrogate marker of endothelial activation. Results In circulation, median concentrations of all endothelial markers were higher in patients with active disease compared with controls and remained high in some patients during remission. In the MCD glomerulus, caveolin-1 expression was higher, in an endothelial-specific pattern, compared with controls. In cultured human GEnC, sera from children with MCD/SSNS in relapse increased thrombomodulin expression compared with control sera. Conclusion Our data show that alterations involving the systemic and glomerular endothelium are nearly universal in patients with MCD and SSNS, and that GEnC can be directly activated by circulating factors present in the MCD/SSNS sera during relapse.
Collapse
Affiliation(s)
- Colin Bauer
- Section of Pediatric Nephrology, Department of Pediatrics, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Federica Piani
- Section of Pediatric Nephrology, Department of Pediatrics, Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Medicine and Surgery Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Mindy Banks
- Division of Pediatric Nephrology, Rocky Mountain Children’s Hospital, Denver, Colorado, USA
| | - Flor A. Ordoñez
- Division of Pediatric Nephrology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Kaori Oshima
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eric P. Schmidt
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Igor Zakharevich
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alfons Segarra
- Department of Nephrology, Hospital Universitario Arnau de Vilanova, Lleida, Spain
- Lleida Institute for Biomedical Research Dr. Pifarré Foundation, Lleida, Spain
- Division of Nephrology, Hospital General Vall d’Hebron, Barcelona, Spain
| | - Cristina Martinez
- Lleida Institute for Biomedical Research Dr. Pifarré Foundation, Lleida, Spain
| | - Carlos Roncal-Jimenez
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Petter Bjornstad
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatrics, Section of Pediatric Endocrinology, Children’s Hospital Colorado and University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marshall Scott Lucia
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Judith Blaine
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joshua M. Thurman
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Richard J. Johnson
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gabriel Cara-Fuentes
- Section of Pediatric Nephrology, Department of Pediatrics, Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
10
|
Purohit S, Piani F, Ordoñez FA, de Lucas-Collantes C, Bauer C, Cara-Fuentes G. Molecular Mechanisms of Proteinuria in Minimal Change Disease. Front Med (Lausanne) 2022; 8:761600. [PMID: 35004732 PMCID: PMC8733331 DOI: 10.3389/fmed.2021.761600] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Minimal change disease (MCD) is the most common type of idiopathic nephrotic syndrome in childhood and represents about 15% cases in adults. It is characterized by massive proteinuria, edema, hypoalbuminemia, and podocyte foot process effacement on electron microscopy. Clinical and experimental studies have shown an association between MCD and immune dysregulation. Given the lack of inflammatory changes or immunocomplex deposits in the kidney tissue, MCD has been traditionally thought to be mediated by an unknown circulating factor(s), probably released by T cells that directly target podocytes leading to podocyte ultrastructural changes and proteinuria. Not surprisingly, research efforts have focused on the role of T cells and podocytes in the disease process. Nevertheless, the pathogenesis of the disease remains a mystery. More recently, B cells have been postulated as an important player in the disease either by activating T cells or by releasing circulating autoantibodies against podocyte targets. There are also few reports of endothelial injury in MCD, but whether glomerular endothelial cells play a role in the disease remains unexplored. Genome-wide association studies are providing insights into the genetic susceptibility to develop the disease and found a link between MCD and certain human haplotype antigen variants. Altogether, these findings emphasize the complex interplay between the immune system, glomerular cells, and the genome, raising the possibility of distinct underlying triggers and/or mechanisms of proteinuria among patients with MCD. The heterogeneity of the disease and the lack of good animal models of MCD remain major obstacles in the understanding of MCD. In this study, we will review the most relevant candidate mediators and mechanisms of proteinuria involved in MCD and the current models of MCD-like injury.
Collapse
Affiliation(s)
- Shrey Purohit
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pediatrics, Section of Pediatric Nephrology, Children's Hospital Colorado, Aurora, CO, United States
| | - Federica Piani
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Medicine and Surgery Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Flor A Ordoñez
- Division of Pediatric Nephrology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Colin Bauer
- Department of Pediatrics, Section of Pediatric Nephrology, Children's Hospital Colorado, Aurora, CO, United States
| | - Gabriel Cara-Fuentes
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pediatrics, Section of Pediatric Nephrology, Children's Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
11
|
Locatelli M, Zoja C, Conti S, Cerullo D, Corna D, Rottoli D, Zanchi C, Tomasoni S, Remuzzi G, Benigni A. Empagliflozin protects glomerular endothelial cell architecture in experimental diabetes through the VEGF-A/caveolin-1/PV-1 signaling pathway. J Pathol 2022; 256:468-479. [PMID: 35000230 DOI: 10.1002/path.5862] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/29/2021] [Accepted: 01/06/2022] [Indexed: 11/09/2022]
Abstract
In addition to having blood glucose-lowering effects, inhibitors of sodium glucose cotransporter 2 (SGLT2) afford renoprotection in diabetes. We sought to investigate which components of the glomerular filtration barrier could be involved in the antiproteinuric and renoprotective effects of SGLT2 inhibition in diabetes. BTBR ob/ob mice that develop a type 2 diabetic nephropathy received a standard diet with or without empagliflozin for 10 weeks, starting at 8 weeks of age, when animals had developed albuminuria. Empagliflozin caused marked decreases in blood glucose levels and albuminuria but did not correct glomerular hyperfiltration. The protective effect of empagliflozin against albuminuria was not due to a reduction in podocyte damage since empagliflozin did not affect the larger podocyte filtration slit pore size nor the defective expression of nephrin and nestin. Empagliflozin did not reduce the thickening of the GBM. In BTBR ob/ob mice, the most profound abnormality seen using electron microscopy was in the endothelial aspect of the glomerular capillary, with significant loss of endothelial fenestrations. Remarkably, empagliflozin ameliorated the subverted microvascular endothelial ultrastructure. Caveolae and bridging diaphragms between adjacent endothelial fenestrae were seen in diabetic mice and associated with increased expression of caveolin-1 and the appearance of PV-1. These endothelial abnormalities were limited by the SGLT2 inhibitor. While no expression of SGLT2 was found in glomerular endothelial cells, SGLT2 was expressed in the podocytes of diabetic mice. VEGF-A which is a known stimulus for endothelial caveolin-1 and PV-1 was increased in podocytes of BTBR ob/ob mice and normalized by SGLT2 inhibitor treatment. Thus, empagliflozin's protective effect on the glomerular endothelium of diabetic mice could be due to a limitation of the paracrine signaling of podocyte-derived VEGF-A that resulted in a reduction of the abnormal endothelial caveolin-1 and PV-1, with the consequent preservation of glomerular endothelial function and permeability. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Monica Locatelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Carlamaria Zoja
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Sara Conti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Domenico Cerullo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Daniela Corna
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Daniela Rottoli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Cristina Zanchi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Susanna Tomasoni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| |
Collapse
|
12
|
Luo S, Yang M, Zhao H, Han Y, Jiang N, Yang J, Chen W, Li C, Liu Y, Zhao C, Sun L. Caveolin-1 Regulates Cellular Metabolism: A Potential Therapeutic Target in Kidney Disease. Front Pharmacol 2021; 12:768100. [PMID: 34955837 PMCID: PMC8703113 DOI: 10.3389/fphar.2021.768100] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
The kidney is an energy-consuming organ, and cellular metabolism plays an indispensable role in kidney-related diseases. Caveolin-1 (Cav-1), a multifunctional membrane protein, is the main component of caveolae on the plasma membrane. Caveolae are represented by tiny invaginations that are abundant on the plasma membrane and that serve as a platform to regulate cellular endocytosis, stress responses, and signal transduction. However, caveolae have received increasing attention as a metabolic platform that mediates the endocytosis of albumin, cholesterol, and glucose, participates in cellular metabolic reprogramming and is involved in the progression of kidney disease. It is worth noting that caveolae mainly depend on Cav-1 to perform the abovementioned cellular functions. Furthermore, the mechanism by which Cav-1 regulates cellular metabolism and participates in the pathophysiology of kidney diseases has not been completely elucidated. In this review, we introduce the structure and function of Cav-1 and its functions in regulating cellular metabolism, autophagy, and oxidative stress, focusing on the relationship between Cav-1 in cellular metabolism and kidney disease; in addition, Cav-1 that serves as a potential therapeutic target for treatment of kidney disease is also described.
Collapse
Affiliation(s)
- Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Chanyue Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| |
Collapse
|
13
|
Moriyama T, Hasegawa F, Miyabe Y, Akiyama K, Karasawa K, Uchida K, Nitta K. Intracellular trafficking pathway of albumin in glomerular epithelial cells. Biochem Biophys Res Commun 2021; 574:97-103. [PMID: 34450430 DOI: 10.1016/j.bbrc.2021.08.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
The intracellular trafficking pathway of albumin in podocytes remains controversial. We therefore analysed albumin endocytosis through caveolae, subsequent transcytosis, and exocytosis. In Western blot and immunofluorescence analysis in vitro, methyl-beta-cyclodextrin (MBCD) treatment significantly decreased the expression of caveolin-1 and albumin in cultured human podocytes after incubation with albumin; additionally, MBCD interfered with albumin endocytosis through caveolae in the experiment using Transwell plates. In the immunofluorescence analysis, albumin was incubated with cultured human podocytes, and colocalisation analysis with organelles and cytoskeletons in the podocytes showed that albumin particles colocalised with caveolin-1 and Fc-receptor but not clathrin in endocytosis, colocalised with actin cytoskeleton but not microtubules in transcytosis, and colocalised with early endosomes and lysosomes but not proteasome, endoplasmic reticulum, or Golgi apparatus. In the electron microscopic analysis of podocytes in nephrotic syndrome model mice, gold-labelled albumin was shown as endocytosis, transcytosis, and exocytosis with caveolae. These results indicate the intracellular trafficking of albumin through podocytes. Albumin enters through caveolae with the Fc-receptor, moves along actin, and reaches the early endosome, where some of them are sorted for lysosomal degradation, and others are directly transported outside the cells through exocytosis. This intracellular pathway may be a new aetiological hypothesis for albuminuria.
Collapse
Affiliation(s)
- Takahito Moriyama
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan.
| | - Fumio Hasegawa
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan.
| | - Yoei Miyabe
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan.
| | - Kenichi Akiyama
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan.
| | - Kazunori Karasawa
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan.
| | - Keiko Uchida
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan.
| | - Kosaku Nitta
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
14
|
Caveolin-1 in Kidney Chronic Antibody-Mediated Rejection: An Integrated Immunohistochemical and Transcriptomic Analysis Based on the Banff Human Organ Transplant (B-HOT) Gene Panel. Biomedicines 2021; 9:biomedicines9101318. [PMID: 34680435 PMCID: PMC8533527 DOI: 10.3390/biomedicines9101318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Caveolin-1 overexpression has previously been reported as a marker of endothelial injury in kidney chronic antibody-mediated rejection (c-ABMR), but conclusive evidence supporting its use for daily diagnostic practice is missing. This study aims to evaluate if Caveolin-1 can be considered an immunohistochemical surrogate marker of c-ABMR. Caveolin-1 expression was analyzed in a selected series of 22 c-ABMR samples and 11 controls. Caveolin-1 immunohistochemistry proved positive in peritubular and glomerular capillaries of c-ABMR specimens, irrespective of C4d status whereas all controls were negative. Multiplex gene expression profiling in c-ABMR cases confirmed Caveolin-1 overexpression and identified additional genes (n = 220) and pathways, including MHC Class II antigen presentation and Type II interferon signaling. No differences in terms of gene expression (including Caveolin-1 gene) were observed according to C4d status. Conversely, immune cell signatures showed a NK-cell prevalence in C4d-negative samples compared with a B-cell predominance in C4d-positive cases, a finding confirmed by immunohistochemical assessment. Finally, differentially expressed genes were observed between c-ABMR and controls in pathways associated with Caveolin-1 functions (angiogenesis, cell metabolism and cell–ECM interaction). Based on our findings, Caveolin-1 resulted as a key player in c-ABMR, supporting its role as a marker of this condition irrespective of C4d status.
Collapse
|
15
|
Du F, Zhang Y, Xu Q, Teng Y, Tao M, Chen AF, Jiang R. Preeclampsia serum increases CAV1 expression and cell permeability of human renal glomerular endothelial cells via down-regulating miR-199a-5p, miR-199b-5p, miR-204. Placenta 2020; 99:141-151. [PMID: 32798766 DOI: 10.1016/j.placenta.2020.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION To gain insight into mechanisms of preeclampsia (PE)-dependent proteinuria, this study focused on whether preeclampsia serum (PES) could induce hyperpermeability in human renal glomerular endothelial cells (HRGECs) via the miRNAs-Caveolin-1 (CAV-1)-dependent pathway. METHODS Bioinformatics approach was used to identify miRNAs targeting CAV1. Normal pregnancy serum (NPS) and severe PES were used to treat HRGECs monolayer to demonstrate if PES could induce the expression of identified miRNAs. A luciferase reporter assay was used to determine whether CAV1 was a direct target of miR-199a-5p, miR-199b-5p, and miR-204. The relationship between the expression of miR-199a-5p, miR-199b-5p, miR-204, and CAV1 in HRGECs was determined using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. The gain-of-function and loss-of-function experiments were performed on HRGECs to investigate the effects of miR-199a-5p, miR-199b-5p, miR-204 on HRGECs permeability. RESULTS We identified that CAV1 3'UTR has putative binding sites for miR-199a-5p, miR-199b-5p, and miR-204, whereas miR-199a-5p does not appear to be a direct regulator of CAV1. We detected that PE serum downregulated the expression of miR-199a-5p, miR-199b-5p and miR-204, increased expression of CAV1 and increased cell monolayer permeability in HRGECs. The level of CAV1 and permeability decreased when miR-199b-5p or miR-204, but not miR-199a-5p, were overexpressed. DISCUSSION miR-199b-5p and miR-204 may play a role in PES-induced increasing permeability of HRGECs by regulating CAV1 expression.
Collapse
Affiliation(s)
- Fei Du
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ye Zhang
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qinyang Xu
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yincheng Teng
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Minfang Tao
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Alex F Chen
- Department of Surgery, McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Rongzhen Jiang
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
16
|
Haddad D, Al Madhoun A, Nizam R, Al-Mulla F. Role of Caveolin-1 in Diabetes and Its Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9761539. [PMID: 32082483 PMCID: PMC7007939 DOI: 10.1155/2020/9761539] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/10/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022]
Abstract
It is estimated that in 2017 there were 451 million people with diabetes worldwide. These figures are expected to increase to 693 million by 2045; thus, innovative preventative programs and treatments are a necessity to fight this escalating pandemic disorder. Caveolin-1 (CAV1), an integral membrane protein, is the principal component of caveolae in membranes and is involved in multiple cellular functions such as endocytosis, cholesterol homeostasis, signal transduction, and mechanoprotection. Previous studies demonstrated that CAV1 is critical for insulin receptor-mediated signaling, insulin secretion, and potentially the development of insulin resistance. Here, we summarize the recent progress on the role of CAV1 in diabetes and diabetic complications.
Collapse
Affiliation(s)
- Dania Haddad
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ashraf Al Madhoun
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rasheeba Nizam
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
17
|
Caveolin-1 rs4730751 single-nucleotide polymorphism may not influence kidney transplant allograft survival. Sci Rep 2019; 9:15541. [PMID: 31664124 PMCID: PMC6820546 DOI: 10.1038/s41598-019-52079-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/11/2019] [Indexed: 11/27/2022] Open
Abstract
Caveolin-1 is a protein (encoded by the CAV1 gene) supposedly harboring a protective effect against fibrosis. CAV1 rs4730751 single nucleotide polymorphism (SNP) AA genotype was initially associated with lower graft survival compared to non-AA. However, subsequent studies could not find the same effect. CAV1 rs4730751 SNP was investigated on 918 kidney donors. Multivariate Cox-model analyses were performed to evaluate risk factors for graft loss. Longitudinal changes on long-term estimated glomerular filtration rate (eGFRs) were evaluated with a linear mixed model. Histopathological findings from protocolled biopsies after 3 months post transplantation were also analyzed. Donor CAV1 rs4730751 genotyping proportions were 7.1% for AA, 41.6% for AC and 51.3% for CC. The AA genotype, compared to non-AA, was not associated with lower graft survival censored or not for death (multivariate analysis: HR = 1.23 [0.74–2.05] and HR = 1.27 [0.84–1.92]). Linear mixed model on long-term eGFRs revealed also no significant difference according to the genotype, yet we observed a trend. AA genotype was also not associated with a higher degree of fibrosis index on protocolled kidney biopsies at 3 months. To conclude, donor CAV1 rs4730751 SNP may impact on kidney transplantation outcomes, but this study could not confirm this hypothesis.
Collapse
|
18
|
Yamanaka K, Oka K, Imanaka T, Taniguchi A, Nakazawa S, Yoshida T, Kishikawa H, Nishimura K. Immunoenzymatic Staining of Caveolin-1 in Formalin-Fixed Renal Graft Showing Chronic Antibody Mediated Rejection. Transplant Proc 2019; 51:1387-1391. [PMID: 31036353 DOI: 10.1016/j.transproceed.2019.01.134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/30/2022]
Abstract
AIM Caveolin-1 (CAV-1) is a molecule associated with endothelial cell dysfunction in chronic antibody-mediated rejection (CAMR) and considered to be a novel biomarker of CAMR. For immunohistochemical staining to reveal CAV-1 expression, most studies have used immunofluorescent stained frozen specimens, whereas formalin-fixed tissues have not been utilized. In the present study, we examined CAV-1 expression in specimens from CAMR patients using an immunoenzymatic technique with formalin-fixed tissues. METHODS Eleven patients diagnosed with CAMR based on findings of transplanted renal biopsy samples were enrolled. Those biopsy specimens were formalin fixed and stained with CAV-1 using an immunoenzymatic method. Dye extent was evaluated by classifying that in peritubular capillaries (PTC) and glomerular capillaries (GBM) in 3 steps. We then compared the Banff scores for peritubular capillaritis (ptc), glomerulopathy (cg), and C4d using those results. RESULTS CAV-1 expression was confirmed in vascular endothelium (PTC, GBM), while it was poor in epithelial cells. A Banff score for ptc and cg of 3 points was seen in 3 and 4 cases, of 2 points was seen in 1 and 4 cases, of 1 point was seen in 7 and 3 cases, and of 0 points was seen in 0 and 0 cases, respectively. In PTC, C4d and CAV-1 scores of 3 points were seen in 0 and 9 cases, of 2 points were seen in 2 and 2 cases, of 1 point was seen in 5 and 0 cases, and of 0 points were seen in 4 and 0 cases, respectively. As for GBM, C4d and CAV-1 scores of 3 points were seen in 8 and 7 cases, of 2 points were seen in 2 and 4 cases, of 1 point was seen in 0 and 0 cases, and of 0 points were seen 1 and 0 cases, respectively. CONCLUSION CAV-1 expression in PTC had a score ≥2 in all cases, indicating that an adequate level of staining of formalin-fixed tissue was attained with the present immunoenzymatic technique. These results suggest that CAV-1 expression examined by the present method may be useful for identifying endothelial dysfunction.
Collapse
Affiliation(s)
- Kazuaki Yamanaka
- Department of Urology, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, Japan.
| | - Kazumasa Oka
- Department of Pathology, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, Japan
| | - Takahiro Imanaka
- Department of Urology, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, Japan
| | - Ayumu Taniguchi
- Department of Urology, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, Japan
| | - Shigeaki Nakazawa
- Department of Urology, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, Japan
| | - Takahiro Yoshida
- Department of Urology, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, Japan
| | - Hidefumi Kishikawa
- Department of Urology, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, Japan
| | - Kenji Nishimura
- Department of Urology, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, Japan
| |
Collapse
|
19
|
Mehta N, Zhang D, Li R, Wang T, Gava A, Parthasarathy P, Gao B, Krepinsky JC. Caveolin-1 regulation of Sp1 controls production of the antifibrotic protein follistatin in kidney mesangial cells. Cell Commun Signal 2019; 17:37. [PMID: 30995923 PMCID: PMC6472091 DOI: 10.1186/s12964-019-0351-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND We previously showed that caveolin-1 (cav-1), an integral membrane protein, is required for the synthesis of matrix proteins by glomerular mesangial cells (MC). In a previous study to understand how cav-1 is involved in regulating matrix production, we had identified significant upregulation of the antifibrotic protein follistatin in cav-1 knockout MC. Follistatin inhibits the profibrotic effects of several members of the transforming growth factor beta superfamily, in particular the activins. Here, we characterize the molecular mechanism through which cav-1 regulates the expression of follistatin. METHODS Kidneys from cav-1 wild type and knockout (KO) mice were analyzed and primary cultures of MC from cav-1 wild-type and KO mice were utilized. FST promoter deletion constructs were generated to determine the region of the promoter important for mediating FST upregulation in cav-1 KO MC. siRNA-mediated down-regulation and overexpression of Sp1 in conjunction with luciferase activity assays, immunoprecipitation, western blotting and ChiP was used to assess the role of Sp1 in transcriptionally regulating FST expression. Pharmacologic kinase inhibitors and specific siRNA were used to determine the post-translational mechanism through which cav-1 affects Sp1 activity. RESULTS Our results establish that follistatin upregulation occurs at the transcript level. We identified Sp1 as the critical transcription factor regulating activation of the FST promoter in cav-1 KO MC through binding to a region within 123 bp of the transcription start site. We further determined that the lack of cav-1 increases Sp1 nuclear levels and transcriptional activity. This occurred through increased phosphoinositide 3-kinase (PI3K) activity and downstream protein kinase C (PKC) zeta-mediated phosphorylation and activation of Sp1. CONCLUSIONS These findings shed light on the transcriptional mechanism by which cav-1 represses the expression of a major antifibrotic protein, and can inform the development of novel antifibrotic treatment strategies.
Collapse
Affiliation(s)
- Neel Mehta
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Dan Zhang
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Renzhong Li
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Tony Wang
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Agata Gava
- Physiological Sciences Graduate Program, Health Sciences Centre, Federal University of Espirito Santo, Vitoria, Brazil
| | | | - Bo Gao
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Joan C Krepinsky
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada. .,St. Joseph's Hospital, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada.
| |
Collapse
|
20
|
Estrella MM, Parekh RS. The Expanding Role of APOL1 Risk in Chronic Kidney Disease and Cardiovascular Disease. Semin Nephrol 2018; 37:520-529. [PMID: 29110759 DOI: 10.1016/j.semnephrol.2017.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Variants of the APOL1 gene, found primarily in individuals of African descent, are associated with various forms of kidney disease and kidney disease progression. Recent studies evaluating the association of APOL1 with cardiovascular disease have yielded conflicting results, and the potential role in cardiovascular disease remains unclear. In this review, we summarize the observational studies linking the APOL1 risk variants with chronic kidney and cardiovascular disease among persons of African descent.
Collapse
Affiliation(s)
- Michelle M Estrella
- Kidney Health Research Collaborative, Department of Medicine, University of California San Francisco, San Francisco, CA; Department of Medicine, San Francisco VA Medical Center, San Francisco, CA
| | - Rulan S Parekh
- Division of Nephrology, Departments of Pediatrics and Medicine, The Hospital for Sick Children, SickKids Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Karp AM, Gbadegesin RA. Genetics of childhood steroid-sensitive nephrotic syndrome. Pediatr Nephrol 2017; 32:1481-1488. [PMID: 27470160 PMCID: PMC5276801 DOI: 10.1007/s00467-016-3456-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 02/07/2023]
Abstract
The pathogenesis of childhood-onset nephrotic syndrome (NS), disparity in incidence of NS among races, and variable responses to therapies in children with NS have defied explanation to date. In the last 20 years over 50 genetic causes of steroid-resistant nephrotic syndrome (SRNS) have been identified, and at least two disease loci for two pathologic variants of SRNS (focal segmental glomerulosclerosis and membranous nephropathy) have been defined. However, the genetic causes and risk loci for steroid-sensitive nephrotic syndrome (SSNS) remain elusive, partly because SSNS is relatively rare and also because cases of SSNS vary widely in phenotypic expression over time. A recent study of a well-defined modest cohort of children with SSNS identified variants in HLA-DQA1 as a risk factor for SSNS. Here we review what is currently known about the genetics of SSNS and also discuss how recent careful phenotypic and genomic studies reinforce the role of adaptive immunity in the molecular mechanisms of SSNS.
Collapse
Affiliation(s)
- Alana M. Karp
- Department of Pediatrics, Division of Nephrology, Emory University, Atlanta, GA, USA
| | - Rasheed A. Gbadegesin
- Department of Pediatrics, Division of Nephrology, Duke University Medical Center, Durham, NC,Duke Molecular Physiology Institute, Duke University, Durham, NC,To whom correspondence should be addressed:
| |
Collapse
|
22
|
Moriyama T, Sasaki K, Karasawa K, Uchida K, Nitta K. Intracellular transcytosis of albumin in glomerular endothelial cells after endocytosis through caveolae. J Cell Physiol 2017; 232:3565-3573. [DOI: 10.1002/jcp.25817] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Takahito Moriyama
- Department of Medicine; Kidney Center; Tokyo Women's Medical University; Tokyo Japan
| | - Kayo Sasaki
- Department of Medicine; Kidney Center; Tokyo Women's Medical University; Tokyo Japan
| | - Kazunori Karasawa
- Department of Medicine; Kidney Center; Tokyo Women's Medical University; Tokyo Japan
| | - Keiko Uchida
- Department of Medicine; Kidney Center; Tokyo Women's Medical University; Tokyo Japan
| | - Kosaku Nitta
- Department of Medicine; Kidney Center; Tokyo Women's Medical University; Tokyo Japan
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Diabetic nephropathy, a major microvascular complication of diabetes and the most common cause of end-stage renal disease, is characterized by prominent accumulation of extracellular matrix. The membrane microdomains caveolae, and their integral protein caveolin-1, play critical roles in the regulation of signal transduction. In this review we discuss current knowledge of the contribution of caveolin-1/caveolae to profibrotic signaling and the pathogenesis of diabetic kidney disease, and assess its potential as a therapeutic target. RECENT FINDINGS Caveolin (cav)-1 is key to facilitating profibrotic signal transduction induced by several stimuli known to be pathogenic in diabetic nephropathy, including the most prominent factors hyperglycemia and angiotensin II. Phosphorylation of cav-1 on Y14 is an important regulator of these responses. In vivo studies support a pathogenic role for caveolae in the progression of diabetic nephropathy. Targeting caveolin-1/caveolae would enable inhibition of multiple profibrotic pathways, representing a novel and potentially potent therapeutic option for diabetic nephropathy.
Collapse
Affiliation(s)
- Richard Van Krieken
- Department of Medicine, Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave E, T3311, Hamilton, ON, L8N 4A6, Canada
| | - Joan C Krepinsky
- Department of Medicine, Division of Nephrology, St. Joseph's Hospital, McMaster University, 50 Charlton Ave E, T3311, Hamilton, ON, L8N 4A6, Canada.
| |
Collapse
|
24
|
Wu D, Yang X, Zheng T, Xing S, Wang J, Chi J, Bian F, Li W, Xu G, Bai X, Wu G, Jin S. A novel mechanism of action for salidroside to alleviate diabetic albuminuria: effects on albumin transcytosis across glomerular endothelial cells. Am J Physiol Endocrinol Metab 2016; 310:E225-37. [PMID: 26646098 DOI: 10.1152/ajpendo.00391.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/01/2015] [Indexed: 11/22/2022]
Abstract
Salidroside (SAL) is a phenylethanoid glycoside isolated from the medicinal plant Rhodiola rosea. R. rosea has been reported to have beneficial effects on diabetic nephropathy (DN) and high-glucose (HG)-induced mesangial cell proliferation. Given the importance of caveolin-1 (Cav-1) in transcytosis of albumin across the endothelial barrier, the present study was designed to elucidate whether SAL could inhibit Cav-1 phosphorylation and reduce the albumin transcytosis across glomerular endothelial cells (GECs) to alleviate diabetic albuminuria as well as to explore its upstream signaling pathway. To assess the therapeutic potential of SAL and the mechanisms involved in DN albuminuria, we orally administered SAL to db/db mice, and the effect of SAL on the albuminuria was measured. The albumin transcytosis across GECs was explored in a newly established in vitro cellular model. The ratio of albumin to creatinine was significantly reduced upon SAL treatment in db/db mice. SAL decreased the albumin transcytosis across GECs in both normoglycemic and hyperglycemic conditions. SAL reversed the HG-induced downregulation of AMP-activated protein kinase and upregulation of Src kinase and blocked the upregulation Cav-1 phosphorylation. Meanwhile, SAL decreased mitochondrial superoxide anion production and moderately depolarized mitochondrial membrane potential. We conclude that SAL exerts its proteinuria-alleviating effects by downregulation of Cav-1 phosphorylation and inhibition of albumin transcytosis across GECs. These studies provide the first evidence of interference with albumin transcytosis across GECs as a novel approach to the treatment of diabetic albuminuria.
Collapse
Affiliation(s)
- Dan Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyan Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Tao Zheng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Shasha Xing
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Jianghong Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Jiangyang Chi
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Fang Bian
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Wenjing Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Gao Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Xiangli Bai
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Guangjie Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and
| | - Si Jin
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; and Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
25
|
Wan X, Chen Z, Choi WI, Gee HY, Hildebrandt F, Zhou W. Loss of Epithelial Membrane Protein 2 Aggravates Podocyte Injury via Upregulation of Caveolin-1. J Am Soc Nephrol 2015; 27:1066-75. [PMID: 26264854 DOI: 10.1681/asn.2014121197] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/23/2015] [Indexed: 11/03/2022] Open
Abstract
Nephrotic syndrome is a CKD defined by proteinuria with subsequent hypoalbuminemia, hyperlipidemia, and edema caused by impaired renal glomerular filtration barrier function. We previously identified mutations in epithelial membrane protein 2 (EMP2) as a monogenic cause of this disease. Here, we generated an emp2-knockout zebrafish model using transcription activator-like effector nuclease-based genome editing. We found that loss of emp2 in zebrafish upregulated caveolin-1 (cav1), a major component of caveolae, in embryos and adult mesonephric glomeruli and exacerbated podocyte injury. This phenotype was partially rescued by glucocorticoids. Furthermore, overexpression of cav1 in zebrafish podocytes was sufficient to induce the same phenotype observed in emp2 homozygous mutants, which was also treatable with glucocorticoids. Similarly, knockdown of EMP2 in cultured human podocytes resulted in increased CAV1 expression and decreased podocyte survival in the presence of puromycin aminonucleoside, whereas glucocorticoid treatment ameliorated this phenotype. Taken together, we have established excessive CAV1 as a mediator of the predisposition to podocyte injury because of loss of EMP2, suggesting CAV1 could be a novel therapeutic target in nephrotic syndrome and podocyte injury.
Collapse
Affiliation(s)
- Xiaoyang Wan
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Zhaohong Chen
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan; Jinling Hospital, Nanjing, China
| | - Won-Il Choi
- Division of Nephrology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Heon Yung Gee
- Division of Nephrology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; and Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Weibin Zhou
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan;
| |
Collapse
|
26
|
Van der Hauwaert C, Savary G, Pinçon C, Gnemmi V, Noël C, Broly F, Labalette M, Perrais M, Pottier N, Glowacki F, Cauffiez C. Donor caveolin 1 (CAV1) genetic polymorphism influences graft function after renal transplantation. FIBROGENESIS & TISSUE REPAIR 2015; 8:8. [PMID: 25945124 PMCID: PMC4419392 DOI: 10.1186/s13069-015-0025-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/10/2015] [Indexed: 12/20/2022]
Abstract
Background Identification of the culprit genes underlying multifactorial diseases is one of the most important current challenges of molecular genetics. While recent advances in genomics research have accelerated the discovery of susceptibility genes, much remains to be learned about the functions of disease-associated genetic variants. Recently, Moore and co-workers identified, in the donor genome, an association between a common genetic variant (rs4730751) in the gene encoding caveolin-1 (CAV1), a major structural component of caveolae, and long-term allograft survival. Methods Four hundred seventy-five renal recipients consecutively transplanted were included in this study. Donor genomic DNA was extracted and used to genotype CAV1 rs4730751 Single Nucleotide Polymorphism. Results Patients receiving a graft carrying CAV1 rs4730751 AA genotype displayed a significant decrease in estimated glomerular filtration rate and a significant increase in serum creatinine in both univariate and multivariate analyzes. Moreover, patients receiving a graft with CAV1 AA genotype significantly developed more interstitial fibrosis lesions on systematic biopsies performed 3 months post-transplantation. Conclusions Genotyping of CAV1 may be relevant to identify patients at risk of adverse renal transplant outcome.
Collapse
Affiliation(s)
- Cynthia Van der Hauwaert
- EA4483, Département de Biochimie et Biologie Moléculaire, Faculté de Médecine, Pôle Recherche, Université de Lille, 1 place de Verdun, Lille Cedex, 59045 France
| | - Grégoire Savary
- EA4483, Département de Biochimie et Biologie Moléculaire, Faculté de Médecine, Pôle Recherche, Université de Lille, 1 place de Verdun, Lille Cedex, 59045 France
| | - Claire Pinçon
- Laboratoire de Biomathématiques, Faculté des Sciences Pharmaceutiques, Université de Lille, 3 rue du Professeur Laguesse - BP 83, 59006 Lille Cedex, France
| | - Viviane Gnemmi
- Institut de Pathologie, Centre de Biologie Pathologie Génétique, CHRU, Boulevard du Professeur Jules Leclercq, 59037 Lille Cedex, France
| | - Christian Noël
- Service de Néphrologie, Hôpital Huriez, CHRU, 2 avenue Oscar Lambret, 59037 Lille Cedex, France
| | - Franck Broly
- EA4483, Département de Biochimie et Biologie Moléculaire, Faculté de Médecine, Pôle Recherche, Université de Lille, 1 place de Verdun, Lille Cedex, 59045 France
| | - Myriam Labalette
- Service d'Immunologie, Centre de Biologie Pathologie Génétique, CHRU, Boulevard du Professeur Jules Leclercq, 59037 Lille Cedex, France
| | - Michaël Perrais
- Institut National de la Santé et de la Recherche Médicale, U837, Jean-Pierre Aubert Research Center, Equipe 5 "Mucines, Différenciation et Cancérogenèse Épithéliales", 1 place de Verdun, 59045 Lille Cedex, France
| | - Nicolas Pottier
- EA4483, Département de Biochimie et Biologie Moléculaire, Faculté de Médecine, Pôle Recherche, Université de Lille, 1 place de Verdun, Lille Cedex, 59045 France
| | - François Glowacki
- EA4483, Département de Biochimie et Biologie Moléculaire, Faculté de Médecine, Pôle Recherche, Université de Lille, 1 place de Verdun, Lille Cedex, 59045 France ; Service de Néphrologie, Hôpital Huriez, CHRU, 2 avenue Oscar Lambret, 59037 Lille Cedex, France
| | - Christelle Cauffiez
- EA4483, Département de Biochimie et Biologie Moléculaire, Faculté de Médecine, Pôle Recherche, Université de Lille, 1 place de Verdun, Lille Cedex, 59045 France
| |
Collapse
|
27
|
Moriyama T, Takei T, Itabashi M, Uchida K, Tsuchiya K, Nitta K. Caveolae May Enable Albumin to Enter Human Renal Glomerular Endothelial Cells. J Cell Biochem 2015; 116:1060-9. [DOI: 10.1002/jcb.25061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/18/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Takahito Moriyama
- Department of Medicine, Kidney CenterTokyo Women's Medical UniversityTokyoJapan
| | - Takashi Takei
- Department of Medicine, Kidney CenterTokyo Women's Medical UniversityTokyoJapan
| | - Mitsuyo Itabashi
- Department of Medicine, Kidney CenterTokyo Women's Medical UniversityTokyoJapan
| | - Keiko Uchida
- Department of Medicine, Kidney CenterTokyo Women's Medical UniversityTokyoJapan
| | - Ken Tsuchiya
- Department of Medicine, Kidney CenterTokyo Women's Medical UniversityTokyoJapan
| | - Kosaku Nitta
- Department of Medicine, Kidney CenterTokyo Women's Medical UniversityTokyoJapan
| |
Collapse
|
28
|
A SAGE based approach to human glomerular endothelium: defining the transcriptome, finding a novel molecule and highlighting endothelial diversity. BMC Genomics 2014; 15:725. [PMID: 25163811 PMCID: PMC4156628 DOI: 10.1186/1471-2164-15-725] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/15/2014] [Indexed: 02/07/2023] Open
Abstract
Background Large scale transcript analysis of human glomerular microvascular endothelial cells (HGMEC) has never been accomplished. We designed this study to define the transcriptome of HGMEC and facilitate a better characterization of these endothelial cells with unique features. Serial analysis of gene expression (SAGE) was used for its unbiased approach to quantitative acquisition of transcripts. Results We generated a HGMEC SAGE library consisting of 68,987 transcript tags. Then taking advantage of large public databases and advanced bioinformatics we compared the HGMEC SAGE library with a SAGE library of non-cultured ex vivo human glomeruli (44,334 tags) which contained endothelial cells. The 823 tags common to both which would have the potential to be expressed in vivo were subsequently checked against 822,008 tags from 16 non-glomerular endothelial SAGE libraries. This resulted in 268 transcript tags differentially overexpressed in HGMEC compared to non-glomerular endothelia. These tags were filtered using a set of criteria: never before shown in kidney or any type of endothelial cell, absent in all nephron regions except the glomerulus, more highly expressed than statistically expected in HGMEC. Neurogranin, a direct target of thyroid hormone action which had been thought to be brain specific and never shown in endothelial cells before, fulfilled these criteria. Its expression in glomerular endothelium in vitro and in vivo was then verified by real-time-PCR, sequencing and immunohistochemistry. Conclusions Our results represent an extensive molecular characterization of HGMEC beyond a mere database, underline the endothelial heterogeneity, and propose neurogranin as a potential link in the kidney-thyroid axis. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-725) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Gee HY, Ashraf S, Wan X, Vega-Warner V, Esteve-Rudd J, Lovric S, Fang H, Hurd TW, Sadowski CE, Allen SJ, Otto EA, Korkmaz E, Washburn J, Levy S, Williams DS, Bakkaloglu SA, Zolotnitskaya A, Ozaltin F, Zhou W, Hildebrandt F. Mutations in EMP2 cause childhood-onset nephrotic syndrome. Am J Hum Genet 2014; 94:884-90. [PMID: 24814193 DOI: 10.1016/j.ajhg.2014.04.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/11/2014] [Indexed: 01/27/2023] Open
Abstract
Nephrotic syndrome (NS) is a genetically heterogeneous group of diseases that are divided into steroid-sensitive NS (SSNS) and steroid-resistant NS (SRNS). SRNS inevitably leads to end-stage kidney disease, and no curative treatment is available. To date, mutations in more than 24 genes have been described in Mendelian forms of SRNS; however, no Mendelian form of SSNS has been described. To identify a genetic form of SSNS, we performed homozygosity mapping, whole-exome sequencing, and multiplex PCR followed by next-generation sequencing. We thereby detected biallelic mutations in EMP2 (epithelial membrane protein 2) in four individuals from three unrelated families affected by SRNS or SSNS. We showed that EMP2 exclusively localized to glomeruli in the kidney. Knockdown of emp2 in zebrafish resulted in pericardial effusion, supporting the pathogenic role of mutated EMP2 in human NS. At the cellular level, we showed that knockdown of EMP2 in podocytes and endothelial cells resulted in an increased amount of CAVEOLIN-1 and decreased cell proliferation. Our data therefore identify EMP2 mutations as causing a recessive Mendelian form of SSNS.
Collapse
Affiliation(s)
- Heon Yung Gee
- Division of Nephrology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Shazia Ashraf
- Division of Nephrology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoyang Wan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Julian Esteve-Rudd
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Svjetlana Lovric
- Division of Nephrology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Humphrey Fang
- Division of Nephrology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Toby W Hurd
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Carolin E Sadowski
- Division of Nephrology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Susan J Allen
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Edgar A Otto
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emine Korkmaz
- Nephrogenetics Laboratory, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Joseph Washburn
- Biomedical Research Core Facilities, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shawn Levy
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA
| | - David S Williams
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sevcan A Bakkaloglu
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara 06570, Turkey
| | | | - Fatih Ozaltin
- Nephrogenetics Laboratory, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey; Department of Pediatric Nephrology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey; Center for Biobanking and Genomics, Hacettepe University, Ankara 06100, Turkey
| | - Weibin Zhou
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
30
|
Wu SZ, Peng FF, Li JL, Ye F, Lei SQ, Zhang BF. Akt and RhoA activation in response to high glucose require caveolin-1 phosphorylation in mesangial cells. Am J Physiol Renal Physiol 2014; 306:F1308-17. [PMID: 24694591 DOI: 10.1152/ajprenal.00447.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glomerular matrix accumulation is a hallmark of diabetic renal disease. Serine/threonine kinase PKC-β1 mediates glucose-induced Akt S473 phosphorylation, RhoA activation, and transforming growth factor (TGF)-β1 upregulation and finally leads to matrix upregulation in mesangial cells (MCs). It has been reported that glucose-induced PKC-β1 activation is dependent on caveolin-1 and the presence of intact caveolae in MCs; however, whether activated PKC-β1 regulates caveolin-1 expression and phosphorylation are unknown. Here, we showed that, although the caveolin-1 protein level had no significant change, the PKC-β-specific inhibitor LY-333531 blocked caveolin-1 Y14 phosphorylation in high glucose (HG)-treated MCs and in the renal cortex of diabetic rats. The Src-specific inhibitor SU-6656 prevented the HG-induced association between PKC-β1 and caveolin-1 and PKC-β1 membrane translocation, whereas PKC-β1 small interfering RNA failed to block Src activation, indicating that Src kinase is upstream of PKC-β1 activation. Although LY-333531 blocked PKC-β1 membrane translocation, it had no effect on the PKC-β1/caveolin-1 association, suggesting that PKC-β1 activation requires the interaction of caveolin-1 and PKC-β1. PKC-β1-mediated Akt S473 phosphorylation, RhoA activation, and fibronectin upregulation in response to HG were prevented by SU-6656 and nonphosphorylatable mutant caveolin-1 Y14A. In conclusion, Src activation by HG mediates the PKC-β1/caveolin-1 association and PKC-β1 activation, which assists in caveolin-1 Y14 phosphorylation by Src kinase. The downstream effects, including Akt S473 phosphorylation, RhoA activation, and fibronectin upregulation, require caveolin-1 Y14 phosphorylation. Caveolin-1 is thus an important mediator of the profibrogenic process in diabetic renal disease.
Collapse
Affiliation(s)
- Su-Zhen Wu
- Department of Biochemistry, Wuhan University School of Basic Medical Sciences, Wuhan, People's Republic of China; and
| | - Fang-Fang Peng
- Department of Biochemistry, Wuhan University School of Basic Medical Sciences, Wuhan, People's Republic of China; and
| | - Jia-Lin Li
- Gannan Medical University, Ganzhou, People's Republic of China; and
| | - Feng Ye
- Department of Biochemistry, Wuhan University School of Basic Medical Sciences, Wuhan, People's Republic of China; and
| | - Shao-Qing Lei
- Department of Biochemistry, Wuhan University School of Basic Medical Sciences, Wuhan, People's Republic of China; and
| | - Bai-Fang Zhang
- Department of Biochemistry, Wuhan University School of Basic Medical Sciences, Wuhan, People's Republic of China; and Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, People's Republic of China
| |
Collapse
|
31
|
Dormishian M, Turkeri G, Urayama K, Nguyen TL, Boulberdaa M, Messaddeq N, Renault G, Henrion D, Nebigil CG. Prokineticin receptor-1 is a new regulator of endothelial insulin uptake and capillary formation to control insulin sensitivity and cardiovascular and kidney functions. J Am Heart Assoc 2013; 2:e000411. [PMID: 24152983 PMCID: PMC3835255 DOI: 10.1161/jaha.113.000411] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Reciprocal relationships between endothelial dysfunction and insulin resistance result in a vicious cycle of cardiovascular, renal, and metabolic disorders. The mechanisms underlying these impairments are unclear. The peptide hormones prokineticins exert their angiogenic function via prokineticin receptor‐1 (PKR1). We explored the extent to which endothelial PKR1 contributes to expansion of capillary network and the transcapillary passage of insulin into the heart, kidney, and adipose tissues, regulating organ functions and metabolism in a specific mice model. Methods and Results By combining cellular studies and studies in endothelium‐specific loss‐of‐function mouse model (ec‐PKR1−/−), we showed that a genetically induced PKR1 loss in the endothelial cells causes the impaired capillary formation and transendothelial insulin delivery, leading to insulin resistance and cardiovascular and renal disorders. Impaired insulin delivery in endothelial cells accompanied with defective expression and activation of endothelial nitric oxide synthase in the ec‐PKR1−/− aorta, consequently diminishing endothelium‐dependent relaxation. Despite having a lean body phenotype, ec‐PKR1−/− mice exhibited polyphagia, polydipsia, polyurinemia, and hyperinsulinemia, which are reminiscent of human lipodystrophy. High plasma free fatty acid levels and low leptin levels further contribute to the development of insulin resistance at the later age. Peripheral insulin resistance and ectopic lipid accumulation in mutant skeletal muscle, heart, and kidneys were accompanied by impaired insulin‐mediated Akt signaling in these organs. The ec‐PKR1−/− mice displayed myocardial fibrosis, low levels of capillary formation, and high rates of apoptosis, leading to diastolic dysfunction. Compact fibrotic glomeruli and high levels of phosphate excretion were found in mutant kidneys. PKR1 restoration in ec‐PKR1−/− mice reversed the decrease in capillary recruitment and insulin uptake and improved heart and kidney function and insulin resistance. Conclusions We show a novel role for endothelial PKR1 signaling in cardiac, renal, and metabolic functions by regulating transendothelial insulin uptake and endothelial cell proliferation. Targeting endothelial PKR1 may serve as a therapeutic strategy for ameliorating these disorders.
Collapse
Affiliation(s)
- Mojdeh Dormishian
- CNRS, Université de Strasbourg, UMR7242, Ecole Supérieure de Biotechnologie de Strasbourg, and Medalis/Labex, Drug Discovery Center, Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Guan TH, Chen G, Gao B, Janssen MR, Uttarwar L, Ingram AJ, Krepinsky JC. Caveolin-1 deficiency protects against mesangial matrix expansion in a mouse model of type 1 diabetic nephropathy. Diabetologia 2013; 56:2068-77. [PMID: 23793581 DOI: 10.1007/s00125-013-2968-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/24/2013] [Indexed: 01/10/2023]
Abstract
AIMS/HYPOTHESIS Glomerular matrix protein accumulation, mediated largely by resident mesangial cells (MCs), is central to the pathogenesis of diabetic nephropathy. We previously showed that caveolin (CAV)-1/caveolae mediate matrix upregulation by MCs in response to high glucose and TGFβ, two important pathogenic mediators of diabetic glomerular sclerosis. Here, we evaluated the in vivo role of CAV-1/caveolae in the development of diabetic nephropathy. METHODS Diabetes was induced in Cav1-knockout (KO) mice and their wild-type (WT) counterparts by streptozotocin injection. After 10 months, kidneys were evaluated for the development of nephropathy, including glomerular sclerosis and upregulation of matrix proteins. Parallel experiments assessing glucose-induced matrix upregulation were carried out in MCs isolated from KO mice. RESULTS KO diabetic mice developed hyperglycaemia and renal hypertrophy, but were protected from developing albuminuria and glomerular sclerosis compared with WT mice. KO mice were significantly protected from the upregulation of glomerular collagen I, fibronectin, connective tissue growth factor (CTGF) and TGFβ. In vitro, glucose induced collagen I A1 promoter activation and collagen I, fibronectin and CTGF protein upregulation in WT but not KO MCs. Re-expression of Cav1 in KO cells restored this response. CONCLUSIONS/INTERPRETATION Cav1 deletion rendered significant protection from glomerular matrix accumulation and albuminuria in a mouse model of type 1 diabetes. These studies provide a foundation for the development of renal-targeted interference with CAV-1/caveolae as a novel approach to the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- T H Guan
- Division of Nephrology, McMaster University, St Joseph's Hospital, 50 Charlton Ave East, Rm T3311, Hamilton, ON, Canada L8N 4A6
| | | | | | | | | | | | | |
Collapse
|
33
|
Comprehensive investigation of the caveolin 2 gene: resequencing and association for kidney transplant outcomes. PLoS One 2013; 8:e63358. [PMID: 23667606 PMCID: PMC3646761 DOI: 10.1371/journal.pone.0063358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/01/2013] [Indexed: 12/05/2022] Open
Abstract
Caveolae are plasma membrane structures formed from a complex of the proteins caveolin-1 and caveolin-2. Caveolae interact with pro-inflammatory cytokines and are dysregulated in fibrotic disease. Although caveolae are present infrequently in healthy kidneys, they are abundant during kidney injury. An association has been identified between a CAV1 gene variant and long term kidney transplant survival. Chronic, gradual decline in transplant function is a persistent problem in kidney transplantation. The aetiology of this is diverse but fibrosis within the transplanted organ is the common end point. This study is the first to investigate the association of CAV2 gene variants with kidney transplant outcomes. Genomic DNA from donors and recipients of 575 kidney transplants performed in Belfast was investigated for common variation in CAV2 using a tag SNP approach. The CAV2 SNP rs13221869 was nominally significant for kidney transplant failure. Validation was sought in an independent group of kidney transplant donors and recipients from Dublin, Ireland using a second genotyping technology. Due to the unexpected absence of rs13221869 from this cohort, the CAV2 gene was resequenced. One novel SNP and a novel insertion/deletion in CAV2 were identified; rs13221869 is located in a repetitive region and was not a true variant in resequenced populations. CAV2 is a plausible candidate gene for association with kidney transplant outcomes given its proximity to CAV1 and its role in attenuating fibrosis. This study does not support an association between CAV2 variation and kidney transplant survival. Further analysis of CAV2 should be undertaken with an awareness of the sequence complexities and genetic variants highlighted by this study.
Collapse
|
34
|
Chikamoto H, Sugawara N, Akioka Y, Shimizu T, Horita S, Honda K, Moriyama T, Koike J, Yamaguchi Y, Hattori M. Immunohistological study of a pediatric patient with plasma cell-rich acute rejection. Clin Transplant 2012; 26 Suppl 24:54-7. [DOI: 10.1111/j.1399-0012.2012.01638.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroko Chikamoto
- Department of Pediatric Nephrology; Tokyo Women's Medical University School of Medicine; Tokyo; Japan
| | - Noriko Sugawara
- Department of Pediatric Nephrology; Tokyo Women's Medical University School of Medicine; Tokyo; Japan
| | - Yuko Akioka
- Department of Pediatric Nephrology; Tokyo Women's Medical University School of Medicine; Tokyo; Japan
| | - Tomokazu Shimizu
- Department of Urology; Tokyo Women's Medical University School of Medicine; Tokyo; Japan
| | - Shigeru Horita
- Kidney Center; Tokyo Women's Medical University School of Medicine; Tokyo; Japan
| | - Kazuho Honda
- Department of Pathology; Tokyo Women's Medical University School of Medicine; Tokyo; Japan
| | - Takahito Moriyama
- Department of Medicine IV; Tokyo Women's Medical University School of Medicine; Tokyo; Japan
| | - Junki Koike
- Department of Pathology; Toukai University School of Medicine; Tokyo; Japan
| | | | - Motoshi Hattori
- Department of Pediatric Nephrology; Tokyo Women's Medical University School of Medicine; Tokyo; Japan
| |
Collapse
|