1
|
Osmond AD, Leija RG, Arevalo JA, Curl CC, Duong JJ, Huie MJ, Masharani U, Brooks GA. Aging delays the suppression of lipolysis and fatty acid oxidation in the postprandial period. J Appl Physiol (1985) 2024; 137:1200-1219. [PMID: 39236144 DOI: 10.1152/japplphysiol.00437.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
Plasma glycerol and free fatty acid concentrations decrease following oral glucose consumption, but changes in the rate of lipolysis during an oral glucose tolerance test (OGTT) have not been documented in conjunction with changes in fatty acid (FA) oxidation or reesterification rates in healthy individuals. After a 12-h overnight fast, 15 young (21-35 yr; 7 men and 8 women) and 14 older (60-80 yr; 7 men and 7 women) participants had the forearm vein catheterized for primed continuous infusion of [1,1,2,3,3-2H]glycerol. A contralateral hand vein was catheterized for arterialized blood sampling. Indirect calorimetry was performed simultaneously to determine total FA and carbohydrate (CHO) oxidation rates (Rox). Total FA reesterification rates (Rs) were estimated from tracer-measured lipolytic and FA oxidation rates. After a 90-min equilibration period, participants underwent a 120-min, 75-g OGTT. Glycerol rate of appearance (Ra), an index of lipolysis, decreased significantly from baseline 5 min postchallenge in young participants and 30 min in older participants. At 60 min, FA Rox decreased in both groups, but was significantly higher in older participants. Between 5 and 90 min, CHO Rox was significantly lower in older participants. In addition, FA Rs was significantly lower in older participants at 60 and 90 min. The area under the curve (AUC) for FA Rox was greater than that for FA Rs in older, but not in young participants. Our results indicate that, in aging, the postprandial suppression of lipolysis and FA oxidation are delayed such that FA oxidation is favored over CHO oxidation and FA reesterification.NEW & NOTEWORTHY To our knowledge, our investigation is the first to demonstrate changes in lipolysis during an oral glucose tolerance test (OGTT) in healthy young and older individuals. Plasma glycerol and free fatty acid concentrations changed after glycerol rate of appearance (Ra), indicating that plasma concentrations are incomplete surrogates of the lipolytic rate. Moreover, simultaneous determinations of substrate oxidation rates are interpreted to indicate that metabolic inflexibility in aging is characterized by delayed changes in postprandial substrate utilization related to the lipolytic rate.
Collapse
Affiliation(s)
- Adam D Osmond
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Robert G Leija
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Jose A Arevalo
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Casey C Curl
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Justin J Duong
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Melvin J Huie
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Umesh Masharani
- Division of Endocrinology, Department of Medicine, University of California, San Francisco, California, United States
| | - George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| |
Collapse
|
2
|
Shah A, Wang Y, Wondisford FE. Differential Metabolism of Glycerol Based on Oral versus Intravenous Administration in Humans. Metabolites 2022; 12:metabo12100890. [PMID: 36295792 PMCID: PMC9611849 DOI: 10.3390/metabo12100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Glycerol can be metabolized to glucose via gluconeogenesis or lactate via glycolysis. It is unknown if glycerol is metabolized similarly in the portal and systemic circulations in humans. Eight metabolically healthy overnight-fasted individuals received equimolar amounts of 13C3-glycerol orally and intravenously on two separate occasions with serial blood draws over four hours. Serum samples underwent liquid chromatography–mass spectrometry analysis. Oral 13C3-glycerol administration led to higher average serum glucose enrichment than intravenous administration (5.02 ± 1.43 versus 4.07 ± 0.79%, p = 0.009). In contrast, intravenous 13C3-glycerol administration yielded higher average serum lactate enrichment than oral administration (5.67 ± 0.80 versus 4.85 ± 1.30%, p = 0.032). Peak serum glucose enrichment was also higher with oral administration (9.37 ± 2.93 versus 7.12 ± 1.28%, p = 0.010). Glycerol metabolism across the portal and systemic circulations is not congruent. Orally administered labeled glycerol led to greater labeled glucose production, while intravenously administration yielded greater lactate production. These data support direct glycerol to lactate conversion in humans.
Collapse
Affiliation(s)
- Ankit Shah
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Yujue Wang
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Fredric E. Wondisford
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence:
| |
Collapse
|
3
|
Salvador AF, Shyu CR, Parks EJ. Measurement of lipid flux to advance translational research: evolution of classic methods to the future of precision health. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1348-1353. [PMID: 36075949 PMCID: PMC9534914 DOI: 10.1038/s12276-022-00838-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 02/08/2023]
Abstract
Over the past 70 years, the study of lipid metabolism has led to important discoveries in identifying the underlying mechanisms of chronic diseases. Advances in the use of stable isotopes and mass spectrometry in humans have expanded our knowledge of target molecules that contribute to pathologies and lipid metabolic pathways. These advances have been leveraged within two research paths, leading to the ability (1) to quantitate lipid flux to understand the fundamentals of human physiology and pathology and (2) to perform untargeted analyses of human blood and tissues derived from a single timepoint to identify lipidomic patterns that predict disease. This review describes the physiological and analytical parameters that influence these measurements and how these issues will propel the coming together of the two fields of metabolic tracing and lipidomics. The potential of data science to advance these fields is also discussed. Future developments are needed to increase the precision of lipid measurements in human samples, leading to discoveries in how individuals vary in their production, storage, and use of lipids. New techniques are critical to support clinical strategies to prevent disease and to identify mechanisms by which treatments confer health benefits with the overall goal of reducing the burden of human disease. Personalized tracking of how lipid (fat) metabolism changes over time could lead to improvements in the diagnosis and treatment of several diseases. Elizabeth Parks and colleagues from the University of Missouri, Columbia, USA, discuss the ways in which researchers use stable isotope labeling to monitor the kinetics of fatty acids and other lipids in the body. Usually, lipid quantities are measured only at a single timepoint, however the tracking of lipid turnover over time provides further diagnostic information. Aided by new techniques such as high-throughput mass spectrometry and machine learning, researchers are now able to continuously map total lipid contents in individual patients. The transition of measurements of lipid flux from the research laboratory to the doctor’s office will likely play a role in a new era of precision medicine.
Collapse
Affiliation(s)
- Amadeo F Salvador
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65212, USA.,Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.,Department of Electrical Engineering and Computer Science, Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA
| | - Chi-Ren Shyu
- Department of Electrical Engineering and Computer Science, Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65212, USA. .,Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
4
|
Hampton GS, Bartlette K, Nadeau KJ, Cree-Green M, Diniz Behn C. Mathematical modeling reveals differential dynamics of insulin action models on glycerol and glucose in adolescent girls with obesity. Front Physiol 2022; 13:895118. [PMID: 35991189 PMCID: PMC9388790 DOI: 10.3389/fphys.2022.895118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/08/2022] [Indexed: 12/30/2022] Open
Abstract
Under healthy conditions, the pancreas responds to a glucose challenge by releasing insulin. Insulin suppresses lipolysis in adipose tissue, thereby decreasing plasma glycerol concentration, and it regulates plasma glucose concentration through action in muscle and liver. Insulin resistance (IR) occurs when more insulin is required to achieve the same effects, and IR may be tissue-specific. IR emerges during puberty as a result of high concentrations of growth hormone and is worsened by youth-onset obesity. Adipose, liver, and muscle tissue exhibit distinct dose-dependent responses to insulin in multi-phase hyperinsulinemic-euglycemic (HE) clamps, but the HE clamp protocol does not address potential differences in the dynamics of tissue-specific insulin responses. Changes to the dynamics of insulin responses would alter glycemic control in response to a glucose challenge. To investigate the dynamics of insulin acting on adipose tissue, we developed a novel differential-equations based model that describes the coupled dynamics of glycerol concentrations and insulin action during an oral glucose tolerance test in female adolescents with obesity and IR. We compared these dynamics to the dynamics of insulin acting on muscle and liver as assessed with the oral minimal model applied to glucose and insulin data collected under the same protocol. We found that the action of insulin on glycerol peaks approximately 67 min earlier (p < 0.001) and follows the dynamics of plasma insulin more closely compared to insulin action on glucose as assessed by the parameters representing the time constants for insulin action on glucose and glycerol (p < 0.001). These findings suggest that the dynamics of insulin action show tissue-specific differences in our IR adolescent population, with adipose tissue responding to insulin more quickly compared to muscle and liver. Improved understanding of the tissue-specific dynamics of insulin action may provide novel insights into the progression of metabolic disease in patient populations with diverse metabolic phenotypes.
Collapse
Affiliation(s)
- Griffin S. Hampton
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, United States
| | - Kai Bartlette
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, United States
| | - Kristen J. Nadeau
- Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,Ludeman Center for Women’s Health Research, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Melanie Cree-Green
- Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,Ludeman Center for Women’s Health Research, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Cecilia Diniz Behn
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, United States,Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,*Correspondence: Cecilia Diniz Behn,
| |
Collapse
|
5
|
LaBarre JL, Hirschfeld E, Soni T, Kachman M, Wigginton J, Duren W, Fleischman JY, Karnovsky A, Burant CF, Lee JM. Comparing the Fasting and Random-Fed Metabolome Response to an Oral Glucose Tolerance Test in Children and Adolescents: Implications of Sex, Obesity, and Insulin Resistance. Nutrients 2021; 13:nu13103365. [PMID: 34684365 PMCID: PMC8538092 DOI: 10.3390/nu13103365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/12/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
As the incidence of obesity and type 2 diabetes (T2D) is occurring at a younger age, studying adolescent nutrient metabolism can provide insights on the development of T2D. Metabolic challenges, including an oral glucose tolerance test (OGTT) can assess the effects of perturbations in nutrient metabolism. Here, we present alterations in the global metabolome in response to an OGTT, classifying the influence of obesity and insulin resistance (IR) in adolescents that arrived at the clinic fasted and in a random-fed state. Participants were recruited as lean (n = 55, aged 8–17 years, BMI percentile 5–85%) and overweight and obese (OVOB, n = 228, aged 8–17 years, BMI percentile ≥ 85%). Untargeted metabolomics profiled 246 annotated metabolites in plasma at t0 and t60 min during the OGTT. Our results suggest that obesity and IR influence the switch from fatty acid (FA) to glucose oxidation in response to the OGTT. Obesity was associated with a blunted decline of acylcarnitines and fatty acid oxidation intermediates. In females, metabolites from the Fasted and Random-Fed OGTT were associated with HOMA-IR, including diacylglycerols, leucine/isoleucine, acylcarnitines, and phosphocholines. Our results indicate that at an early age, obesity and IR may influence the metabolome dynamics in response to a glucose challenge.
Collapse
Affiliation(s)
- Jennifer L. LaBarre
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Weight and Wellness Center, Lebanon, NH 03766, USA
- Correspondence: (J.L.L.); (J.M.L.)
| | - Emily Hirschfeld
- Susan B Meister Child Health Evaluation and Research Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Tanu Soni
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI 48109, USA; (T.S.); (M.K.); (J.W.); (W.D.)
| | - Maureen Kachman
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI 48109, USA; (T.S.); (M.K.); (J.W.); (W.D.)
| | - Janis Wigginton
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI 48109, USA; (T.S.); (M.K.); (J.W.); (W.D.)
| | - William Duren
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI 48109, USA; (T.S.); (M.K.); (J.W.); (W.D.)
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Johanna Y. Fleischman
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Alla Karnovsky
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Charles F. Burant
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Joyce M. Lee
- Susan B Meister Child Health Evaluation and Research Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA;
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (J.L.L.); (J.M.L.)
| |
Collapse
|
6
|
LaBarre JL, Singer K, Burant CF. Advantages of Studying the Metabolome in Response to Mixed-Macronutrient Challenges and Suggestions for Future Research Designs. J Nutr 2021; 151:2868-2881. [PMID: 34255076 PMCID: PMC8681069 DOI: 10.1093/jn/nxab223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 06/15/2021] [Indexed: 12/22/2022] Open
Abstract
Evaluating the postprandial response to a dietary challenge containing all macronutrients-carbohydrates, lipids, and protein-may provide stronger insights of metabolic health than a fasted measurement. Metabolomic profiling deepens the understanding of the homeostatic and adaptive response to a dietary challenge by classifying multiple metabolic pathways and biomarkers. A total of 26 articles were identified that measure the human blood metabolome or lipidome response to a mixed-macronutrient challenge. Most studies were cross-sectional, exploring the baseline and postprandial response to the dietary challenge. Large variations in study designs were reported, including the macronutrient and caloric composition of the challenge and the delivery of the challenge as a liquid shake or a solid meal. Most studies utilized a targeted metabolomics platform, assessing only a particular metabolic pathway, however, several studies utilized global metabolomics and lipidomics assays demonstrating the expansive postprandial response of the metabolome. The postprandial response of individual amino acids was largely dependent on the amino acid composition of the test meal, with the exception of alanine and proline, 2 nonessential amino acids. Long-chain fatty acids and unsaturated long-chain acylcarnitines rapidly decreased in response to the dietary challenges, representing the switch from fat to carbohydrate oxidation. Studies were reviewed that assessed the metabolome response in the context of obesity and metabolic diseases, providing insight on how weight status and disease influence the ability to cope with a nutrient load and return to homeostasis. Results demonstrate that the flexibility to respond to a substrate load is influenced by obesity and metabolic disease and flexibility alterations will be evident in downstream metabolites of fat, carbohydrate, and protein metabolism. In response, we propose suggestions for standardization between studies with the potential of creating a study exploring the postprandial response to a multitude of challenges with a variety of macronutrients.
Collapse
Affiliation(s)
| | - Kanakadurga Singer
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|