1
|
Li S, Chen K, Sun Z, Chen M, Pi W, Zhou S, Yang H. Radiation drives tertiary lymphoid structures to reshape TME for synergized antitumour immunity. Expert Rev Mol Med 2024; 26:e30. [PMID: 39438247 PMCID: PMC11505612 DOI: 10.1017/erm.2024.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 10/25/2024]
Abstract
Radiotherapy (RT) plays a key role in the tumour microenvironment (TME), impacting the immune response via cellular and humoral immunity. RT can induce local immunity to modify the TME. It can stimulate dendritic cell maturation and T-cell infiltration. Moreover, B cells, macrophages and other immune cells may also be affected. Tertiary lymphoid structure (TLS) is a unique structure within the TME and a class of aggregates containing T cells, B cells and other immune cells. The maturation of TLS is determined by the presence of mature dendritic cells, the density of TLS is determined by the number of immune cells. TLS maturation and density both affect the antitumour immune response in the TME. This review summarized the recent research on the impact and the role of RT on TLS, including the changes of TLS components and formation conditions and the mechanism of how RT affects TLS and transforms the TME. RT may promote TLS maturation and density to modify the TME regarding enhanced antitumour immunity.
Collapse
Affiliation(s)
- Shuling Li
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Kuifei Chen
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Zhenwei Sun
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Meng Chen
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Suna Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Haihua Yang
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
2
|
Deng S, Yang X, He L, Hou Y, Meng H. Tertiary Lymphoid Structures in Microorganism-Related Cancer. Cancers (Basel) 2024; 16:3464. [PMID: 39456558 PMCID: PMC11505735 DOI: 10.3390/cancers16203464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphoid tissues formed by the accumulation of lymphocytes and other components outside lymphoid organs. They have been shown to be widespread in cancers and have predictive effects on prognosis and immunotherapy efficacy; however, there is no standardized measurement guide. This paper provides a reference for future research. Moreover, the induction strategy for the formation mechanism of TLSs is a new direction for future cancer treatment, such as cancer vaccines for microorganisms. The effects of microorganisms on cancer are dual. The role of microorganisms, including bacteria, parasites, viruses, and fungi, in promoting cancer has been widely confirmed. However, the specific mechanism of their tumor suppressor effect, particularly the promotion of TLS formation, is currently unknown. In this review, we summarize the role of TLSs in cancer related to microbial infection and provide new ideas for further understanding their mechanisms of action in cancer.
Collapse
Affiliation(s)
- Shuzhe Deng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin 150086, China;
| | - Xinxin Yang
- Precision Medical Center, Harbin Medical University Cancer Hospital, Harbin 150086, China; (X.Y.); (Y.H.)
| | - Lin He
- Department of Stomatology, Heilongjiang Provincial Hospital, Harbin 150000, China;
| | - Yunjing Hou
- Precision Medical Center, Harbin Medical University Cancer Hospital, Harbin 150086, China; (X.Y.); (Y.H.)
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin 150086, China;
- Precision Medical Center, Harbin Medical University Cancer Hospital, Harbin 150086, China; (X.Y.); (Y.H.)
| |
Collapse
|
3
|
Chen X, Wu P, Liu Z, Li T, Wu J, Zeng Z, Guo W, Xiong W. Tertiary lymphoid structures and their therapeutic implications in cancer. Cell Oncol (Dordr) 2024; 47:1579-1592. [PMID: 39133439 DOI: 10.1007/s13402-024-00975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2024] [Indexed: 08/13/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphoid aggregates formed by the structured accumulation of immune cells such as B cells and T cells in non-lymphoid tissues induced by infection, inflammation, and tumors. They play a crucial role in the immune response, particularly in association with tumor development, where they primarily exert anti-tumor immune functions during tumorigenesis. Current research suggests that TLSs inhibit tumor growth by facilitating immune cell infiltration and are correlated with favorable prognosis in various solid tumors, serving as an indicator of immunotherapy effectiveness to some extent. Therefore, TLSs hold great promise as a valuable biomarker. Most importantly, immunotherapies aimed to prompting TLSs formation are anticipated to be potent adjuncts to current cancer treatment. This review focuses on the formation process of TLSs and their potential applications in cancer therapy.
Collapse
Affiliation(s)
- Xun Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Pan Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ziqi Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Tiansheng Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jie Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wenjia Guo
- Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China.
- Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Deng M, Liu X, Jiang Y, Luo R, Xu L, Zhang X, Su J, Xu C, Hou Y. Tertiary lymphoid structures' pattern and prognostic value in primary adenocarcinoma of jejunum and ileum. World J Surg Oncol 2024; 22:261. [PMID: 39350287 PMCID: PMC11441114 DOI: 10.1186/s12957-024-03543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024] Open
Abstract
To date, there have been no reports on tertiary lymphoid structures (TLS) in primary adenocarcinoma of jejunum and ileum. In this study, we employed digital pathology image analysis software to classify and quantify TLS, and evaluated the maturity of TLS using immunohistochemistry. Molecular genetics and immunotherapy biomarker detection were performed using next-generation sequencing technology, such as tumor mutational burden (TMB) and microsatellite instability (MSI). The aim of this study was to investigate the presence, location, maturity, association with immunotherapy biomarkers, and prognostic value of TLS in primary adenocarcinoma of jejunum and ileum. Compared to secondary follicle-like TLS (SFL-TLS), intra-tumoral TLS (IT-TLS) were more likely to manifest as early TLS (E-TLS) (P = 0.007). Compared to IT-TLS, SFL-TLS had a higher propensity to occur at the invasive margin (IM) (P = 0.032) and showed a trend towards being more prevalent at the tumor periphery (P = 0.057). In terms of immunotherapy biomarkers, there was a higher trend of IM-TLS density in PD-L1(22C3) score CPS < 1 group compared to PD-L1(22C3) score CPS ≥ 1 group (P = 0.071). TMB-H was significantly associated with MSI-H (P = 0.040). Univariate survival analysis demonstrated a correlation between high SFL-TLS group and prolonged disease free survival (DFS) (P = 0.047). There was also a trend towards prolonged DFS in the E-TLS-high group compared to the E-TLS-low group (P = 0.069). The peri-tumoral TLS (PT-TLS)-high group showed a trend of prolonged overall survival (OS) compared to the PT-TLS-low group (P = 0.090). In conclusion, the majority of TLS were located at the invasive margin and tumor periphery, predominantly consisting of mature TLS, while IT-TLS were mainly immature. Notably, TMB was closely associated with MSI and PD-L1, indicating potential predictive value for immunotherapy in primary adenocarcinoma of jejunum and ileum.
Collapse
Affiliation(s)
- Minying Deng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xin Liu
- Department of Pathology, Eye & ENT Hospital, Fudan University, Shanghai, 200032, China
| | - Yan Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaolei Zhang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jieakesu Su
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Yu A, Fan Z, Ma L, Tang J, Liu W, Han Z, Wang H. The relationship between the tertiary lymphoid structure and immune-infiltrating cells in gastrointestinal cancers: A systematic review and meta-analysis. Immun Inflamm Dis 2024; 12:e70003. [PMID: 39259184 PMCID: PMC11389262 DOI: 10.1002/iid3.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 05/20/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
OBJECTIVES This study systematically evaluated the relationship between tertiary lymphoid structures (TLS) and clinical pathological features as well as immune infiltrating cells in gastrointestinal cancers. METHODS We searched Web of science, Pubmed, Embase, and Cochrane Library for studies that met the requirements as of July 1, 2023, and the odds ratio, the corresponding 95% confidence interval or mean and standard deviation, were included in the analysis. FINDINGS We eventually included 20 studies, involving a total of 4856 patients. TLS were found to be significantly associated with T stage, N stage, TNM stage, and tumor size. Moreover, patients with positive TLS showed significantly elevated expression of T-cell related markers, including CD3, CD4, CD8, CD45RO; B-cell related markers, such as CD11c and CD20; and dendritic cell-related marker CD103. On the other hand, positive TLS correlated significantly with low expression of FOXP3 and CD68. Additionally, there was a significant positive association between TLS and overall infiltration of tumor-infiltrating lymphocytes. CONCLUSION The presence of TLS is significantly correlated with the infiltration of various immune cells in gastrointestinal cancers. To determine the ideal balance between the presence of mature TLS and appropriate immune cell infiltration, further high-quality and multicenter clinical studies need to be conducted.
Collapse
Affiliation(s)
- Aoyang Yu
- Department of OncologyThe Affifiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Zhixiang Fan
- Department of OncologyThe Affifiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Luyao Ma
- Department of OncologyThe Affifiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Juanjuan Tang
- Department of OncologyThe Affifiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Wenlou Liu
- Department of OncologyThe Affifiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Zhengxiang Han
- Department of OncologyThe Affifiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Hongmei Wang
- Department of OncologyThe Affifiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
6
|
Xin S, Wen S, He P, Zhao Y, Zhao H. Density of tertiary lymphoid structures and their correlation with prognosis in non-small cell lung cancer. Front Immunol 2024; 15:1423775. [PMID: 39192984 PMCID: PMC11347756 DOI: 10.3389/fimmu.2024.1423775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Background Tertiary lymphoid structures (TLS), ordered structure of tumor-infiltrating immune cells in tumor immune microenvironment (TIME), play an important role in the development and anti-tumor immunity of various cancers, including liver, colon, and gastric cancers. Previous studies have demonstrated that the presence of TLS in intra-tumoral (IT), invasive margin (IM), and peri-tumoral (PT) regions of the tumors at various maturity statuses. However, the density of TLS in different regions of non-small cell lung cancer (NSCLC) has not been extensively studied. Methods TLS and tumor-infiltrating immune cells were assessed using immunohistochemistry (IHC) staining in 82 NSCLC patients. Tumor samples were divided into three subregions as IT, IM and PT regions, and TLS were identified as early/primary TLS (E-TLS) or secondary/follicular TLS (F-TLS). The distribution of TLS in different maturity statuses, along with their correlation with clinicopathological characteristics and prognostic value, was assessed. Nomograms were used to predict the probability of 1-, 3-, and 5-year overall survival (OS) in patients with NSCLC. Results The density of TLS and proportion of F-TLS in the IT region (90.2%, 0.45/mm2, and 61.0%, respectively) were significantly higher than those in the IM region (72.0%, 0.18/mm2, and 39.0%, respectively) and PT region (67.1%, 0.16/mm2, and 40.2%, respectively). A lower density of TLS, especially E-TLS in the IM region, was correlated with better prognosis in NSCLC patients. CD20+ B cells, CD3+ T cells, CD8+ cytotoxic T cells, and CD68+ macrophages were significantly overexpressed in the IM region. CD20+ B cells and CD3+ T cells in the IM region were significantly correlated with the density of E-TLS, while no statistically significant correlation was found with F-TLS. The E-TLS density in the IM region and TNM stage were independent prognostic factors for NSCLC patients. The nomogram showed good prognostic ability. Conclusions A higher density of E-TLS in the IM region was associated with a worse prognosis in NSCLC patients, potentially due to the inhibition of TLS maturation caused by the increased density of suppressive immune cells at the tumor invasion front.
Collapse
Affiliation(s)
- Shuyue Xin
- Department of Health Examination Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuang Wen
- Department of Pathology, The Friendship Hospital of Dalian, Dalian, China
| | - Peipei He
- Department of Health Examination Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yulong Zhao
- Department of Health Examination Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui Zhao
- Department of Health Examination Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Weng Y, Yuan J, Cui X, Wang J, Chen H, Xu L, Chen X, Peng M, Song Q. The impact of tertiary lymphoid structures on tumor prognosis and the immune microenvironment in non-small cell lung cancer. Sci Rep 2024; 14:16246. [PMID: 39009684 PMCID: PMC11250816 DOI: 10.1038/s41598-024-64980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a common malignancy whose prognosis and treatment outcome are influenced by many factors. Some studies have found that tertiary lymphoid structures (TLSs) in cancer may contribute to prognosis and the prediction of immunotherapy efficacy However, the combined role of TLSs in NSCLC remains unclear. We accessed The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to obtain mRNA sequencing data and clinical information as the TCGA cohort, and used our own sample of 53 advanced NSCLC as a study cohort. The samples were divided into TLS+ and TLS- groups by pathological tissue sections. Patients of the TLS+ group had a better OS (p = 0.022), PFS (p = 0.042), and DSS (p = 0.004) in the TCGA cohort, and the results were confirmed by the study cohort (PFS, p = 0.012). Furthermore, our result showed that the count and size of TLSs are closely associated with the efficacy of immunotherapy. In addition, the TLS+ group was associated with better immune status and lower tumor mutation load. In the tumor microenvironment (TME), the expression levels of CD4+ T cells and CD8+ T cells of different phenotypes were associated with TLSs. Overall, TLSs are a strong predictor of survival and immunotherapeutic efficacy in advanced NSCLC, and T cell-rich TLSs suggest a more ordered and active immune response site, which aids in the decision-making and application of immunotherapy in the clinic.
Collapse
Affiliation(s)
- Yiming Weng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Cui
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinsong Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Honglei Chen
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Li Xu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyi Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Qibin Song
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Merali N, Jessel MD, Arbe-Barnes EH, Ruby Lee WY, Gismondi M, Chouari T, O'Brien JW, Patel B, Osei-Bordom D, Rockall TA, Sivakumar S, Annels N, Frampton AE. Impact of tertiary lymphoid structures on prognosis and therapeutic response in pancreatic ductal adenocarcinoma. HPB (Oxford) 2024; 26:873-894. [PMID: 38729813 DOI: 10.1016/j.hpb.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/27/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is known to have a heterogeneous desmoplastic tumour microenvironment (TME) with a large number of immunosuppressive cells. Recently, high B-cell infiltration in PDAC has received growing interest as a potential therapeutic target. METHODS Our literature review summarises the characteristics of tumour-associated tertiary lymphoid structures (TLSs) and highlight the key studies exploring the clinical outcomes of TLSs in PDAC patients and the direct effect on the TME. RESULTS The location, density and maturity stages of TLSs within tumours play a key role in determining the prognosis and is a new emerging target in cancer immunotherapy. DISCUSSION TLS development is imperative to improve the prognosis of PDAC patients. In the future, studying the genetics and immune characteristics of tumour infiltrating B cells and TLSs may lead towards enhancing adaptive immunity in PDAC and designing personalised therapies.
Collapse
Affiliation(s)
- Nabeel Merali
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK
| | - Edward H Arbe-Barnes
- UCL Institute of Immunity and Transplantation, The Pears Building, Pond Street, London, UK
| | - Wing Yu Ruby Lee
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Martha Gismondi
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Tarak Chouari
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - James W O'Brien
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Bhavik Patel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Daniel Osei-Bordom
- Liver and Digestive Health, University College London, Royal Free Hospital, Pond St, London, UK
| | - Timothy A Rockall
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham, Birmingham, UK
| | - Nicola Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK
| | - Adam E Frampton
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK.
| |
Collapse
|
9
|
Cai D, Wang X, Yu H, Bai C, Mao Y, Liang M, Xia X, Liu S, Wang M, Lu X, Du J, Shen X, Guan W. Infiltrating characteristics and prognostic value of tertiary lymphoid structures in resected gastric neuroendocrine neoplasm patients. Clin Transl Immunology 2024; 13:e1489. [PMID: 38322490 PMCID: PMC10844765 DOI: 10.1002/cti2.1489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/13/2023] [Accepted: 01/21/2024] [Indexed: 02/08/2024] Open
Abstract
Objectives Tertiary lymphoid structures (TLSs) are lymphocyte aggregates that play an anti-tumor role in most solid tumors. However, the functions of TLS in gastric neuroendocrine neoplasms (GNENs) remain unknown. This study aimed to determine the characteristics and prognostic values of TLS in resected GNEN patients. Methods Haematoxylin-eosin, immunohistochemistry (IHC) and multiple fluorescent IHC staining were used to assess TLS to investigate the correlation between TLSs and clinicopathological characteristics and its prognostic value. Results Tertiary lymphoid structures were identified in 84.3% of patients with GNEN. They were located in the stromal area or outside the tumor tissue and mainly composed of B and T cells. A high density of TLSs promoted an anti-tumor immune response in GNEN. CD15+ TANs and FOXP3+ Tregs in TLSs inhibited the formation of TLSs. High TLS density was significantly associated with prolonged recurrence-free survival (RFS) and overall survival (OS) of GNENs. Univariate and multivariate Cox regression analyses revealed that TLS density, tumor size, tumor-node-metastasis (TNM) stage and World Health Organisation (WHO) classification were independent prognostic factors for OS, whereas TLS density, tumor size and TNM stage were independent prognostic factors for RFS. Finally, OS and RFS nomograms were developed and validated, which were superior to the WHO classification and the TNM stage. Conclusion Tertiary lymphoid structures were mainly located in the stromal area or outside the tumor area, and high TLS density was significantly associated with the good prognosis of patients with GNEN. Incorporating TLS density into a nomogram may improve survival prediction in patients with resected GNEN.
Collapse
Affiliation(s)
- Daming Cai
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xingzhou Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Heng Yu
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Chunhua Bai
- Dermatology and Interventional Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yonghuan Mao
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Mengjie Liang
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xuefeng Xia
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Song Liu
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Meng Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xiaofeng Lu
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Junfeng Du
- Department of General Surgery, The 7th Medical CenterChinese PLA General HospitalBeijingChina
| | - Xiaofei Shen
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Department of General SurgeryDrum Tower Clinical Medical College of Nanjing Medical UniversityNanjingChina
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
10
|
Wu W, Li H, Wang Z, Dai Z, Liang X, Luo P, Liu K, Zhang H, Zhang N, Li S, Zhang C. The tertiary lymphoid structure-related signature identified PTGDS in regulating PD-L1 and promoting the proliferation and migration of glioblastoma. Heliyon 2024; 10:e23915. [PMID: 38205335 PMCID: PMC10777022 DOI: 10.1016/j.heliyon.2023.e23915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Background Tertiary lymphoid structure (TLS) is a unique organ that carries out tumor cell elimination at tumor sites. It is continuously stimulated by inflammatory tumor signals and has been found to augment immunotherapy response. However, the detailed mechanisms behind it still need to be defined. Methods To explore and grasp the whole picture of TLS from a pan-cancer view, we collected nine TLS-related genes from previous studies. We performed a comprehensive analysis of 9637 samples across 33 tumor types accessed from The Cancer Genome Atlas (TCGA) database. EdU, Transwell, and flow cytometry were performed on the feature gene PTGDS in U251 cells. The regulatory role of PTGDS on PD-L1 expression and macrophage polarization was verified. Results Alteration analysis showed that mutations of TLS-related genes were widespread and relatively high. Clustering analysis based on the expression of these nine genes obtained two distinct clusters, with high EIF1AY and PTGDS in cluster 2 and better overall survival in cluster 1. To distinguish the two clusters, we utilized six machine learning algorithms and filtrated EIF1AY, PTGDS, SKAP1, and RBP5 as the characteristic genes, among which the former two genes were proved to be hazardous. PTGDS was found to regulate PD-L1 expression and also promoted the proliferation and migration of U251 cells. The knockdown of PTGDS could reduce the migration of macrophages and inhibit the polarization of macrophages into M2-phenotype. In addition, we established a TLS score to demonstrate patients' TLS activity. The low TLS-score group overlapped with cluster 1 and displayed a better prognosis. Besides, the low TLS-score group was related to better immunotherapy responses. The HE staining of histopathological sections confirmed that the low TLS-score group exhibited higher infiltration of immune cells. Conclusion This study reveals broad molecular, tumorigenic, and immunogenic signatures for further functional and therapeutic studies of tertiary lymphoid structure. The TLS score we established effectively predicted immunotherapy response and patients' survival. Its future application and combination await more research.
Collapse
Affiliation(s)
- Wantao Wu
- The Animal Laboratory Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - He Li
- The Animal Laboratory Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Changsha Medical University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kun Liu
- Department of Neurosugery, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- College of Bioinformatics Science and Technology, Harbin Medical University Harbin, China
| | - Shuyu Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Li J, Chen G, Luo Y, Xu J, He J. The molecular subtypes and clinical prognosis characteristic of tertiary lymphoid structures-related gene of cutaneous melanoma. Sci Rep 2023; 13:23097. [PMID: 38155221 PMCID: PMC10754817 DOI: 10.1038/s41598-023-50327-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023] Open
Abstract
Despite the remarkable efficacy of PD-1-associated immune checkpoint inhibitors in treating cutaneous melanoma (CM), the inconsistency in the expression of PD-1 and its ligand PD-L1, and resulting variability in the effectiveness of immunotherapy, present significant challenges for clinical application. Therefore, further research is necessary to identify tumor-related biomarkers that can predict the prognosis of immunotherapy. Tertiary lymphoid structures (TLSs) have been recognized as a crucial factor in predicting the response of immune checkpoint inhibitors in solid tumors, including CM. However, the study of TLSs in CM is not yet comprehensive. Gene expression profiles have been shown to correlate with CM risk stratification and patient outcomes. In this study, we identified TLS-related genes that can be used for prognostic purposes and developed a corresponding risk model. The impact of TLS-related genes on clinicopathological characteristics, immune infiltration and drug susceptibility was also explored. Our biological function enrichment analysis provided preliminary evidence of related signaling pathways. Our findings provide a new perspective on risk stratification and individualized precision therapy for CM.
Collapse
Affiliation(s)
- Juan Li
- Chongqing Academy of Chinese Materia Medica, Chongqing, People's Republic of China
- Chonging College of Traditional Chinese Medicine, Bishan District, 61 Puguoba Road, Bicheng Street, Chongqing, 402760, People's Republic of China
| | - Gang Chen
- Chongqing Academy of Chinese Materia Medica, Chongqing, People's Republic of China
| | - Yang Luo
- Chongqing Academy of Chinese Materia Medica, Chongqing, People's Republic of China
| | - Jin Xu
- Chongqing Academy of Chinese Materia Medica, Chongqing, People's Republic of China
| | - Jun He
- Chonging College of Traditional Chinese Medicine, Bishan District, 61 Puguoba Road, Bicheng Street, Chongqing, 402760, People's Republic of China.
| |
Collapse
|
12
|
Sun H, Shi Y, Ran H, Peng J, Li Q, Zheng G, He Y, Liu S, Chang W, Xiao Y. Prognostic value of tertiary lymphoid structures (TLS) in digestive system cancers: a systematic review and meta-analysis. BMC Cancer 2023; 23:1248. [PMID: 38110876 PMCID: PMC10729333 DOI: 10.1186/s12885-023-11738-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Existing literature suggests that tertiary lymphatic structure (TLS) is associated with the progression of cancer. However, the prognostic role of TLS in digestive system cancers remains controversial. This meta-analysis aims to synthesize currently available evidence in the association between TLS and the survival of digestive system cancers. METHODS We systematically searched three digital databases (PubMed, Embase, Web of Science) for articles published from database inception to December 23, 2022. Study selection criteria are based on PECO framework: P (population: patients with digestive system cancers), E (exposure: presence of TLS), C (comparator: absence of TLS), O (outcome: overall survival, OS; recurrence-free survival, RFS; disease-free survival, DFS). The Quality in Prognostic Studies (QUIPS) tool was used to assess risk of bias for included studies. The study protocol was registered with PROSPERO (CRD42023416307). RESULTS A total of 25 studies with 6910 patients were included into the final meta-analysis. Random-effects models revealed that the absence of TLS was associated with compromised OS, RFS, and DFS of digestive system cancers, with pooled hazard ratios (HRs) of 1.74 (95% CI: 1.50-2.03), 1.96 (95% CI: 1.58-2.44), and 1.81 (95% CI: 1.49-2.19), respectively. Subgroup analyses disclosed a stronger TLS-survival association for pancreatic cancer, compared with other digestive system cancers. CONCLUSION TLS may be of prognostic significance for digestive system cancers. More original studies are needed to further corroborate this finding.
Collapse
Affiliation(s)
- Hao Sun
- NHC Key Laboratory of Drug Addiction Medicine, Division of Epidemiology and Health Statistics, School of Public Health, Kunming Medical University, Chengong District, 1168 West Chunrong Road, Yuhua Street, Kunming, Yunnan, China
| | - Yuanyu Shi
- NHC Key Laboratory of Drug Addiction Medicine, Division of Epidemiology and Health Statistics, School of Public Health, Kunming Medical University, Chengong District, 1168 West Chunrong Road, Yuhua Street, Kunming, Yunnan, China
| | - Hailiang Ran
- NHC Key Laboratory of Drug Addiction Medicine, Division of Epidemiology and Health Statistics, School of Public Health, Kunming Medical University, Chengong District, 1168 West Chunrong Road, Yuhua Street, Kunming, Yunnan, China
| | - Junwei Peng
- NHC Key Laboratory of Drug Addiction Medicine, Division of Epidemiology and Health Statistics, School of Public Health, Kunming Medical University, Chengong District, 1168 West Chunrong Road, Yuhua Street, Kunming, Yunnan, China
| | - Qiongxian Li
- NHC Key Laboratory of Drug Addiction Medicine, Division of Epidemiology and Health Statistics, School of Public Health, Kunming Medical University, Chengong District, 1168 West Chunrong Road, Yuhua Street, Kunming, Yunnan, China
| | - Guiqing Zheng
- NHC Key Laboratory of Drug Addiction Medicine, Division of Epidemiology and Health Statistics, School of Public Health, Kunming Medical University, Chengong District, 1168 West Chunrong Road, Yuhua Street, Kunming, Yunnan, China
| | - Yandie He
- NHC Key Laboratory of Drug Addiction Medicine, Division of Epidemiology and Health Statistics, School of Public Health, Kunming Medical University, Chengong District, 1168 West Chunrong Road, Yuhua Street, Kunming, Yunnan, China
| | - Shuqing Liu
- NHC Key Laboratory of Drug Addiction Medicine, Division of Epidemiology and Health Statistics, School of Public Health, Kunming Medical University, Chengong District, 1168 West Chunrong Road, Yuhua Street, Kunming, Yunnan, China
| | - Wei Chang
- NHC Key Laboratory of Drug Addiction Medicine, Division of Epidemiology and Health Statistics, School of Public Health, Kunming Medical University, Chengong District, 1168 West Chunrong Road, Yuhua Street, Kunming, Yunnan, China.
| | - Yuanyuan Xiao
- NHC Key Laboratory of Drug Addiction Medicine, Division of Epidemiology and Health Statistics, School of Public Health, Kunming Medical University, Chengong District, 1168 West Chunrong Road, Yuhua Street, Kunming, Yunnan, China.
| |
Collapse
|
13
|
Zou Y, Li D, Yu X, Zhou C, Zhu C, Yuan Y. Correlation of Neuroendocrine Differentiation with a Distinctively Suppressive Immune Microenvironment in Gastric Cancer. Neuroendocrinology 2023; 114:192-206. [PMID: 37827134 PMCID: PMC10836751 DOI: 10.1159/000534427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
INTRODUCTION Neuroendocrine neoplasms (NENs) harbored significantly suppressive tumor immune microenvironments (TIMEs). However, the immunological effects of neuroendocrine differentiation (NED) on non-NENs, such as gastric cancer (GC), were unknown. METHODS Between pure gastric cancer (PGC) and GC-NED, TIME features were scored based on expression data and validated on serial whole-tissue sections of surgical samples, with tertiary lymphoid structures (TLSs) and the extra-TLS zone evaluated independently using multi-marker immunohistochemical staining. Risk analyses of TIME features on tumor behaviors were performed in GC-NED. The universal immunological effects of NED were explored preliminarily in adenocarcinomas arising in other organs. RESULTS Based on over 11,500 annotated TLSs and 2,700 extra-TLS zones, compared with PGC, GC-NED harbored a distinctively more suppressive TIME characterized by increased but immature TLSs, with higher naïve B-cell and follicular regulatory T-cell densities and downregulated TLS maturation-related cell ratios inside TLSs; increased naïve B-cell and regulatory T-cell densities; and a high proportion of exhausted T cells in the extra-TLS zone. The upregulated tumor PD-L1 expression and its close correlations with TLS formation and maturation were remarkable exclusively in GC-NED. TIME features, especially those regarding TLSs, were significantly correlated with tumor growth and invasion. The desynchrony between TLS formation and maturation and increased naïve or regulatory immune cell infiltration was observed in adenocarcinomas of the colorectum, pancreas, lung, and prostate. CONCLUSION NED highlighted a distinct GC entity with more suppressive TIME features correlated with tumor behaviors, indicating a cohort that would benefit more from immunotherapies.
Collapse
Affiliation(s)
- Yi Zou
- Department of Pathology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Li
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyan Yu
- Department of Pathology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Chenqi Zhou
- Department of Pathology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Chunpeng Zhu
- Department of Gastroenterology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
- Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Yu A, Cao M, Zhang K, Yang Y, Ma L, Zhang X, Zhao Y, Ma X, Fan Z, Han Z, Wang H. The prognostic value of the tertiary lymphoid structure in gastrointestinal cancers. Front Immunol 2023; 14:1256355. [PMID: 37868990 PMCID: PMC10590053 DOI: 10.3389/fimmu.2023.1256355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Background Numerous studies and research papers have provided evidence suggesting that tertiary lymphoid structures (TLS) play a crucial role in combating and suppressing tumor growth and progression. Despite the wealth of information on the significance of TLS in various types of cancer, their prognostic value in gastrointestinal (GI) cancers remains uncertain. Therefore, this meta-analysis investigated the prognostic value of TLS in GI cancers. Methods We searched Web of science, Pubmed, Embase and Cochrane Library for studies that met the requirements as of May 1, 2023, and the hazard ratio (HR) and the corresponding 95% confidence interval (CI) were included in the analysis. The bioinformatics analysis results based on the TCGA database are used to supplement our research. Results The meta-analysis included 32 studies involving 5778 patients. The results of comprehensive analysis showed that TLS-High is associated with prolonged OS (HR=0.525,95%CI:0.447-0.616 (P < 0.001), RFS (HR=0.546,95%CI:0.461-0.647, P < 0.001), DFS (HR=0.519,95%CI:0.417-0.646, P < 0.001) and PFS (HR=0.588,95%CI:0.406-0.852, P=0.005) in GI cancer. Among the patients who received immunotherapy, TLS-High is associated with significantly prolonged OS (HR=0.475, 95%CI:0.282-0.799, P=0.005) and PFS(HR=0.576, 95%CI:0.381-0.871, P=0.009). It is worth noting that subgroup analysis showed that there was no significant relationship between TLS and OS(HR=0.775, 95%CI:0.570-1.053,P=0.103) in CRC. And when Present is used as the cut-off criteria of TLS, there is no significant correlation between TLS and OS (HR=0.850, 95%CI:0.721-1.002, P=0.053)in HCC. Conclusion TLS is a significant predictor of the prognosis of GI cancers and has the potential to become a prognostic biomarker of immunotherapy-related patients. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier CRD42023443562.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhengxiang Han
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Hongmei Wang
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| |
Collapse
|
15
|
Xu J, Zhang W, Lou X, Ye Z, Qin Y, Chen J, Xu X, Yu X, Ji S. Recent research hotspots in sequencing and the pancreatic neuroendocrine tumor microenvironment. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0284. [PMID: 37771139 PMCID: PMC10618947 DOI: 10.20892/j.issn.2095-3941.2023.0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Affiliation(s)
- Junfeng Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
16
|
LIU Y, XIONG L, CAI R, CHEN Y, YE J, SHEN B, ZHOU G. [Recent Progress of Tertiary Lymphoid Structure in Prognosis and Immunotherapy of Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:615-620. [PMID: 37752541 PMCID: PMC10558765 DOI: 10.3779/j.issn.1009-3419.2023.101.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Indexed: 09/28/2023]
Abstract
Lung cancer is the leading cause of cancer death, and non-small cell lung cancer (NSCLC) accounts for 85%. Immunotherapy has significantly improved the clinical prognosis of patients with NSCLC. However, because of the complexity and heterogeneousness of the tumor microenvironment, only a subset of individuals can benefit from immunotherapy. Therefore, it is necessary to explore effective predictive biomarkers for immunotherapy of NSCLC. Tertiary lymphoid structure (TLS) is an ectopic lymphoid organ that is highly similar to secondary lymphoid organs (SLO), and the presence of TLS has been found to be closely associated with a good prognosis in immunotherapy for a variety of solid tumors, including NSCLC. This article provides a review of the prognostic role of tertiary lymphoid structures in immunotherapy of NSCLC, in order to offer references for screening suitable candidates for immunotherapy of NSCLC and develop personalized and precise treatment plans.
.
Collapse
|
17
|
Cao G, Yue J, Ruan Y, Han Y, Zhi Y, Lu J, Liu M, Xu X, Wang J, Gu Q, Wen X, Gao J, Zhang Q, Kang J, Wang C, Li F. Single-cell dissection of cervical cancer reveals key subsets of the tumor immune microenvironment. EMBO J 2023; 42:e110757. [PMID: 37427448 PMCID: PMC10425846 DOI: 10.15252/embj.2022110757] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/05/2023] [Accepted: 05/19/2023] [Indexed: 07/11/2023] Open
Abstract
The tumor microenvironment (TME) directly determines patients' outcomes and therapeutic efficiencies. An in-depth understanding of the TME is required to improve the prognosis of patients with cervical cancer (CC). This study conducted single-cell RNA and TCR sequencing of six-paired tumors and adjacent normal tissues to map the CC immune landscape. T and NK cells were highly enriched in the tumor area and transitioned from cytotoxic to exhaustion phenotypes. Our analyses suggest that cytotoxic large-clone T cells are critical effectors in the antitumor response. This study also revealed tumor-specific germinal center B cells associated with tertiary lymphoid structures. A high-germinal center B cell proportion in patients with CC is predictive of improved clinical outcomes and is associated with elevated hormonal immune responses. We depicted an immune-excluded stromal landscape and established a joint model of tumor and stromal cells to predict CC patients' prognosis. The study revealed tumor ecosystem subsets linked to antitumor response or prognosis in the TME and provides information for future combinational immunotherapy.
Collapse
Affiliation(s)
- Guangxu Cao
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jiali Yue
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, Frontier Science Center for Stem Cells, School of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Yetian Ruan
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Ya Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, Frontier Science Center for Stem Cells, School of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Yong Zhi
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jianqiao Lu
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Min Liu
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xinxin Xu
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jin Wang
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Quan Gu
- CVR BioinformaticsUniversity of Glasgow Centre for Virus ResearchGlasgowUK
| | - Xuejun Wen
- Department of Chemical and Life Science Engineering, School of EngineeringVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Jinli Gao
- Department of Pathology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Qingfeng Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, Frontier Science Center for Stem Cells, School of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, Frontier Science Center for Stem Cells, School of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Fang Li
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
18
|
Zou X, Guan C, Gao J, Shi W, Cui Y, Zhong X. Tertiary lymphoid structures in pancreatic cancer: a new target for immunotherapy. Front Immunol 2023; 14:1222719. [PMID: 37529035 PMCID: PMC10388371 DOI: 10.3389/fimmu.2023.1222719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Pancreatic cancer (PC) is extremely malignant and shows limited response to available immunotherapies due to the hypoxic and immunosuppressive nature of its tumor microenvironment (TME). The aggregation of immune cells (B cells, T cells, dendritic cells, etc.), which is induced in various chronic inflammatory settings such as infection, inflammation, and tumors, is known as the tertiary lymphoid structure (TLS). Several studies have shown that TLSs can be found in both intra- and peritumor tissues of PC. The role of TLSs in peritumor tissues in tumors remains unclear, though intratumoral TLSs are known to play an active role in a variety of tumors, including PC. The formation of intratumoral TLSs in PC is associated with a good prognosis. In addition, TLSs can be used as an indicator to assess the effectiveness of treatment. Targeted induction of TLS formation may become a new avenue of immunotherapy for PC. This review summarizes the formation, characteristics, relevant clinical outcomes, and clinical applications of TLSs in the pancreatic TME. We aim to provide new ideas for future immunotherapy of PC.
Collapse
Affiliation(s)
- Xinlei Zou
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Canghai Guan
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianjun Gao
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wujiang Shi
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiary Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Cai D, Yu H, Wang X, Mao Y, Liang M, Lu X, Shen X, Guan W. Turning Tertiary Lymphoid Structures (TLS) into Hot Spots: Values of TLS in Gastrointestinal Tumors. Cancers (Basel) 2023; 15:cancers15020367. [PMID: 36672316 PMCID: PMC9856964 DOI: 10.3390/cancers15020367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphocyte aggregation structures found in the tumor microenvironment (TME). Emerging evidence shows that TLSs are significantly correlated with the progression of gastrointestinal tumors, patients' prognosis, and the efficacy of adjuvant therapy. Besides, there are still some immunosuppressive factors in the TLSs that may affect the anti-tumor responses of TLSs, including negative regulators of anti-tumor immune responses, the immune checkpoint molecules, and inappropriate tumor metabolism. Therefore, a more comprehensive understanding of TLSs' responses in gastrointestinal tumors is essential to fully understand how TLSs can fully exert their anti-tumor responses. In addition, targeting TLSs with immune checkpoint inhibitors and vaccines to establish mature TLSs is currently being developed to reprogram the TME, further benefiting cancer immunotherapies. This review summarizes recent findings on the formation of TLSs, the mechanisms of their anti-tumor immune responses, and the association between therapeutic strategies and TLSs, providing a novel perspective on tumor-associated TLSs in gastrointestinal tumors.
Collapse
Affiliation(s)
- Daming Cai
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Heng Yu
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Xingzhou Wang
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Yonghuan Mao
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Mengjie Liang
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Xiaofeng Lu
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, China
- Correspondence: (X.S.); (W.G.)
| | - Wenxian Guan
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
- Correspondence: (X.S.); (W.G.)
| |
Collapse
|
20
|
Greenberg J, Limberg J, Verma A, Kim D, Chen X, Lee YJ, Moore MD, Ullmann TM, Thiesmeyer JW, Loewenstein Z, Chen KJ, Egan CE, Stefanova D, Bareja R, Zarnegar R, Finnerty BM, Scognamiglio T, Du YCN, Elemento O, Fahey TJ, Min IM. Metastatic pancreatic neuroendocrine tumors feature elevated T cell infiltration. JCI Insight 2022; 7:160130. [PMID: 36301668 PMCID: PMC9746918 DOI: 10.1172/jci.insight.160130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/26/2022] [Indexed: 01/12/2023] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are malignancies arising from the islets of Langerhans. Therapeutic options are limited for the over 50% of patients who present with metastatic disease. We aimed to identify mechanisms to remodel the PNET tumor microenvironment (TME) to ultimately enhance susceptibility to immunotherapy. The TMEs of localized and metastatic PNETs were investigated using an approach that combines RNA-Seq, cancer and T cell profiling, and pharmacologic perturbations. RNA-Seq analysis indicated that the primary tumors of metastatic PNETs showed significant activation of inflammatory and immune-related pathways. We determined that metastatic PNETs featured increased numbers of tumor-infiltrating T cells compared with localized tumors. T cells isolated from both localized and metastatic PNETs showed evidence of recruitment and antigen-dependent activation, suggestive of an immune-permissive microenvironment. A computational analysis suggested that vorinostat, a histone deacetylase inhibitor, may perturb the transcriptomic signature of metastatic PNETs. Treatment of PNET cell lines with vorinostat increased chemokine CCR5 expression by NF-κB activation. Vorinostat treatment of patient-derived metastatic PNET tissues augmented recruitment of autologous T cells, and this augmentation was substantiated in a mouse model of PNET. Pharmacologic induction of chemokine expression may represent a promising approach for enhancing the immunogenicity of metastatic PNET TMEs.
Collapse
Affiliation(s)
| | | | - Akanksha Verma
- Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and
| | - David Kim
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Xiang Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | - Rohan Bareja
- Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and
| | | | | | - Theresa Scognamiglio
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, and
| | | | | |
Collapse
|
21
|
Tertiary Lymphoid Structures: A Potential Biomarker for Anti-Cancer Therapy. Cancers (Basel) 2022; 14:cancers14235968. [PMID: 36497450 PMCID: PMC9739898 DOI: 10.3390/cancers14235968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
A tertiary lymphoid structure (TLS) is a special component in the immune microenvironment that is mainly composed of tumor-infiltrating lymphocytes (TILs), including T cells, B cells, DC cells, and high endothelial venules (HEVs). For cancer patients, evaluation of the immune microenvironment has a predictive effect on tumor biological behavior, treatment methods, and prognosis. As a result, TLSs have begun to attract the attention of researchers as a new potential biomarker. However, the composition and mechanisms of TLSs are still unclear, and clinical detection methods are still being explored. Although some meaningful results have been obtained in clinical trials, there is still a long way to go before such methods can be applied in clinical practice. However, we believe that with the continuous progress of basic research and clinical trials, TLS detection and related treatment can benefit more and more patients. In this review, we generalize the definition and composition of TLSs, summarize clinical trials involving TLSs according to treatment methods, and describe possible methods of inducing TLS formation.
Collapse
|
22
|
Almangush A, Bello IO, Elseragy A, Hagström J, Haglund C, Kowalski LP, Nieminen P, Coletta RD, Mäkitie AA, Salo T, Leivo I. Tertiary lymphoid structures associate with improved survival in early oral tongue cancer. BMC Cancer 2022; 22:1108. [PMID: 36309667 PMCID: PMC9618224 DOI: 10.1186/s12885-022-10208-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background The clinical significance of tertiary lymphoid structures (TLSs) is not well-documented in early oral tongue squamous cell carcinoma (OTSCC). Methods A total of 310 cases of early (cT1-2N0) OTSCC were included in this multicenter study. Assessment of TLSs was conducted on hematoxylin and eosin-stained sections. TLSs were assessed both in the central part of the tumor and at the invasive front area. Results The presence of TLSs associated with improved survival of early OTSCC as presented by Kaplan–Meier survival analyses for disease-specific survival (P = 0.01) and overall survival (P = 0.006). In multivariable analyses, which included conventional prognostic factors, the absence of TLSs associated with worse disease-specific survival with a hazard ratio (HR) of 1.96 (95% CI 1.09–3.54; P = 0.025) and poor overall survival (HR 1.66, 95% CI 1.11–2.48; P = 0.014). Conclusion Histological evaluation of TLSs predicts survival in early OTSCC. TLSs showed superior prognostic power independent of routine WHO grading and TNM staging system.
Collapse
|
23
|
Ling Y, Zhong J, Weng Z, Lin G, Liu C, Pan C, Yang H, Wei X, Xie X, Wei X, Zhang H, Wang G, Fu J, Wen J. The prognostic value and molecular properties of tertiary lymphoid structures in oesophageal squamous cell carcinoma. Clin Transl Med 2022; 12:e1074. [PMID: 36245289 PMCID: PMC9574489 DOI: 10.1002/ctm2.1074] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/26/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs) play key roles in tumour adaptive immunity. However, the prognostic value and molecular properties of TLSs in oesophageal squamous cell carcinoma (ESCC) patients have not been studied. METHODS The prognostic values of the presence and maturation status of tumour-associated TLSs were determined in 394 and 256 ESCC patients from Sun Yat-sen University Cancer Center (Centre A) and the Cancer Hospital of Shantou University Medical College (Centre B), respectively. A deep-learning (DL) TLS classifier was established with haematoxylin and eosin (H&E)-stained slides using an inception-resnet-v2 neural network. Digital spatial profiling was performed to determine the cellular and molecular properties of TLSs in ESCC tissues. RESULTS TLSs were observed in 73.1% of ESCCs from Centre A via pathological examination of H&E-stained primary tumour slides, among which 42.9% were TLS-mature and 30.2% were TLS-immature tumours. The established DL TLS classifier yielded favourable sensitivities and specificities for patient TLS identification and maturation evaluation, with which 55.1%, 39.5% and 5.5% of ESCCs from Centre B were identified as TLS-mature, TLS-immature and TLS-negative tumours. Multivariate analyses proved that the presence of mature TLSs was an independent prognostic factor in both the Centre A and Centre B cohorts (p < .05). Increased proportions of proliferative B, plasma and CD4+ T helper (Th) cells and increased B memory and Th17 signatures were observed in mature TLSs compared to immature ones. Intratumoural CD8+ T infiltration was increased in TLS-mature ESCC tissues compared to mature TLS-absent tissues. The combination of mature TLS presence and high CD8+ T infiltration was associated with the best survival in ESCC patients. CONCLUSIONS Mature TLSs improve the prognosis of ESCC patients who underwent complete resection. The use of the DL TLS classifier would facilitate precise and efficient evaluation of TLS maturation status and offer a novel probability of ESCC treatment individualization.
Collapse
Affiliation(s)
- Yihong Ling
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian Zhong
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Thoracic OncologySun Yat‐sen University Cancer CenterGuangzhouChina
- Guangdong Esophageal Cancer InstituteGuangzhouChina
| | - Zelin Weng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Guangrong Lin
- Yinhe Hangtian Internet Technology Company LimitedBeijingChina
| | - Caixia Liu
- Department of Preventive MedicineShantou University Medical CollegeShantouChina
| | - Chuqing Pan
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Hong Yang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Thoracic OncologySun Yat‐sen University Cancer CenterGuangzhouChina
- Guangdong Esophageal Cancer InstituteGuangzhouChina
| | - Xiaolong Wei
- Department of PathologyCancer Hospital of Shantou University Medical CollegeShantouChina
| | - Xiuying Xie
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Guangdong Esophageal Cancer InstituteGuangzhouChina
| | - Xiaoli Wei
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Huizhong Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of PathologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Geng Wang
- Department of Thoracic Surgery Cancer Hospital of Shantou University Medical College Shantou China
| | - Jianhua Fu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Thoracic OncologySun Yat‐sen University Cancer Center,GuangzhouChina
- Guangdong Esophageal Cancer Institute, GuangzhouChina
| | - Jing Wen
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Guangdong Esophageal Cancer Institute, Guangzhou China
| |
Collapse
|
24
|
Lou X, Qin Y, Xu X, Yu X, Ji S. Spatiotemporal heterogeneity and clinical challenge of pancreatic neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2022; 1877:188782. [PMID: 36028148 DOI: 10.1016/j.bbcan.2022.188782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022]
Abstract
During the course of pancreatic neuroendocrine tumors (NETs), they generally become more heterogeneous with individual cells exhibiting distinct molecular fingerprints. This heterogeneity manifests itself through an unequal distribution of genetically-variant, tumor cell subpopulations within disease locations (i.e., spatial heterogeneity) or changes in the genomic landscape over time (i.e., temporal heterogeneity); these characteristics complicate clinical diagnosis and treatment. Effective, feasible tumor heterogeneity detection and eradication methods are essential to overcome the clinical challenges of pancreatic NETs. This review explores the molecular fingerprints of pancreatic NETs and the spectrum of tumoral heterogeneity. We then describe the challenges of assessing heterogeneity by liquid biopsies and imaging modalities and the therapeutic challenges for pancreatic NETs. In general, navigating these challenges, refining approaches for translational research, and ultimately improving patient care are available once we have a better understanding of intratumoral spatiotemporal heterogeneity.
Collapse
Affiliation(s)
- Xin Lou
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yi Qin
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xiaowu Xu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Shunrong Ji
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| |
Collapse
|
25
|
Zhang WH, Gao HL, Liu WS, Qin Y, Ye Z, Lou X, Wang F, Zhang Y, Chen XM, Chen J, Yu XJ, Zhuo QF, Xu XW, Ji SR. A real-life treatment cohort of pancreatic neuroendocrine tumors: High-grade increase in metastases confers poor survival. Front Endocrinol (Lausanne) 2022; 13:941210. [PMID: 36034463 PMCID: PMC9399842 DOI: 10.3389/fendo.2022.941210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background Tumor grade determined by the Ki67 index is the best prognostic factor for pancreatic neuroendocrine tumors (PanNETs). However, we often observe that the grade of metastases differs from that of their primary tumors. This study aimed to investigate the frequency of grade changes between primary tumors and metastases, explore its association with clinical characteristics, and correlate the findings with the prognosis. Methods Six hundred forty-eight patients with pancreatic neuroendocrine neoplasms treated at Fudan University Shanghai Cancer Center were screened for inclusion, and 103 patients with PanNETs who had paired primary tumors and metastases with an available Ki67 index were included. Re-evaluation of Ki67 was performed on 98 available samples from 69 patients. Results Fifty cases (48.5%) had a Ki67 index variation, and 18 cases (17.5%) displayed a grade increase. Metachronous metastases showed significantly higher Ki67 index variation than synchronous metastases (P=0.028). Kaplan-Meier analyses showed that high-grade metastases compared to low-grade primary tumors were significantly associated with decreased progression-free survival (PFS, P=0.012) and overall survival (OS, P=0.027). Multivariable Cox regression analyses demonstrated that a low-grade increase to high-grade was an unfavorable and independent prognostic factor for PFS and OS (P=0.010, and P=0.041, respectively). Conclusions A high-grade increase in metastases was an unfavorable predictor of PanNETs, which emphasized the importance of accurate pathological grading and could provide a reference for clinical decision-making.
Collapse
Affiliation(s)
- Wu-Hu Zhang
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - He-Li Gao
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wen-Sheng Liu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yi Qin
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zeng Ye
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xin Lou
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Fei Wang
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yue Zhang
- The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xue-Min Chen
- The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xian-Jun Yu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qi-Feng Zhuo
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xiao-Wu Xu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shun-Rong Ji
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Wu YH, Wu F, Yan GR, Zeng QY, Jia N, Zheng Z, Fang S, Liu YQ, Zhang GL, Wang XL. Features and clinical significance of tertiary lymphoid structure in cutaneous squamous cell carcinoma. J Eur Acad Dermatol Venereol 2022; 36:2043-2050. [PMID: 35881141 DOI: 10.1111/jdv.18464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/02/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Tertiary lymphoid structure (TLS) plays an important role in anti-tumor immunity, largely reflecting the prognosis. However, its clinical implication in cutaneous squamous cell carcinoma (cSCC) remains unknown. OBJECTIVES To explore the features of TLS in cSCC and its association with clinicopathological characteristics. METHODS Two independent RNA-seq data of cSCC were used to investigate the tumor immune microenvironment, as well as TLS-related chemokines and cytokines. The density and location of TLSs were assessed in a total of 82 cSCC patients, and the clinicopathologic association was examined. RESULTS Bioinformatics analysis showed that a large amount of immune cell infiltration and significant up-regulation of TLS-related chemokines were observed in cSCC. Histologically, TLSs appeared as highly organized structures in 72 (87.8%) cases with different levels of density and maturation, among which 14 cases were in low-density group and 58 cases were in high-density group. Clinically, the presence of TLS was prominently associated with better degree of histopathological grades and higher level of sun exposure. Furthermore, the presence of intratumoral TLS was associated with lower lymphovascular invasion. CONCLUSIONS TLS is highly organized in cSCC, and the presence of TLS is a positive prognostic factor for cSCC, which will provide a theoretical basis for the future diagnostic and therapeutic value in cSCC.
Collapse
Affiliation(s)
- Y H Wu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - F Wu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - G R Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Q Y Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - N Jia
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Z Zheng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - S Fang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Y Q Liu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - G L Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - X L Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| |
Collapse
|
27
|
Xu S, Ye C, Chen R, Li Q, Ruan J. The Landscape and Clinical Application of the Tumor Microenvironment in Gastroenteropancreatic Neuroendocrine Neoplasms. Cancers (Basel) 2022; 14:cancers14122911. [PMID: 35740577 PMCID: PMC9221445 DOI: 10.3390/cancers14122911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary The tumor microenvironment (TME) plays a role in promoting tumor progression. Elucidating the relationship between the TME and tumor cells will benefit current therapies. Therefore, this review summarizes the most recent relationship between the TME and tumor characteristics, discusses the differences in the TME at various sites along the digestive tract, and compares the TMEs of neuroendocrine tumors and neuroendocrine carcinomas. Microbial ecological changes in the TME were reviewed. The clinical application of the TME was summarized from bench to bedside. The TME can be used as a tumor drug target for diagnostic value, prognosis prediction, and efficacy evaluation, further revealing the potential of immune checkpoints combined with antiangiogenic drugs. The clinical application prospects of adoptive cell therapy and oncolytic viruses were described. The potential therapeutic approaches and strategies for gastrointestinal neuroendocrine neoplasms are considered. Abstract Gastroenteropancreatic neuroendocrine neoplasms feature high heterogeneity. Neuroendocrine tumor cells are closely associated with the tumor microenvironment. Tumor-infiltrating immune cells are mutually educated by each other and by tumor cells. Immune cells have dual protumorigenic and antitumorigenic effects. The immune environment is conducive to the invasion and metastasis of the tumor; in turn, tumor cells can change the immune environment. These cells also form cytokines, immune checkpoint systems, and tertiary lymphoid structures to participate in the process of mutual adaptation. Additionally, the fibroblasts, vascular structure, and microbiota exhibit interactions with tumor cells. From bench to bedside, clinical practice related to the tumor microenvironment is also regarded as promising. Targeting immune components and angiogenic regulatory molecules has been shown to be effective. The clinical efficacy of immune checkpoint inhibitors, adoptive cell therapy, and oncolytic viruses remains to be further discussed in clinical trials. Moreover, combination therapy is feasible for advanced high-grade tumors. The regulation of the tumor microenvironment based on multiple omics results can suggest innovative therapeutic strategies to prevent tumors from succeeding in immune escape and to support antitumoral effects.
Collapse
Affiliation(s)
- Shuaishuai Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
| | - Chanqi Ye
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
| | - Ruyin Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
| | - Qiong Li
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (S.X.); (C.Y.); (R.C.); (Q.L.)
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310000, China
- Correspondence:
| |
Collapse
|
28
|
Role of tertiary lymphoid organs in the regulation of immune responses in the periphery. Cell Mol Life Sci 2022; 79:359. [PMID: 35689679 PMCID: PMC9188279 DOI: 10.1007/s00018-022-04388-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/28/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022]
Abstract
Tertiary lymphoid organs (TLOs) are collections of immune cells resembling secondary lymphoid organs (SLOs) that form in peripheral, non-lymphoid tissues in response to local chronic inflammation. While their formation mimics embryologic lymphoid organogenesis, TLOs form after birth at ectopic sites in response to local inflammation resulting in their ability to mount diverse immune responses. The structure of TLOs can vary from clusters of B and T lymphocytes to highly organized structures with B and T lymphocyte compartments, germinal centers, and lymphatic vessels (LVs) and high endothelial venules (HEVs), allowing them to generate robust immune responses at sites of tissue injury. Although our understanding of the formation and function of these structures has improved greatly over the last 30 years, their role as mediators of protective or pathologic immune responses in certain chronic inflammatory diseases remains enigmatic and may differ based on the local tissue microenvironment in which they form. In this review, we highlight the role of TLOs in the regulation of immune responses in chronic infection, chronic inflammatory and autoimmune diseases, cancer, and solid organ transplantation.
Collapse
|
29
|
He L, Boulant S, Stanifer M, Guo C, Nießen A, Chen M, Felix K, Bergmann F, Strobel O, Schimmack S. The link between menin and pleiotrophin in the tumor biology of pancreatic neuroendocrine neoplasms. Cancer Sci 2022; 113:1575-1586. [PMID: 35179814 PMCID: PMC9128182 DOI: 10.1111/cas.15301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 11/29/2022] Open
Abstract
MEN1, which encodes menin protein, is the most frequently mutated gene in pancreatic neuroendocrine neoplasms (pNEN). Pleiotrophin (PTN) was reported being a downstream factor of menin and to promote metastasis in different tumor entities. In this study, the effect of menin and its link to PTN were assessed on features of pNEN cells and outcome of pNEN patients. The expression of menin and PTN in pNEN patient tissues were examined by qRT-PCR and western blot and compared to their metastasis status. Functional assays, including transwell migration/invasion and scratch wound healing assays, were performed on specifically designed CRISPR/Cas9-mediated MEN1-knockout (MEN1-KO) pNEN cell lines (BON1MEN1-KO and QGP1MEN1-KO ) to study the metastasis of pNEN. Among 30 menin negative pNEN patients, 21 revealed a strong protein expression of PTN. This combination was associated with metastasis and shorter disease-free survival. Accordingly, in BON1MEN1-KO and QGP1MEN1-KO cells, PTN protein expression was positively associated with enhanced cell migration and invasion, which could be reversed by PTN silencing. PTN is a predicting factor of metastatic behavior of menin-deficient-pNEN. In vitro, menin is able to both promote and suppress the metastasis of pNEN by regulating PTN expression depending on the tumoral origin of pNEN cells.
Collapse
Affiliation(s)
- Liping He
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Department of Medical Oncology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, P.R. China
| | - Steeve Boulant
- Center for Integrative Infectious Disease Research, Heidelberg University, Heidelberg, Germany
| | - Megan Stanifer
- Center for Integrative Infectious Disease Research, Heidelberg University, Heidelberg, Germany
| | - Cuncai Guo
- Center for Integrative Infectious Disease Research, Heidelberg University, Heidelberg, Germany
| | - Anna Nießen
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Mingyi Chen
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, P.R. China
| | - Klaus Felix
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Frank Bergmann
- Institute of Pathology, Heidelberg University, Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Simon Schimmack
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
30
|
Zhang J, Song C, Tian Y, Yang X. Single-Cell RNA Sequencing in Lung Cancer: Revealing Phenotype Shaping of Stromal Cells in the Microenvironment. Front Immunol 2022; 12:802080. [PMID: 35126365 PMCID: PMC8807562 DOI: 10.3389/fimmu.2021.802080] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
The lung tumor microenvironment, which is composed of heterogeneous cell populations, plays an important role in the progression of lung cancer and is closely related to therapeutic efficacy. Increasing evidence has shown that stromal components play a key role in regulating tumor invasion, metastasis and drug resistance. Therefore, a better understanding of stromal components in the tumor microenvironment is helpful for the diagnosis and treatment of lung cancer. Rapid advances in technology have brought our understanding of disease into the genetic era, and single-cell RNA sequencing has enabled us to describe gene expression profiles with unprecedented resolution, enabling quantitative analysis of gene expression at the single-cell level to reveal the correlations among heterogeneity, signaling pathways, drug resistance and microenvironment molding in lung cancer, which is important for the treatment of this disease. In this paper, several common single-cell RNA sequencing methods and their advantages and disadvantages are briefly introduced to provide a reference for selection of suitable methods. Furthermore, we review the latest progress of single-cell RNA sequencing in the study of stromal cells in the lung tumor microenvironment.
Collapse
|
31
|
Xu Z, Wang L, Dai S, Chen M, Li F, Sun J, Luo F. Epidemiologic Trends of and Factors Associated With Overall Survival for Patients With Gastroenteropancreatic Neuroendocrine Tumors in the United States. JAMA Netw Open 2021; 4:e2124750. [PMID: 34554237 PMCID: PMC8461504 DOI: 10.1001/jamanetworkopen.2021.24750] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IMPORTANCE Although the incidence and prevalence of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) have been thought to have increased during the past decades, updated epidemiologic and survival data are lacking. OBJECTIVES To conduct an epidemiologic and survival analysis of the largest cohort of patients with GEP-NETs using the latest data and to establish a novel nomogram to predict the survival probability of individual patients with GEP-NETs. DESIGN, SETTING, AND PARTICIPANTS In this cohort study, 43 751 patients with GEP-NETs diagnosed from January 1, 1975, to December 31, 2015, were identified from the Surveillance, Epidemiology, and End Results Program. Associated data were used for epidemiologic and survival analysis, as well as the establishment and validation of a nomogram to predict the survival probability of individual patients with GEP-NETs. The study cutoff date was December 31, 2018. Statistical analysis was performed from February 1 to April 30, 2020. MAIN OUTCOMES AND MEASURES Incidence, factors associated with overall survival, and a nomogram model for patients with GEP-NETs. RESULTS A total of 43 751 patients received a diagnosis of GEP-NETs from 1975 to 2015 (22 398 women [51.2%], 31 976 White patients [73.1%], 7097 Black patients [16.2%], 3207 Asian and Pacific Islander patients [7.3%], 270 American Indian and Alaska Native patients [0.6%], and 4546 patients of unknown race [10.4%]; mean [SD] age at diagnosis, 58 [15] years). The age-adjusted incidence rate of GEP-NETs increased 6.4-fold from 1975 to 2015 (annual percentage change [APC], 4.98; 95% CI, 4.75-5.20; P < .001). Furthermore, among site groups, the incidence of GEP-NETs in the rectum increased most significantly (APC, 6.43; 95% CI, 5.65-7.23; P < .001). As for stage and grade, the incidence increased the most in localized GEP-NETs (APC, 6.53; 95% CI, 6.08-6.97; P < .001) and G1 GEP-NETs (APC, 18.93; 95% CI, 17.44-20.43; P < .001). During the study period, the mean age at diagnosis for localized disease increased by 9.0 years (95% CI, 3.3-14.7 years; P = .002), which remained unchanged for regional and distant cases. On multivariable analyses, age, sex, marital status, and tumor size, grade, stage, and site were significantly associated with overall survival for patients with GEP-NETs (eg, patients with distant vs localized disease: hazard ratio, 10.32; 95% CI, 8.56-12.43; G4 vs G1 GEP-NET: hazard ratio, 6.37; 95% CI, 5.39-7.53). Furthermore, a nomogram comprising age, size, grade, stage, and site was established to predict the 3-year and 5-year survival probability, with the concordance indexes of 0.893 (95% CI, 0.883-0.903) for the internal validations and 0.880 (95% CI, 0.866-0.894) for the external validations. The receiver operating characteristic curve demonstrated that the nomogram exhibited better discrimination power than TNM classification (area under the curve for 3-year overall survival, 0.908 vs 0.795; for 5-year overall survival, 0.893 vs 0.791). CONCLUSIONS AND RELEVANCE In this study, the incidence and prevalence of GEP-NETs have continued to increase over 40 years, especially among patients with rectal GEP-NETs. In addition, this study suggests that a nomogram with 5 prognostic parameters may accurately quantify the risk of death among patients with GEP-NETs, indicating that it has satisfactory clinical practicality.
Collapse
Affiliation(s)
- Zihan Xu
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Li Wang
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shuang Dai
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Mingjing Chen
- Cancer Institute of People’s Liberation Army, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Feng Li
- Cancer Institute of People’s Liberation Army, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Jianguo Sun
- Cancer Institute of People’s Liberation Army, Xinqiao Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Feng Luo
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
32
|
Kang W, Feng Z, Luo J, He Z, Liu J, Wu J, Rong P. Tertiary Lymphoid Structures in Cancer: The Double-Edged Sword Role in Antitumor Immunity and Potential Therapeutic Induction Strategies. Front Immunol 2021; 12:689270. [PMID: 34394083 PMCID: PMC8358404 DOI: 10.3389/fimmu.2021.689270] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
The complex tumor microenvironment (TME) plays a vital role in cancer development and dramatically determines the efficacy of immunotherapy. Tertiary lymphoid structures (TLSs) within the TME are well recognized and consist of T cell-rich areas containing dendritic cells (DCs) and B cell-rich areas containing germinal centers (GCs). Accumulating research has indicated that there is a close association between tumor-associated TLSs and favorable clinical outcomes in most types of cancers, though a minority of studies have reported an association between TLSs and a poor prognosis. Overall, the double-edged sword role of TLSs in the TME and potential mechanisms need to be further investigated, which will provide novel therapeutic perspectives for antitumor immunoregulation. In this review, we focus on discussing the main functions of TLSs in the TME and recent advances in the therapeutic manipulation of TLSs through multiple strategies to enhance local antitumor immunity.
Collapse
Affiliation(s)
- Wendi Kang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhichao Feng
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Jianwei Luo
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhenhu He
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianzhen Wu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| |
Collapse
|
33
|
Zhao Z, Ding H, Lin ZB, Qiu SH, Zhang YR, Guo YG, Chu XD, Sam LI, Pan JH, Pan YL. Relationship between Tertiary Lymphoid Structure and the Prognosis and Clinicopathologic Characteristics in Solid Tumors. Int J Med Sci 2021; 18:2327-2338. [PMID: 33967609 PMCID: PMC8100653 DOI: 10.7150/ijms.56347] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/21/2021] [Indexed: 12/24/2022] Open
Abstract
Background: An increasing number of studies had shown that tertiary lymphoid structure (TLS) plays an important role in tumor progression. However, the prognostic role of TLS in various tumors remains controversial. This meta-analysis aims to investigate the clinicopathological and prognostic values of TLS in solid tumors. Methods: A systematic search was conducted in PubMed, EMBASE and Cochrane Library undated to November 2, 2020. Odds ratios of clinical parameters, hazard ratio (HR) of overall survival (OS), relapse-free survival (RFS), disease-free survival (DFS) and relapse rate were calculated in order to evaluate the relationship between TLS expression and clinicopathological or prognostic values in different tumors. Result: 27 eligible studies including 6647 patients with different types of tumors were analyzed. High TLS expression was associated with a longer OS (HR = 0.66, 95% CI: 0.50 - 0.86, P = 0.002) and RFS (HR = 0.61, 95% CI: 0.47 - 0.79, P = 0.0001). Moreover, high TLS levels in tumor were associated with a low risk of recurrence (HR = 0.43, 95% CI: 0.32 - 0.57, P < 0.0001). However, there was no relationship between TLS expression and DFS. Meanwhile, high TLS expression was associated with smaller tumor size (P < 0.00001) and higher tumor infiltrating lymphocytes (TILs). Furthermore, the subgroup analysis showed high TLS expression that may be associated with a lower clinical grading and N stage in breast cancer and colorectal cancer. Conclusion: High TLS expression is associated with the longer OS and RFS in solid tumors, and a lower risk of cancer relapse. Meanwhile, high TLS expression is also associated with a smaller tumor size, higher infiltration of TILs, lower clinical grading and N stage in the tumor. Therefore, high TLS expression in the tumor is a favorable prognostic biomarker for solid tumor patients.
Collapse
Affiliation(s)
- Zhan Zhao
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Hui Ding
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zheng-bin Lin
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Sheng-hui Qiu
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yi-ran Zhang
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yan-guan Guo
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xiao-dong Chu
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Loi I Sam
- International School, Jinan University, Guangzhou 510632, China
| | - Jing-hua Pan
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yun-long Pan
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|