1
|
Ritchlin CT, Rangel-Moreno J, Martino D, Isett B, Paine A, Bhattacharya S, Fox J, Meyer EM, Bao R, Bruno T, Tausk F, de la Luz Garcia-Hernandez M. Psoriatic arthritis subtypes are phenocopied in humanized mice. JCI Insight 2024; 9:e178213. [PMID: 39114979 PMCID: PMC11383598 DOI: 10.1172/jci.insight.178213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/26/2024] [Indexed: 09/13/2024] Open
Abstract
Psoriatic arthritis (PsA) is a complex inflammatory disease that challenges diagnosis and complicates the rational selection of effective therapies. Although T cells are considered active effectors in psoriasis and PsA, the role of CD8+ T cells in pathogenesis is not well understood. We selected the humanized mouse model NSG-SGM3 transgenic strain to examine psoriasis and PsA endotypes. Injection of PBMCs and sera from patients with psoriasis and PsA generated parallel skin and joint phenotypes in the recipient mouse. The transfer of human circulating memory T cells was followed by migration and accumulation in the skin and synovia of these immunodeficient mice. Unexpectedly, immunoglobulins were required for recapitulation of the clinical phenotype of psoriasiform lesions and PsA domains (dactylitis, enthesitis, bone erosion). Human CD8+ T cells expressing T-bet, IL-32 and CXCL14 were detected by spatial transcriptomics in murine synovia and by immunofluorescence in the human PsA synovia. Importantly, depletion of human CD8+ T cells prevented skin and synovial inflammation in mice humanized with PsA peripheral blood cells. The humanized model of psoriasis and PsA represents a valid platform for accelerating the understanding of disease pathogenesis, improving the design of personalized therapies, and revealing psoriatic disease targets.
Collapse
Affiliation(s)
| | | | - Delaney Martino
- University of Rochester Medical Center, Rochester, New York, USA
| | - Brian Isett
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Ananta Paine
- University of Rochester Medical Center, Rochester, New York, USA
| | | | - Jeffrey Fox
- Center for Musculoskeletal Research, University of Rochester Medical Center, University of Rochester Medical Center, Rochester, New York, USA
| | - Ernest M Meyer
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Riyue Bao
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine and
| | - Tullia Bruno
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Francisco Tausk
- University of Rochester Medical Center, Rochester, New York, USA
| | | |
Collapse
|
2
|
Łaszczych D, Czernicka A, Gostomczyk K, Szylberg Ł, Borowczak J. The role of IL-17 in the pathogenesis and treatment of glioblastoma-an update on the state of the art and future perspectives. Med Oncol 2024; 41:187. [PMID: 38918274 PMCID: PMC11199243 DOI: 10.1007/s12032-024-02434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor, which, despite significant progress made in the last years in the field of neuro-oncology, remains an incurable disease. GBM has a poor prognosis with a median survival of 12-15 months, and its aggressive clinical course is related to rapid growth, extensive infiltration of adjacent tissues, resistance to chemotherapy, radiotherapy and immunotherapy, and frequent relapse. Currently, several molecular biomarkers are used in clinical practice to predict patient prognosis and response to treatment. However, due to the overall unsatisfactory efficacy of standard multimodal treatment and the remaining poor prognosis, there is an urgent need for new biomarkers and therapeutic strategies for GBM. Recent evidence suggests that GBM tumorigenesis is associated with crosstalk between cancer, immune and stromal cells mediated by various cytokines. One of the key factors involved in this process appears to be interleukin-17 (IL-17), a pro-inflammatory cytokine that is significantly upregulated in the serum and tissue of GBM patients. IL-17 plays a key role in tumorigenesis, angiogenesis, and recurrence of GBM by activating pro-oncogenic signaling pathways and promoting cell survival, proliferation, and invasion. IL-17 facilitates the immunomodulation of the tumor microenvironment by promoting immune cells infiltration and cytokine secretion. In this article we review the latest scientific reports to provide an update on the role of IL-17 role in tumorigenesis, tumor microenvironment, diagnosis, prognosis, and treatment of GBM.
Collapse
Affiliation(s)
- Dariusz Łaszczych
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland.
| | - Aleksandra Czernicka
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
| | - Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, dr Izabeli Romanowskiej 2 street, 85-796, Bydgoszcz, Poland
| | - Jędrzej Borowczak
- Department of Clinical Oncology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, dr Izabeli Romanowskiej 2 street, 85-796, Bydgoszcz, Poland
| |
Collapse
|
3
|
Shu L, Xu H, Ji J, Xu Y, Dong Z, Wu Y, Guo Y. Long-Term Accumulation of T Cytotoxic 1, T Cytotoxic 17, and T Cytotoxic 17/1 Cells in the Brain Contributes to Microglia-Mediated Chronic Neuroinflammation After Ischemic Stroke. Neuromolecular Med 2024; 26:17. [PMID: 38684592 DOI: 10.1007/s12017-024-08786-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Post-stroke neuroinflammation affects the damage and recovery of neurological functions. T cells including CD8+ T cells were present in the ipsilateral hemisphere in the subacute and late phases of ischemic stroke. However, the potential roles of CD8+ T cell subsets in the progression of neuroinflammation have not been characterized. In the current mouse transient middle cerebral artery occlusion model, we investigated the existence of CD8+ T cell subsets in the ipsilateral hemisphere in the subacute and late phases of stroke. We found that ipsilateral CD8+ T cells were present on post-stroke day 3 and increased on post-stroke day 30. The day-3 ipsilateral CD8+ T cells predominantly produced interferon-γ (IFN-γ), while the day-30 ipsilateral CD8+ T cells co-expressed IFN-γ and interleukin-17A (IL-17A). In addition, evaluation of cytokines and transcription factors of the day-30 ipsilateral CD8+ T cells revealed the presence of T cytotoxic 1 (Tc1), T cytotoxic 17 (Tc17), and T cytotoxic 17/1 (Tc17/1) cells. Furthermore, based on the expression of a series of chemokine/cytokine receptors, viable ipsilateral Tc1, Tc17, and Tc17.1 cells were identified and enriched from the day-30 ipsilateral CD8+ T cells, respectively. Co-culture of microglia with ipsilateral Tc1, Tc17, or Tc17.1 cells indicated that the three CD8+ T cell subsets up-regulated the expression of pro-inflammatory mediators by microglia, with Tc17.1 cells being the most potent cell in doing so. Collectively, this study sheds light on the contributions of Tc1, Tc17, and Tc17.1 cells to long-term neuroinflammation after ischemic stroke.
Collapse
Affiliation(s)
- Long Shu
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
- The Department of Neurology, Affiliated Renhe Hospital of China Three Gorges University, Yichang City, 443000, Hubei Province, China
| | - Hui Xu
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Jiale Ji
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Yuhan Xu
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Ziyue Dong
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Yuchen Wu
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Yijing Guo
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, 210009, Jiangsu Province, China.
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China.
| |
Collapse
|
4
|
Picard FSR, Lutz V, Brichkina A, Neuhaus F, Ruckenbrod T, Hupfer A, Raifer H, Klein M, Bopp T, Pfefferle PI, Savai R, Prinz I, Waisman A, Moos S, Chang HD, Heinrich S, Bartsch DK, Buchholz M, Singh S, Tu M, Klein L, Bauer C, Liefke R, Burchert A, Chung HR, Mayer P, Gress TM, Lauth M, Gaida M, Huber M. IL-17A-producing CD8 + T cells promote PDAC via induction of inflammatory cancer-associated fibroblasts. Gut 2023; 72:1510-1522. [PMID: 36759154 PMCID: PMC10359545 DOI: 10.1136/gutjnl-2022-327855] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/21/2023] [Indexed: 02/11/2023]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is characterised by an abundant desmoplastic stroma composed of cancer-associated fibroblasts (CAF) and interspersed immune cells. A non-canonical CD8+ T-cell subpopulation producing IL-17A (Tc17) promotes autoimmunity and has been identified in tumours. Here, we evaluated the Tc17 role in PDAC. DESIGN Infiltration of Tc17 cells in PDAC tissue was correlated with patient overall survival and tumour stage. Wild-type (WT) or Il17ra-/- quiescent pancreatic stellate cells (qPSC) were exposed to conditional media obtained from Tc17 cells (Tc17-CM); moreover, co-culture of Tc17-CM-induced inflammatory (i)CAF (Tc17-iCAF) with tumour cells was performed. IL-17A/F-, IL-17RA-, RAG1-deficient and Foxn1nu/nu mice were used to study the Tc17 role in subcutaneous and orthotopic PDAC mouse models. RESULTS Increased abundance of Tc17 cells highly correlated with reduced survival and advanced tumour stage in PDAC. Tc17-CM induced iCAF differentiation as assessed by the expression of iCAF-associated genes via synergism of IL-17A and TNF. Accordingly, IL-17RA controlled the responsiveness of qPSC to Tc17-CM. Pancreatic tumour cells co-cultured with Tc17-iCAF displayed enhanced proliferation and increased expression of genes implicated in proliferation, metabolism and protection from apoptosis. Tc17-iCAF accelerated growth of mouse and human tumours in Rag1-/- and Foxn1nu/nu mice, respectively. Finally, Il17ra-expressed by fibroblasts was required for Tc17-driven tumour growth in vivo. CONCLUSIONS We identified Tc17 as a novel protumourigenic CD8+ T-cell subtype in PDAC, which accelerated tumour growth via IL-17RA-dependent stroma modification. We described a crosstalk between three cell types, Tc17, fibroblasts and tumour cells, promoting PDAC progression, which resulted in poor prognosis for patients.
Collapse
Affiliation(s)
| | - Veronika Lutz
- Institute of Systems Immunology, Philipps-University Marburg, Marburg, Germany
| | - Anna Brichkina
- Department of Gastroenterology, Endocrinology, Metabolism and Infection, Center for Tumor and Immunology (ZTI), Philipps-University Marburg, Marburg, Germany
| | - Felix Neuhaus
- Institute of Systems Immunology, Philipps-University Marburg, Marburg, Germany
| | - Teresa Ruckenbrod
- Institute of Systems Immunology, Philipps-University Marburg, Marburg, Germany
| | - Anna Hupfer
- Department of Gastroenterology, Endocrinology, Metabolism and Infection, Center for Tumor and Immunology (ZTI), Philipps-University Marburg, Marburg, Germany
| | - Hartmann Raifer
- Institute of Systems Immunology, Philipps-University Marburg, Marburg, Germany
- Core-Facility Flow Cytometry, Philipps-University Marburg, Marburg, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Petra Ina Pfefferle
- Comprehensive Biomaterial Bank Marburg (CBBMR), Philipps-Universitat Marburg, Marburg, Germany
| | - Rajkumar Savai
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Justus Liebig Universitat, Giessen, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Immo Prinz
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Sonja Moos
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hyun-Dong Chang
- Institute of Biotechnology, Technische Universität, Berlin, Germany
- German Rheumatism Research Center (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
| | - Stefan Heinrich
- Department of Surgery, Johannes Gutenberg University, Mainz, Germany
| | - Detlef K Bartsch
- Division of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Marburg, Germany
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology, Metabolism and Infection, Center for Tumor and Immunology (ZTI), Philipps-University Marburg, Marburg, Germany
| | - Shiv Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Mengyu Tu
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Lukas Klein
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Christian Bauer
- Department of Gastroenterology, Endocrinology, Metabolism and Infection, Center for Tumor and Immunology (ZTI), Philipps-University Marburg, Marburg, Germany
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Marburg, Germany
| | - Andreas Burchert
- Department of Hematology, Oncology and Immunology, Philipps University Marburg Faculty of Medicine, Marburg, Germany
| | - Ho-Ryun Chung
- Institute for Medical Bioinformatics and Biostatistics, Philipps-University Marburg, Marburg, Germany
| | - Philipp Mayer
- Department of Diagnostic and Interventional Radiology, Heidelberg University, Heidelberg, Germany
| | - Thomas M Gress
- Department of Gastroenterology, Endocrinology, Metabolism and Infection, Center for Tumor and Immunology (ZTI), Philipps-University Marburg, Marburg, Germany
| | - Matthias Lauth
- Department of Gastroenterology, Endocrinology, Metabolism and Infection, Center for Tumor and Immunology (ZTI), Philipps-University Marburg, Marburg, Germany
| | - Matthias Gaida
- Institute of Pathology, JGU Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
- Joint Unit Immunopathology, Institute of Pathology, University Medical Center, JGU-Mainz and TRON, Translational Oncology at the University Medical Center, JGU-Mainz, Mainz, Germany
| | - Magdalena Huber
- Institute of Systems Immunology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
5
|
Wang Z, Dai Z, Zhang H, Liang X, Zhang X, Wen Z, Luo P, Zhang J, Liu Z, Zhang M, Cheng Q. Tumor-secreted lactate contributes to an immunosuppressive microenvironment and affects CD8 T-cell infiltration in glioblastoma. Front Immunol 2023; 14:894853. [PMID: 37122693 PMCID: PMC10130393 DOI: 10.3389/fimmu.2023.894853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 01/05/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Glioblastoma is a malignant brain tumor with poor prognosis. Lactate is the main product of tumor cells, and its secretion may relate to immunocytes' activation. However, its role in glioblastoma is poorly understood. Methods This work performed bulk RNA-seq analysis and single cell RNA-seq analysis to explore the role of lactate in glioblastoma progression. Over 1400 glioblastoma samples were grouped into different clusters according to their expression and the results were validated with our own data, the xiangya cohort. Immunocytes infiltration analysis, immunogram and the map of immune checkpoint genes' expression were applied to analyze the potential connection between the lactate level with tumor immune microenvironment. Furthermore, machine learning algorithms and cell-cell interaction algorithm were introduced to reveal the connection of tumor cells with immunocytes. By co-culturing CD8 T cells with tumor cells, and performing immunohistochemistry on Xiangya cohort samples further validated results from previous analysis. Discussion In this work, lactate is proved that contributes to glioblastoma immune suppressive microenvironment. High level of lactate in tumor microenvironment can affect CD8 T cells' migration and infiltration ratio in glioblastoma. To step further, potential compounds that targets to samples from different groups were also predicted for future exploration.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- MRC Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhipeng Wen
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, Guizhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Diagnosis and Therapy Center for Gliomas of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Diagnosis and Therapy Center for Gliomas of Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Wang Z, Dai Z, Zhang H, Zhang N, Liang X, Peng L, Zhang J, Liu Z, Peng Y, Cheng Q, Liu Z. Comprehensive analysis of pyroptosis-related gene signatures for glioblastoma immune microenvironment and target therapy. Cell Prolif 2023; 56:e13376. [PMID: 36681858 PMCID: PMC9977674 DOI: 10.1111/cpr.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/25/2022] [Accepted: 11/16/2022] [Indexed: 01/23/2023] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumour, but its subtypes (mesenchymal, classical, and proneural) show different prognoses. Pyroptosis is a programmed cell death relating to tumour progression, but its association with GBM is poorly understood. In this work, we collected 73 GBM samples (the Xiangya GBM cohort) and reported that pyroptosis involves tumour-microglia interaction and tumour response to interferon-gamma. GBM samples were grouped into different subtypes, cluster 1 and cluster 2, based on pyroptosis-related genes. Cluster 1 samples manifested a worse prognosis and had a more complicated immune landscape than cluster 2 samples. Single-cell RNA-seq data analysis supported that cluster 1 samples respond to interferon-gamma more actively. Moreover, the machine learning algorithm screened several potential compounds, including nutlin-3, for cluster 1 samples as a novel treatment. In vitro experiments supported that cluster 1 cell line, T98G, is more sensitive to nutlin-3 than cluster 2 cell line, LN229. Nutlin-3 can trigger oxidative stress by increasing DHCR24 expression. Moreover, pyroptosis-resistant genes were upregulated in LN229, which may participate against nutlin-3. Therefore, we hypothesis that GBM may be able to upregulate pyroptosis resistant related genes to against nutlin-3-triggered cell death. In summary, we conclude that pyroptosis highly associates with GBM progression, tumour immune landscape, and tumour response to nutlin-3.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersChangshaChina,MRC Centre for Regenerative Medicine, Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersChangshaChina
| | - Hao Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersChangshaChina
| | - Nan Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,One‐Third Lab, College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbinChina
| | - Xisong Liang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersChangshaChina
| | - Luo Peng
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jian Zhang
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yun Peng
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina,Teaching and Research Section of Clinical NursingXiangya Hospital of Central South UniversityChangshaChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersChangshaChina
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina,National Clinical Research Center for Geriatric DisordersChangshaChina
| |
Collapse
|
7
|
Zhang S, Zhou Y, Yang P, Jia S, Peng C, Hu H, Liu W. Characterization of pathogenic synovial IL-17A-producing CD8 + T cell subsets in collagen-induced arthritis. Cell Immunol 2023; 383:104655. [PMID: 36516652 DOI: 10.1016/j.cellimm.2022.104655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/14/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Using a murine collagen-induced arthritis model, we characterized the heterogeneity of synovial CD8+ T cells based on the expression of chemokine receptors, cytokines, and nuclear transcription factors. Four subsets, i.e. CXCR3-CCR4- cells, CXCR3+CCR4- cells, CXCR3+CCR4+ cells, and CXCR3-CCR4+ cells, were present in synovial CD8+CD62L-CCR6+IL-23R+CCR10- T cells. CXCR3-CCR4- cells belonged to exhausted CD8+ T cells. CXCR3+CCR4- cells were Tc17.1 cells expressing both IL-17A and IFN-γ. CXCR3+CCR4+ cells were transitional Tc17.1 cells expressing IL-17A but lower IFN-γ, and CXCR3-CCR4+ cells were Tc17 cells expressing IL-17A but no IFN-γ. Transitional Tc17.1 cells can differentiate into Tc17.1 cells in vitro under the instruction of IL-12. Tc17.1 cells and transitional Tc17.1 cells strongly induced the expression of pro-inflammatory mediators in synovial fibroblasts, whereas Tc17 cells were less potent in doing so. IFN-γ was involved in the higher pathogenicity of Tc17.1 cells and transitional Tc17.1 cells on synovial fibroblasts. This study expands the understanding of Tc17 biology by unveiling the phenotypic and functional heterogeneity of synovial IL-17A-expressing CD8+ T cells. These heterogeneous IL-17A-expressing CD8+ T cells could be novel therapeutic targets in future arthritis treatment.
Collapse
Affiliation(s)
- Song Zhang
- The Division of Orthopedics & Arthritis, Wuhan Third Hospital (Tongren Hospital Affiliated to Wuhan University), 241 Pengliuyang Road, Wuhan City, Hubei Province 430060, China
| | - Yanbo Zhou
- The Division of Orthopedics & Arthritis, Wuhan Third Hospital (Tongren Hospital Affiliated to Wuhan University), 241 Pengliuyang Road, Wuhan City, Hubei Province 430060, China
| | - Pu Yang
- The Division of Orthopedics & Arthritis, Wuhan Third Hospital (Tongren Hospital Affiliated to Wuhan University), 241 Pengliuyang Road, Wuhan City, Hubei Province 430060, China
| | - Shuo Jia
- The Division of Orthopedics & Arthritis, Wuhan Third Hospital (Tongren Hospital Affiliated to Wuhan University), 241 Pengliuyang Road, Wuhan City, Hubei Province 430060, China
| | - Cheng Peng
- The Division of Orthopedics & Arthritis, Wuhan Third Hospital (Tongren Hospital Affiliated to Wuhan University), 241 Pengliuyang Road, Wuhan City, Hubei Province 430060, China
| | - Haiqing Hu
- The Division of Orthopedics & Arthritis, Wuhan Third Hospital (Tongren Hospital Affiliated to Wuhan University), 241 Pengliuyang Road, Wuhan City, Hubei Province 430060, China
| | - Wei Liu
- The Division of Orthopedics & Arthritis, Wuhan Third Hospital (Tongren Hospital Affiliated to Wuhan University), 241 Pengliuyang Road, Wuhan City, Hubei Province 430060, China.
| |
Collapse
|
8
|
Abstract
Accumulating evidence indicates that Toll-like receptor (TLR) agonists proficiently (re)instore cancer immunosurveillance as immunological adjuvants. So far, three TLR agonists have been approved by regulatory agencies for use in oncological applications. Additionally, these immunotherapeutics have been extensively investigated over the past few years. Multiple clinical trials are currently evaluating the combination of TLR agonists with chemotherapy, radiotherapy, or different immunotherapies. Moreover, antibodies targeting tumor-enriched surface proteins that have been conjugated to TLR agonists are being developed to stimulate anticancer immune responses specifically within the tumor microenvironment. Solid preclinical and translational results support the favorable immune-activating effects of TLR agonists. Here, we summarize recent preclinical and clinical advances in the development of TLR agonists for anticancer immunotherapy.
Collapse
Affiliation(s)
- Julie Le Naour
- Centre de Recherche Des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Guido Kroemer
- Centre de Recherche Des Cordeliers, Equipe Labellisée Par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
9
|
Pan J, Xiong D, Zhang Q, Palen K, Shoemaker RH, Johnson B, Sei S, Wang Y, You M. Precision immunointerception of EGFR-driven tumorigenesis for lung cancer prevention. Front Immunol 2023; 14:1036563. [PMID: 36875137 PMCID: PMC9982083 DOI: 10.3389/fimmu.2023.1036563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/16/2023] [Indexed: 02/19/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations occur in about 50% of lung adenocarcinomas in Asia and about 15% in the US. EGFR mutation-specific inhibitors have been developed and made significant contributions to controlling EGFR mutated non-small cell lung cancer. However, resistance frequently develops within 1 to 2 years due to acquired mutations. No effective approaches that target mutant EGFR have been developed to treat relapse following tyrosine kinase inhibitor (TKI) treatment. Vaccination against mutant EGFR is one area of active exploration. In this study, we identified immunogenic epitopes for the common EGFR mutations in humans and formulated a multi-peptide vaccine (Emut Vax) targeting the EGFR L858R, T790M, and Del19 mutations. The efficacy of the Emut Vax was evaluated in both syngeneic and genetic engineered EGFR mutation-driven murine lung tumor models with prophylactic settings, where the vaccinations were given before the onset of the tumor induction. The multi-peptide Emut Vax effectively prevented the onset of EGFR mutation-driven lung tumorigenesis in both syngeneic and genetically engineered mouse models (GEMMs). Flow cytometry and single-cell RNA sequencing were conducted to investigate the impact of Emut Vax on immune modulation. Emut Vax significantly enhanced Th1 responses in the tumor microenvironment and decreased suppressive Tregs to enhance anti-tumor efficacy. Our results show that multi-peptide Emut Vax is effective in preventing common EGFR mutation-driven lung tumorigenesis, and the vaccine elicits broad immune responses that are not limited to anti-tumor Th1 response.
Collapse
Affiliation(s)
- Jing Pan
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States.,Cancer Center and Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Donghai Xiong
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States.,Cancer Center and Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Qi Zhang
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States.,Cancer Center and Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Katie Palen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, United States
| | - Bryon Johnson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Shizuko Sei
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, United States
| | - Yian Wang
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States.,Cancer Center and Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ming You
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States.,Cancer Center and Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
10
|
Karami Fath M, Babakhaniyan K, Anjomrooz M, Jalalifar M, Alizadeh SD, Pourghasem Z, Abbasi Oshagh P, Azargoonjahromi A, Almasi F, Manzoor HZ, Khalesi B, Pourzardosht N, Khalili S, Payandeh Z. Recent Advances in Glioma Cancer Treatment: Conventional and Epigenetic Realms. Vaccines (Basel) 2022; 10:1448. [PMID: 36146527 PMCID: PMC9501259 DOI: 10.3390/vaccines10091448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most typical and aggressive form of primary brain tumor in adults, with a poor prognosis. Successful glioma treatment is hampered by ineffective medication distribution across the blood-brain barrier (BBB) and the emergence of drug resistance. Although a few FDA-approved multimodal treatments are available for glioblastoma, most patients still have poor prognoses. Targeting epigenetic variables, immunotherapy, gene therapy, and different vaccine- and peptide-based treatments are some innovative approaches to improve anti-glioma treatment efficacy. Following the identification of lymphatics in the central nervous system, immunotherapy offers a potential method with the potency to permeate the blood-brain barrier. This review will discuss the rationale, tactics, benefits, and drawbacks of current glioma therapy options in clinical and preclinical investigations.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Kimiya Babakhaniyan
- Department of Medical Surgical Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran 1996713883, Iran
| | - Mehran Anjomrooz
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | | | | | - Zeinab Pourghasem
- Department of Microbiology, Islamic Azad University of Lahijan, Gilan 4416939515, Iran
| | - Parisa Abbasi Oshagh
- Department of Biology, Faculty of Basic Sciences, Malayer University, Malayer 6571995863, Iran
| | - Ali Azargoonjahromi
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz 7417773539, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1411734115, Iran
| | - Hafza Zahira Manzoor
- Experimental and Translational Medicine, University of Insubria, Via jean Henry Dunant 3, 21100 Varese, Italy
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Navid Pourzardosht
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht 4193713111, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran
| | - Zahra Payandeh
- Department of Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, SE-17177 Stockholm, Sweden
| |
Collapse
|
11
|
Chuntova P, Hou Y, Naka R, Yamamichi A, Chen T, Goretsky Y, Hatae R, Nejo T, Kohanbash G, Mende AL, Montoya M, Downey KM, Diebold D, Skinner J, Liang HE, Schwer B, Okada H. Novel EGFRvIII-CAR transgenic mice for rigorous preclinical studies in syngeneic mice. Neuro Oncol 2021; 24:259-272. [PMID: 34347086 DOI: 10.1093/neuonc/noab182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Rigorous preclinical studies of chimeric antigen receptor (CAR) immunotherapy will require large quantities of consistent and high-quality CAR-transduced T (CART)-cells that can be used in syngeneic mouse glioblastoma (GBM) models. To this end, we developed a novel transgenic (Tg) mouse strain with a fully murinized CAR targeting epidermal growth factor receptor variant III (EGFRvIII). METHODS We first established the murinized version of EGFRvIII-CAR and validated its function using a retroviral vector (RV) in C57BL/6J mice bearing syngeneic SB28 GBM expressing EGFRvIII. Next, we created C57BL/6J-background Tg mice carrying the anti-EGFRvIII-CAR downstream of a Lox-Stop-Lox cassette in the Rosa26 locus. We bred these mice with CD4-Cre Tg mice to allow CAR expression on T-cells and evaluated the function of the CART-cells both in vitro and in vivo. To inhibit immunosuppressive myeloid cells within SB28 GBM, we also evaluated a combination approach of CART and an anti-EP4 compound (ONO-AE3-208). RESULTS Both RV- and Tg-CART-cells demonstrated specific cytotoxic activities against SB28-EGFRvIII cells. A single intravenous infusion of EGFRvIII-CART-cells prolonged the survival of glioma-bearing mice when preceded by a lymphodepletion regimen with recurrent tumors displaying profound EGFRvIII loss. The addition of ONO-AE3-208 resulted in long-term survival in a fraction of CART-treated mice and those survivors demonstrated delayed growth of subcutaneously re-challenged both EGFRvIII + and parental EGFRvIII - SB28. CONCLUSION Our new syngeneic CAR Tg mouse model can serve as a useful tool to address clinically relevant questions and develop future immunotherapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Bjoern Schwer
- Department of Neurological Surgery.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research.,Kavli Institute for Fundamental Neuroscience
| | - Hideho Okada
- Department of Neurological Surgery.,Helen Diller Family Comprehensive Cancer Center.,University of California San Francisco, San Francisco, California, The Parker Institute for Cancer Immunotherapy
| |
Collapse
|