1
|
Zhao Z, An R, Tang W, Chen J, Xu R, Kan L. Modulating Treg cell activity in prostate cancer via chitosan nanoparticles loaded with si-BATF/PRDM1. Int Immunopharmacol 2025; 144:113445. [PMID: 39577215 DOI: 10.1016/j.intimp.2024.113445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/30/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024]
Abstract
Prostate cancer is a significant health issue, with regulatory T (Treg) cells playing a crucial role in its progression. This study explores the potential of chitosan-modified magnetic nanoparticles loaded with si-BATF/PRDM1 to target Treg cell activity in impeding prostate cancer development. By understanding the function of BATF and PRDM1 in Treg cells, the research demonstrates their central involvement in prostate cancer progression. Through experiments in vitro and in vivo, including single-cell sequencing and gene silencing assays, chitosan nanoparticles efficiently deliver siRNA, inhibiting BATF and PRDM1 expression. This inhibition leads to suppressed tumor growth and metastasis in prostate cancer models. The findings highlight the promise of nanoparticle-based approaches in modulating Treg cell activity for prostate cancer therapy, offering a potential avenue for precision medicine interventions in combating this prevalent malignancy.
Collapse
Affiliation(s)
- ZhanPeng Zhao
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - RunZe An
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - WenMin Tang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - JiaHua Chen
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Rui Xu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Liang Kan
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
2
|
Ellerman DA. The Evolving Applications of Bispecific Antibodies: Reaping the Harvest of Early Sowing and Planting New Seeds. BioDrugs 2024:10.1007/s40259-024-00691-0. [PMID: 39673023 DOI: 10.1007/s40259-024-00691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 12/15/2024]
Abstract
After decades of gradual progress from conceptualization to early clinical trials (1960-2000), the therapeutic potential of bispecific antibodies (bisp Abs) is now being fully realized. Insights gained from both successful and unsuccessful trials are helping to identify which mechanisms of action, antibody formats, and targets prove most effective, and which may benefit from further refinement. While T-cell engagers remain the most commonly used class of bisp Abs, current efforts aim to increase their effectiveness by co-engaging costimulatory molecules, reducing escape mechanisms, and countering immunosuppression. Strategies to minimize cytokine release syndrome (CRS) are also actively under development. In addition, novel antibody formats that are selectively activated within tumors are an exciting area of research, as is the precise targeting of specific T-cell subsets. Beyond T cells, the recruitment of macrophages and dendritic cells is attracting increasing interest, with researchers exploring various macrophage receptors to promote phagocytosis or to carry out specialized functions, such as the immunologically silent clearance of amyloid-beta plaques in the brain. While bisp Abs targeting B cells are relatively limited, they are primarily aimed at inhibiting B-cell activity in autoimmune diseases. Another evolving application involves the forced interaction between proteins. Beyond the successful development of Hemlibra for hemophilia, bispecific antibodies that mimic cytokine activity are being explored. Additionally, the recruitment of cell surface ubiquitin ligases and other enzymes represents a novel and promising therapeutic strategy. In regard to antibody formats, some applications such as the combination of T-cell engagers with costimulatory molecules are driving the development of trispecific antibodies, at least in preclinical settings. However, the increasing structural complexity of multispecific antibodies often leads to more challenging development paths, and the number of multispecific antibodies in clinical trials remains low. The clinical success of certain applications and well-established production methods position this therapeutic class to expand its benefits into other therapeutic areas.
Collapse
Affiliation(s)
- Diego A Ellerman
- Antibody Engineering Department, Genentech Inc, South San Francisco, USA.
| |
Collapse
|
3
|
Song H, Lu T, Han D, Zhang J, Gan L, Xu C, Liu S, Li P, Zhang K, Hu Z, Li H, Li Y, Zhao X, Zhang J, Xing N, Shi C, Wen W, Yang F, Qin W. YAP1 Inhibition Induces Phenotype Switching of Cancer-Associated Fibroblasts to Tumor Suppressive in Prostate Cancer. Cancer Res 2024; 84:3728-3742. [PMID: 39137404 PMCID: PMC11565174 DOI: 10.1158/0008-5472.can-24-0932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/29/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Prostate cancer rarely responds to immune-checkpoint blockade (ICB) therapies. Cancer-associated fibroblasts (CAF) are critical components of the immunologically "cold" tumor microenvironment and are considered a promising target to enhance the immunotherapy response. In this study, we aimed to reveal the mechanisms regulating CAF plasticity to identify potential strategies to switch CAFs from protumorigenic to antitumor phenotypes and to enhance ICB efficacy in prostate cancer. Integration of four prostate cancer single-cell RNA sequencing datasets defined protumorigenic and antitumor CAFs, and RNA-seq, flow cytometry, and a prostate cancer organoid model demonstrated the functions of two CAF subtypes. Extracellular matrix-associated CAFs (ECM-CAF) promoted collagen deposition and cancer cell progression, and lymphocyte-associated CAFs (Lym-CAF) exhibited an antitumor phenotype and induced the infiltration and activation of CD8+ T cells. YAP1 activity regulated the ECM-CAF phenotype, and YAP1 silencing promoted switching to Lym-CAFs. NF-κB p65 was the core transcription factor in the Lym-CAF subset, and YAP1 inhibited nuclear translocation of p65. Selective depletion of YAP1 in ECM-CAFs in vivo promoted CD8+ T-cell infiltration and activation and enhanced the therapeutic effects of anti-PD-1 treatment on prostate cancer. Overall, this study revealed a mechanism regulating CAF identity in prostate cancer and highlighted a therapeutic strategy for altering the CAF subtype to suppress tumor growth and increase sensitivity to ICB. Significance: YAP1 regulates cancer-associated fibroblast phenotypes and can be targeted to switch cancer-associated fibroblasts from a protumorigenic subtype that promotes extracellular matrix deposition to a tumor-suppressive subtype that stimulates antitumor immunity and immunotherapy efficacy.
Collapse
Affiliation(s)
- Hongtao Song
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Tong Lu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jiayu Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lunbiao Gan
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Chao Xu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shaojie Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Peng Li
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi’an, China
| | - Keying Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhihao Hu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hongji Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yu Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaolong Zhao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jingliang Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi’an, China
| | - Weihong Wen
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
4
|
Hagelstein I, Wessling L, Rochwarger A, Zekri L, Klimovich B, Tegeler CM, Jung G, Schürch CM, Salih HR, Lutz MS. Targeting CD276 for T cell-based immunotherapy of breast cancer. J Transl Med 2024; 22:902. [PMID: 39367484 PMCID: PMC11452943 DOI: 10.1186/s12967-024-05689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common malignancy in women. Immunotherapy has revolutionized treatment options in many malignancies, and the introduction of immune checkpoint inhibition yielded beneficial results also in BC. However, many BC patients are ineligible for this T cell-based therapy, others do not respond or only briefly. Thus, there remains a high medical need for new therapies, particularly for triple-negative BC. CD276 (B7-H3) is overexpressed in several tumors on both tumor cells and tumor vessels, constituting a promising target for immunotherapy. METHODS We analyzed tumor samples of 25 patients using immunohistochemistry to assess CD276 levels. The potential of CC-3, a novel bispecific CD276xCD3 antibody, for BC treatment was evaluated using various functional in vitro assays. RESULTS Pronounced expression of CD276 was observed in all analyzed tumor samples including triple negative BC. In analyses with BC cells, CC-3 induced profound T cell activation, proliferation, and T cell memory subset formation. Moreover, treatment with CC-3 induced cytokine secretion and potent tumor cell lysis. CONCLUSION Our findings characterize CD276 as promising target and preclinically document the therapeutic potential of CC-3 for BC treatment, providing a strong rationale for evaluation of CC-3 in BC patients in a clinical trial for which the recruitment has recently started.
Collapse
Affiliation(s)
- Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Laura Wessling
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Alexander Rochwarger
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Latifa Zekri
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department for Immunology and German Cancer Consortium (DKTK), Eberhard Karls University, Tübingen, Germany
| | - Boris Klimovich
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Christian M Tegeler
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Department of Obstetrics and Gynecology, University Hospital Tübingen, Tübingen, Germany
- Department of Peptide-Based Immunotherapy, Institute of Immunology, University and University Hospital Tübingen, Tübingen, Germany
| | - Gundram Jung
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department for Immunology and German Cancer Consortium (DKTK), Eberhard Karls University, Tübingen, Germany
| | - Christian M Schürch
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
| | - Martina S Lutz
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Liu J, Zhu J. Progresses of T-cell-engaging bispecific antibodies in treatment of solid tumors. Int Immunopharmacol 2024; 138:112609. [PMID: 38971103 DOI: 10.1016/j.intimp.2024.112609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
T-cell-engaging bispecific antibody (TCB) therapies have emerged as a promising immunotherapeutic approach, effectively redirecting effector T cells to selectively eliminate tumor cells. The therapeutic potential of TCBs has been well recognized, particularly with the approval of multiple TCBs in recent years for the treatment of hematologic malignancies as well as some solid tumors. However, TCBs encounter multiple challenges in treating solid tumors, such as on-target off-tumor toxicity, cytokine release syndrome (CRS), and T cell dysfunction within the immunosuppressive tumor microenvironment, all of which may impact their therapeutic efficacy. In this review, we summarize clinical data on TCBs for solid tumor treatment, highlight the challenges faced, and discuss potential solutions based on emerging strategies from current clinical and preclinical research. These solutions include TCB structural optimization, target selection, and combination strategies. This comprehensive analysis aims to guide the development of TCBs from design to clinical application, addressing the evolving landscape of cancer immunotherapy.
Collapse
Affiliation(s)
- Junjun Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Jecho Laboratories, Inc., Frederick, MD 21704, USA.
| |
Collapse
|
6
|
Ning Q, Zhang X, Liu J, Li Z. CD3/PD-L1 bispecific aptamer enhances immune cytotoxicity against PD-L1 positive anaplastic thyroid cancer cells. Asian J Surg 2024; 47:4144-4146. [PMID: 38763821 DOI: 10.1016/j.asjsur.2024.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Affiliation(s)
- Qingyang Ning
- Division of Thyroid Surgery, Department of General Surgery, Laboratory of Thyroid and Parathyroid Diseases, Frontiers Science Center for Disease-Related Molecular Network, Department of Respiratory and Critical Care Medicine, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xinyue Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Jiaye Liu
- Division of Thyroid Surgery, Department of General Surgery, Laboratory of Thyroid and Parathyroid Diseases, Frontiers Science Center for Disease-Related Molecular Network, Department of Respiratory and Critical Care Medicine, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery, Laboratory of Thyroid and Parathyroid Diseases, Frontiers Science Center for Disease-Related Molecular Network, Department of Respiratory and Critical Care Medicine, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Xie Z, Protzer U. Activating adaptive immunity by bispecific, T-cell engager antibodies bridging infected and immune-effector cells is a promising novel therapy for chronic hepatitis B. Antiviral Res 2024; 229:105972. [PMID: 39084340 DOI: 10.1016/j.antiviral.2024.105972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Bispecific antibodies (bsAbs) are engineered immunoglobulins that combine two different antigen-binding sites in one molecule. BsAbs can be divided into two molecular formats: IgG-like and non-IgG-like antibodies. Structural elements of each format have implications for engaging the immune system. T cell engager antibodies (TCEs) are bsAbs designed to engage T cells with target cells. TCEs can be applied not only in cancer but also in infectious disease therapy to activate T-cell responses. In this review, we focus on current literature on the design and use of bsAbs as an innovative strategy to enhance adaptive antiviral immune responses. We summarized the novel T cell-related immunotherapies with a focus on TCEs, that are developed for the treatment of chronic hepatitis B. Chronic infection with the hepatitis B virus (HBV) had a death toll of 1.1 million humans in 2022, mainly due to liver cirrhosis and hepatocellular carcinoma developing in the more than 250 million humans chronically infected. A curative treatment approach for chronic hepatitis B is lacking. Combining antiviral therapy with immune therapies activating T-cell responses is regarded as the most promising therapeutic approach to curing HBV and preventing the sequelae of chronic infection. Attracting functionally intact T cells that are not HBV-specific and, therefore, have not yet been exposed to regulatory mechanisms and activating those at the target site in the liver is a very interesting therapeutic approach that could be achieved by TCEs. Thus, TCEs redirecting T cells toward HBV-positive cells represent a promising strategy for treating chronic hepatitis B and HBV-associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhe Xie
- Institute of Virology, School of Medicine and Health, Technical University of Munich / Helmholtz Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine and Health, Technical University of Munich / Helmholtz Munich, Germany; German Center for Infection Research (DZIF), Munich Partner Sites, Germany.
| |
Collapse
|
8
|
Liao CY, Engelberts P, Ioan-Facsinay A, Klip JE, Schmidt T, Ruijtenbeek R, Danen EHJ. CD3-engaging bispecific antibodies trigger a paracrine regulated wave of T-cell recruitment for effective tumor killing. Commun Biol 2024; 7:983. [PMID: 39138287 PMCID: PMC11322607 DOI: 10.1038/s42003-024-06682-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
The mechanism of action of bispecific antibodies (bsAbs) directing T-cell immunity to solid tumors is incompletely understood. Here, we screened a series of CD3xHER2 bsAbs using extracellular matrix (ECM) embedded breast cancer tumoroid arrays exposed to healthy donor-derived T-cells. An initial phase of random T-cell movement throughout the ECM (day 1-2), was followed by a bsAb-dependent phase of active T-cell recruitment to tumoroids (day 2-4), and tumoroid killing (day 4-6). Low affinity HER2 or CD3 arms were compensated for by increasing bsAb concentrations. Instead, a bsAb binding a membrane proximal HER2 epitope supported tumor killing whereas a bsAb binding a membrane distal epitope did not, despite similar affinities and intra-tumoroid localization of the bsAbs, and efficacy in 2D co-cultures. Initial T-cell-tumor contact through effective bsAbs triggered a wave of subsequent T-cell recruitment. This critical surge of T-cell recruitment was explained by paracrine signaling and preceded a full-scale T-cell tumor attack.
Collapse
Affiliation(s)
- Chen-Yi Liao
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | | | | | - Janna Eleonora Klip
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Thomas Schmidt
- Leiden Institute of Physics, Leiden University, Leiden, the Netherlands
| | | | - Erik H J Danen
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
9
|
Liao X, Qi T, Zhou J, Liu C, Cao Y. Optimizing Clinical Translation of Bispecific T-cell Engagers through Context Unification with a Quantitative Systems Pharmacology Model. Clin Pharmacol Ther 2024; 116:415-425. [PMID: 38751031 PMCID: PMC11251864 DOI: 10.1002/cpt.3302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/30/2024] [Indexed: 07/17/2024]
Abstract
Bispecific T-cell engagers (bsTCEs) have emerged as a promising class of cancer immunotherapy. BsTCEs enable physical connections between T cells and tumor cells to enhance T-cell activity against cancer. Despite several marketing approvals, the development of bsTCEs remains challenging, especially at early clinical translational stages. The intricate design of bsTCEs makes their pharmacologic effects and safety profiles highly dependent on patient's immunological and tumor conditions. Such context-dependent pharmacology introduces considerable uncertainty into translational efforts. In this study, we developed a Quantitative Systems Pharmacology (QSP) model, through context unification, that can facilitate the translation of bsTCEs preclinical data into clinical activity. Through characterizing the formation dynamics of immunological synapse (IS) induced by bsTCEs, this model unifies a broad range of contexts related to target affinity, tumor characteristics, and immunological conditions. After rigorous calibration using both experimental and clinical data, the model enables consistent translation of drug potency observed under diverse experimental conditions into predictable exposure-response relationships in patients. Moreover, the model can help identify optimal target-binding affinities and minimum efficacious concentrations across different clinical contexts. This QSP approach holds significant promise for the future development of bsTCEs.
Collapse
Affiliation(s)
- Xiaozhi Liao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - Timothy Qi
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - Jiawei Zhou
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - Can Liu
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Boutin L, Barjon C, Chauvet M, Lafrance L, Senechal E, Bourges D, Vigne E, Scotet E. Camelid-derived Tcell engagers harnessing human γδ T cells as promising antitumor immunotherapeutic agents. Eur J Immunol 2024; 54:e2350773. [PMID: 38804118 DOI: 10.1002/eji.202350773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024]
Abstract
In the last decade, there has been a surge in developing immunotherapies to enhance the immune system's ability to eliminate tumor cells. Bispecific antibodies known as T cell engagers (TCEs) present an attractive strategy in this pursuit. TCEs aim to guide cytotoxic T cells toward tumor cells, thereby inducing a strong activation and subsequent tumor cell lysis. In this study, we investigated the activity of different TCEs on both conventional alpha-beta (αβ) T cells and unconventional gamma delta (γδ) T cells. TCEs were built using camelid single-domain antibodies (VHHs) targeting the tumor-associated antigen CEACAM5 (CEA), together with T cell receptor chains or a CD3 domain. We show that Vγ9Vδ2 T cells display stronger in vitro antitumor activity than αβ T cells when stimulated with a CD3xCEA TCE. Furthermore, restricting the activation of fresh human peripheral T cells to Vγ9Vδ2 T cells limited the production of protumor factors and proinflammatory cytokines, commonly associated with toxicity in patients. Taken together, our findings provide further insights that γδ T cell-specific TCEs hold promise as specific, effective, and potentially safe molecules to improve antitumor immunotherapies.
Collapse
Affiliation(s)
- Lola Boutin
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
- Sanofi, Large Molecule Research, Vitry-sur-Seine, France
| | | | - Morgane Chauvet
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
- Sanofi, Oncology, Vitry-sur-Seine, France
| | - Laura Lafrance
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Eric Senechal
- Sanofi, Large Molecule Research, Vitry-sur-Seine, France
| | | | | | - Emmanuel Scotet
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
11
|
Dorff T, Horvath LG, Autio K, Bernard-Tessier A, Rettig MB, Machiels JP, Bilen MA, Lolkema MP, Adra N, Rottey S, Greil R, Matsubara N, Tan DSW, Wong A, Uemura H, Lemech C, Meran J, Yu Y, Minocha M, McComb M, Penny HL, Gupta V, Hu X, Jurida G, Kouros-Mehr H, Janát-Amsbury MM, Eggert T, Tran B. A Phase I Study of Acapatamab, a Half-life Extended, PSMA-Targeting Bispecific T-cell Engager for Metastatic Castration-Resistant Prostate Cancer. Clin Cancer Res 2024; 30:1488-1500. [PMID: 38300720 PMCID: PMC11395298 DOI: 10.1158/1078-0432.ccr-23-2978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/08/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
PURPOSE Safety and efficacy of acapatamab, a prostate-specific membrane antigen (PSMA) x CD3 bispecific T-cell engager were evaluated in a first-in-human study in metastatic castration-resistant prostate cancer (mCRPC). PATIENTS AND METHODS Patients with mCRPC refractory to androgen receptor pathway inhibitor therapy and taxane-based chemotherapy received target acapatamab doses ranging from 0.003 to 0.9 mg in dose exploration (seven dose levels) and 0.3 mg (recommended phase II dose) in dose expansion intravenously every 2 weeks. Safety (primary objective), pharmacokinetics, and antitumor activity (secondary objectives) were assessed. RESULTS In all, 133 patients (dose exploration, n = 77; dose expansion, n = 56) received acapatamab. Cytokine release syndrome (CRS) was the most common treatment-emergent adverse event seen in 97.4% and 98.2% of patients in dose exploration and dose expansion, respectively; grade ≥ 3 was seen in 23.4% and 16.1%, respectively. Most CRS events were seen in treatment cycle 1; incidence and severity decreased at/beyond cycle 2. In dose expansion, confirmed prostate-specific antigen (PSA) responses (PSA50) were seen in 30.4% of patients and radiographic partial responses in 7.4% (Response Evaluation Criteria in Solid Tumors 1.1). Median PSA progression-free survival (PFS) was 3.3 months [95% confidence interval (CI): 3.0-4.9], radiographic PFS per Prostate Cancer Clinical Trials Working Group 3 was 3.7 months (95% CI: 2.0-5.4). Acapatamab induced T-cell activation and increased cytokine production several-fold within 24 hours of initiation. Treatment-emergent antidrug antibodies were detected in 55% and impacted serum exposures in 36% of patients in dose expansion. CONCLUSIONS Acapatamab was safe and tolerated and had a manageable CRS profile. Preliminary signs of efficacy with limited durable antitumor activity were observed. Acapatamab demonstrated pharmacokinetic and pharmacodynamic activity.
Collapse
Affiliation(s)
- Tanya Dorff
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, California
| | - Lisa G Horvath
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, Australia
| | - Karen Autio
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alice Bernard-Tessier
- Department of Cancer Medicine, Institut Gustave Roussy, University of Paris Saclay, Villejuif, France
| | - Matthew B Rettig
- Departments of Medicine and Urology, University of California, Los Angeles, California
- Department of Medicine, VA Greater Los Angeles, Los Angeles, California
| | - Jean-Pascal Machiels
- Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Mehmet A Bilen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Martijn P Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Amgen Inc., Thousand Oaks, California
| | - Nabil Adra
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sylvie Rottey
- Department of Medical Oncology. Drug Research Unit, Ghent University, Ghent, Belgium
| | - Richard Greil
- Paracelsus Medical University Salzburg, Salzburg Cancer Research Institute-CCCIT and Cancer Cluster Salzburg, Salzburg, Austria
| | - Nobuaki Matsubara
- Department of Medical Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Alvin Wong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Hiroji Uemura
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, Yokohama, Japan
| | - Charlotte Lemech
- Scientia Clinical Research, University of New South Wales, Randwick, Australia
| | - Johannes Meran
- Department of Internal Medicine, Hematology, and Internal Oncology, Hospital Barmherzige Brueder, Vienna, Austria
| | - Youfei Yu
- Global Biostatistical Science, Amgen Inc., Thousand Oaks, California
| | - Mukul Minocha
- Clinical Pharmacology M&S, Amgen Inc., Thousand Oaks, California
| | - Mason McComb
- Clinical Pharmacology M&S, Amgen Inc., Thousand Oaks, California
| | | | - Vinita Gupta
- Clinical Biomarkers, Amgen Inc., Thousand Oaks, California
| | - Xuguang Hu
- Clinical Biomarkers, Amgen Inc., Thousand Oaks, California
| | - Gabor Jurida
- Safety TA & Combination Products, Amgen Inc., Thousand Oaks, California
| | | | | | - Tobias Eggert
- Early Development, Oncology, Amgen Inc., Thousand Oaks, California
| | - Ben Tran
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
12
|
Klein C, Brinkmann U, Reichert JM, Kontermann RE. The present and future of bispecific antibodies for cancer therapy. Nat Rev Drug Discov 2024; 23:301-319. [PMID: 38448606 DOI: 10.1038/s41573-024-00896-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
Bispecific antibodies (bsAbs) enable novel mechanisms of action and/or therapeutic applications that cannot be achieved using conventional IgG-based antibodies. Consequently, development of these molecules has garnered substantial interest in the past decade and, as of the end of 2023, 14 bsAbs have been approved: 11 for the treatment of cancer and 3 for non-oncology indications. bsAbs are available in different formats, address different targets and mediate anticancer function via different molecular mechanisms. Here, we provide an overview of recent developments in the field of bsAbs for cancer therapy. We focus on bsAbs that are approved or in clinical development, including bsAb-mediated dual modulators of signalling pathways, tumour-targeted receptor agonists, bsAb-drug conjugates, bispecific T cell, natural killer cell and innate immune cell engagers, and bispecific checkpoint inhibitors and co-stimulators. Finally, we provide an outlook into next-generation bsAbs in earlier stages of development, including trispecifics, bsAb prodrugs, bsAbs that induce degradation of tumour targets and bsAbs acting as cytokine mimetics.
Collapse
Affiliation(s)
- Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland.
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | | | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Stuttgart, Germany.
| |
Collapse
|
13
|
Zhou X, Geyer FK, Happel D, Takimoto J, Kolmar H, Rabinovich B. Using protein geometry to optimize cytotoxicity and the cytokine window of a ROR1 specific T cell engager. Front Immunol 2024; 15:1323049. [PMID: 38455046 PMCID: PMC10917902 DOI: 10.3389/fimmu.2024.1323049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
T cell engaging bispecific antibodies have shown clinical proof of concept for hematologic malignancies. Still, cytokine release syndrome, neurotoxicity, and on-target-off-tumor toxicity, especially in the solid tumor setting, represent major obstacles. Second generation TCEs have been described that decouple cytotoxicity from cytokine release by reducing the apparent binding affinity for CD3 and/or the TAA but the results of such engineering have generally led only to reduced maximum induction of cytokine release and often at the expense of maximum cytotoxicity. Using ROR1 as our model TAA and highly modular camelid nanobodies, we describe the engineering of a next generation decoupled TCE that incorporates a "cytokine window" defined as a dose range in which maximal killing is reached but cytokine release may be modulated from very low for safety to nearly that induced by first generation TCEs. This latter attribute supports pro-inflammatory anti-tumor activity including bystander killing and can potentially be used by clinicians to safely titrate patient dose to that which mediates maximum efficacy that is postulated as greater than that possible using standard second generation approaches. We used a combined method of optimizing TCE mediated synaptic distance and apparent affinity tuning of the TAA binding arms to generate a relatively long but persistent synapse that supports a wide cytokine window, potent killing and a reduced propensity towards immune exhaustion. Importantly, this next generation TCE induced significant tumor growth inhibition in vivo but unlike a first-generation non-decoupled benchmark TCE that induced lethal CRS, no signs of adverse events were observed.
Collapse
Affiliation(s)
- Xueyuan Zhou
- Drug Discovery and Development, Fuse Biotherapeutics, Woburn, MA, United States
| | - Felix Klaus Geyer
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Dominic Happel
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Jeffrey Takimoto
- Drug Discovery and Development, Fuse Biotherapeutics, Woburn, MA, United States
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Brian Rabinovich
- Drug Discovery and Development, Fuse Biotherapeutics, Woburn, MA, United States
| |
Collapse
|
14
|
Wang R, Huang Y, He J, Jin S, Li X, Tan K, Xia W. The endoplasmic reticulum stress-related genes and molecular typing predicts prognosis and reveals characterization of tumor immune microenvironment in lung squamous cell carcinoma. Discov Oncol 2024; 15:37. [PMID: 38363409 PMCID: PMC10873263 DOI: 10.1007/s12672-024-00887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Endoplasmic reticulum stress (ERS) acts critical roles on cell growth, proliferation, and metastasis in various cancers. However, the relationship between ERs and lung squamous cell carcinoma (LUSC) prognoses still remains unclear. METHODS The consensus clustering analysis of ERS-related genes and the differential expression analysis between clusters were investigated in LUSC based on TCGA database. Furthermore, ERS-related prognostic risk models were constructed by LASSO regression and Cox regression analyses. Then, the predictive effect of the risk model was evaluated by Kaplan-Meier, Cox regression, and ROC Curve analyses, as well as validated in the GEO cohort. According to the optimal threshold, patients with LUSC were divided into high- and low- risk groups, and somatic mutations, immune cell infiltration, chemotherapy response and immunotherapy effect were systematically analyzed. RESULTS Two ERS-related clusters were identified in patients with LUSC that had distinct patterns of immune cell infiltration. A 5-genes ERS-related prognostic risk model and nomogram were constructed and validated. Kaplan-Meier curves and Cox regression analysis showed that ERS risk score was an independent prognostic factor (p < 0.001, HR = 1.317, 95% CI = 1.159-1.496). Patients with low-risk scores presented significantly lower TIDE scores and significantly lower IC50 values for common chemotherapy drugs such as cisplatin and gemcitabine. CONCLUSION ERS-related risk signature has certain prognostic value and may be a potential therapeutic target and prognostic biomarker for LUSC patients.
Collapse
Affiliation(s)
- Ruolan Wang
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, 650032, Yunnan, China
| | - Yanhua Huang
- Department of Procurement Management, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, 650032, Yunnan, China
| | - Juan He
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, 650032, Yunnan, China
| | - Shan Jin
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, 650032, Yunnan, China
| | - Xin Li
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, 650032, Yunnan, China
| | - Kun Tan
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, 650032, Yunnan, China
| | - Wei Xia
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force of People's Liberation Army, Kunming, 650032, Yunnan, China.
| |
Collapse
|
15
|
Schardt JS, Walseng E, Le K, Yang C, Shah P, Fu Y, Alam K, Kelton CR, Gu Y, Huang F, Lin J, Liu W, Dippel A, Zhang H, Mulgrew K, Pryts S, Chennupati V, Chen HC, Denham J, Chen X, Pradhan P, Wu Y, Hardman C, Zhao C, Kierny M, Song Y, Dovedi SJ, Cemerski S, Mazor Y. IL-2-armored peptide-major histocompatibility class I bispecific antibodies redirect antiviral effector memory CD8+ T cells to induce potent anti-cancer cytotoxic activity with limited cytokine release. MAbs 2024; 16:2395499. [PMID: 39205483 PMCID: PMC11364066 DOI: 10.1080/19420862.2024.2395499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
T cell engagers (TCEs) are becoming an integral class of biological therapeutic owing to their highly potent ability to eradicate cancer cells. Nevertheless, the widespread utility of classical CD3-targeted TCEs has been limited by narrow therapeutic index (TI) linked to systemic CD4+ T cell activation and aberrant cytokine release. One attractive approach to circumvent the systemic activation of pan CD3+ T cells and reduce the risk of cytokine release syndrome is to redirect specific subsets of T cells. A promising strategy is the use of peptide-major histocompatibility class I bispecific antibodies (pMHC-IgGs), which have emerged as an intriguing modality of TCE, based on their ability to selectively redirect highly reactive viral-specific effector memory cytotoxic CD8+ T cells to eliminate cancer cells. However, the relatively low frequency of these effector memory cells in human peripheral blood mononuclear cells (PBMCs) may hamper their redirection as effector cells for clinical applications. To mitigate this potential limitation, we report here the generation of a pMHC-IgG derivative known as guided-pMHC-staging (GPS) carrying a covalent fusion of a monovalent interleukin-2 (IL-2) mutein (H16A, F42A). Using an anti-epidermal growth factor receptor (EGFR) arm as a proof-of-concept, tumor-associated antigen paired with a single-chain HLA-A *02:01/CMVpp65 pMHC fusion moiety, we demonstrate in vitro that the IL-2-armored GPS modality robustly expands CMVpp65-specific CD8+ effector memory T cells and induces potent cytotoxic activity against target cancer cells. Similar to GPS, IL-2-armored GPS molecules induce modulated T cell activation and reduced cytokine release profile compared to an analogous CD3-targeted TCE. In vivo we show that IL-2-armored GPS, but not the corresponding GPS, effectively expands grafted CMVpp65 CD8+ T cells from unstimulated human PBMCs in an NSG mouse model. Lastly, we demonstrate that the IL-2-armored GPS modality exhibits a favorable developability profile and monoclonal antibody-like pharmacokinetic properties in human neonatal Fc receptor transgenic mice. Overall, IL-2-armored GPS represents an attractive approach for treating cancer with the potential for inducing vaccine-like antiviral T cell expansion, immune cell redirection as a TCE, and significantly widened TI due to reduced cytokine release.
Collapse
Affiliation(s)
- John S. Schardt
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Even Walseng
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Kim Le
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Chunning Yang
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Pooja Shah
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Ying Fu
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Kausar Alam
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | | | - Yu Gu
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Fengying Huang
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Jia Lin
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Wenhai Liu
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Andrew Dippel
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Hanzhi Zhang
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | | | - Stacy Pryts
- Oncology ICC, AstraZeneca, Gaithersburg, MD, USA
| | | | - Hung-Chang Chen
- Data Science and Advanced Analytics, AstraZeneca, Gaithersburg, MD, USA
| | | | | | | | - Yuling Wu
- Oncology ICC, AstraZeneca, Cambridge, UK
| | - Colin Hardman
- Discovery Bioanalysis, Clinical Pharmacology & Safety Sciences (CPSS), R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Chihao Zhao
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Michael Kierny
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Yang Song
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Simon J. Dovedi
- Data Science and Advanced Analytics, AstraZeneca, Gaithersburg, MD, USA
| | | | - Yariv Mazor
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
16
|
Weddell J. Mechanistically modeling peripheral cytokine dynamics following bispecific dosing in solid tumors. CPT Pharmacometrics Syst Pharmacol 2023; 12:1726-1737. [PMID: 36710368 PMCID: PMC10681545 DOI: 10.1002/psp4.12928] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Bispecific antibodies exhibit proven clinical benefit, and many bispecifics are currently in clinical development for oncology. Cytokine release syndrome (CRS) is a common clinical adverse effect observed following CD3-based bispecific dosing. However, the pathophysiology of CRS is not fully understood, and no computational model mechanistically describing clinical cytokine dynamics following bispecific dosing in solid tumors exists. Here, a quantitative systems pharmacology (QSP) model describing peripheral clinical cytokine dynamics following bispecific dosing in solid tumors is presented. Using tebentafusp as a case study, a CD3-bispecific approved for uveal melanoma, the model successfully captures the dynamics of five cytokines. The QSP model was shown to predict observed phenomena, such as cytokine maximum concentration suppression using step-up dosing regimens and the importance of on-target off-tumor binding toward CRS and toxicity. Furthermore, the QSP model provides rationale for these biological phenomena based on dynamics of immune cell activation and desensitization in tumors and healthy tissues. Overall, the QSP model structure presented here serves as a basis to infer cytokine dynamics for other CD3-based bispecifics or tumor types by altering model parameters to capture the scenario of interest, supporting applications including dose selection, candidate nomination, and disease area selection.
Collapse
Affiliation(s)
- Jared Weddell
- Clinical Pharmacology and Exploratory DevelopmentAstellas Pharma Global Development Inc.NorthbrookIllinoisUSA
| |
Collapse
|
17
|
Lee E, Lee S, Park S, Son YG, Yoo J, Koh Y, Shin DY, Lim Y, Won J. Asymmetric anti-CLL-1×CD3 bispecific antibody, ABL602 2+1, with attenuated CD3 affinity endows potent antitumor activity but limited cytokine release. J Immunother Cancer 2023; 11:e007494. [PMID: 37848261 PMCID: PMC10582864 DOI: 10.1136/jitc-2023-007494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a type of leukemia in adults with a high mortality rate and poor prognosis. Although targeted therapeutics, chemotherapy, and hematopoietic stem cell transplantation can improve the prognosis, the recurrence rate is still high, with a 5-year survival rate of approximately 40%. This study aimed to develop an IgG-based asymmetric bispecific antibody that targets CLL-1 and CD3 for treating AML. METHODS ABL602 candidates were compared in terms of binding activity, T-cell activation, and tumor-killing activities. ABL602-mediated T-cell activation and tumor-killing activities were determined by measuring the expression of activation markers, cytokines, cytolytic proteins, and the proportion of dead cells. We evaluated in vivo tumor growth inhibitory activity in two mouse models bearing subcutaneously and orthotopically engrafted human AML. Direct tumor-killing activity and T-cell activation in patient-derived AML blasts were also evaluated. RESULTS ABL602 2+1 showed a limited CD3 binding in the absence of CLL-1, suggesting that steric hindrance on the CD3 binding arm could reduce CLL-1 expression-independent CD3 binding. Although the CD3 binding activity was attenuated compared with that of 1+1, ABL602 2+1 exhibited much stronger T-cell activation and potent tumor-killing activities in AML cell lines. ABL602 2+1 efficiently inhibited tumor progression in subcutaneously and orthotopically engrafted AML mouse models. In the orthotopic mouse model, tumor growth inhibition was observed by gross measurement of luciferase activity, as well as a reduced proportion of AML blasts in the bone marrow, as determined by flow cytometry and immunohistochemistry (IHC) staining. ABL602 2+1 efficiently activated T cells and induced the lysis of AML blasts, even at very low effector:target (E:T) ratios (eg, 1:50). Compared with the reference 1+1 antibody, ABL602 did not induce the release of cytokines including interleukin-6 and tumor necrosis factor-α in the healthy donor-derived peripheral blood mononuclear cell. CONCLUSIONS With its potent tumor-killing activity and reduced cytokine release, ABL602 2+1 is a promising candidate for treating patients with AML and warrants further study.
Collapse
Affiliation(s)
- Eunhee Lee
- ABL Bio Inc, Seongnam, Korea (the Republic of)
| | - Shinai Lee
- ABL Bio Inc, Seongnam, Korea (the Republic of)
| | | | | | - Jiseon Yoo
- ABL Bio Inc, Seongnam, Korea (the Republic of)
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Jongno-gu, Korea (the Republic of)
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University Hospital, Jongno-gu, Korea (the Republic of)
| | - Yangmi Lim
- ABL Bio Inc, Seongnam, Korea (the Republic of)
| | - Jonghwa Won
- ABL Bio Inc, Seongnam, Korea (the Republic of)
| |
Collapse
|
18
|
Sun Y, Yu X, Wang X, Yuan K, Wang G, Hu L, Zhang G, Pei W, Wang L, Sun C, Yang P. Bispecific antibodies in cancer therapy: Target selection and regulatory requirements. Acta Pharm Sin B 2023; 13:3583-3597. [PMID: 37719370 PMCID: PMC10501874 DOI: 10.1016/j.apsb.2023.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 09/19/2023] Open
Abstract
In recent years, the development of bispecific antibodies (bsAbs) has been rapid, with many new structures and target combinations being created. The boom in bsAbs has led to the successive issuance of industry guidance for their development in the US and China. However, there is a high degree of similarity in target selection, which could affect the development of diversity in bsAbs. This review presents a classification of various bsAbs for cancer therapy based on structure and target selection and examines the advantages of bsAbs over monoclonal antibodies (mAbs). Through database research, we have identified the preferences of available bsAbs combinations, suggesting rational target selection options and warning of potential wastage of medical resources. We have also compared the US and Chinese guidelines for bsAbs in order to provide a reference for their development.
Collapse
Affiliation(s)
- Yanze Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xinmiao Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Gefei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Lingrong Hu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Guoyu Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Wenli Pei
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Chengliang Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
19
|
Liu C, Zhou J, Kudlacek S, Qi T, Dunlap T, Cao Y. Population dynamics of immunological synapse formation induced by bispecific T cell engagers predict clinical pharmacodynamics and treatment resistance. eLife 2023; 12:e83659. [PMID: 37490053 PMCID: PMC10368424 DOI: 10.7554/elife.83659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/01/2023] [Indexed: 07/26/2023] Open
Abstract
Effector T cells need to form immunological synapses (IS) with recognized target cells to elicit cytolytic effects. Facilitating IS formation is the principal pharmacological action of most T cell-based cancer immunotherapies. However, the dynamics of IS formation at the cell population level, the primary driver of the pharmacodynamics of many cancer immunotherapies, remains poorly defined. Using classic immunotherapy CD3/CD19 bispecific T cell engager (BiTE) as our model system, we integrate experimental and theoretical approaches to investigate the population dynamics of IS formation and their relevance to clinical pharmacodynamics and treatment resistance. Our models produce experimentally consistent predictions when defining IS formation as a series of spatiotemporally coordinated events driven by molecular and cellular interactions. The models predict tumor-killing pharmacodynamics in patients and reveal trajectories of tumor evolution across anatomical sites under BiTE immunotherapy. Our models highlight the bone marrow as a potential sanctuary site permitting tumor evolution and antigen escape. The models also suggest that optimal dosing regimens are a function of tumor growth, CD19 expression, and patient T cell abundance, which confer adequate tumor control with reduced disease evolution. This work has implications for developing more effective T cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Can Liu
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Jiawei Zhou
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Stephan Kudlacek
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Timothy Qi
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Tyler Dunlap
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
20
|
Zekri L, Lutz M, Prakash N, Manz T, Klimovich B, Mueller S, Hoerner S, Hagelstein I, Engel M, Chashchina A, Pfluegler M, Heitmann JS, Jung G, Salih HR. An optimized IgG-based B7-H3xCD3 bispecific antibody for treatment of gastrointestinal cancers. Mol Ther 2023; 31:1033-1045. [PMID: 36793213 PMCID: PMC10124076 DOI: 10.1016/j.ymthe.2023.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/15/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
T cell-based immunotherapy has revolutionized oncological treatment. However, many patients do not respond to treatment, and long-term remissions remain rare, particularly in gastrointestinal cancers like colorectal cancer (CRC). B7-H3 is overexpressed in multiple cancer entities including CRC on both tumor cells and tumor vasculature, the latter facilitating influx of effector cells into the tumor site upon therapeutic targeting. We generated a panel of T cell-recruiting B7-H3xCD3 bispecific antibodies (bsAbs) and show that targeting a membrane-proximal B7-H3 epitope allows for a 100-fold reduction of CD3 affinity. In vitro, our lead compound CC-3 showed superior tumor cell killing, T cell activation, proliferation, and memory formation, whereas undesired cytokine release was reduced. In vivo, CC-3 mediated potent antitumor activity in three independent models using immunocompromised mice adoptively transferred with human effector cells with regard to prevention of lung metastasis and flank tumor growth as well as elimination of large established tumors. Thus, fine-tuning of both target and CD3 affinities as well as binding epitopes allowed for the generation of a B7-H3xCD3 bsAbs with promising therapeutic activity. CC-3 is presently undergoing good manufacturing practice (GMP) production to enable evaluation in a clinical "first-in-human" study in CRC.
Collapse
Affiliation(s)
- Latifa Zekri
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, University Hospital Tuebingen, Tuebingen 72076, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen 72076, Germany; Department of Immunology, Institute for Cell Biology, Eberhard Karls University, Tuebingen, Germany; DKFZ Partner Site Tuebingen, German Cancer Consortium (DKTK), Tuebingen 72076, Germany
| | - Martina Lutz
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, University Hospital Tuebingen, Tuebingen 72076, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen 72076, Germany; DKFZ Partner Site Tuebingen, German Cancer Consortium (DKTK), Tuebingen 72076, Germany
| | - Nisha Prakash
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, University Hospital Tuebingen, Tuebingen 72076, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen 72076, Germany; Department of Immunology, Institute for Cell Biology, Eberhard Karls University, Tuebingen, Germany; DKFZ Partner Site Tuebingen, German Cancer Consortium (DKTK), Tuebingen 72076, Germany
| | - Timo Manz
- Department of Immunology, Institute for Cell Biology, Eberhard Karls University, Tuebingen, Germany; DKFZ Partner Site Tuebingen, German Cancer Consortium (DKTK), Tuebingen 72076, Germany
| | - Boris Klimovich
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, University Hospital Tuebingen, Tuebingen 72076, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen 72076, Germany; DKFZ Partner Site Tuebingen, German Cancer Consortium (DKTK), Tuebingen 72076, Germany
| | - Stefanie Mueller
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, University Hospital Tuebingen, Tuebingen 72076, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen 72076, Germany; DKFZ Partner Site Tuebingen, German Cancer Consortium (DKTK), Tuebingen 72076, Germany
| | - Sebastian Hoerner
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, University Hospital Tuebingen, Tuebingen 72076, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen 72076, Germany; Department of Immunology, Institute for Cell Biology, Eberhard Karls University, Tuebingen, Germany; DKFZ Partner Site Tuebingen, German Cancer Consortium (DKTK), Tuebingen 72076, Germany
| | - Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, University Hospital Tuebingen, Tuebingen 72076, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen 72076, Germany; DKFZ Partner Site Tuebingen, German Cancer Consortium (DKTK), Tuebingen 72076, Germany
| | - Monika Engel
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, University Hospital Tuebingen, Tuebingen 72076, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen 72076, Germany; Department of Immunology, Institute for Cell Biology, Eberhard Karls University, Tuebingen, Germany; DKFZ Partner Site Tuebingen, German Cancer Consortium (DKTK), Tuebingen 72076, Germany
| | - Anna Chashchina
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, University Hospital Tuebingen, Tuebingen 72076, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen 72076, Germany; DKFZ Partner Site Tuebingen, German Cancer Consortium (DKTK), Tuebingen 72076, Germany
| | - Martin Pfluegler
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, University Hospital Tuebingen, Tuebingen 72076, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen 72076, Germany; DKFZ Partner Site Tuebingen, German Cancer Consortium (DKTK), Tuebingen 72076, Germany
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, University Hospital Tuebingen, Tuebingen 72076, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen 72076, Germany; DKFZ Partner Site Tuebingen, German Cancer Consortium (DKTK), Tuebingen 72076, Germany
| | - Gundram Jung
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen 72076, Germany; Department of Immunology, Institute for Cell Biology, Eberhard Karls University, Tuebingen, Germany; DKFZ Partner Site Tuebingen, German Cancer Consortium (DKTK), Tuebingen 72076, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, University Hospital Tuebingen, Tuebingen 72076, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen 72076, Germany; DKFZ Partner Site Tuebingen, German Cancer Consortium (DKTK), Tuebingen 72076, Germany.
| |
Collapse
|
21
|
Let’s Go 3D! New Generation of Models for Evaluating Drug Response and Resistance in Prostate Cancer. Int J Mol Sci 2023; 24:ijms24065293. [PMID: 36982368 PMCID: PMC10049142 DOI: 10.3390/ijms24065293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Prostate cancer (PC) is the third most frequently diagnosed cancer worldwide and the second most frequent in men. Several risk factors can contribute to the development of PC, and those include age, family history, and specific genetic mutations. So far, drug testing in PC, as well as in cancer research in general, has been performed on 2D cell cultures. This is mainly because of the vast benefits these models provide, including simplicity and cost effectiveness. However, it is now known that these models are exposed to much higher stiffness; lose physiological extracellular matrix on artificial plastic surfaces; and show changes in differentiation, polarization, and cell–cell communication. This leads to the loss of crucial cellular signaling pathways and changes in cell responses to stimuli when compared to in vivo conditions. Here, we emphasize the importance of a diverse collection of 3D PC models and their benefits over 2D models in drug discovery and screening from the studies done so far, outlining their benefits and limitations. We highlight the differences between the diverse types of 3D models, with the focus on tumor–stroma interactions, cell populations, and extracellular matrix composition, and we summarize various standard and novel therapies tested on 3D models of PC for the purpose of raising awareness of the possibilities for a personalized approach in PC therapy.
Collapse
|
22
|
Way JC, Burrill DR, Silver PA. Bioinspired Design of Artificial Signaling Systems. Biochemistry 2023; 62:178-186. [PMID: 35984429 PMCID: PMC9851155 DOI: 10.1021/acs.biochem.2c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Indexed: 02/02/2023]
Abstract
Natural systems use weak interactions and avidity effects to give biological systems high specificity and signal-to-noise ratios. Here we describe design principles for engineering fusion proteins that target therapeutic fusion proteins to membrane-bound signaling receptors by first binding to designer-chosen co-receptors on the same cell surface. The key design elements are separate protein modules, one that has no signaling activity and binds to a cell surface receptor with high affinity and a second that binds to a receptor with low or moderate affinity and carries out a desired signaling or inhibitory activity. These principles are inspired by natural cytokines such as CNTF, IL-2, and IL-4 that bind strongly to nonsignaling receptors and then signal through low-affinity receptors. Such designs take advantage of the fact that when a protein is anchored to a cell membrane, its local concentration is extremely high with respect to those of other membrane proteins, so a second-step, low-affinity binding event is favored. Protein engineers have used these principles to design treatments for cancer, anemia, hypoxia, and HIV infection.
Collapse
Affiliation(s)
- Jeffrey C. Way
- General
Biologics, Inc., 108
Fayerweather Street, Unit 2, Cambridge, Massachusetts 02138, United States
| | - Devin R. Burrill
- Department
of Systems Biology, Harvard Medical School, 210 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Pamela A. Silver
- Department
of Systems Biology, Harvard Medical School, 210 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
23
|
Kühl L, Schäfer AK, Kraft S, Aschmoneit N, Kontermann RE, Seifert O. eIg-based bispecific T-cell engagers targeting EGFR: Format matters. MAbs 2023; 15:2183540. [PMID: 36864566 PMCID: PMC9988351 DOI: 10.1080/19420862.2023.2183540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Bispecific antibodies are molecules with versatile modes of action and applications for therapy. They are commonly developed as T-cell engagers (TCE), which simultaneously target an antigen expressed by tumor cells and CD3 expressed by T-cells, thereby inducing T-cell-mediated target cell killing. There is growing evidence that the molecular composition and valency for the target antigen influence the activity of TCEs. Here, the eIg platform technology was used to generate a set of bispecific TCEs targeting epidermal growth factor receptors (EGFR) and CD3. These molecules either included or lacked an Fc region and exhibited one binding site for CD3 and either one or two binding sites for EGFR (1 + 1 or 2 + 1 formats) utilizing different molecular arrangements of the binding sites. In total, 11 different TCE formats were analyzed for binding to target cells and T cells, T cell-mediated killing of tumor cells, and for the activation of T cells (release of cytokines and proliferation of T-cells). Bivalent binding to EGFR strongly increased binding and T cell-mediated killing. However, the molecular composition and position of the CD3-binding arm also affected target cell killing, cytokine release, and T-cell proliferation. Our findings support that screening of a panel of formats is beneficial to identify the most potent bispecific TCE, and that format matters.
Collapse
Affiliation(s)
- Lennart Kühl
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Annelie K Schäfer
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Sebastian Kraft
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Nadine Aschmoneit
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Oliver Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
24
|
Carrara SC, Harwardt J, Grzeschik J, Hock B, Kolmar H. TriTECM: A tetrafunctional T-cell engaging antibody with built-in risk mitigation of cytokine release syndrome. Front Immunol 2022; 13:1051875. [DOI: 10.3389/fimmu.2022.1051875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] Open
Abstract
Harnessing the innate power of T cells for therapeutic benefit has seen many shortcomings due to cytotoxicity in the past, but still remains a very attractive mechanism of action for immune-modulating biotherapeutics. With the intent of expanding the therapeutic window for T-cell targeting biotherapeutics, we present an attenuated trispecific T-cell engager (TCE) combined with an anti- interleukin 6 receptor (IL-6R) binding moiety in order to modulate cytokine activity (TriTECM). Overshooting cytokine release, culminating in cytokine release syndrome (CRS), is one of the severest adverse effects observed with T-cell immunotherapies, where the IL-6/IL-6R axis is known to play a pivotal role. By targeting two tumour-associated antigens, epidermal growth factor receptor (EGFR) and programmed death ligand 1 (PD-L1), simultaneously with a bispecific two-in-one antibody, high tumour selectivity together with checkpoint inhibition was achieved. We generated tetrafunctional molecules that contained additional CD3- and IL-6R-binding modules. Ligand competition for both PD-L1 and IL-6R as well as inhibition of both EGF- and IL-6-mediated signalling pathways was observed. Furthermore, TriTECM molecules were able to activate T cells and trigger T-cell-mediated cytotoxicity through CD3-binding in an attenuated fashion. A decrease in pro-inflammatory cytokine interferon γ (IFNγ) after T-cell activation was observed for the TriTECM molecules compared to their respective controls lacking IL-6R binding, hinting at a successful attenuation and potential modulation via IL-6R. As IL-6 is a key player in cytokine release syndrome as well as being implicated in enhancing tumour progression, such molecule designs could reduce side effects and cytotoxicity observed with previous TCEs and widen their therapeutic windows.
Collapse
|
25
|
Combination of T cell-redirecting bispecific antibody ERY974 and chemotherapy reciprocally enhances efficacy against non-inflamed tumours. Nat Commun 2022; 13:5265. [PMID: 36071036 PMCID: PMC9452528 DOI: 10.1038/s41467-022-32952-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/25/2022] [Indexed: 11/08/2022] Open
Abstract
Identifying a strategy with strong efficacy against non-inflamed tumours is vital in cancer immune therapy. ERY974 is a humanized IgG4 bispecific T cell-redirecting antibody that recognizes glypican-3 and CD3. Here we examine the combination effect of ERY974 and chemotherapy (paclitaxel, cisplatin, and capecitabine) in the treatment of non-inflamed tumours in a xenograft model. ERY974 monotherapy shows a minor antitumour effect on non-inflamed NCI-H446 xenografted tumours, as infiltration of ERY974-redirected T cells is limited to the tumour-stromal boundary. However, combination therapy improves efficacy by promoting T cell infiltration into the tumour centre, and increasing ERY974 distribution in the tumour. ERY974 increases capecitabine-induced cytotoxicity by promoting capecitabine conversion to its active form by inducing thymidine phosphorylase expression in non-inflamed MKN45 tumour through ERY974-induced IFNγ and TNFα in T cells. We show that ERY974 with chemotherapy synergistically and reciprocally increases antitumour efficacy, eradicating non-inflamed tumours.
Collapse
|
26
|
Xu G, Qian N, Liu Y, Li H, Yang C, Wang J, Wang F, Chen L, Bai G, Xu Q, Pan X, Gao X. Preclinical characterization of a Fab-like CD3/CLDN18.2 XFab® bispecific antibody against solid tumors. Immunobiology 2022; 227:152283. [DOI: 10.1016/j.imbio.2022.152283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
|
27
|
Espinosa-Cotton M, Cheung NKV. Bispecific antibodies for the treatment of neuroblastoma. Pharmacol Ther 2022; 237:108241. [PMID: 35830901 PMCID: PMC10351215 DOI: 10.1016/j.pharmthera.2022.108241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Bispecific antibodies (BsAb) are a new generation of antibody-based therapy, conveying artificial specificity to polyclonal T cells or radiohaptens. These drugs have been successfully implemented to cure hematologic malignancies and are under clinical investigation for solid tumors including HRNB. BsAbs designed to engage T cells or increase the therapeutic index of radiotherapy hold the potential to significantly improve the long-term survival of HRNB patients by shrinking bulky tumors and more effectively eliminating micrometastases and preventing relapse. BsAbs can also be used to arm T cells, yielding a product analogous to CAR T cells, possibly with an improved safety profile. A thoughtful and realistic integration of these therapies into the standard of care should benefit more patients worldwide. Here we describe the history of development of BsAbs for HRNB, which dates back almost three decades. We discuss the merits and pitfalls of all relevant BsAbs, including T cell-engagers and agents used for radioimmunotherapy, highlighting the importance of structural design and interdomain spacing for anti-tumor efficacy.
Collapse
Affiliation(s)
- Madelyn Espinosa-Cotton
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, NY 10065, New York.
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, NY 10065, New York
| |
Collapse
|
28
|
Avanzino BC, Prabhakar K, Dalvi P, Hartstein S, Kehm H, Balasubramani A, Boudreau AA, Buelow B, Chang K, Davison LM, Iyer S, Kalwit V, Lewis Wilson K, Malik-Chaudhry HK, Pierson W, Pineda G, Rangaswamy US, Saiganesh S, Schellenberger U, Ugamraj HS, Yabut RD, Buelow R, Chapman J, Trinklein ND, Harris KE. A T-cell engaging bispecific antibody with a tumor-selective bivalent folate receptor alpha binding arm for the treatment of ovarian cancer. Oncoimmunology 2022; 11:2113697. [PMID: 36016696 PMCID: PMC9397469 DOI: 10.1080/2162402x.2022.2113697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/20/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022] Open
Abstract
The use of T-cell engagers (TCEs) to treat solid tumors is challenging, and several have been limited by narrow therapeutic windows due to substantial on-target, off-tumor toxicities due to the expression of low levels of target antigens on healthy tissues. Here, we describe TNB-928B, a fully human TCE that has a bivalent binding arm for folate receptor alpha (FRα) to selectively target FRα overexpressing tumor cells while avoiding the lysis of cells with low levels of FRα expression. The bivalent design of the FRα binding arm confers tumor selectivity due to low-affinity but high-avidity binding to high FRα antigen density cells. TNB-928B induces preferential effector T-cell activation, proliferation, and selective cytotoxic activity on high FRα expressing cells while sparing low FRα expressing cells. In addition, TNB-928B induces minimal cytokine release compared to a positive control TCE containing OKT3. Moreover, TNB-928B exhibits substantial ex vivo tumor cell lysis using endogenous T-cells and robust tumor clearance in vivo, promoting T-cell infiltration and antitumor activity in mouse models of ovarian cancer. TNB-928B exhibits pharmacokinetics similar to conventional antibodies, which are projected to enable favorable administration in humans. TNB-928B is a novel TCE with enhanced safety and specificity for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Brian C. Avanzino
- Teneobio, Inc, Newark, CA, United States
- Oncology Research, Amgen Inc., Newark, CA, USA
| | - Kirthana Prabhakar
- Teneobio, Inc, Newark, CA, United States
- Oncology Research, Amgen Inc., Newark, CA, USA
| | - Pranjali Dalvi
- Teneobio, Inc, Newark, CA, United States
- Oncology Research, Amgen Inc., Newark, CA, USA
| | - Sharon Hartstein
- Teneobio, Inc, Newark, CA, United States
- Therapeutic Discovery, Amgen Inc., Newark, CA, USA
| | | | - Aarti Balasubramani
- Teneobio, Inc, Newark, CA, United States
- Therapeutic Discovery, Amgen Inc., Newark, CA, USA
| | | | - Ben Buelow
- Teneobio, Inc, Newark, CA, United States
| | | | | | | | - Vidyut Kalwit
- Teneobio, Inc, Newark, CA, United States
- Oncology Research, Amgen Inc., Newark, CA, USA
| | - Kristin Lewis Wilson
- Translational Safety & Bioanalytical Sciences, Amgen Inc., South San Francisco, CA, USA
| | | | - Will Pierson
- Division of Gynecologic Oncology, University of California, San Francisco, CA, USA
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Geovanni Pineda
- Division of Gynecologic Oncology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Udaya S. Rangaswamy
- Teneobio, Inc, Newark, CA, United States
- Oncology Research, Amgen Inc., Newark, CA, USA
| | - Sowmya Saiganesh
- Teneobio, Inc, Newark, CA, United States
- Oncology Research, Amgen Inc., Newark, CA, USA
| | | | - Harshad S. Ugamraj
- Teneobio, Inc, Newark, CA, United States
- Process Development, Amgen Inc., Newark, CA, USA
| | - Rodolfovan D. Yabut
- Translational Safety & Bioanalytical Sciences, Amgen Inc., South San Francisco, CA, USA
| | | | - Jocelyn Chapman
- Division of Gynecologic Oncology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | | | - Katherine E. Harris
- Teneobio, Inc, Newark, CA, United States
- Oncology Research, Amgen Inc., Newark, CA, USA
| |
Collapse
|
29
|
Leclercq G, Steinhoff N, Haegel H, De Marco D, Bacac M, Klein C. Novel strategies for the mitigation of cytokine release syndrome induced by T cell engaging therapies with a focus on the use of kinase inhibitors. Oncoimmunology 2022; 11:2083479. [PMID: 35694193 PMCID: PMC9176235 DOI: 10.1080/2162402x.2022.2083479] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 11/03/2022] Open
Abstract
T cell engaging therapies, like CAR-T cells and T cell engagers, redirect T cells toward tumor cells, facilitating the formation of a cytotoxic synapse and resulting in subsequent tumor cell killing. T cell receptor or CAR-T downstream signaling triggers a release of pro-inflammatory cytokines, which can induce a Cytokine Release Syndrome (CRS). The incidence of CRS is still hardly predictable among individuals and remains one of the major dose-limiting safety liabilities associated with on-target activity of T cell engaging therapies. This emphasizes the need to elaborate mitigation strategies, which reduce cytokine release while retaining efficacy. Here, we review pre-clinical and clinical approaches applied for the management of CRS symptoms in the context of T cell engaging therapies, highlighting the use of tyrosine kinase inhibitors as an emerging mitigation strategy. In particular, we focus on the effects of Bruton's tyrosine kinase (BTK), Src family including Lck, mammalian target of rapamycin (mTOR) and Janus tyrosine kinase (JAK) inhibitors on T cell functionality and cytokine release, to provide a rationale for their use as mitigation strategies against CRS in the context of T cell engaging therapies.
Collapse
Affiliation(s)
- Gabrielle Leclercq
- Oncology Disease Therapeutic Area, Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development, pRED, Schlieren, Switzerland
| | - Nathalie Steinhoff
- Oncology Disease Therapeutic Area, Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development, pRED, Schlieren, Switzerland
| | - Hélène Haegel
- Phamaceutical Sciences, Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, pRED, Basel, Switzerland
| | - Donata De Marco
- Phamaceutical Sciences, Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, pRED, Basel, Switzerland
| | - Marina Bacac
- Oncology Disease Therapeutic Area, Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development, pRED, Schlieren, Switzerland
| | - Christian Klein
- Oncology Disease Therapeutic Area, Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development, pRED, Schlieren, Switzerland
| |
Collapse
|
30
|
Liang X, Wang Y, Pei L, Tan X, Dong C. Identification of Prostate Cancer Risk Genetics Biomarkers Based on Intergraded Bioinformatics Analysis. Front Surg 2022; 9:856446. [PMID: 35372462 PMCID: PMC8967941 DOI: 10.3389/fsurg.2022.856446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
Background Prostate cancer (PCa) is one of the most popular cancer types in men. Nevertheless, the pathogenic mechanisms of PCa are poorly understood. Hence, we aimed to identify the potential genetic biomarker of PCa in the present study. Methods High-throughput data set GSE46602 was obtained from the comprehensive gene expression database (GEO) for screening differentially expressed genes (DEGs). The common DEGs were further screened out using The Cancer Genome Atlas (TCGA) dataset. Functional enrichment analysis includes Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to study related mechanisms. The Cox and Lasso regression analyses were carried out to compress the target genes and construct the high-risk and low-risk gene model. Survival analyses were performed based on the gene risk signature model. The CIBERSORT algorithm was performed to clarify the correlation of the high- and low-risk gene model in risk and infiltration of immune cells in PCa. Results A total of 385 common DEGs were obtained. The results of functional enrichment analysis show that common DEGs play an important role in PCa. A three-gene signature model (KCNK3, AK5, and ARHGEF38) was established, and the model was significantly associated with cancer-related pathways, overall survival (OS), and tumor microenvironment (TME)-related immune cells in PCa. Conclusion This new risk model may contribute to further investigation in the immune-related pathogenesis in progression of PCa.
Collapse
Affiliation(s)
| | | | | | | | - Chunhui Dong
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiahzuang, China
| |
Collapse
|
31
|
von Amsberg G, Alsdorf W, Karagiannis P, Coym A, Kaune M, Werner S, Graefen M, Bokemeyer C, Merkens L, Dyshlovoy SA. Immunotherapy in Advanced Prostate Cancer-Light at the End of the Tunnel? Int J Mol Sci 2022; 23:2569. [PMID: 35269712 PMCID: PMC8910587 DOI: 10.3390/ijms23052569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/16/2022] Open
Abstract
Immunotherapeutic treatment approaches are now an integral part of the treatment of many solid tumors. However, attempts to integrate immunotherapy into the treatment of prostate cancer have been disappointing so far. This is due to a highly immunosuppressive, "cold" tumor microenvironment, which is characterized, for example, by the absence of cytotoxic T cells, an increased number of myeloid-derived suppressor cells or regulatory T cells, a decreased number of tumor antigens, or a defect in antigen presentation. The consequence is a reduced efficacy of many established immunotherapeutic treatments such as checkpoint inhibitors. However, a growing understanding of the underlying mechanisms of tumor-immune system interactions raises hopes that immunotherapeutic strategies can be optimized in the future. The aim of this review is to provide an overview of the current status and future directions of immunotherapy development in prostate cancer. Background information on immune response and tumor microenvironment will help to better understand current therapeutic strategies under preclinical and clinical development.
Collapse
Affiliation(s)
- Gunhild von Amsberg
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| | - Winfried Alsdorf
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Panagiotis Karagiannis
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Anja Coym
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Moritz Kaune
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (S.W.); (L.M.)
| | - Markus Graefen
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| | - Carsten Bokemeyer
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
| | - Lina Merkens
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (S.W.); (L.M.)
| | - Sergey A. Dyshlovoy
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (W.A.); (P.K.); (A.C.); (M.K.); (C.B.); (S.A.D.)
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Laboratory of Pharmacology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Palchevskogo Str. 17, 690041 Vladivostok, Russia
| |
Collapse
|