1
|
Man X, Wang H, Chen C, Cong X, Sun L, Sun X, Chen C, Zhang J, Yang L. Efficacy of high-dose steroids versus low-dose steroids in the treatment of immune checkpoint inhibitor-associated myocarditis: a case series and systematic review. Front Immunol 2025; 16:1455347. [PMID: 40013153 PMCID: PMC11860070 DOI: 10.3389/fimmu.2025.1455347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
Background Immune checkpoint inhibitor-associated myocarditis (ICI-M) is a rare yet potentially fatal complication of immunotherapy, with no standardized treatment protocol due to limited data. The use of varying steroid doses has resulted in inconsistent outcomes. Methods We retrospectively identified patients diagnosed with ICI-M at our institution between January 2020 and February 2024. Additionally, we conducted a comprehensive literature review using PubMed, Embase, and the Cochrane Library to facilitate a comparative analysis of clinical responses. The primary aim was to compare clinical outcomes and therapeutic responses between patients treated with high-dose versus low-dose methylprednisolone. Results Patients receiving an initial high-dose intravenous methylprednisolone (1 g/day) exhibited a more rapid reduction in myocardial injury markers, including troponin I/T (cTnI/T), creatine kinase (CK), and N-terminal pro b-type natriuretic peptide (NT-proBNP), compared to those receiving lower doses. This group also demonstrated lower incidences of biomarker rebound and maintained lower levels over time. Additionally, the clinical treatment process was more straightforward in the high-dose group, with treatment efficacy surpassing that observed in patients who received an initial methylprednisolone (mPSL) dose of less than 1 g/day. Regarding prognosis, the incidence of major adverse cardiovascular events (MACE) and cardiovascular mortality was significantly lower in the high-dose group compared to the low-dose group. Conclusions In patients with immune checkpoint inhibitor-associated myocarditis, the prompt administration of high-dose corticosteroid pulse therapy (1 g/day) is strongly associated with improved clinical outcomes. This intervention rapidly lowers myocardial injury biomarkers (cTnI/T, CK, NT-proBNP) while minimizing the risk of biomarker rebound, thus optimizing clinical management. Notably, it significantly reduces the incidence of major adverse cardiovascular events (MACE), thereby enhancing patient prognosis. The duration of therapy should be tailored based on clinical response. In cases of steroid resistance, combination therapies may provide additional benefit.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lei Yang
- Cancer Center, The First Hospital of Jilin University,
Changchun, Jilin, China
| |
Collapse
|
2
|
Wadden E, Lai C, Grivas P, Bhatia S, Portuguese AJ, Salem JE, Moslehi JJ, Cheng RK. Successful treatment of immune checkpoint inhibitor-associated fulminant myocarditis with abatacept and ruxolitinib: a case report. Eur Heart J Case Rep 2025; 9:ytaf019. [PMID: 39963309 PMCID: PMC11831032 DOI: 10.1093/ehjcr/ytaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/23/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025]
Abstract
Background Immune checkpoint inhibitors (ICIs) are a class of cancer immunotherapy with growing indications for treatment of various malignancies. Immune checkpoint inhibitors are monoclonal antibodies that block inhibitory pathways in immune cells, including cytotoxic T lymphocyte antigen-4 (CTLA4), programmed death 1 receptor (PD1), and programmed cell death ligand-1 (PDL1), to activate the immune system. However, these agents can disrupt self-tolerance and lead to immune-related adverse events. Fulminant myocarditis, a feared complication of ICIs, can be highly fatal, and there is a need for effective treatment options. Case summary A 70-year-old patient with recurrent metastatic disease of urothelial carcinoma subsequently developed fulminant myocarditis after receiving eight cycles of pembrolizumab. He developed cardiogenic shock and required inotropes and a percutaneous microaxial flow pump placement for temporary mechanical circulatory support. He received methylprednisolone initially and then was started on second-line immunosuppression agents, ruxolitinib and abatacept, for steroid-refractory myocarditis. Abatacept is thought to inhibit activation of T-cell CTLA4 and PD1/PDL1 pathways and reverse ICI-activated pathways. Ruxolitinib is a Janus kinase inhibitor that impairs immune activation through suppressing cytokine sensing and production and T-cell activation. After these treatments, the patient subsequently clinically improved and his myocarditis resolved. Discussion This case highlights ICI myocarditis refractory to corticosteroids leading to treatment with second-line immunosuppression. As immunotherapies are increasingly applied to a broader range of cancers, further research is needed to evaluate the optimal treatment strategy for ICI-related myocarditis and other immune-related adverse events.
Collapse
Affiliation(s)
- Elena Wadden
- Division of Cardiology, University of Washington Medical Center, 1959 NE Pacific Street, Health Sciences Building, Seattle, WA 98195, USA
| | - Carol Lai
- Department of Cardiology, Straub Medical Center, 888 S King St, Honolulu, HI 96813, USA
| | - Petros Grivas
- Division of Cardiology, University of Washington Medical Center, 1959 NE Pacific Street, Health Sciences Building, Seattle, WA 98195, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, P.O. Box 19024, Seattle, WA 98109, USA
| | - Shailender Bhatia
- Division of Cardiology, University of Washington Medical Center, 1959 NE Pacific Street, Health Sciences Building, Seattle, WA 98195, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, P.O. Box 19024, Seattle, WA 98109, USA
| | - Andrew J Portuguese
- Clinical Research Division, Fred Hutchinson Cancer Center, P.O. Box 19024, Seattle, WA 98109, USA
- Division of Hematology and Oncology, University of Washington School of Medicine, 825 Eastlake Ave. E, Seattle, WA 98109, USA
| | - Joe-Elie Salem
- Department of Pharmacology, Sorbonne Université, INSERM, AP‐HP, CIC‐1901, Pitié‐Salpêtrière Hospital, Paris, France
| | - Javid J Moslehi
- Section of Cardio-Oncology and Immunology, University of California San Francisco, Smith Cardiovascular Research Building, 535 Mission Bay Blvd. South, San Francisco, CA 94158, USA
| | - Richard K Cheng
- Division of Cardiology, University of Washington Medical Center, 1959 NE Pacific Street, Health Sciences Building, Suite #A506D Box 356422 Seattle, WA 98195, USA
| |
Collapse
|
3
|
Deveci Ş, Uzun M, Özçelik P, Tümer Doğukan SS, Matur Z. Myositis associated with pembrolizumab presenting with myastheniform symptoms: two case reports. Anticancer Drugs 2025; 36:143-150. [PMID: 39749550 DOI: 10.1097/cad.0000000000001665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Immune checkpoint inhibitors (ICIs), such as pembrolizumab, have revolutionized cancer treatment by enhancing the immune system's response to malignancies. However, these therapies are associated with immune-related adverse events (irAEs), including neuromuscular complications such as myasthenia gravis, myositis, and myocarditis. We describe two male patients, aged 67 and 68, with small cell and non-small cell lung cancers, who developed progressive neuromuscular symptoms, including ptosis, diplopia, and generalized weakness, after receiving pembrolizumab. Clinical, biochemical, imaging, and electrophysiological findings confirmed the diagnosis of myositis with myastheniform features, with one case also involving myocarditis. Both patients underwent treatments with intravenous immunoglobulin (IVIg), pyridostigmine, and corticosteroids. The first patient, despite aggressive treatment including plasma exchange and rituximab, succumbed to complications from aspiration pneumonia. The second patient showed partial response to pyridostigmine and IVIg but later died due to metastatic cancer progression. A literature review revealed 52 cases of pembrolizumab-associated myositis with myastheniform symptoms, emphasizing its high morbidity and the need for vigilant monitoring. Pembrolizumab-associated myositis with myastheniform symptoms, especially when accompanied by myocarditis, presents a significant clinical challenge with high mortality. Early recognition and aggressive management of these irAEs are crucial to improving outcomes in cancer patients receiving ICIs.
Collapse
Affiliation(s)
- Şule Deveci
- Department of Neurology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital
| | - Mustafa Uzun
- Department of Neurology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital
| | - Pinar Özçelik
- Department of Neurology, Bezmialem Vakif University, Medical Faculty, Istanbul, Turkey
| | | | - Zeliha Matur
- Department of Neurology, Bezmialem Vakif University, Medical Faculty, Istanbul, Turkey
| |
Collapse
|
4
|
Salem JE, Ederhy S, Belin L, Zahr N, Tubach F, Procureur A, Allenbach Y, Rosenzwjag M, Bretagne M. Abatacept dose-finding phase II triaL for immune checkpoint inhibitors myocarditis (ACHLYS) trial design. Arch Cardiovasc Dis 2025; 118:106-115. [PMID: 39743436 DOI: 10.1016/j.acvd.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Immune checkpoint inhibitor (ICI)-induced myocarditis is a life-threatening adverse drug reaction. Abatacept (a CTLA-4-immunoglobulin fusion protein) has been proposed as a compassionate-use treatment for ICI myocarditis (in combination with corticosteroids and ruxolitinib) but no clinical trial has yet been performed. The abatacept dose can be adjusted using real-time assessment of its target, the CD86 receptor occupancy on circulating monocytes (CD86RO). METHODS The ACHLYS trial is an ongoing dose-finding, Phase II, randomized, double-blind trial in which three different abatacept doses are being tested, aiming to reach CD86RO≥80% after the first dose and sustainably during the first 3 weeks of ICI myocarditis treatment (primary outcome). Adult patients with cancer presenting severe or corticosteroid-resistant ICI myocarditis have been included. ICI are withheld after inclusion and for the study duration. Abatacept is administered by intravenous injection on Days 1, 5±2 and 14±2 at 10, 20 or 25mg/kg depending on the randomization arm (n=7 per arm) with concomitant ruxolitinib and corticosteroids. After evaluation of the primary outcome on Day 21, complementary injections of abatacept (for≤3 months) and a ruxolitinib/corticosteroids weaning strategy are standardized depending on criteria evaluating resolution of ICI myocarditis severity (troponin T level and clinical assessment). Secondary objectives compare immunological, myocardial and muscular proxies of treatment response between randomization arms, and cancer progression-free and overall survivals up to 1 year. CONCLUSION The ACHLYS trial will define the most appropriate starting dose of abatacept to treat life-threatening ICI myocarditis, in combination with ruxolitinib and corticosteroids. CLINICALTRIALS GOV: NCT05195645.
Collapse
Affiliation(s)
- Joe-Elie Salem
- Department of pharmacology, Sorbonne Université, Inserm, CIC-1901, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France.
| | - Stephane Ederhy
- Department of Cardiology, AP-HP, Hôpital Saint-Antoine, 75012 Paris, France
| | - Lisa Belin
- Département de santé publique, unité de recherche clinique PSL-CFX, CIC-1901, Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié Salpêtrière, 75013 Paris, France
| | - Noel Zahr
- Department of pharmacology, Sorbonne Université, Inserm, CIC-1901, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Florence Tubach
- Département de santé publique, unité de recherche clinique PSL-CFX, CIC-1901, Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié Salpêtrière, 75013 Paris, France
| | - Adrien Procureur
- Department of pharmacology, Sorbonne Université, Inserm, CIC-1901, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Yves Allenbach
- Department of Internal Medicine, Sorbonne Université, Inserm, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Michelle Rosenzwjag
- Department of pharmacology, Sorbonne Université, Inserm, CIC-1901, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Marie Bretagne
- Department of pharmacology, Sorbonne Université, Inserm, CIC-1901, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
5
|
Pi JK, Chen XT, Zhang YJ, Chen XM, Wang YC, Xu JY, Zhou JH, Yu SS, Wu SS. Insight of immune checkpoint inhibitor related myocarditis. Int Immunopharmacol 2024; 143:113559. [PMID: 39536487 DOI: 10.1016/j.intimp.2024.113559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
As the understanding of immune-related mechanisms in the development and progression of cancer advances, immunotherapies, notably Immune Checkpoint Inhibitors (ICIs), have become integral in comprehensive cancer treatment strategies. ICIs reactivate T-cell cytotoxicity against tumors by blocking immune suppressive signals on T cells, such as Programmed Death-1 (PD-1) and Cytotoxic T-lymphocyte Antigen-4 (CTLA-4). Despite their beneficial effects, ICIs are associated with immune-related adverse events (irAEs), manifesting as autoimmune side effects across various organ systems. A particularly alarming irAE is life-threatening myocarditis. This rare but severe side effect of ICIs leads to significant long-term cardiac complications, including arrhythmias and heart failure, and has been observed to have a mortality rate of up to 50% in affected patients. This greatly limits the clinical application of ICI-based immunotherapy. In this review, we provide a comprehensive summary of the current knowledge regarding the diagnosis and management of ICI-related myocarditis. We also discuss the utility of preclinical mouse models in understanding and addressing this critical challenge.
Collapse
Affiliation(s)
- Jin-Kui Pi
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiao-Ting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yan-Jing Zhang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xue-Mei Chen
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yin-Chan Wang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jia-Yi Xu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jin-Han Zhou
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shuai-Shuai Yu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Si-Si Wu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
6
|
Beecher G, Pinal-Fernandez I, Mammen AL, Liewluck T. Immune Checkpoint Inhibitor Myopathy: The Double-Edged Sword of Cancer Immunotherapy. Neurology 2024; 103:e210031. [PMID: 39514829 DOI: 10.1212/wnl.0000000000210031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized the treatment of several malignancies, with improved survival. These monoclonal antibodies target immune checkpoints, including cytotoxic T-lymphocyte-associated protein 4 (ipilimumab and tremelimumab), programmed death 1 (nivolumab, pembrolizumab, cemiplimab, and dostarlimab), programmed death ligand 1 (atezolizumab, avelumab, and durvalumab), and lymphocyte activation gene 3 (relatlimab), and effectively augment the immune response against tumor cells. Releasing the brakes on the immune system has consequences, however, in the form of immune-related adverse events (irAEs), which may affect any organ. Neurologic irAEs represent 1%-3% of all irAEs, with immune-mediated myopathy (ICI myopathy) being the most common manifestation. Recent large patient series and systematic reviews have established the key features and highlighted new insights into ICI myopathy. ICI myopathy is characterized by an acute or subacute onset of oculobulbar and/or proximal limb weakness, with or without associated respiratory insufficiency and myocarditis. Creatine kinase elevation is common. Oculobulbar presentations with or without respiratory failure may be misattributed to neuromuscular junction disorders, particularly because acetylcholine receptor antibodies are present in up to 40% of patients; however, an electrodiagnostic evidence of a defect of neuromuscular transmission is often absent even in patients with severe weakness, highlighting that the myopathic process is the driving force behind these presentations. Muscle histopathology commonly demonstrates a unique signature of multifocal clusters of necrotic and regenerating fibers, differentiating ICI myopathy from other autoimmune myopathies. Transcriptomic analysis has uncovered distinct subgroups within ICI myopathy, revealing varying degrees of type 1 and type 2 interferon pathway activation alongside notable upregulation of the interleukin (IL)-6 pathway in affected muscle tissue. This discovery presents a promising avenue for intervention through the use of therapies that suppress the interferon pathway and target IL-6 or its receptor. Despite clinical improvements with immunomodulatory therapy, with corticosteroids the mainstay of treatment, mortality remains high, particularly in those with associated myocarditis or respiratory failure requiring intubation, where mortality occurs in up to 50%. ICI withdrawal can lead to cancer progression and death, highlighting a need for improved approaches to ICI rechallenge, performed in limited patients with variable success to date.
Collapse
Affiliation(s)
- Grayson Beecher
- From the Division of Neurology (G.B.), Department of Medicine, University of Alberta, Edmonton, Canada; Muscle Disease Section (I.P.-F., A.L.M.), National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda; Department of Neurology (I.P.-F., A.L.M.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (T.L.), Mayo Clinic, Rochester, MN
| | - Iago Pinal-Fernandez
- From the Division of Neurology (G.B.), Department of Medicine, University of Alberta, Edmonton, Canada; Muscle Disease Section (I.P.-F., A.L.M.), National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda; Department of Neurology (I.P.-F., A.L.M.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (T.L.), Mayo Clinic, Rochester, MN
| | - Andrew L Mammen
- From the Division of Neurology (G.B.), Department of Medicine, University of Alberta, Edmonton, Canada; Muscle Disease Section (I.P.-F., A.L.M.), National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda; Department of Neurology (I.P.-F., A.L.M.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (T.L.), Mayo Clinic, Rochester, MN
| | - Teerin Liewluck
- From the Division of Neurology (G.B.), Department of Medicine, University of Alberta, Edmonton, Canada; Muscle Disease Section (I.P.-F., A.L.M.), National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda; Department of Neurology (I.P.-F., A.L.M.), Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (T.L.), Mayo Clinic, Rochester, MN
| |
Collapse
|
7
|
Wu S, Jamal F. Cardiooncology in the ICU - Cardiac Urgencies in Cancer Care. J Intensive Care Med 2024:8850666241303461. [PMID: 39632745 DOI: 10.1177/08850666241303461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Cardiovascular disease is an increasing risk of morbidity and mortality in cancer patients, related to an growing number of aging survivors with pre-existing cardiovascular disease and the use of traditional and novel cancer therapies with cardiotoxic effects. While many cardiac complications are chronic processes that develop over time, there are many acute processes that may arise in hospitalized patients. It is important for hospitalists and critical care physicians to be familiar with the recognition and management of these conditions in this unique population. This article reviews the presentation and management of common cardiac urgencies in critically ill cancer patients including acute decompensated heart failure, acute coronary syndromes, arrhythmias, hypertensive crises, pulmonary embolism, pericardial tamponade and myocarditis.
Collapse
Affiliation(s)
- Stephanie Wu
- Department of Medicine, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Faizi Jamal
- Department of Medicine, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| |
Collapse
|
8
|
Tan S, Qi C, Zeng H, Wei Q, Huang Q, Pu X, Li W, Li Y, Tian P. Steroid-Refractory Myocarditis Induced by Immune Checkpoint Inhibitor Responded to Infliximab: Report of Two Cases and Literature Review. Cardiovasc Toxicol 2024; 24:1174-1191. [PMID: 39256296 PMCID: PMC11445312 DOI: 10.1007/s12012-024-09918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Immune checkpoint inhibitors (ICIs), including anti-programmed cell death protein 1 and its ligand (PD-1/PD-L1) as well as anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4), have been widely used for treating solid tumors. Myocarditis is a potentially lethal immune-related adverse events (irAEs) caused by ICIs therapy. The treatment of steroid-refractory myocarditis is challenging. We reported two non-small-cell lung cancer patients with steroid-refractory myocarditis induced by ICI. The symptoms were not resolved after pulse corticosteroid therapy and subsequent treatment including intravenous immunoglobulin and mycophenolate mofetil. Considering the level of serum interleukin (IL)-6 decreased by > 50% and level of serum tumor necrosis factor-α (TNF-α) increased during the course of the disease, infliximab was used. Myocarditis gradually alleviated after infliximab treatment. The cases revealed that specific cytokine inhibitors have promising roles in the treatment of steroid-refractory myocarditis. Infliximab could be considered for patients with low level of IL-6 and elevated level of TNF-α.
Collapse
Affiliation(s)
- Sihan Tan
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Chang Qi
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Hao Zeng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Qi Wei
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Qin Huang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Xin Pu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yalun Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China.
| | - Panwen Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Wang Y, Sun Z, Wang X, Liu F, Wu Y, Wei Q, Duan S. Myasthenia gravis and myocarditis induced by chemoimmunotherapy in locally advanced gastric cancer: A case report. Exp Ther Med 2024; 28:426. [PMID: 39301255 PMCID: PMC11412106 DOI: 10.3892/etm.2024.12715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/26/2024] [Indexed: 09/22/2024] Open
Abstract
The treatment strategy of patients with locally advanced gastric cancer has undergone notable changes since immune checkpoint inhibitors (ICIs) were developed. Although ICIs are generally well-tolerated, they can also cause serious adverse events, such as autoimmune diseases. In patients with gastric cancer and without a history of immune disease, the incidence of myasthenia gravis combined with myocarditis caused by ICI treatment is rare. Furthermore, cases of gastric cancer with ocular myasthenia gravis, without limb weakness or severe dyspnea, although with urination difficulties and symptoms of third-degree atrioventricular block have not been previously reported, to the best of our knowledge. The present study describes the case of a 72-year-old male patient with locally advanced gastric cancer that was treated with chemoimmunotherapy with oxaliplatin + tigio + sintilimab. At 19 days following only one cycle of therapy, the patient developed a left eyelid weakness and difficulty in urinating, as well as diplopia. At 5 days after the symptom of eyelid weakness, a third-degree atrioventricular block occurred. Hormone therapy, a temporary pacemaker and gamma-globulin therapy were administered, and the patient was discharged 1 month later with the resolution of myasthenia gravis and the atrioventricular block. At the final follow-up (1 month after discharge), the patient had a full recovery from myasthenia gravis and arrhythmias. Although some similar cases have been previously reported, the majority of patients with limb weakness and have eventually succumbed; moreover, clinical symptoms were identified at a late stage, and the disease evolution records were not detailed. Therefore, the present study describes the case of the patient and treatment strategy, also providing detailed laboratory indicators and clinical symptom evolution. This was performed with the aim to aid future research and the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Yu Wang
- Department of Oncology, Panjin Central Hospital, Panjin, Liaoning 124000, P.R. China
| | - Zhichang Sun
- Department of Oncology, Panjin Central Hospital, Panjin, Liaoning 124000, P.R. China
| | - Xue Wang
- Department of Oncology, Panjin Central Hospital, Panjin, Liaoning 124000, P.R. China
| | - Funan Liu
- Department of Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 124000, P.R. China
| | - Ying Wu
- Department of Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 124000, P.R. China
| | - Qiaochu Wei
- Department of Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 124000, P.R. China
| | - Shijie Duan
- Department of Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 124000, P.R. China
| |
Collapse
|
10
|
Bloom MW, Vo JB, Rodgers JE, Ferrari AM, Nohria A, Deswal A, Cheng RK, Kittleson MM, Upshaw JN, Palaskas N, Blaes A, Brown SA, Ky B, Lenihan D, Maurer MS, Fadol A, Skurka K, Cambareri C, Chauhan C, Barac A. Cardio-Oncology and Heart Failure: a Scientific Statement From the Heart Failure Society of America. J Card Fail 2024:S1071-9164(24)00363-4. [PMID: 39419165 DOI: 10.1016/j.cardfail.2024.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
Heart failure and cancer remain 2 of the leading causes of morbidity and mortality, and the 2 disease entities are linked in a complex manner. Patients with cancer are at increased risk of cardiovascular complications related to the cancer therapies. The presence of cardiomyopathy or heart failure in a patient with new cancer diagnosis portends a high risk for adverse oncology and cardiovascular outcomes. With the rapid growth of cancer therapies, many of which interfere with cardiovascular homeostasis, heart failure practitioners need to be familiar with prevention, risk stratification, diagnosis, and management strategies in cardio-oncology. This Heart Failure Society of America statement addresses the complexities of heart failure care among patients with active cancer diagnoses and cancer survivors. Risk stratification, monitoring and management of cardiotoxicity are presented across stages A through D heart failure, with focused discussion on heart failure with preserved ejection fraction and special populations, such as survivors of childhood and young-adulthood cancers. We provide an overview of the shared risk factors between cancer and heart failure, highlighting heart failure as a form of cardiotoxicity associated with many different cancer therapeutics. Finally, we discuss disparities in the care of patients with cancer and cardiac disease and present a framework for a multidisciplinary-team approach and critical collaboration among heart failure, oncology, palliative care, pharmacy, and nursing teams in the management of these complex patients.
Collapse
Affiliation(s)
| | - Jacqueline B Vo
- Radiation Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, MD
| | - Jo E Rodgers
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC
| | - Alana M Ferrari
- Division of Hematology/ Oncology, University of Virginia Health, Charlottesville, VA
| | - Anju Nohria
- Cardio-Oncology Program, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA
| | - Anita Deswal
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Richard K Cheng
- Division of Cardiology, University of Washington, Seattle, WA
| | - Michelle M Kittleson
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Nicolas Palaskas
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anne Blaes
- Division of Hematology/Oncology/Transplantation, University of Minnesota, Minneapolis, MN
| | - Sherry-Ann Brown
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI; Research Collaborator, Mayo Clinic, Rochester, MN
| | - Bonnie Ky
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Thalheimer Center for Cardio-Oncology, Abramson Cancer Center and Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel Lenihan
- Saint Francis Healthcare, Cape Girardeau, MO and the International Cardio-Oncology Society, Tampa, FL
| | - Mathew S Maurer
- Division of Cardiology, Columbia University Irving Medical Center, New York, NY
| | | | | | - Christine Cambareri
- Clinical Oncology Pharmacist, Hospital of the University of Pennsylvania, Abramson Cancer Center, Philadelphia, PA
| | | | - Ana Barac
- Department of Cardiology, Inova Schar Heart and Vascular, Inova Schar Cancer, Falls Church, VA
| |
Collapse
|
11
|
Nielsen DL, Juhl CB, Nielsen OH, Chen IM, Herrmann J. Immune Checkpoint Inhibitor-Induced Cardiotoxicity: A Systematic Review and Meta-Analysis. JAMA Oncol 2024; 10:1390-1399. [PMID: 39172480 PMCID: PMC11342217 DOI: 10.1001/jamaoncol.2024.3065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/17/2024] [Indexed: 08/23/2024]
Abstract
Importance Immune checkpoint inhibitors (ICIs) improve outcomes in a wide range of cancers; however, serious adverse effects, including cardiovascular adverse effects (CVAEs), can occur. Objective To determine the incidence of CVAEs and analyze data on the management of myocarditis in patients exposed to ICIs. Data Sources PubMed, Embase, and Cochrane Central Register of Controlled Trials from inception were searched on April 4, 2023. Study Selection Two separate studies were performed. Key inclusion criteria for study 1 were phases 1 to 4 trials involving adults with malignant neoplasms treated with an ICI and toxicity data; for study 2, publications (case reports and retrospective analyses) on clinical manifestations and treatment of patients with ICI-induced CVAEs. Studies with dose escalation or fewer than 11 patients in each group and all case reports, retrospective analyses, letters, reviews, and editorials were excluded from study 1. Studies not published in English were excluded from study 2. Data Extraction and Synthesis The PRISMA guidelines and Cochrane Handbook for Systematic Reviews were followed. Data were extracted independently by 2 researchers. A meta-analysis of the incidence of CVAEs in clinical trials and a systematic review of the evidence for the management of myocarditis were performed. Data were pooled using a random-effects model. Main Outcomes and Measures In study 1, the primary outcome was incidence CVAEs in clinical trials with ICIs and ICI combination therapies. Study 2 examined evidence supporting specific management strategies that may decrease the mortality rate of myocarditis. The primary outcomes were planned before data collection began. Results In study 1, a total of 83 315 unique participants in 589 unique trials were included in the meta-analysis. Incidence of CVAEs induced by anti-programmed cell death 1 and/or programmed cell death ligand 1 was 0.80% (95% CI, 0%-1.66%) in clinical trials, with no differences between the compounds, except for cemiplimab, which was associated with a higher risk of CVAEs. Incidence of CVAEs following ipilimumab treatment was 1.07% (95% CI, 0%-2.58%). The incidence of myocarditis was significantly higher following treatment with dual ICIs. However, CVAE incidence was not higher with dual ICIs, ICI combination with chemotherapy, or tyrosine kinase inhibitors. Evidence from randomized clinical trials on recommended monitoring and treatment strategies for ICI-induced myocarditis was lacking. Study 2 showed that myocarditis-associated mortality occurred in 83 of 220 patients (37.7%). Prospective data from 40 patients with myocarditis indicated that systematic screening for respiratory muscle involvement, coupled with active ventilation, prompt use of abatacept, and the addition of ruxolitinib, may decrease the mortality rate. Conclusions and Relevance Immune checkpoint inhibitor-induced CVAEs and/or myocarditis were recorded in 1.07% of patients in clinical trials. The CVAE mortality risk remains high, justifying the need for monitoring and management strategies for which evidence from randomized clinical trials is absent. Early recognition, ICI therapy cessation, prompt initiation of corticosteroid therapy, and escalation of therapy are all crucial elements for achieving optimal outcomes. Prospective clinical trials or at least prospective registration of treatments and outcomes are highly warranted.
Collapse
Affiliation(s)
- Dorte Lisbet Nielsen
- Department of Oncology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Bogh Juhl
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
- Department of Physiotherapy and Occupational Therapy, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Inna Markovna Chen
- Department of Oncology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
12
|
Chen R, Shi Y, Fang N, Shao C, Huang H, Pan R, Xu Y, Wang M, Liu X, Xu K, Zhu R, Wang M. Bronchoalveolar lavage fluid analysis in patients with checkpoint inhibitor pneumonitis. Cancer Immunol Immunother 2024; 73:235. [PMID: 39271538 PMCID: PMC11399518 DOI: 10.1007/s00262-024-03834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Checkpoint inhibitor pneumonitis (CIP) is a relatively uncommon but potentially life-threatening immune-related adverse event (irAE). Lung biopsies have not been commonly performed for CIP patients. Bronchoalveolar lavage fluid (BALF) analysis is a useful diagnostic approach for interstitial lung disease. However, BALF features were inconsistent across different studies. METHODS We retrospectively reviewed the medical records of 154 patients with pathologically confirmed malignancies and suffering from CIPs between July 2018 and December 2022. Patients who had bronchoalveolar lavage (BAL) data available were enrolled in our study. Patient clinical, laboratory, radiological and follow-up data were reviewed and analyzed. RESULTS The BALF differential cell count and lymphocyte subset analysis were performed for 42 CIP patients. There were 32 males (76.2%). The mean age at diagnosis of CIP was 62.0 ± 10.4 (range: 31-78) years. The median time to onset of CIP was 98.5 days after the start of immunotherapy. There were 18 patients (42.9%) with low-grade CIPs and 24 patients (57.1%) with high-grade CIPs. The mean lymphocyte percentage was 36.7 ± 22.5%. There were 34 (81%) CIP patients with a lymphocytic cellular pattern. The median ratio of CD3+CD4+/CD3+CD8+ lymphocytes was 0.5 (0.3, 1.0). The ratio was less than 1.0 for 31 CIP patients (73.8%). However, there was no significant difference in the BALF features between patients with low-grade CIPs and those with high-grade CIPs. CONCLUSIONS The CD3+CD8+ lymphocytosis pattern was the main inflammatory profile in the BALF of CIP patients in this cohort. Targeting CD3+CD8+ lymphocytes might be a treatment option for CIPs.
Collapse
Affiliation(s)
- Ruxuan Chen
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, #1 Shuaifuyuan Street, Dongcheng District, Beijing, 100730, China
| | - Yujie Shi
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, #1 Shuaifuyuan Street, Dongcheng District, Beijing, 100730, China
| | - Nan Fang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, #1 Xian Nong Tan Street, Beijing, 100050, China
| | - Chi Shao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, #1 Shuaifuyuan Street, Dongcheng District, Beijing, 100730, China
| | - Hui Huang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, #1 Shuaifuyuan Street, Dongcheng District, Beijing, 100730, China.
| | - Ruili Pan
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, #1 Shuaifuyuan Street, Dongcheng District, Beijing, 100730, China
| | - Yan Xu
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, #1 Shuaifuyuan Street, Dongcheng District, Beijing, 100730, China
| | - Mengqi Wang
- Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, #1 Shuaifuyuan Street, Dongcheng District, Beijing, 100730, China
| | - Xiangning Liu
- Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, #1 Shuaifuyuan Street, Dongcheng District, Beijing, 100730, China
| | - Kai Xu
- Department of Radiology, Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, #1 Shuaifuyuan Street, Dongcheng District, PekingBeijing, 100730, China
| | - Rui Zhu
- Department of Medical Records, Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, #1 Shuaifuyuan Street, Dongcheng District, PekingBeijing, 100730, China
| | - Mengzhao Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, #1 Shuaifuyuan Street, Dongcheng District, Beijing, 100730, China
| |
Collapse
|
13
|
Wang Y, Li S, Shi H, Guan X, Wei Q, Chen D. Therapeutic agents for steroid-refractory immune checkpoint inhibitor-related myocarditis: a narrative review. Cardiovasc Diagn Ther 2024; 14:679-697. [PMID: 39263485 PMCID: PMC11384453 DOI: 10.21037/cdt-24-114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/03/2024] [Indexed: 09/13/2024]
Abstract
Background and Objective Immune checkpoint inhibitors (ICIs) have become one of the cornerstones of current oncology treatment, and immune checkpoint inhibitor-related myocarditis (IRM) is the most fatal of all immune checkpoint inhibitor-related adverse events (irAEs). Methylprednisolone pulse therapy (500-1,000 mg/day) is the initial treatment for IRM recommended by almost all relevant guidelines. However, subsequent treatment regimens remain unclear for patients who do not respond to methylprednisolone pulse therapy (who are defined as steroid-refractory patients). We propose a potential treatment approach for steroid-refractory IRM. Methods The PubMed and the Cochrane Library databases were searched using keywords related to IRM. Relevant English-language articles published from January 2000 to February 2024 were included in this narrative review. Key Content and Findings Abatacept is the preferred choice for the treatment of isolated steroid-refractory IRM. For rapidly progressive or interleukin-6 abnormally elevated steroid-refractory IRM, alemtuzumab or tocilizumab/tofacitinib are the preferred therapeutic agents, respectively. For steroid-refractory IRM comorbid with myositis or comorbid with myasthenia gravis, abatacept + ruxolitinib/mycophenolate mofetil (MMF)/intravenous immunoglobulin (IVIG), or MMF + pyridostigmine/IVIG are the preferred therapeutic agents, respectively. Conclusions The pathogenesis of steroid-refractory IRM and the treatment regimen remain unclear. A large number of studies need to be conducted to validate or update our proposed treatment approach.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, China
| | - Shouchao Li
- Department of Manufacturing Laboratory, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - He Shi
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xue Guan
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Wei
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, China
| | - Dazhong Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
14
|
Yang B, Li T, Wang Z, Zhu Y, Niu K, Hu S, Lin Z, Zheng X, Jin X, Shen C. Ruxolitinib-based senomorphic therapy mitigates cardiomyocyte senescence in septic cardiomyopathy by inhibiting the JAK2/STAT3 signaling pathway. Int J Biol Sci 2024; 20:4314-4340. [PMID: 39247818 PMCID: PMC11379065 DOI: 10.7150/ijbs.96489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024] Open
Abstract
Background: Cellular senescence has emerged as a pivotal focus in cardiovascular research. This study investigates the previously unrecognized role of cellular senescence in septic cardiomyopathy (SCM) and evaluates senomorphic therapy using ruxolitinib (Rux) as a potential treatment option. Methods: We employed lipopolysaccharide (LPS)-induced neonatal rat cardiomyocytes (NRCMs) and two mouse models-LPS-induced and cecal ligation and puncture (CLP)-induced SCM models-to assess Rux's effects. RNA sequencing, western blotting (WB), quantitative polymerase chain reaction (qPCR), immunofluorescence, immunohistochemistry, senescence-associated β-galactosidase (SA-β-gal) assay, and other techniques were utilized to investigate underlying mechanisms. Results: Senescence-associated secretory phenotype (SASP) and cellular senescence markers were markedly elevated in LPS-induced NRCMs and SCM animal models, confirmed by the SA-β-gal assay. Rux treatment attenuated SASP in vitro and in vivo, alongside downregulation of senescence markers. Moreover, Rux-based senomorphic therapy mitigated mitochondrial-mediated apoptosis, improved cardiac function in SCM mice, restored the balance of antioxidant system, and reduced reactive oxygen species (ROS) levels. Rux treatment restored mitochondrial membrane potential, mitigated mitochondrial morphological damage, and upregulated mitochondrial complex-related gene expression, thereby enhancing mitochondrial function. Additionally, Rux treatment ameliorated SCM-induced mitochondrial dynamic dysfunction and endoplasmic reticulum stress. Mechanistically, Rux inhibited JAK2-STAT3 signaling activation both in vitro and in vivo. Notably, low-dose Rux and ABT263 showed comparable efficacy in mitigating SCM. Conclusions: This study highlighted the potential significance of cellular senescence in SCM pathogenesis and suggested Rux-based senomorphic therapy as a promising therapeutic approach for SCM.
Collapse
Affiliation(s)
- Boshen Yang
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Taixi Li
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixiang Wang
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuankang Zhu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kaifan Niu
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sien Hu
- Department of Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Zhiqi Lin
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinjie Zheng
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xian Jin
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengxing Shen
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Sutanto H, Safira A, Fetarayani D. From tumor to tolerance: A comprehensive review of immune checkpoint inhibitors and immune-related adverse events. Asia Pac Allergy 2024; 14:124-138. [PMID: 39220570 PMCID: PMC11365684 DOI: 10.5415/apallergy.0000000000000146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/02/2024] [Indexed: 09/04/2024] Open
Abstract
The advent of immune checkpoint inhibitors (ICIs) has revolutionized the treatment landscape for various malignancies by harnessing the body's immune system to target cancer cells. However, their widespread use has unveiled a spectrum of immune-related adverse events, highlighting a critical balance between antitumor immunity and autoimmunity. This review article delves into the molecular immunology of ICIs, mapping the journey from their therapeutic action to the unintended induction of immune-related adverse events. We provide a comprehensive overview of all available ICIs, including cytotoxic T-lymphocyte-associated protein 4, programmed cell death protein 1, programmed death-ligand 1 inhibitors, and emerging targets, discussing their mechanisms of action, clinical applications, and the molecular underpinnings of associated immune-related adverse events. Special attention is given to the activation of autoreactive T cells, B cells, cytokine release, and the inflammatory cascade, which together contribute to the development of immune-related adverse events. Through a molecular lens, we explore the clinical manifestations of immune-related adverse events across organ systems, offering insights into diagnosis, management, and strategies to mitigate these adverse effects. The review underscores the importance of understanding the delicate interplay between enhancing antitumor responses and minimizing immune-related adverse events, aiming to guide future research and the development of next-generation ICIs with improved drug safety profiles.
Collapse
Affiliation(s)
- Henry Sutanto
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Ardea Safira
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Deasy Fetarayani
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
16
|
Munir AZ, Gutierrez A, Qin J, Lichtman AH, Moslehi JJ. Immune-checkpoint inhibitor-mediated myocarditis: CTLA4, PD1 and LAG3 in the heart. Nat Rev Cancer 2024; 24:540-553. [PMID: 38982146 DOI: 10.1038/s41568-024-00715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/11/2024]
Abstract
Immune-checkpoint inhibitors (ICIs) have revolutionized oncology, with nearly 50% of all patients with cancer eligible for treatment with ICIs. However, patients on ICI therapy are at risk for immune-related toxicities that can affect any organ. Inflammation of the heart muscle, known as myocarditis, resulting from ICI targeting cytotoxic T lymphocyte-associated antigen 4 (CTLA4), programmed cell death protein 1 (PD1) and PD1 ligand 1 (PDL1) is an infrequent but potentially fatal complication. ICI-mediated myocarditis (ICI-myocarditis) is a growing clinical entity given the widespread use of ICIs, its increased clinical recognition and growing use of combination ICI treatment, a well-documented risk factor for ICI-myocarditis. In this Review, we approach ICI-myocarditis from a basic and mechanistic perspective, synthesizing the recent data from both preclinical models and patient samples. We posit that mechanistic understanding of the fundamental biology of immune-checkpoint molecules may yield new insights into disease processes, which will enable improvement in diagnostic and therapeutic approaches. The syndrome of ICI-myocarditis is novel, and our understanding of immune checkpoints in the heart is in its nascency. Yet, investigations into the pathophysiology will inform better patient risk stratification, improved diagnostics and precision-based therapies for patients.
Collapse
Affiliation(s)
- Amir Z Munir
- Section of Cardio-Oncology & Immunology, Cardiovascular Research Institute (CVRI), University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Alan Gutierrez
- Section of Cardio-Oncology & Immunology, Cardiovascular Research Institute (CVRI), University of California San Francisco, School of Medicine, San Francisco, CA, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Juan Qin
- Section of Cardio-Oncology & Immunology, Cardiovascular Research Institute (CVRI), University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Andrew H Lichtman
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Javid J Moslehi
- Section of Cardio-Oncology & Immunology, Cardiovascular Research Institute (CVRI), University of California San Francisco, School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
17
|
Yi C, Yang J, Zhang T, Xie Z, Xiong Q, Chen D, Jiang S. lncRNA signature mediates mitochondrial permeability transition-driven necrosis in regulating the tumor immune microenvironment of cervical cancer. Sci Rep 2024; 14:17406. [PMID: 39075098 PMCID: PMC11286791 DOI: 10.1038/s41598-024-65990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Mitochondrial permeability transition (MPT)-driven necrosis (MPTDN) was a regulated variant of cell death triggered by specific stimuli. It played a crucial role in the development of organisms and the pathogenesis of diseases, and may provide new strategies for treating various diseases. However, there was limited research on the mechanisms of MPTDN in cervical cancer (CESC) at present. In this study, Weighted Gene Co-expression Network Analysis (WGCNA) was performed on differentially expressed genes in CESC. The module MEyellow, which showed the highest correlation with the phenotype, was selected for in-depth analysis. It was found that the genes in the MEyellow module may be associated with the tumor immune microenvironment (TIME). Through COX univariate regression and LASSO regression analysis, 6 key genes were identified. These genes were further investigated from multiple perspectives, including their independent diagnostic value, prognostic value, specific regulatory mechanisms in the tumor immune microenvironment, drug sensitivity analysis, and somatic mutation analysis. This study provided a comprehensive exploration of the mechanisms of action of these 6 key genes in CESC patients. And qRT-PCR validation was also conducted. Through COX univariate regression and LASSO coefficient screening of the MEyellow module, 6 key genes were identified: CHRM3-AS2, AC096734.1, BISPR, LINC02446, LINC00944, and DGUOK-AS1. Evaluation of the independent diagnostic value of these 6 key genes revealed that they can serve as independent diagnostic biomarkers. Through correlation analysis among these 6 genes, a potential regulatory mechanism among them was identified. Therefore, a risk prognostic model was established based on the collective action of these 6 genes, and the model showed good performance in predicting the survival period of CESC patients. By studying the relationship between these 6 key genes and the tumor microenvironment of CESC patients from multiple angles, it was found that these 6 genes are key regulatory factors in the tumor immune microenvironment of CESC patients. Additionally, 16 drugs that are associated with these 6 key genes were identified, and 8 small molecule drugs were predicted based on the lncRNA-mRNA network. The 6 key genes can serve as independent biomarkers for diagnosis, and the Risk score of these genes when acting together can be used as an indicator for predicting the clinical survival period of CESC patients. Additionally, these 6 key genes were closely related to the tumor immune microenvironment of CESC patients and were the important regulatory factors in the tumor immune microenvironment of CESC patients.
Collapse
Affiliation(s)
- Chen Yi
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China
| | - Jun Yang
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China
| | - Ting Zhang
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China
| | - Zilu Xie
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China
| | - Qiliang Xiong
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China
| | - Dongjuan Chen
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China.
| | - Shaofeng Jiang
- Department of Biomedical Engineering, Nanchang Hang Kong University, Nanchang, 330063, Jiangxi, China.
| |
Collapse
|
18
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
19
|
Gergely TG, Drobni ZD, Kallikourdis M, Zhu H, Meijers WC, Neilan TG, Rassaf T, Ferdinandy P, Varga ZV. Immune checkpoints in cardiac physiology and pathology: therapeutic targets for heart failure. Nat Rev Cardiol 2024; 21:443-462. [PMID: 38279046 DOI: 10.1038/s41569-023-00986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
Immune checkpoint molecules are physiological regulators of the adaptive immune response. Immune checkpoint inhibitors (ICIs), such as monoclonal antibodies targeting programmed cell death protein 1 or cytotoxic T lymphocyte-associated protein 4, have revolutionized cancer treatment and their clinical use is increasing. However, ICIs can cause various immune-related adverse events, including acute and chronic cardiotoxicity. Of these cardiovascular complications, ICI-induced acute fulminant myocarditis is the most studied, although emerging clinical and preclinical data are uncovering the importance of other ICI-related chronic cardiovascular complications, such as accelerated atherosclerosis and non-myocarditis-related heart failure. These complications could be more difficult to diagnose, given that they might only be present alongside other comorbidities. The occurrence of these complications suggests a potential role of immune checkpoint molecules in maintaining cardiovascular homeostasis, and disruption of physiological immune checkpoint signalling might thus lead to cardiac pathologies, including heart failure. Although inflammation is a long-known contributor to the development of heart failure, the therapeutic targeting of pro-inflammatory pathways has not been successful thus far. The increasingly recognized role of immune checkpoint molecules in the failing heart highlights their potential use as immunotherapeutic targets for heart failure. In this Review, we summarize the available data on ICI-induced cardiac dysfunction and heart failure, and discuss how immune checkpoint signalling is altered in the failing heart. Furthermore, we describe how pharmacological targeting of immune checkpoints could be used to treat heart failure.
Collapse
Affiliation(s)
- Tamás G Gergely
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Zsófia D Drobni
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marinos Kallikourdis
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Adaptive Immunity Lab, Humanitas Research Hospital IRCCS, Milan, Italy
| | - Han Zhu
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wouter C Meijers
- Erasmus MC, Cardiovascular Institute, Thorax Center, Department of Cardiology, Rotterdam, The Netherlands
| | - Tomas G Neilan
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, Medical Faculty, University Hospital Essen, Essen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary.
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary.
| |
Collapse
|
20
|
Chen YH, Kovács T, Ferdinandy P, Varga ZV. Treatment options for immune-related adverse events associated with immune checkpoint inhibitors. Br J Pharmacol 2024. [PMID: 38803135 DOI: 10.1111/bph.16405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/14/2024] [Accepted: 03/09/2024] [Indexed: 05/29/2024] Open
Abstract
The immunotherapy revolution with the use of immune checkpoint inhibitors (ICIs) started with the clinical use of the first ICI, ipilimumab, in 2011. Since then, the field of ICI therapy has rapidly expanded - with the FDA approval of 10 different ICI drugs so far and their incorporation into the therapeutic regimens of a range of malignancies. While ICIs have shown high anti-cancer efficacy, they also have characteristic side effects, termed immune-related adverse events (irAEs). These side effects hinder the therapeutic potential of ICIs and, therefore, finding ways to prevent and treat them is of paramount importance. The current protocols to manage irAEs follow an empirical route of steroid administration and, in more severe cases, ICI withdrawal. However, this approach is not optimal in many cases, as there are often steroid-refractory irAEs, and there is a potential for corticosteroid use to promote tumour progression. This review surveys the current alternative approaches to the treatments for irAEs, with the goal of summarizing and highlighting the best attempts to treat irAEs, without compromising anti-tumour immunity and allowing for rechallenge with ICIs after resolution of the irAEs.
Collapse
Affiliation(s)
- Yu Hua Chen
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Tamás Kovács
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Semmelweis University, Budapest, Hungary
| |
Collapse
|
21
|
Heemelaar JC, Louisa M, Neilan TG. Treatment of Immune Checkpoint Inhibitor-associated Myocarditis. J Cardiovasc Pharmacol 2024; 83:384-391. [PMID: 37506676 PMCID: PMC10830893 DOI: 10.1097/fjc.0000000000001456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
ABSTRACT Immune checkpoint inhibitors (ICIs) are a form immunotherapy where the negative regulators of host immunity are targeted, thereby leveraging the own immune system. ICIs have significantly improved cancer survival in several advanced malignancies, and there are currently more than 90 different cancer indications for ICIs. Most patients develop immune-related adverse events during ICI therapy. Most are mild, but a small subset of patients will develop severe and potentially fatal immune-related adverse events. A serious cardiovascular complication of ICI therapy is myocarditis. Although the incidence of myocarditis is low, mortality rates of up to 50% have been reported. The mainstay of ICI-associated myocarditis treatment is high-dose corticosteroids. Unfortunately, half of patients with myocarditis do not show clinical improvement after corticosteroid treatment. Also, high doses of corticosteroids may adversely impact cancer outcomes. There is an evidence gap in the optimal second-line treatment strategy. Currently, there is a paradigm shift in second-line treatment taking place from empirical corticosteroid-only strategies to either intensified initial immunosuppression where corticosteroids are combined with another immunosuppressant or targeted therapies directed at the pathophysiology of ICI myocarditis. However, the available evidence to support these novel strategies is limited to observational studies and case reports. The aim of this review is to summarize the literature, guidelines, and future directions on the pharmacological treatment of ICI myocarditis.
Collapse
Affiliation(s)
- Julius C Heemelaar
- Cardiovascular Imaging Research Center (CIRC), Department of Cardiology and Radiology, Massachusetts General Hospital, Boston, MA; and
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Louisa
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tomas G Neilan
- Cardiovascular Imaging Research Center (CIRC), Department of Cardiology and Radiology, Massachusetts General Hospital, Boston, MA; and
| |
Collapse
|
22
|
Byer SH, Stewart C, Mansour S, Grewal US. Novel use of abatacept and ruxolitinib as salvage therapy in steroid-refractory immune checkpoint blockade-induced myocarditis with myasthenia and myositis overlap syndrome. Eur J Cancer 2024; 202:114027. [PMID: 38507971 DOI: 10.1016/j.ejca.2024.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Affiliation(s)
- Stefano H Byer
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Colten Stewart
- Division of Cardiology, Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Shareef Mansour
- Division of Cardiology, Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Udhayvir S Grewal
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Department of Internal Medicine, University of Iowa Hospitals, Iowa City, IA, United States.
| |
Collapse
|
23
|
de Jesus M, Chanda A, Grabauskas T, Kumar M, Kim AS. Cardiovascular disease and lung cancer. Front Oncol 2024; 14:1258991. [PMID: 38410099 PMCID: PMC10896114 DOI: 10.3389/fonc.2024.1258991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024] Open
Abstract
Lung cancer is the second most common cancer worldwide and the leading cause of cancer-related death. While survival rates have improved with advancements in cancer therapeutics, additional health challenges have surfaced. Cardiovascular disease (CVD) is a leading cause of morbidity and mortality in patients with lung cancer. CVD and lung cancer share many risk factors, such as smoking, hypertension, diabetes, advanced age, and obesity. Optimal management of this patient population requires a full understanding of the potential cardiovascular (CV) complications of lung cancer treatment. This review outlines the common shared risk factors, the spectrum of cardiotoxicities associated with lung cancer therapeutics, and prevention and management of short- and long-term CVD in patients with non-small cell (NSCLC) and small cell (SCLC) lung cancer. Due to the medical complexity of these patients, multidisciplinary collaborative care among oncologists, cardiologists, primary care physicians, and other providers is essential.
Collapse
Affiliation(s)
- Mikhail de Jesus
- Department of Cardiology, University of Connecticut Hartford Hospital, Hartford, CT, United States
| | - Anindita Chanda
- Department of Internal Medicine, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Titas Grabauskas
- University of Connecticut School of Medicine, Farmington, CT, United States
| | - Manish Kumar
- Department of Cardiology, Pat & Jim Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Agnes S Kim
- Department of Cardiology, Pat & Jim Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|
24
|
Fu S, Guo Z, Xu X, Li Y, Choi S, Zhao P, Shen W, Gao F, Wang C, Chen S, Li Y, Tian J, Sun P. Protective effect of low-intensity pulsed ultrasound on immune checkpoint inhibitor-related myocarditis via fine-tuning CD4 + T-cell differentiation. Cancer Immunol Immunother 2024; 73:15. [PMID: 38236243 PMCID: PMC10796578 DOI: 10.1007/s00262-023-03590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE Immune checkpoint inhibitors (ICIs) have transformed traditional cancer treatments. Specifically, ICI-related myocarditis is an immune-related adverse event (irAE) with high mortality. ICIs activate CD4+ T-lymphocyte reprogramming, causing an imbalance between Th17 and Treg cell differentiation, ultimately leading to myocardial inflammatory damage. Low-intensity pulsed ultrasound (LIPUS) can limit inflammatory responses, with positive therapeutic effects across various cardiovascular inflammatory diseases; however, its role in the pathogenesis of ICI-related myocarditis and CD4+ T-cell dysfunction remains unclear. Accordingly, this study investigated whether LIPUS can alleviate ICI-related myocarditis inflammatory damage and, if so, aimed to elucidate the beneficial effects of LIPUS and its underlying molecular mechanisms. METHODS An in vivo model of ICI-related myocarditis was obtained by intraperitonially injecting male A/J mice with an InVivoPlus anti-mouse PD-1 inhibitor. LIPUS treatment was performed via an ultrasound-guided application to the heart via the chest wall. The echocardiographic parameters were observed and cardiac function was assessed using an in vivo imaging system. The expression of core components of the HIPPO pathway was analyzed via western blotting. RESULTS LIPUS treatment reduced cardiac immune responses and inflammatory cardiac injury. Further, LIPUS treatment alleviated the inflammatory response in mice with ICI-related myocarditis. Mechanistically, in the HIPPO pathway, the activation of Mst1-TAZ axis improved autoimmune inflammation by altering the interaction between the transcription factors FOXP3 and RORγt and regulating the differentiation of Treg and Th17 cells. CONCLUSION LIPUS therapy was shown to reduce ICI-related myocarditis inflammatory damage and improve cardiac function, representing an exciting finding for irAEs treatment.
Collapse
Affiliation(s)
- Shuai Fu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Zihong Guo
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
| | - Xiangli Xu
- Department of Ultrasound, The Second Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Yifei Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Stephen Choi
- SXULTRASONIC Ltd. Kerry Rehabilitation Medicine Research Institute, Shenzhen, Guangdong Province, China
| | - Peng Zhao
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Wenqian Shen
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fei Gao
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Chao Wang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Shuang Chen
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - You Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Jiawei Tian
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Ping Sun
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin, Heilongjiang Province, China.
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China.
| |
Collapse
|
25
|
Huang H, Chen R, Xu Y, Fang N, Shao C, Xu K, Wang M. The Clinical Analysis of Checkpoint Inhibitor Pneumonitis with Different Severities in Lung Cancer Patients: A Retrospective Study. J Clin Med 2024; 13:255. [PMID: 38202262 PMCID: PMC10779509 DOI: 10.3390/jcm13010255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Immune-related adverse events (irAEs) of immunotherapy would lead to the temporary or permanent discontinuation of immune checkpoint inhibitors (ICIs). Among them, checkpoint inhibitor pneumonitis (CIP) is a potentially life-threatening irAE. This study aimed to identify the differences between patients with low-grade CIPs (grades 1-2) and high-grade CIPs (grades 3-5) and to explore the prognostic factors. We retrospectively reviewed the medical records of 916 lung cancer patients who were treated with ICIs. Patients with CIPs were identified after multidisciplinary discussion, and their clinical, laboratory, radiological, and follow-up data were analyzed. Among the 74 enrolled CIP patients, there were 31 low-grade CIPs and 43 high-grade CIPs. Compared with low-grade CIP patients, patients with high-grade CIPs were older (65.8 years vs. 61.5 years) and had lower serum albumin (35.2 g/L vs. 37.9 g/L), higher D-dimer (5.1 mg/L vs. 1.7 mg/L), and more pulmonary infectious diseases (32.6% vs. 6.5%) during follow-up. In addition, complication with pulmonary infectious diseases, management with intravenous immunoglobulin, tocilizumab, and longer duration of large dosage corticosteroids might be associated with worse outcomes for patients with CIPs. This study highlights potential risk factors for high-grade CIP and poor prognosis among lung cancer patients who were treated with anti-cancer ICIs.
Collapse
Affiliation(s)
- Hui Huang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (H.H.); (R.C.)
| | - Ruxuan Chen
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (H.H.); (R.C.)
| | - Yan Xu
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (H.H.); (R.C.)
| | - Nan Fang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chi Shao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (H.H.); (R.C.)
| | - Kai Xu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mengzhao Wang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (H.H.); (R.C.)
| |
Collapse
|
26
|
Fenioux C, Abbar B, Boussouar S, Bretagne M, Power JR, Moslehi JJ, Gougis P, Amelin D, Dechartres A, Lehmann LH, Courand PY, Cautela J, Alexandre J, Procureur A, Rozes A, Leonard-Louis S, Qin J, Cheynier R, Charmeteau-De Muylder B, Redheuil A, Tubach F, Cadranel J, Milon A, Ederhy S, Similowski T, Johnson DB, Pizzo I, Catalan T, Benveniste O, Hayek SS, Allenbach Y, Rosenzwajg M, Dolladille C, Salem JE. Thymus alterations and susceptibility to immune checkpoint inhibitor myocarditis. Nat Med 2023; 29:3100-3110. [PMID: 37884625 DOI: 10.1038/s41591-023-02591-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023]
Abstract
Immune checkpoint inhibitors (ICI) have transformed the therapeutic landscape in oncology. However, ICI can induce uncommon life-threatening autoimmune T-cell-mediated myotoxicities, including myocarditis and myositis. The thymus plays a critical role in T cell maturation. Here we demonstrate that thymic alterations are associated with increased incidence and severity of ICI myotoxicities. First, using the international pharmacovigilance database VigiBase, the Assistance Publique Hôpitaux de Paris-Sorbonne University data warehouse (Paris, France) and a meta-analysis of clinical trials, we show that ICI treatment of thymic epithelial tumors (TET, and particularly thymoma) was more frequently associated with ICI myotoxicities than other ICI-treated cancers. Second, in an international ICI myocarditis registry, we established that myocarditis occurred earlier after ICI initiation in patients with TET (including active or prior history of TET) compared to other cancers and was more severe in terms of life-threatening arrythmias and concurrent myositis, leading to respiratory muscle failure and death. Lastly, we show that presence of anti-acetylcholine-receptor antibodies (a biological proxy of thymic-associated autoimmunity) was more prevalent in patients with ICI myocarditis than in ICI-treated control patients. Altogether, our results highlight that thymic alterations are associated with incidence and seriousness of ICI myotoxicities. Clinico-radio-biological workup evaluating the thymus may help in predicting ICI myotoxicities.
Collapse
Affiliation(s)
- Charlotte Fenioux
- Sorbonne Université, INSERM, CIC-1901 Paris-Est, Assistance Publique - Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Pharmacology, Paris, France
- Hôpitaux de Paris, Henri Mondor Hospital, Department of Oncology, Créteil, France
| | - Baptiste Abbar
- Sorbonne Université, INSERM, CIC-1901 Paris-Est, Assistance Publique - Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Pharmacology, Paris, France
- Hôpitaux de Paris, Pitié Salpêtrière Hospital, Department of Oncology, Paris, France
| | - Samia Boussouar
- Hôpitaux de Paris, Pitié Salpêtrière Hospital, Department of Radiology, Paris, France
| | - Marie Bretagne
- Sorbonne Université, INSERM, CIC-1901 Paris-Est, Assistance Publique - Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Pharmacology, Paris, France
| | - John R Power
- Department of Medecine, University of California, San Diego, San Diego, CA, USA
| | - Javid J Moslehi
- Department of Medecine, University of California, San Francisco, San Francisco, CA, USA
| | - Paul Gougis
- Sorbonne Université, INSERM, CIC-1901 Paris-Est, Assistance Publique - Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Pharmacology, Paris, France
| | - Damien Amelin
- Sorbonne Université, INSERM, Association Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Agnès Dechartres
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Département de Santé Publique, Centre de Pharmacoépidémiologie (Cephepi), Unité de Recherche Clinique PSL-CFX, CIC-1901, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Lorenz H Lehmann
- Department of Cardiology, University Hospital Heidelberg; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pierre-Yves Courand
- Fédération de Cardiologie, IMMUCARE, Hôpital de La Croix-Rousse Et Hôpital Lyon Sud, Hospices Civils de Lyon; Université de Lyon, CREATIS UMR INSERM U1044, INSA, Lyon, France
| | - Jennifer Cautela
- Aix-Marseille University, University Mediterranean Center of Cardio-Oncology, Unit of Heart Failure and Valvular Heart Diseases, Center for Cardiovascular and Nutrition Research, INSERM 1263, INRAE 1260, Nord Hospital, Assistance Publique-Hôpitaux de Marseille, Paris, France
| | - Joachim Alexandre
- CHU de Caen Normandie, Department of Pharmacology, Pharmacoepidemiology Unit; Normandie Université, UNICAEN, INSERM U1086 ANTICIPE Centre François Baclesse, Caen, France
| | - Adrien Procureur
- Sorbonne Université, INSERM, CIC-1901 Paris-Est, Assistance Publique - Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Pharmacology, Paris, France
| | - Antoine Rozes
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Département de Santé Publique, Centre de Pharmacoépidémiologie (Cephepi), Unité de Recherche Clinique PSL-CFX, CIC-1901, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Sarah Leonard-Louis
- Hôpitaux de Paris, Pitié Salpêtrière Hospital, Laboratoire de Neuropathologie, Paris, France
| | - Juan Qin
- Department of Medecine, University of California, San Francisco, San Francisco, CA, USA
| | - Rémi Cheynier
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | | | - Alban Redheuil
- Hôpitaux de Paris, Pitié Salpêtrière Hospital, Department of Radiology, Paris, France
| | - Florence Tubach
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Département de Santé Publique, Centre de Pharmacoépidémiologie (Cephepi), Unité de Recherche Clinique PSL-CFX, CIC-1901, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Jacques Cadranel
- Hôpitaux de Paris, Tenon Hospital, Department of Pulmonology and Thoracic Oncology and GRC Theranoscan Sorbonne University, Paris, France
| | - Audrey Milon
- Hôpitaux de Paris, Tenon Hospital, Department of Radiology, Paris, France
| | - Stéphane Ederhy
- Hôpitaux de Paris, Saint-Antoine Hospital, Department of Cardiology, Paris, France
| | - Thomas Similowski
- Sorbonne Université, INSERM, UMRS 1158 Neurophysiologie respiratoire expérimentale et clinique'; Assistance Publique -Hôpitaux de Paris, Pitié-Salpêtrière Hospital, 'Département R3S', Paris, France
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ian Pizzo
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Toniemarie Catalan
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Olivier Benveniste
- Department of Internal Medicine, Sorbonne University, AP-HP, INSERM UMRS 974, Pitié-Salpêtrière Hospital, Paris, France
| | - Salim S Hayek
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Yves Allenbach
- Department of Internal Medicine, Sorbonne University, AP-HP, INSERM UMRS 974, Pitié-Salpêtrière Hospital, Paris, France
| | - Michelle Rosenzwajg
- Hôpitaux de Paris, Pitié Salpêtrière Hospital, Department of Immunology, Paris, France
| | - Charles Dolladille
- Sorbonne Université, INSERM, CIC-1901 Paris-Est, Assistance Publique - Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Pharmacology, Paris, France
| | - Joe-Elie Salem
- Sorbonne Université, INSERM, CIC-1901 Paris-Est, Assistance Publique - Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Pharmacology, Paris, France.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
27
|
Raschi E, Rossi S, De Giglio A, Fusaroli M, Burgazzi F, Rinaldi R, Potena L. Cardiovascular Toxicity of Immune Checkpoint Inhibitors: A Guide for Clinicians. Drug Saf 2023; 46:819-833. [PMID: 37341925 PMCID: PMC10442274 DOI: 10.1007/s40264-023-01320-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/22/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment and care of patients with cancer owing to unique features, including the occurrence of the so-called immune-related adverse events (irAEs). A multidisciplinary team, possibly including a cardio-oncology specialist, is warranted to achieve a favorable patient outcome. Cardiovascular toxicity, especially myocarditis, emerged as a life-threatening irAE in the real-word setting, and the European Society of Cardiology has recently published the first guideline on cardio-oncology to increase awareness and promote a standardized approach to tackle this complex multimodal issue, including diagnostic challenges, assessment, treatment, and surveillance of patients with cancer receiving ICIs. In this article, through a question & answer format made up of case vignettes, we offer a clinically oriented overview on the latest advancements of ICI-related cardiovascular toxicity, focusing on myocarditis and associated irAEs (myositis and myasthenia gravis within the so-called overlap syndrome), with the purpose of assisting clinicians and healthcare professionals in daily clinical practice.
Collapse
Affiliation(s)
- Emanuel Raschi
- Pharmacology Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy.
| | - Simone Rossi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Andrea De Giglio
- Pharmacology Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michele Fusaroli
- Pharmacology Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Flavio Burgazzi
- Pharmacology Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Rita Rinaldi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Luciano Potena
- Unit of Heart Failure and Transplantation, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
28
|
He W, Zhou L, Xu K, Li H, Wang JJ, Chen C, Wang D. Immunopathogenesis and immunomodulatory therapy for myocarditis. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2112-2137. [PMID: 37002488 PMCID: PMC10066028 DOI: 10.1007/s11427-022-2273-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/16/2023] [Indexed: 04/03/2023]
Abstract
Myocarditis is an inflammatory cardiac disease characterized by the destruction of myocardial cells, infiltration of interstitial inflammatory cells, and fibrosis, and is becoming a major public health concern. The aetiology of myocarditis continues to broaden as new pathogens and drugs emerge. The relationship between immune checkpoint inhibitors, severe acute respiratory syndrome coronavirus 2, vaccines against coronavirus disease-2019, and myocarditis has attracted increased attention. Immunopathological processes play an important role in the different phases of myocarditis, affecting disease occurrence, development, and prognosis. Excessive immune activation can induce severe myocardial injury and lead to fulminant myocarditis, whereas chronic inflammation can lead to cardiac remodelling and inflammatory dilated cardiomyopathy. The use of immunosuppressive treatments, particularly cytotoxic agents, for myocarditis, remains controversial. While reasonable and effective immunomodulatory therapy is the general trend. This review focuses on the current understanding of the aetiology and immunopathogenesis of myocarditis and offers new perspectives on immunomodulatory therapies.
Collapse
Affiliation(s)
- Wu He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ling Zhou
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ke Xu
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Huihui Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - James Jiqi Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - DaoWen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
29
|
Blum SM, Rouhani SJ, Sullivan RJ. Effects of immune-related adverse events (irAEs) and their treatment on antitumor immune responses. Immunol Rev 2023; 318:167-178. [PMID: 37578634 DOI: 10.1111/imr.13262] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023]
Abstract
Immune checkpoint inhibitors (ICIs) are potentially life-saving cancer therapies that can trigger immune-related adverse events (irAEs). irAEs can impact any organ and range in their presentation from mild side effects to life-threatening complications. The relationship between irAEs and antitumor immune responses is nuanced and may depend on the irAE organ, the tumor histology, and the patient. While some irAEs likely represent an immune response against antigens shared between tumor cells and healthy tissues, other irAEs may be entirely unrelated to antitumor immune responses. Clinical observations suggest that low-grade irAEs have a positive association with responses to ICIs, but the correlation between severe irAEs and clinical benefit is less clear. Currently, severe irAEs are typically treated by interrupting or permanently discontinuing ICI treatment and administering empirically selected systemic immunosuppressive agents. However, these interventions could potentially diminish the antitumor effects of ICIs. Efforts to understand the mechanistic relationship between irAEs and the tumor microenvironment have yielded meaningful insights and nominated therapeutic targets for irAE management that may preserve or even boost ICI efficacy. We explore the clinical and molecular relationship between irAEs and antitumor immunity as well as the role that irAE treatments may play in shaping antitumor immune responses.
Collapse
Affiliation(s)
- Steven M Blum
- Massachusetts General Hospital, Cancer Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sherin J Rouhani
- Massachusetts General Hospital, Cancer Center, Boston, Massachusetts, USA
| | - Ryan J Sullivan
- Massachusetts General Hospital, Cancer Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Gong J, Neilan TG, Zlotoff DA. Mediators and mechanisms of immune checkpoint inhibitor-associated myocarditis: Insights from mouse and human. Immunol Rev 2023; 318:70-80. [PMID: 37449556 PMCID: PMC10528547 DOI: 10.1111/imr.13240] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
The broad application of immune checkpoint inhibitors (ICIs) has led to significant gains in cancer outcomes. By abrogating inhibitory signals, ICIs promote T cell targeting of cancer cells but can frequently trigger autoimmune manifestations, termed immune-related adverse events (irAEs), affecting essentially any organ system. Among cardiovascular irAEs, immune-related myocarditis (irMyocarditis) is the most described and carries the highest morbidity. The currently recommended treatment for irMyocarditis is potent immunosuppression with corticosteroids and other agents, but this has limited evidence basis. The cellular pathophysiology of irMyocarditis remains poorly understood, though mouse models and human data have both implicated effector CD8+ T cells, some of which are specific for the cardiomyocyte protein α-myosin. While the driving molecular signals and transcriptional programs are not well defined, the involvement of chemokine receptors such as CCR5 and CXCR3 has been proposed. Fundamental questions regarding why only approximately 1% of ICI recipients develop irMyocarditis and why irMyocarditis carries a much worse prognosis than other forms of lymphocytic myocarditis remain unanswered. Further work in both murine systems and with human samples are needed to identify better tools for diagnosis, risk-stratification, and treatment.
Collapse
Affiliation(s)
- Jingyi Gong
- Cardio-Oncology Program, Division of Cardiology, Massachusetts General Hospital, Boston, MA
| | - Tomas G. Neilan
- Cardio-Oncology Program, Division of Cardiology, Massachusetts General Hospital, Boston, MA
- Cardiovascular Imaging Research Center, Department of Radiology and Division of Cardiology, Massachusetts General Hospital, Boston, MA
| | - Daniel A. Zlotoff
- Cardio-Oncology Program, Division of Cardiology, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
31
|
Fahey CC, Gracie TJ, Johnson DB. Immune checkpoint inhibitors: maximizing benefit whilst minimizing toxicity. Expert Rev Anticancer Ther 2023; 23:673-683. [PMID: 37194222 PMCID: PMC10330517 DOI: 10.1080/14737140.2023.2215435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/15/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION The advent of immunotherapy has revolutionized the treatment of cancer; anti-tumor efficacy has been observed with immune checkpoint inhibitors (ICI) in ~20 different cancer types with durable responses in some cases. However, the risk of toxicity in the form of immune-related adverse events (irAE) partially counterbalances these benefits, and there are no FDA-approved biomarkers to categorize patients by likelihood of response or risk of irAEs. AREAS COVERED We conducted a thorough review of the literature of clinical studies regarding ICI and their toxicities. In this review, we synthesize the current body of literature about ICI treatment and irAE by summarizing the classes and uses of ICI, how to identify patients at risk for irAE, present the current understanding of irAE development, describe ongoing research into biomarkers of irAE, examine opportunities for irAE prevention, described management of steroid refractory irAE, and highlight future directions for development of prevention and management strategies. EXPERT OPINION While ongoing biomarker studies are promising, it is unlikely that there will be a 'one-size-fits-all' approach to categorizing irAE risk. In contrast, improved management and irAE prophylaxis are potentially in reach, and ongoing trials will help elucidate best practices.
Collapse
|
32
|
Giovannini E, Bonasoni MP, D'Aleo M, Tamagnini I, Tudini M, Fais P, Pelotti S. Pembrolizumab-Induced Fatal Myasthenia, Myocarditis, and Myositis in a Patient with Metastatic Melanoma: Autopsy, Histological, and Immunohistochemical Findings-A Case Report and Literature Review. Int J Mol Sci 2023; 24:10919. [PMID: 37446095 DOI: 10.3390/ijms241310919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) represent a major advance in cancer treatment. The lowered immune tolerance induced by ICIs brought to light a series of immune-related adverse events (irAEs). Pembrolizumab belongs to the ICI class and is a humanized IgG4 anti-PD-1 antibody that blocks the interaction between PD-1 and PD-L1. The ICI-related irAEs involving various organ systems and myocarditis are uncommon (incidence of 0.04% to 1.14%), but they are associated with a high reported mortality. Unlike idiopathic inflammatory myositis, ICI-related myositis has been reported to frequently co-occur with myocarditis. The triad of myasthenia, myositis, and myocarditis must not be underestimated as they can rapidly deteriorate, leading to death. Herein we report a case of a patient with metastatic melanoma who fatally developed myasthenia gravis, myocarditis, and myositis, after a single cycle of pembrolizumab. Considering evidence from the literature review, autopsy, histological, and immunohistochemical investigations on heart and skeletal muscle are presented and discussed, also from a medical-legal perspective.
Collapse
Affiliation(s)
- Elena Giovannini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Michele D'Aleo
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Ione Tamagnini
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Matteo Tudini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Paolo Fais
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Susi Pelotti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| |
Collapse
|
33
|
Wu Y, Xu Y, Xu L. Drug therapy for myocarditis induced by immune checkpoint inhibitors. Front Pharmacol 2023; 14:1161243. [PMID: 37305530 PMCID: PMC10248045 DOI: 10.3389/fphar.2023.1161243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/05/2023] [Indexed: 06/13/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs), including cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed cell death 1 (PD-1), and its ligand 1 (PD-L1), have improved the survival in multiple types of cancers; however, ICIs may cause cardiovascular toxicity. Although rare, ICI-mediated cardiotoxicity is an extremely serious complication with a relatively high mortality. In this review, we discuss the underlying mechanism and clinical manifestations of cardiovascular toxicity induced by ICIs. According to previous studies, multiple signaling pathways are involved in myocarditis induced by ICIs. Further, we summarize the clinical trials of drugs for the treatment of ICI-associated myocarditis. Although these drugs have shown the beneficial effects of alleviating cardiac function and reducing mortality rates, their efficacy is not optimal. Finally, we discuss the therapeutic potential of some novel compounds as well as the underlying mechanisms of their action.
Collapse
Affiliation(s)
- Yihao Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
34
|
Wang C, Zhong B, He J, Liao X. Immune checkpoint inhibitor sintilimab-induced lethal myocarditis overlapping with myasthenia gravis in thymoma patient: A case report. Medicine (Baltimore) 2023; 102:e33550. [PMID: 37058040 PMCID: PMC10101245 DOI: 10.1097/md.0000000000033550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023] Open
Abstract
RATIONALE Immune checkpoint inhibitors have been extensively used and significantly improved the clinical outcomes in multiple types of cancer. But the immune-related adverse events occur frequently, particularly in thymoma. The cardiac immune-related adverse, which is relatively rare but fatal, have been increasing reported. PATIENT CONCERNS A 45-year-old thymoma patient was admitted to our hospital after receiving anti-programmed cell death-1 treatment with sintilimab 14 days later, accompanied by abdominal pain, intermittent chest tightness and dizziness. DIAGNOSES The laboratory tests revealed elevated serum troponin I. Electrocardiogram reported the prolongation of QTc interval. Echocardiography showed small amount of pericardial effusion, a left ventricular ejection fraction of 71%. Coronary artery computed tomography angiography revealed localized noncalcified plaque in the middle of the left anterior descending artery and mild stenosis of the lumen. Enhanced computed tomography scanning of the whole abdomen showed no abnormal signs in the parenchyma organs. Combining the results of the examinations, the Immune checkpoint inhibitor induced myocarditis was diagnosed. INTERVENTIONS The patient was treated with glucocorticoids (120 mg/day, IV, methylprednisolone) within 24 hours of admission. Seven days later, the patient experienced tachy ventricular arrhythmia and cardiogenic shock and was transferred to intensive care unit after electrical cardioversion, tracheal intubation and cardiopulmonary resuscitation. Intravenous immunoglobulin therapy at 25 g/day was given and methylprednisolone was reduced to 40 mg/day for the next 3 days. Intravenous esmolol and lidocaine were used for correcting arrhythmias. Ventilator positive pressure ventilation was used for respiratory support. She was administrated with plasmapheresis when the electrocardiogram monitoring showed ventricular arrhythmia storms. OUTCOME The patient progressed to ventricular arrhythmia storms and cardiac failure, which eventually resulted in death. LESSONS The case aims to raise awareness of immune-mediated cardiotoxicity and bring thoughts to the prospects of immunotherapy in thymoma.
Collapse
Affiliation(s)
- Chen Wang
- Department of Oncology, Ganzhou People’s Hospital, Ganzhou, Jiangxi Province, China
| | - Bingdi Zhong
- Department of Oncology, Ganzhou People’s Hospital, Ganzhou, Jiangxi Province, China
| | - Jing He
- Department of Oncology, Ganzhou People’s Hospital, Ganzhou, Jiangxi Province, China
| | - Xiaohong Liao
- Department of Oncology, Ganzhou People’s Hospital, Ganzhou, Jiangxi Province, China
| |
Collapse
|
35
|
Song W, Zheng Y, Dong M, Zhong L, Bazoukis G, Perone F, Li G, Ng CF, Baranchuk A, Tse G, Liu T. Electrocardiographic Features of Immune Checkpoint Inhibitor-Associated Myocarditis. Curr Probl Cardiol 2023; 48:101478. [PMID: 36336121 DOI: 10.1016/j.cpcardiol.2022.101478] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Immune checkpoint inhibitors (ICIs) are associated with immune-related adverse events including myocarditis, whilst improving cancer-related outcomes. There is thus a clinical need to identify electrocardiographic manifestations of ICI-related myocarditis to guide clinical management. PubMed was searched for clinical studies and case reports describing electrocardiographic changes in patients with ICI-related myocarditis. A total of 6 clinical studies and 79 case reports were included. This revealed a range of presentations for patients on ICIs, including supraventricular arrhythmias, ventricular arrhythmias and heart block, and new changes of ST-T segment unrelated to coronary artery disease, ST-segment elevation or depression and T-wave abnormalities. Several patients showed low voltages in multiple leads and new onset Q-wave development. Patients with ICI-related myocarditis may develop new arrhythmia and ST-T changes, and infrequently low voltages in multiple leads.
Collapse
Affiliation(s)
- Wenhua Song
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yi Zheng
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mei Dong
- Department of Cardiology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| | - Lin Zhong
- Department of Cardiology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| | - George Bazoukis
- Department of Cardiology, Larnaca General Hospital, Larnaca, Cyprus; Department of Basic and Clinical Sciences, University of Nicosia Medical School, 2414, Nicosia, Cyprus
| | - Francesco Perone
- Cardiac Rehabilitation Unit, Rehabilitation Clinic "Villa delle Magnolie", Castel Morrone, Caserta, Italy
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chi Fai Ng
- SH Ho Urology Centre, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Adrian Baranchuk
- Division of Cardiology, Kingston Health Science, Center, Queen's University, Kingston, Ontario, Canada
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China; Epidemiology Research Unit, Cardiovascular Analytics Group, Hong Kong, China; Kent and Medway Medical School, University of Kent and Canterbury Christ Church University, Canterbury, Kent, UK; School of Nursing and Health Studies, Hong Kong, Metropolitan University, Hong Kong, China.
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
36
|
Raschi E, Comito F, Massari F, Gelsomino F. Relatlimab and nivolumab in untreated advanced melanoma: insight into RELATIVITY. Immunotherapy 2023; 15:85-91. [PMID: 36628573 DOI: 10.2217/imt-2022-0172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
With the recent regulatory approvals, the relatlimab-nivolumab combination brings new expectations and opens avenues toward effective immunotherapy combination in advanced melanoma. This work provides a critical insight into the recent phase II-III RELATIVITY-047 trial (NCT03470922), including a comparison with the CheckMate 067 trial on the current standard ipilimumab-nivolumab combination, with a focus on immune-related adverse events. Some imbalances of rare toxicities were noted, deserving careful monitoring and assessment in the upcoming real-world use. The promising efficacy data, although still early, should be carefully balanced against these toxicities, thus making pharmacovigilance and global patient-level data sharing crucial to identify the target population, promote safer prescribing and eventually clarify its place in therapy.
Collapse
Affiliation(s)
- Emanuel Raschi
- Pharmacology Unit, Department of Medical & Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, 40126, Italy
| | - Francesca Comito
- Medical Oncology, IRCCS Azienda Ospedaliero - Universitaria di Bologna, Bologna, 40138, Italy.,Department of Experimental, Diagnostic & Specialty Medicine, Alma Mater Studiorum - University of Bologna, 40138, Bologna, Italy
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero - Universitaria di Bologna, Bologna, 40138, Italy.,Department of Experimental, Diagnostic & Specialty Medicine, Alma Mater Studiorum - University of Bologna, 40138, Bologna, Italy
| | - Francesco Gelsomino
- Medical Oncology, IRCCS Azienda Ospedaliero - Universitaria di Bologna, Bologna, 40138, Italy.,Department of Experimental, Diagnostic & Specialty Medicine, Alma Mater Studiorum - University of Bologna, 40138, Bologna, Italy
| |
Collapse
|
37
|
Staels F, Roosens W, Giovannozzi S, Moens L, Bogaert J, Iglesias-Herrero C, Gijsbers R, Bossuyt X, Frans G, Liston A, Humblet-Baron S, Meyts I, Van Aelst L, Schrijvers R. Case report: Myocarditis in congenital STAT1 gain-of function. Front Immunol 2023; 14:1095595. [PMID: 37020552 PMCID: PMC10067556 DOI: 10.3389/fimmu.2023.1095595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Autosomal dominant Signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) mutations result in an inborn error of immunity characterized by chronic mucocutaneous candidiasis, recurrent viral and bacterial infections, and diverse autoimmune manifestations. Current treatment consists of chronic antifungal therapy, antibiotics for concomitant infections, and immunosuppressive therapy in case of autoimmune diseases. More recently, treatment with Janus kinases 1 and 2 (JAK1/2) inhibitors have shown promising yet variable results. We describe a STAT1 GOF patient with an incidental finding of elevated cardiac troponins, leading to a diagnosis of a longstanding, slowly progressive idiopathic myocarditis, attributed to STAT1 GOF. Treatment with a JAK-inhibitor (baricitinib) mitigated cardiac inflammation on MRI but was unable to alter fibrosis, possibly due to the diagnostic and therapeutic delay, which finally led to fatal arrhythmia. Our case illustrates that myocarditis could be part of the heterogeneous disease spectrum of STAT1 GOF. Given the insidious presentation in our case, a low threshold for cardiac evaluation in STAT1 GOF patients seems warranted.
Collapse
Affiliation(s)
- Frederik Staels
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Willem Roosens
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Simone Giovannozzi
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Leen Moens
- Department of Microbiology, Immunology and Transplantation, Laboratory of Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Jan Bogaert
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Leuven, Belgium
| | - Cecilia Iglesias-Herrero
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Rik Gijsbers
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Xavier Bossuyt
- Department of Microbiology, Immunology and Transplantation, Experimental Laboratory Immunology, KU Leuven, Leuven, Belgium
| | - Glynis Frans
- Department of Microbiology, Immunology and Transplantation, Experimental Laboratory Immunology, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Microbiology, Immunology and Transplantation, Laboratory of Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Lucas Van Aelst
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- *Correspondence: Rik Schrijvers,
| |
Collapse
|
38
|
Nowatzke J, Guedeney P, Palaskas N, Lehmann L, Ederhy S, Zhu H, Cautela J, Francis S, Courand PY, Deswal A, Ewer SM, Aras M, Arangalage D, Ghafourian K, Fenioux C, Finke D, Peretto G, Zaha V, Itzhaki Ben Zadok O, Tajiri K, Akhter N, Levenson J, Baldassarre L, Power J, Huang S, Collet JP, Moslehi J, Salem JE. Coronary artery disease and revascularization associated with immune checkpoint blocker myocarditis: Report from an international registry. Eur J Cancer 2022; 177:197-205. [PMID: 36030143 PMCID: PMC10165738 DOI: 10.1016/j.ejca.2022.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/04/2022] [Accepted: 07/15/2022] [Indexed: 01/06/2023]
Abstract
PURPOSE Immune checkpoint blocker (ICB) associated myocarditis (ICB-myocarditis) may present similarly and/or overlap with other cardiac pathology including acute coronary syndrome presenting a challenge for prompt clinical diagnosis. METHODS An international registry was used to retrospectively identify cases of ICB-myocarditis. Presence of coronary artery disease (CAD) was defined as coronary artery stenosis >70% in patients undergoing coronary angiogram. RESULTS Among 261 patients with clinically suspected ICB-myocarditis who underwent a coronary angiography, CAD was present in 59/261 patients (22.6%). Coronary revascularization was performed during the index hospitalisation in 19/59 (32.2%) patients. Patients undergoing coronary revascularization less frequently received steroids administration within 24 h of admission compared to the other groups (p = 0.029). Myocarditis-related 90-day mortality was 9/17 (52.7%) in the revascularised cohort, compared to 5/31 (16.1%) in those not revascularized and 25/156 (16.0%) in those without CAD (p = 0.001). Immune-related adverse event-related 90-day mortality was 9/17 (52.7%) in the revascularized cohort, compared to 6/31 (19.4%) in those not revascularized and 31/156 (19.9%) in no CAD groups (p = 0.007). All-cause 90-day mortality was 11/17 (64.7%) in the revascularized cohort, compared to 13/31 (41.9%) in no revascularization and 60/158 (38.0%) in no CAD groups (p = 0.10). After adjustment of age and sex, coronary revascularization remained associated with ICB-myocarditis-related death at 90 days (hazard ratio [HR] = 4.03, 95% confidence interval [CI] 1.84-8.84, p < 0.001) and was marginally associated with all-cause death (HR = 1.88, 95% CI, 0.98-3.61, p = 0.057). CONCLUSION CAD may exist concomitantly with ICB-myocarditis and may portend a poorer outcome when revascularization is performed. This is potentially mediated through delayed diagnosis and treatment or more severe presentation of ICB-myocarditis.
Collapse
Affiliation(s)
- Joseph Nowatzke
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paul Guedeney
- Sorbonne Université, Department of Cardiology, INSERM UMRS_1166, Pitié Salpêtrière (AP-HP), Paris, France
| | - Nicholas Palaskas
- Department of Cardiology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Lorenz Lehmann
- Department of Cardiology, University Hospital of Heidelberg, 69120, Heidelberg, Germany; Institute of Experimental Cardiology, University Hospital of Heidelberg, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Stephane Ederhy
- Department of Cardiology, UNICO Cardio-Oncology Program, INSERM U 856, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Han Zhu
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer Cautela
- French Institute of Health and Medical Research 1263, National Institute of Agricultural Research, Centre for CardioVascular and Nutrition Research, Unit of Heart Failure and Valvular Heart Diseases, Department of Cardiology, University Mediterranean Centre of Cardio-Oncology, Nord Hospital, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille University, Marseille, France
| | - Sanjeev Francis
- Cardiovascular Disease Service Line, Maine Medical Center, Portland, ME, USA
| | - Pierre-Yves Courand
- Fédération de Cardiologie, Hôpital de La Croix-Rousse et Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France; Université de Lyon, CREATIS, CNRS UMR5220, INSERM U1044, INSA-Lyon, Université Claude Bernard Lyon 1, France
| | - Anita Deswal
- Department of Cardiology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Steven M Ewer
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Mandar Aras
- Division of Cardiology, University of California-San Francisco, San Francisco, CA, USA
| | - Dimitri Arangalage
- Department of Cardiology, Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, UMRS1148, INSERM, Paris, France; Université de Paris, Paris, France
| | - Kambiz Ghafourian
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Charlotte Fenioux
- Department of Pharmacology and Clinical Investigation Centre (CIC-1901), Pitié-Salpêtrière Hospital, AP-HP, Sorbonne Université, INSERM, 75013, Paris, France
| | - Daniel Finke
- Department of Cardiology, University Hospital of Heidelberg, 69120, Heidelberg, Germany; Institute of Experimental Cardiology, University Hospital of Heidelberg, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Giovanni Peretto
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, Vita-Salute University and San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Vlad Zaha
- Division of Cardiology, Department of Internal Medicine, Cardio-Oncology Program, Harold C. Simmons Comprehensive Cancer Center, Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Osnat Itzhaki Ben Zadok
- Heart Failure Unit, Cardiology Department, Rabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kazuko Tajiri
- Department of Cardiology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Nausheen Akhter
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joshua Levenson
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - John Power
- Division of Cardiovascular Medicine, University of California San Diego, San Diego, CA, USA
| | - Shi Huang
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jean-Philippe Collet
- Sorbonne Université, Department of Cardiology, INSERM UMRS_1166, Pitié Salpêtrière (AP-HP), Paris, France
| | - Javid Moslehi
- Division of Cardiology, University of California-San Francisco, San Francisco, CA, USA.
| | - Joe-Elie Salem
- Department of Pharmacology and Clinical Investigation Centre (CIC-1901), Pitié-Salpêtrière Hospital, AP-HP, Sorbonne Université, INSERM, 75013, Paris, France.
| |
Collapse
|
39
|
Zito C, Manganaro R, Ciappina G, Spagnolo CC, Racanelli V, Santarpia M, Silvestris N, Carerj S. Cardiotoxicity Induced by Immune Checkpoint Inhibitors: What a Cardio-Oncology Team Should Know and Do. Cancers (Basel) 2022; 14:cancers14215403. [PMID: 36358830 PMCID: PMC9653561 DOI: 10.3390/cancers14215403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the therapeutic scenario for several malignancies. However, they can be responsible for immune-related adverse events (irAEs), involving several organs, with a pooled incidence ranging between 54% and 76%. The frequency of cardiovascular system involvement is <1%. Among the cardiovascular irAEs, myocarditis is the most common and the most dangerous but other, less common manifestations of ICI-related cardiotoxicity include pericardial disease, arrhythmias, Takotsubo-like syndrome, and acute myocardial infarction, all of which remain poorly explored. Both oncologists and cardiologists, as well as the patients, should be aware of the possible occurrence of one or more of these complications, which in some cases are fatal, in order to implement effective strategies of cardiac surveillance. In this review, we summarize the latest studies and recommendations on the pathogenesis, clinical manifestation, diagnosis, and management of ICI-related cardiotoxicity in order to realize a complete and updated overview on the main aspects of ICI-related cardiotoxicity, from surveillance to diagnosis to management, useful for both oncologists and cardiologists in their clinical practice. In particular, in the first part of the review, we realize a description of the pathogenetic mechanisms and risk factors of the main cardiovascular irAEs. Then, we focus on the management of ICI-related cardiotoxicity by analyzing five main points: (1) identifying and evaluating the type and severity of the cardiotoxicity; (2) deciding whether to withhold ICI therapy; (3) initiating steroid and immunosuppressive therapy; (4) starting conventional cardiac treatment; and (5) restarting ICI therapy. Finally, we discuss the existing evidence on surveillance for ICI-related cardiotoxicity and propose a surveillance strategy for both short- and long-term cardiotoxicity, according to the most recent guidelines.
Collapse
Affiliation(s)
- Concetta Zito
- Cardiology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Roberta Manganaro
- Cardiology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Giuliana Ciappina
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy
| | - Calogera Claudia Spagnolo
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy
| | - Vito Racanelli
- Department of Interdisciplinary Medicine, Medical School, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy
- Correspondence:
| | - Scipione Carerj
- Cardiology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
40
|
Cozma A, Sporis ND, Lazar AL, Buruiana A, Ganea AM, Malinescu TV, Berechet BM, Fodor A, Sitar-Taut AV, Vlad VC, Negrean V, Orasan OH. Cardiac Toxicity Associated with Immune Checkpoint Inhibitors: A Systematic Review. Int J Mol Sci 2022; 23:ijms231810948. [PMID: 36142866 PMCID: PMC9502843 DOI: 10.3390/ijms231810948] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are an important advancement in the field of cancer treatment, significantly improving the survival of patients with a series of advanced malignancies, like melanoma, non-small cell lung cancer (NSCLC), hepatocellular carcinoma (HCC), renal cell carcinoma (RCC), and Hodgkin lymphoma. ICIs act upon T lymphocytes and antigen-presenting cells, targeting programmed cell death protein 1 (PD1), programmed cell death protein ligand 1 (PD-L1), and cytotoxic T-lymphocyte antigen 4 (CTLA-4), breaking the immune tolerance of the T cells against malignant cells and enhancing the body's own immune response. A variety of cardiac-adverse effects are associated with ICI-based treatment, including pericarditis, arrhythmias, cardiomyopathy, and acute coronary syndrome, with myocarditis being the most studied due to its often-unexpected onset and severity. Overall, Myocarditis is rare but presents an immune-related adverse event (irAE) that has a high fatality rate. Considering the rising number of oncological patients treated with ICIs and the severity of their potential adverse effects, a good understanding and continuous investigation of cardiac irAEs is of the utmost importance. This systematic review aimed to revise recent publications (between 2016-2022) on ICI-induced cardiac toxicities and highlight the therapeutical approach and evolution in the selected cases.
Collapse
Affiliation(s)
- Angela Cozma
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Nicolae Dan Sporis
- Department of Medical Oncology, Prof. Dr. I. Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania
| | - Andrada Luciana Lazar
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrei Buruiana
- Department of Medical Oncology, Prof. Dr. I. Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania
- Correspondence:
| | - Andreea Maria Ganea
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Toma Vlad Malinescu
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Bianca Mihaela Berechet
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Adriana Fodor
- Clinical Centre of Diabetes, Nutrition and Metabolic Disease, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Adela Viviana Sitar-Taut
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Vasile Calin Vlad
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Vasile Negrean
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Olga Hilda Orasan
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
41
|
Irabor OC, Nelson N, Shah Y, Niazi MK, Poiset S, Storozynsky E, Singla DK, Hooper DC, Lu B. Overcoming the cardiac toxicities of cancer therapy immune checkpoint inhibitors. Front Oncol 2022; 12:940127. [PMID: 36185227 PMCID: PMC9523689 DOI: 10.3389/fonc.2022.940127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have led recent advances in the field of cancer immunotherapy improving overall survival in multiple malignancies with abysmal prognoses prior to their introduction. The remarkable efficacy of ICIs is however limited by their potential for systemic and organ specific immune-related adverse events (irAEs), most of which present with mild to moderate symptoms that can resolve spontaneously, with discontinuation of therapy or glucocorticoid therapy. Cardiac irAEs however are potentially fatal. The understanding of autoimmune cardiotoxicity remains limited due to its rareness. In this paper, we provide an updated review of the literature on the pathologic mechanisms, diagnosis, and management of autoimmune cardiotoxicity resulting from ICIs and their combinations and provide perspective on potential strategies and ongoing research developments to prevent and mitigate their occurrence.
Collapse
Affiliation(s)
- Omoruyi Credit Irabor
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Philadelphia, PA, United States
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Omoruyi Credit Irabor,
| | - Nicolas Nelson
- Sidney Kimmel Medical College (SKMC), Philadelphia, PA, United States
| | - Yash Shah
- Sidney Kimmel Medical College (SKMC), Philadelphia, PA, United States
| | - Muneeb Khan Niazi
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Philadelphia, PA, United States
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Spencer Poiset
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Philadelphia, PA, United States
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Eugene Storozynsky
- Division of Cardiology, Thomas Jefferson University Hospital, Philadelphia, PA, United States
| | - Dinender K. Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Douglas Craig Hooper
- Sidney Kimmel Medical College (SKMC), Philadelphia, PA, United States
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Bo Lu
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Philadelphia, PA, United States
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
42
|
Liu X, Wu W, Fang L, Liu Y, Chen W. TNF-α Inhibitors and Other Biologic Agents for the Treatment of Immune Checkpoint Inhibitor-Induced Myocarditis. Front Immunol 2022; 13:922782. [PMID: 35844550 PMCID: PMC9283712 DOI: 10.3389/fimmu.2022.922782] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/08/2022] [Indexed: 01/11/2023] Open
Abstract
With anti-PD-1 antibodies serving as a representative drug, immune checkpoint inhibitors (ICIs) have become the main drugs used to treat many advanced malignant tumors. However, immune-related adverse events (irAEs), which might involve multiple organ disorders, should not be ignored. ICI-induced myocarditis is an uncommon but life-threatening irAE. Glucocorticoids are the first choice of treatment for patients with ICI-induced myocarditis, but high proportions of steroid-refractory and steroid-resistant cases persist. According to present guidelines, tumor necrosis factor alpha (TNF-α) inhibitors are recommended for patients who fail to respond to steroid therapy and suffer from severe cardiac toxicity, although evidence-based studies are lacking. On the other hand, TNF-α inhibitors are contraindicated in patients with moderate-to-severe heart failure. This review summarizes real-world data from TNF-α inhibitors and other biologic agents for ICI-induced myocarditis to provide more evidence of the efficacy and safety of TNF-α inhibitors and other biologic agents.
Collapse
Affiliation(s)
| | | | | | | | - Wei Chen
- *Correspondence: Yingxian Liu, ; Wei Chen,
| |
Collapse
|
43
|
Association of early electrical changes with cardiovascular outcomes in immune checkpoint inhibitor myocarditis. Arch Cardiovasc Dis 2022; 115:315-330. [DOI: 10.1016/j.acvd.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/19/2022]
|