1
|
Hensley MK, Dela Cruz CS. Host-Directed Adjunctive Therapies in Immunocompromised Patients with Pneumonia. Clin Chest Med 2025; 46:37-48. [PMID: 39890291 DOI: 10.1016/j.ccm.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Immunocompromised (IC) hosts represent a unique patient population at risk for not only typical pathogens, but also opportunistic microorganisms. While antimicrobials remain the main treatment, new investigations have demonstrated the importance of host-response to pathogens. In this article, we highlight previously discovered and new areas of investigation for adjunctive host-response treatments for IC host pneumonia.
Collapse
Affiliation(s)
- Matthew K Hensley
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Charles S Dela Cruz
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Gangaev A, van Sleen Y, Brandhorst N, Hoefakker K, Prajapati B, Singh A, Boerma A, van der Heiden M, Oosting SF, van der Veldt AAM, Hiltermann TJN, GeurtsvanKessel CH, Dingemans AMC, Smit EF, de Vries EGE, Haanen JBAG, Kvistborg P, van Baarle D. mRNA-1273 vaccination induces polyfunctional memory CD4 and CD8 T cell responses in patients with solid cancers undergoing immunotherapy or/and chemotherapy. Front Immunol 2024; 15:1447555. [PMID: 39257577 PMCID: PMC11385311 DOI: 10.3389/fimmu.2024.1447555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction Research has confirmed the safety and comparable seroconversion rates following SARS-CoV-2 vaccination in patients with solid cancers. However, the impact of cancer treatment on vaccine-induced T cell responses remains poorly understood. Methods In this study, we expand on previous findings within the VOICE trial by evaluating the functional and phenotypic composition of mRNA-1273-induced T cell responses in patients with solid tumors undergoing immunotherapy, chemotherapy, or both, compared to individuals without cancer. We conducted an ELISpot analysis on 386 participants to assess spike-specific T cell responses 28 days after full vaccination. Further in-depth characterization of using flow cytometry was performed on a subset of 63 participants to analyze the functional phenotype and differentiation state of spike-specific T cell responses. Results ELISpot analysis showed robust induction of spike-specific T cell responses across all treatment groups, with response rates ranging from 75% to 80%. Flow cytometry analysis revealed a distinctive cytokine production pattern across cohorts, with CD4 T cells producing IFNγ, TNF, and IL-2, and CD8 T cells producing IFNγ, TNF, and CCL4. Variations were observed in the proportion of monofunctional CD4 T cells producing TNF, particularly higher in individuals without cancer and patients treated with chemotherapy alone, while those treated with immunotherapy or chemoimmunotherapy predominantly produced IFNγ. Despite these differences, polyfunctional spike-specific memory CD4 and CD8 T cell responses were comparable across cohorts. Notably, immunotherapy-treated patients exhibited an expansion of spike-specific CD4 T cells with a terminally differentiated effector memory phenotype. Discussion These findings demonstrate that systemic treatment in patients with solid tumors does not compromise the quality of polyfunctional mRNA-1273-induced T cell responses. This underscores the importance of COVID-19 vaccination in patients with solid cancers undergoing systemic treatment.
Collapse
Affiliation(s)
- Anastasia Gangaev
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Yannick van Sleen
- Department of Medical Microbiology and Infection Prevention, University Medical Centre Groningen, Groningen, Netherlands
| | - Nicole Brandhorst
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Kelly Hoefakker
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Bimal Prajapati
- Department of Medical Microbiology and Infection Prevention, University Medical Centre Groningen, Groningen, Netherlands
| | - Amrita Singh
- Department of Medical Microbiology and Infection Prevention, University Medical Centre Groningen, Groningen, Netherlands
| | - Annemarie Boerma
- Department of Medical Microbiology and Infection Prevention, University Medical Centre Groningen, Groningen, Netherlands
| | - Marieke van der Heiden
- Department of Medical Microbiology and Infection Prevention, University Medical Centre Groningen, Groningen, Netherlands
| | - Sjoukje F. Oosting
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Astrid A. M. van der Veldt
- Department of Medical Oncology and Radiology & Nuclear Medicine, Erasmus Medical Center (MC)-Cancer Institute, Rotterdam, Netherlands
| | - T. Jeroen N. Hiltermann
- Department of Pulmonary Diseases, University Medical Centre Groningen, Groningen, Netherlands
| | - Corine H. GeurtsvanKessel
- Department of Viroscience, Erasmus Medical Center (MC) Cancer Institute, University Medical Centre, Rotterdam, Netherlands
| | | | - Egbert F. Smit
- Department of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Elisabeth G. E. de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - John B. A. G. Haanen
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Debbie van Baarle
- Department of Medical Microbiology and Infection Prevention, University Medical Centre Groningen, Groningen, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Utrecht, Netherlands
| |
Collapse
|
3
|
García Ramírez P, Callejas Charavia M, Oliva Martin R, Gómez La Hoz AM, Ortega MÁ, García Suárez J, Álvarez-Mon M, Monserrat Sanz J. SARS-CoV-2-Specific T Lymphocytes Analysis in mRNA-Vaccinated Patients with B-Cell Lymphoid Malignancies on Active Treatment. Vaccines (Basel) 2024; 12:961. [PMID: 39339993 PMCID: PMC11435597 DOI: 10.3390/vaccines12090961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Patients with B-lymphocyte malignancies (BCMs) receiving B-lymphocyte-targeted therapies have increased risk of severe COVID-19 outcomes and impaired antibody response to SARS-CoV-2 mRNA vaccination in comparison to non-hematologic oncologic patients or general population. Consequently, it is vital to explore vaccine-induced T-lymphocyte responses in patients referred for the understanding of immune protection against SARS-CoV2 infections. The objective of the present study was to analyze the recall immune responses carried out by T lymphocytes after two COVID-19 mRNA vaccine doses. METHODS We enrolled 40 patients with BCMs and 10 healthy controls (HCs) after 4 weeks from the second mRNA vaccine dose. Spike (S)-specific T-lymphocyte responses were assessed in peripheral blood mononuclear lymphocytes (PBMCs) by intracellular IFN-γ staining combined with flow cytometry. Furthermore, the humoral response was assessed with the measurement of anti-spike antibodies. RESULTS From March to July 2021, 40 patients (median age 68) received mRNA vaccines. The overall antibody response for BCMs was 52.5% versus 100% for the healthy controls (p = 0.008). The antibody response was different across BCMs: 18.75% for non-Hodgkin lymphoma, 54.5% for chronic lymphocytic leukemia, and 92.3% for multiple myeloma. Responses varied by malignancy type and treatment, with anti-CD20 therapies showing the lowest response (6.7%). T-lymphocyte analysis revealed reduced numbers and altered differentiation stages in patients compared to the controls. However, the vaccine-induced T response was generally robust, with variations in specific T subpopulations. CONCLUSIONS mRNA vaccines induced significant humoral and cellular immune responses in B-cell lymphoid malignancy patients, although responses varied by treatment type and malignancy. Further research is needed to optimize vaccination strategies in this population.
Collapse
Affiliation(s)
- Patricia García Ramírez
- Hematology Department, University Hospital “Príncipe de Asturias”, Alcalá de Henares, 28805 Madrid, Spain;
| | - Marta Callejas Charavia
- Hematology Department, University Hospital “Príncipe de Asturias”, Alcalá de Henares, 28805 Madrid, Spain;
| | - Raquel Oliva Martin
- Department of Medicine, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (R.O.M.); (A.M.G.L.H.); (M.Á.O.); (M.Á.-M.); (J.M.S.)
- IRYCIS Unit (Instituto Ramón y Cajal de Investigación Sanitaria), 28034 Madrid, Spain
| | - Ana María Gómez La Hoz
- Department of Medicine, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (R.O.M.); (A.M.G.L.H.); (M.Á.O.); (M.Á.-M.); (J.M.S.)
- IRYCIS Unit (Instituto Ramón y Cajal de Investigación Sanitaria), 28034 Madrid, Spain
| | - Miguel Ángel Ortega
- Department of Medicine, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (R.O.M.); (A.M.G.L.H.); (M.Á.O.); (M.Á.-M.); (J.M.S.)
- IRYCIS Unit (Instituto Ramón y Cajal de Investigación Sanitaria), 28034 Madrid, Spain
| | - Julio García Suárez
- Hematology Department, University Hospital “Príncipe de Asturias”, Alcalá de Henares, 28805 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (R.O.M.); (A.M.G.L.H.); (M.Á.O.); (M.Á.-M.); (J.M.S.)
- IRYCIS Unit (Instituto Ramón y Cajal de Investigación Sanitaria), 28034 Madrid, Spain
| | - Jorge Monserrat Sanz
- Department of Medicine, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (R.O.M.); (A.M.G.L.H.); (M.Á.O.); (M.Á.-M.); (J.M.S.)
- IRYCIS Unit (Instituto Ramón y Cajal de Investigación Sanitaria), 28034 Madrid, Spain
| |
Collapse
|
4
|
Titova E, Kan VW, Lozy T, Ip A, Shier K, Prakash VP, Starolis M, Ansari S, Goldgirsh K, Kim S, Pelliccia MC, Mccutchen A, Megalla M, Gunning TS, Kaufman HW, Meyer WA, Perlin DS. Humoral and cellular immune responses against SARS-CoV-2 post-vaccination in immunocompetent and immunocompromised cancer populations. Microbiol Spectr 2024; 12:e0205023. [PMID: 38353557 PMCID: PMC10913742 DOI: 10.1128/spectrum.02050-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/04/2024] [Indexed: 03/06/2024] Open
Abstract
Cancer patients are at risk for severe coronavirus disease 2019 (COVID-19) outcomes due to impaired immune responses. However, the immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is inadequately characterized in this population. We hypothesized that cancer vs non-cancer individuals would mount less robust humoral and/or cellular vaccine-induced immune SARS-CoV-2 responses. Receptor binding domain (RBD) and SARS-CoV-2 spike protein antibody levels and T-cell responses were assessed in immunocompetent individuals with no underlying disorders (n = 479) and immunocompromised individuals (n = 115). All 594 individuals were vaccinated and of varying COVID-19 statuses (i.e., not known to have been infected, previously infected, or "Long-COVID"). Among immunocompromised individuals, 59% (n = 68) had an underlying hematologic malignancy; of those, 46% (n = 31) of individuals received cancer treatment <30 days prior to study blood collection. Ninety-eight percentage (n = 469) of immunocompetent and 81% (n = 93) of immunocompromised individuals had elevated RBD antibody titers (>1,000 U/mL), and of these, 60% (n = 281) and 44% (n = 41), respectively, also had elevated T-cell responses. Composite T-cell responses were higher in individuals previously infected with SARS-CoV-2 or those diagnosed with Long-COVID compared to uninfected individuals. T-cell responses varied between immunocompetent vs carcinoma (n = 12) cohorts (P < 0.01) but not in immunocompetent vs hematologic malignancy cohorts. Most SARS-CoV-2 vaccinated individuals mounted robust cellular and/or humoral responses, though higher immunogenicity was observed among the immunocompetent compared to cancer populations. The study suggests B-cell targeted therapies suppress antibody responses, but not T-cell responses, to SARS-CoV-2 vaccination. Thus, vaccination continues to be an effective way to induce humoral and cellular immune responses as a likely key preventive measure against infection and/or subsequent more severe adverse outcomes. IMPORTANCE The study was prompted by a desire to better assess the immune status of patients among our cancer host cohort, one of the largest in the New York metropolitan region. Hackensack Meridian Health is the largest healthcare system in New Jersey and cared for more than 75,000 coronavirus disease 2019 patients in its hospitals. The John Theurer Cancer Center sees more than 35,000 new cancer patients a year and performs more than 500 hematopoietic stem cell transplants. As a result, the work was undertaken to assess the effectiveness of vaccination in inducing humoral and cellular responses within this demographic.
Collapse
Affiliation(s)
- Elizabeth Titova
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Veronica W. Kan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Tara Lozy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Andrew Ip
- John Theurer Cancer Center, Hackensack, New Jersey, USA
- Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | | | | | | | - Sara Ansari
- Quest Diagnostics, Secaucus, New Jersey, USA
| | - Kira Goldgirsh
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Seoyeon Kim
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Michael C. Pelliccia
- John Theurer Cancer Center, Hackensack, New Jersey, USA
- Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Aamirah Mccutchen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Martinus Megalla
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas S. Gunning
- John Theurer Cancer Center, Hackensack, New Jersey, USA
- Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | | | | | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| |
Collapse
|
5
|
Proß V, Sattler A, Lukassen S, Tóth L, Thole LML, Siegle J, Stahl C, He A, Damm G, Seehofer D, Götz C, Bayerl C, Jäger P, Macke A, Eggeling S, Kirzinger B, Mayr T, Herbst H, Beyer K, Laue D, Krönke J, Braune J, Rosseck F, Kittner B, Friedersdorff F, Hubatsch M, Weinberger S, Lachmann N, Hofmann VM, Schrezenmeier E, Ludwig C, Schrezenmeier H, Jechow K, Conrad C, Kotsch K. SARS-CoV-2 mRNA vaccination-induced immunological memory in human nonlymphoid and lymphoid tissues. J Clin Invest 2023; 133:e171797. [PMID: 37815874 PMCID: PMC10721158 DOI: 10.1172/jci171797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Tissue-resident lymphocytes provide organ-adapted protection against invading pathogens. Whereas their biology has been examined in great detail in various infection models, their generation and functionality in response to vaccination have not been comprehensively analyzed in humans. We therefore studied SARS-CoV-2 mRNA vaccine-specific T cells in surgery specimens of kidney, liver, lung, bone marrow, and spleen compared with paired blood samples from largely virus-naive individuals. As opposed to lymphoid tissues, nonlymphoid organs harbored significantly elevated frequencies of spike-specific CD4+ T cells compared with blood showing hallmarks of tissue residency and an expanded memory pool. Organ-derived CD4+ T cells further exhibited increased polyfunctionality over those detected in blood. Single-cell RNA-Seq together with T cell receptor repertoire analysis indicated that the clonotype rather than organ origin is a major determinant of transcriptomic state in vaccine-specific CD4+ T cells. In summary, our data demonstrate that SARS-CoV-2 vaccination entails acquisition of tissue memory and residency features in organs distant from the inoculation site, thereby contributing to our understanding of how local tissue protection might be accomplished.
Collapse
Affiliation(s)
- Vanessa Proß
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arne Sattler
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sören Lukassen
- Center of Digital Health, Berlin Institute of Health and Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura Tóth
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Linda Marie Laura Thole
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Janine Siegle
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carolin Stahl
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - An He
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Christina Götz
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Christian Bayerl
- Department of Radiology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Pia Jäger
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | | | | | | | - Hermann Herbst
- Department of Pathology, Vivantes Klinikum Neukölln, Berlin, Germany
| | - Katharina Beyer
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dominik Laue
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jan Krönke
- Department of Hematology, Oncology and Cancer Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan Braune
- Department of Hematology, Oncology and Cancer Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Friederike Rosseck
- Institute of Pathology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Beatrice Kittner
- Department of Urology, Evangelisches Krankenhaus Königin Elisabeth Herzberge, Berlin, Germany
| | - Frank Friedersdorff
- Department of Urology, Evangelisches Krankenhaus Königin Elisabeth Herzberge, Berlin, Germany
| | - Mandy Hubatsch
- Department of Urology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sarah Weinberger
- Department of Urology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nils Lachmann
- Institute of Transfusion Medicine, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Veit Maria Hofmann
- Department of Otolaryngology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Carolin Ludwig
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, Ulm, Germany
| | - Katharina Jechow
- Center of Digital Health, Berlin Institute of Health and Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Conrad
- Center of Digital Health, Berlin Institute of Health and Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katja Kotsch
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
6
|
Spehner L, Orillard E, Falcoz A, Lepiller Q, Bouard A, Almotlak H, Kim S, Curtit E, Meynard G, Jary M, Nardin C, Asgarov K, Abdeljaoued S, Chartral U, Mougey V, Ben Khelil M, Lopez M, Loyon R, Vernerey D, Adotevi O, Borg C, Mansi L, Kroemer M. Predictive biomarkers and specific immune responses of COVID-19 mRNA vaccine in patients with cancer: prospective results from the CACOV-VAC trial. BMJ ONCOLOGY 2023; 2:e000054. [PMID: 39886486 PMCID: PMC11235023 DOI: 10.1136/bmjonc-2023-000054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/17/2023] [Indexed: 02/01/2025]
Abstract
Objective Vaccinated patients with cancer in follow-up studies showed a high seropositivity rate but impaired antibody titres and T cell responses following mRNA vaccine against COVID-19. Besides clinical characteristics and the type of anticancer treatment before vaccination, the identification of patients susceptible to non-response following vaccination using immunological markers is worth to be investigated. Methods and analysis All patients (n=138, solid cancers) were included in the CACOV-VAC Study comprising three cohorts ((neo)-adjuvant, metastatic and surveillance). Immune responses were assessed using, respectively, anti-receptor-binding domain (RBD) SARS-CoV-S-IgG assay and interferon-γ ELISpot assay 3 months following the prime vaccination dose. Immunophenotyping of T cells and immunosuppressive cells from peripheral blood was performed before the prime dose. The serological threshold 3563 AU/mL was used to discriminate non-responders or suboptimal responders versus responders. Results Most patients achieved seroconversion after receiving the two doses of vaccine (97.6%). The median serological level of anti-RBD SARS-CoV-S-IgG was equal to 3029 for patients at the metastatic stage. The patient's age was the main demographic characteristic that influenced vaccine efficacy. Among the immunological parameters measured at baseline, lower TIGIT (T cell immunoreceptor with Ig and ITIM domains) expression on CD8 T cells was associated with a better vaccine immunogenicity both in terms of humoral and cellular immune responses. Conclusion Despite a high seroconversion rate, median serological levels of patients with cancer, particularly elderly patients, were below the threshold equal to 3563 AU/mL considered as a humoral correlate of protection against SARS-CoV-2. Our findings suggest that the inhibitory receptor TIGIT might be an interesting predictive biomarker of COVID-19 vaccine immunogenicity and beyond in an anticancer vaccine context. Trial registration number ClinicalTrials.gov Registry (NCT04836793).
Collapse
Affiliation(s)
- Laurie Spehner
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Service d'oncologie médicale, CHU Besançon, Besançon, France
| | - Emeline Orillard
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Service d'oncologie médicale, CHU Besançon, Besançon, France
| | - Antoine Falcoz
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Methodology and Quality of Life Unit in Oncology, CHU Besançon, Besançon, France
| | | | - Adeline Bouard
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- ITAC Platform, University of Franche-Comté, Besançon, France
| | - Hamadi Almotlak
- Service d'oncologie médicale, CHU Besançon, Besançon, France
| | - Stefano Kim
- Service d'oncologie médicale, CHU Besançon, Besançon, France
| | - Elsa Curtit
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Service d'oncologie médicale, CHU Besançon, Besançon, France
| | | | - Marine Jary
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Medical Oncology, Hôpital Jean Minjoz, Besançon, France
| | - Charlee Nardin
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Dermatology, CHU Besançon, Besançon, France
| | - Kamal Asgarov
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- ITAC Platform, University of Franche-Comté, Besançon, France
| | - Syrine Abdeljaoued
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Ugo Chartral
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Service d'oncologie médicale, CHU Besançon, Besançon, France
| | - Virginie Mougey
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Myriam Ben Khelil
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Morgane Lopez
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Service d'oncologie médicale, CHU Besançon, Besançon, France
| | - Romain Loyon
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Dewi Vernerey
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Methodology and Quality of Life Unit in Oncology, CHU Besançon, Besançon, France
| | - Olivier Adotevi
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Service d'oncologie médicale, CHU Besançon, Besançon, France
| | - Christophe Borg
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Service d'oncologie médicale, CHU Besançon, Besançon, France
- ITAC Platform, University of Franche-Comté, Besançon, France
| | - Laura Mansi
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- Service d'oncologie médicale, CHU Besançon, Besançon, France
| | - Marie Kroemer
- Université Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
- ITAC Platform, University of Franche-Comté, Besançon, France
- Department of Pharmacy, University Hospital Centre Besançon, Besançon, France
| |
Collapse
|
7
|
Mondaca S, Walbaum B, Le Corre N, Ferrés M, Valdés A, Martínez-Valdebenito C, Ruiz-Tagle C, Macanas-Pirard P, Ross P, Cisternas B, Pérez P, Cabrera O, Cerda V, Ormazábal I, Barrera A, Prado ME, Venegas MI, Palma S, Broekhuizen R, Kalergis AM, Bueno SM, Espinoza MA, Balcells ME, Nervi B. Influence of SARS-CoV-2 mRNA Vaccine Booster among Cancer Patients on Active Treatment Previously Immunized with Inactivated versus mRNA Vaccines: A Prospective Cohort Study. Vaccines (Basel) 2023; 11:1193. [PMID: 37515009 PMCID: PMC10384024 DOI: 10.3390/vaccines11071193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/22/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer patients on chemotherapy have a lower immune response to SARS-CoV-2 vaccines. Therefore, through a prospective cohort study of patients with solid tumors receiving chemotherapy, we aimed to determine the immunogenicity of an mRNA vaccine booster (BNT162b2) among patients previously immunized with an inactivated (CoronaVac) or homologous (BNT162b2) SARS-CoV-2 vaccine. The primary outcome was the proportion of patients with anti-SARS-CoV-2 neutralizing antibody (NAb) seropositivity at 8-12 weeks post-booster. The secondary end points included IgG antibody (TAb) seropositivity and specific T-cell responses. A total of 109 patients were included. Eighty-four (77%) had heterologous vaccine schedules (two doses of CoronaVac followed by the BNT162b2 booster) and twenty-five had (23%) homologous vaccine schedules (three doses of BNT162b2). IgG antibody positivity for the homologous and heterologous regimen were 100% and 96% (p = 0.338), whereas NAb positivity reached 100% and 92% (p = 0.13), respectively. Absolute NAb positivity and Tab levels were associated with the homologous schedule (with a beta coefficient of 0.26 with p = 0.027 and a geometric mean ratio 1.41 with p = 0.044, respectively). Both the homologous and heterologous vaccine regimens elicited a strong humoral and cellular response after the BNT162b2 booster. The homologous regimen was associated with higher NAb positivity and Tab levels after adjusting for relevant covariates.
Collapse
Affiliation(s)
- Sebastián Mondaca
- Departamento de Hematología y Oncología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Instituto de Cáncer, Red de Salud UC-Christus, Santiago 8330032, Chile
| | - Benjamín Walbaum
- Departamento de Hematología y Oncología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Instituto de Cáncer, Red de Salud UC-Christus, Santiago 8330032, Chile
| | - Nicole Le Corre
- Laboratorio de Infectología y Virología Molecular, Red de Salud UC Christus, Santiago 8330024, Chile
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Marcela Ferrés
- Laboratorio de Infectología y Virología Molecular, Red de Salud UC Christus, Santiago 8330024, Chile
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Alejandro Valdés
- Departamento de Hematología y Oncología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Constanza Martínez-Valdebenito
- Laboratorio de Infectología y Virología Molecular, Red de Salud UC Christus, Santiago 8330024, Chile
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Cinthya Ruiz-Tagle
- Departamento de Enfermedades Infecciosas del Adulto, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Patricia Macanas-Pirard
- Departamento de Hematología y Oncología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Center for Cancer Prevention and Control, CECAN, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Patricio Ross
- Departamento de Enfermedades Infecciosas del Adulto, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Betzabé Cisternas
- Instituto de Cáncer, Red de Salud UC-Christus, Santiago 8330032, Chile
| | - Patricia Pérez
- Instituto de Cáncer, Red de Salud UC-Christus, Santiago 8330032, Chile
| | - Olivia Cabrera
- Instituto de Cáncer, Red de Salud UC-Christus, Santiago 8330032, Chile
| | - Valentina Cerda
- Instituto de Cáncer, Red de Salud UC-Christus, Santiago 8330032, Chile
| | - Ivana Ormazábal
- Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Aldo Barrera
- Laboratorio de Infectología y Virología Molecular, Red de Salud UC Christus, Santiago 8330024, Chile
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - María E Prado
- Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - María I Venegas
- Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Silvia Palma
- Instituto de Cáncer, Red de Salud UC-Christus, Santiago 8330032, Chile
| | - Richard Broekhuizen
- Departamento de Hematología y Oncología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Center for Cancer Prevention and Control, CECAN, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
- Departamento de Endocrinología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330032, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Manuel A Espinoza
- Center for Cancer Prevention and Control, CECAN, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330032, Chile
| | - M Elvira Balcells
- Departamento de Enfermedades Infecciosas del Adulto, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Bruno Nervi
- Departamento de Hematología y Oncología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Center for Cancer Prevention and Control, CECAN, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| |
Collapse
|
8
|
Silzle T, Kahlert CR, Albrich WC, Nigg S, Demmer Steingruber R, Driessen C, Fischer S. Humoral and cellular BNT162b2 mRNA-based booster vaccine-induced immunity in patients with multiple myeloma and persistence of neutralising antibodies: results of a prospective single-centre cohort study. Swiss Med Wkly 2023; 153:40090. [PMID: 37410944 DOI: 10.57187/smw.2023.40090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Currently available messenger ribonucleic acid (mRNA)-based vaccines against coronavirus disease (COVID-19) have been shown to be effective even in highly immunocompromised hosts, including patients with multiple myeloma. However, vaccination failure can be observed in all patient groups. METHODS This prospective study longitudinally assessed the humoral and cellular responses to a third booster dose of BNT162b2 mRNA-based vaccine in patients with myeloma (n = 59) and healthy controls (n = 22) by measuring the levels of anti-spike (S) antibodies (electro-chemiluminescence immunoassay) including neutralising antibodies and specific T-cells (enzyme-linked immunospot assay) following booster administration. RESULTS The third booster dose showed a high immunogenicity on the serological level among the patients with multiple myeloma (median anti-S level = 41 binding antibody units [BAUs]/ml pre-booster vs 3902 BAU/ml post-booster, p <0.001; increase in the median neutralising antibody level from 19.8% to 97%, p <0.0001). Four of five (80%) patients with a complete lack of any serological response (anti-S immunoglobulin level <0.8 BAU/ml) after two vaccine doses developed detectable anti-S antibodies after booster vaccination (median anti-S level = 88 BAU/ml post-booster). T-cell responses were largely preserved among the patients with multiple myeloma with no difference from the healthy controls following baseline vaccination (median spot-forming units [SFU]/106 of peripheral blood mononuclear cells = 193 vs 175, p = 0.711); these responses were augmented significantly after booster administration among the patients with multiple myeloma (median SFU/106 of peripheral blood mononuclear cells = 235 vs 443, p <0.001). However, the vaccination responses remained highly heterogeneous and diminished over time, with insufficient serological responses occurring even after booster vaccination in a few patients irrespective of the treatment intensity. CONCLUSIONS Our data demonstrate improvements in humoral and cellular immunity following booster vaccination and support the assessment of the humoral vaccine response in patients with multiple myeloma until a threshold for protection against severe COVID-19 is validated. This strategy can allow the identification of patients who might benefit from additional protective measures (e.g. pre-exposure prophylaxis via passive immunisation).
Collapse
Affiliation(s)
- Tobias Silzle
- Department of Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Christian R Kahlert
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
- Infectious Diseases and Hospital Epidemiology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Werner C Albrich
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Susanne Nigg
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Ruth Demmer Steingruber
- Department of Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Christoph Driessen
- Department of Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Stefanie Fischer
- Department of Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
9
|
Brisotto G, Montico M, Turetta M, Zanussi S, Cozzi MR, Vettori R, Boschian Boschin R, Vinante L, Matrone F, Revelant A, Palazzari E, Innocente R, Fanetti G, Gerratana L, Garutti M, Lisanti C, Bolzonello S, Nicoloso MS, Steffan A, Muraro E. Integration of Cellular and Humoral Immune Responses as an Immunomonitoring Tool for SARS-CoV-2 Vaccination in Healthy and Fragile Subjects. Viruses 2023; 15:1276. [PMID: 37376576 DOI: 10.3390/v15061276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular and humoral immunity are both required for SARS-CoV-2 infection recovery and vaccine efficacy. The factors affecting mRNA vaccination-induced immune responses, in healthy and fragile subjects, are still under investigation. Thus, we monitored the vaccine-induced cellular and humoral immunity in healthy subjects and cancer patients after vaccination to define whether a different antibody titer reflected similar rates of cellular immune responses and if cancer has an impact on vaccination efficacy. We found that higher titers of antibodies were associated with a higher probability of positive cellular immunity and that this greater immune response was correlated with an increased number of vaccination side effects. Moreover, active T-cell immunity after vaccination was associated with reduced antibody decay. The vaccine-induced cellular immunity appeared more likely in healthy subjects rather than in cancer patients. Lastly, after boosting, we observed a cellular immune conversion in 20% of subjects, and a strong correlation between pre- and post-boosting IFN-γ levels, while antibody levels did not display a similar association. Finally, our data suggested that integrating humoral and cellular immune responses could allow the identification of SARS-CoV-2 vaccine responders and that T-cell responses seem more stable over time compared to antibodies, especially in cancer patients.
Collapse
Affiliation(s)
- Giulia Brisotto
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Marcella Montico
- Clinical Trial Office, Scientific Direction, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Matteo Turetta
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Stefania Zanussi
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Maria Rita Cozzi
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Roberto Vettori
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Romina Boschian Boschin
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Lorenzo Vinante
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Fabio Matrone
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Alberto Revelant
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Elisa Palazzari
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Roberto Innocente
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Giuseppe Fanetti
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Lorenzo Gerratana
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Mattia Garutti
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Camilla Lisanti
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Silvia Bolzonello
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Milena Sabrina Nicoloso
- Molecular Oncology Unit, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Elena Muraro
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| |
Collapse
|
10
|
Gilbert D, Hu J, Medina T, Kessler ER, Lam ET. Safety of COVID-19 vaccines in subjects with solid tumor cancers receiving immune checkpoint inhibitors. Hum Vaccin Immunother 2023:2207438. [PMID: 37157982 PMCID: PMC10294768 DOI: 10.1080/21645515.2023.2207438] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The incidence of severe immune-related adverse events (irAEs) in cancer subjects receiving immune checkpoint inhibitors (ICIs) following COVID-19 vaccination and the relationship between the incidence of severe irAE and the interval between COVID-19 vaccination and ICI dose have not been established. We performed a retrospective study evaluating the incidence of irAEs in solid tumor subjects receiving ICI therapy who received any COVID-19 vaccinations since FDA authorization. irAEs were defined as severe with one or more grade 3 or above events (CTCAE v5.0), multiple organ involvement, or requiring hospitalization for management. Two hundred and eighty-four subjects who received COVID vaccinations from December 2020 and February 2022 were included in this analysis [median age at vaccination 67 years (IQR 59.0-75.0); 67.3% male]. Twenty-nine subjects (10.2%) developed severe irAEs, of which 12 subjects (41.4%) received ICI monotherapy, 10 subjects (34.5%) received combination ICI therapy with nivolumab and ipilimumab, and 7 subjects (24.1%) received ICI plus VEGFR-TKI therapy. Hospitalization occurred in 62% of subjects with severe irAEs, with a median duration of 3 days (IQR: 3.0-7.5 days). Immunosuppressive therapy was required in 79.3%, with a median duration of 103 days (IQR: 42.0-179.0). ICI therapy was discontinued in 51.7% of subjects with severe irAE; dosing was held or interrupted in 34.5%. Among severe irAEs, the median interval between vaccination and ICI treatment closest to the occurrence of severe irAE was 15.5 days (IQR: 10.0-23.0). In solid tumor cancer subjects receiving ICIs, COVID-19 vaccination is not associated with an increased incidence of severe irAEs compared to historical data and may be safely administered during ICI cancer therapy in subjects who lack contraindications.
Collapse
Affiliation(s)
- Danielle Gilbert
- Department of Internal Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Anschutz Medical Campus, Aurora, CO, USA
| | - Junxiao Hu
- Department of Biostatistics, University of Colorado Cancer Center Biostatistics Core, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Theresa Medina
- Department of Internal Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth R Kessler
- Department of Internal Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Anschutz Medical Campus, Aurora, CO, USA
| | - Elaine T Lam
- Department of Internal Medicine, Division of Medical Oncology, University of Colorado Cancer Center, University of Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
11
|
Debie Y, Van Audenaerde JRM, Vandamme T, Croes L, Teuwen LA, Verbruggen L, Vanhoutte G, Marcq E, Verheggen L, Le Blon D, Peeters B, Goossens ME, Pannus P, Ariën KK, Anguille S, Janssens A, Prenen H, Smits ELJ, Vulsteke C, Lion E, Peeters M, van Dam PA. Humoral and Cellular Immune Responses against SARS-CoV-2 after Third Dose BNT162b2 following Double-Dose Vaccination with BNT162b2 versus ChAdOx1 in Patients with Cancer. Clin Cancer Res 2023; 29:635-646. [PMID: 36341493 DOI: 10.1158/1078-0432.ccr-22-2185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Patients with cancer display reduced humoral responses after double-dose COVID-19 vaccination, whereas their cellular response is more comparable with that in healthy individuals. Recent studies demonstrated that a third vaccination dose boosts these immune responses, both in healthy people and patients with cancer. Because of the availability of many different COVID-19 vaccines, many people have been boosted with a different vaccine from the one used for double-dose vaccination. Data on such alternative vaccination schedules are scarce. This prospective study compares a third dose of BNT162b2 after double-dose BNT162b2 (homologous) versus ChAdOx1 (heterologous) vaccination in patients with cancer. EXPERIMENTAL DESIGN A total of 442 subjects (315 patients and 127 healthy) received a third dose of BNT162b2 (230 homologous vs. 212 heterologous). Vaccine-induced adverse events (AE) were captured up to 7 days after vaccination. Humoral immunity was assessed by SARS-CoV-2 anti-S1 IgG antibody levels and SARS-CoV-2 50% neutralization titers (NT50) against Wuhan and BA.1 Omicron strains. Cellular immunity was examined by analyzing CD4+ and CD8+ T-cell responses against SARS-CoV-2-specific S1 and S2 peptides. RESULTS Local AEs were more common after heterologous boosting. SARS-CoV-2 anti-S1 IgG antibody levels did not differ significantly between homologous and heterologous boosted subjects [GMT 1,755.90 BAU/mL (95% CI, 1,276.95-2,414.48) vs. 1,495.82 BAU/mL (95% CI, 1,131.48-1,977.46)]. However, homologous-boosted subjects show significantly higher NT50 values against BA.1 Omicron. Subjects receiving heterologous boosting demonstrated increased spike-specific CD8+ T cells, including higher IFNγ and TNFα levels. CONCLUSIONS In patients with cancer who received double-dose ChAdOx1, a third heterologous dose of BNT162b2 was able to close the gap in antibody response.
Collapse
Affiliation(s)
- Yana Debie
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Jonas R M Van Audenaerde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Timon Vandamme
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Lieselot Croes
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,GeIntegreerd Kankercentrum Gent (IKG), AZ Maria Middelares, Gent, Belgium
| | - Laure-Anne Teuwen
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium
| | - Lise Verbruggen
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium
| | - Greetje Vanhoutte
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium
| | - Elly Marcq
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Lisa Verheggen
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium
| | - Debbie Le Blon
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Bart Peeters
- Department of Laboratory Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Maria E Goossens
- SD Infectious Diseases in Humans, Service Immune response, Sciensano, Brussels, Belgium
| | - Pieter Pannus
- SD Infectious Diseases in Humans, Service Immune response, Sciensano, Brussels, Belgium
| | - Kevin K Ariën
- Virology Unit, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sébastien Anguille
- Laboratory of Experimental Hematology (LEH), Vaxinfectio, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,Division of Hematology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Annelies Janssens
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Hans Prenen
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Evelien L J Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Christof Vulsteke
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.,GeIntegreerd Kankercentrum Gent (IKG), AZ Maria Middelares, Gent, Belgium
| | - Eva Lion
- Laboratory of Experimental Hematology (LEH), Vaxinfectio, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Marc Peeters
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Peter A van Dam
- Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital (UZA), Edegem, Belgium.,Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
12
|
Pfannes R, Pierzchalski A, Maddalon A, Simion A, Zouboulis CC, Behre G, Zenclussen AC, Westphal S, Fest S, Herberth G. Characterization of post-vaccination SARS-CoV-2 T cell subtypes in patients with different hematologic malignancies and treatments. Front Immunol 2023; 14:1087996. [PMID: 37187728 PMCID: PMC10177659 DOI: 10.3389/fimmu.2023.1087996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Background To evaluate the benefits of SARS-CoV-2 vaccination in cancer patients it is relevant to understand the adaptive immune response elicited after vaccination. Patients affected by hematologic malignancies are frequently immune-compromised and show a decreased seroconversion rate compared to other cancer patients or controls. Therefore, vaccine-induced cellular immune responses in these patients might have an important protective role and need a detailed evaluation. Methods Certain T cell subtypes (CD4, CD8, Tfh, γδT), including cell functionality as indicated by cytokine secretion (IFN, TNF) and expression of activation markers (CD69, CD154) were assessed via multi-parameter flow cytometry in hematologic malignancy patients (N=12) and healthy controls (N=12) after a second SARS-CoV-2 vaccine dose. The PBMC of post-vaccination samples were stimulated with a spike-peptide pool (S-Peptides) of SARS-CoV-2, with CD3/CD28, with a pool of peptides from the cytomegalovirus, Epstein-Barr virus and influenza A virus (CEF-Peptides) or left unstimulated. Furthermore, the concentration of spike-specific antibodies has been analyzed in patients. Results Our results indicate that hematologic malignancy patients developed a robust cellular immune response to SARS-CoV-2 vaccination comparable to that of healthy controls, and for certain T cell subtypes even higher. The most reactive T cells to SARS-CoV-2 spike peptides belonged to the CD4 and Tfh cell compartment, being median (IQR), 3.39 (1.41-5.92) and 2.12 (0.55-4.14) as a percentage of IFN- and TNF-producing Tfh cells in patients. In this regard, the immunomodulatory treatment of patients before the vaccination period seems important as it was strongly associated with a higher percentage of activated CD4 and Tfh cells. SARS-CoV-2- and CEF-specific T cell responses significantly correlated with each other. Compared to lymphoma patients, myeloma patients had an increased percentage of SARS-CoV-2-specific Tfh cells. T-SNE analysis revealed higher frequencies of γδT cells in patients compared to controls, especially in myeloma patients. In general, after vaccination, SARS-CoV-2-specific T cells were also detectable in patients without seroconversion. Conclusion Hematologic malignancy patients are capable of developing a SARS-CoV-2-specific CD4 and Tfh cellular immune response after vaccination, and certain immunomodulatory therapies in the period before vaccination might increase the antigen-specific immune response. A proper response to recall antigens (e.g., CEF-Peptides) reflects immune cellular functionality and might be predictive for generating a newly induced antigen-specific immune response as is expected after SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Roald Pfannes
- Dessau Medical Center, Center for Oncology, Dessau, Germany
- Department for Gastroenterology and Oncology, Diakonissenkrankenhaus Leipzig, Agaplession Mitteldeutschland GmbH, Leipzig, Germany
| | - Arkadiusz Pierzchalski
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Ambra Maddalon
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Alexandra Simion
- Institute of Clinical Chemistry, Dessau City Hospital, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - Christos C. Zouboulis
- Department of Dermatology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
- Department of Venereology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
- Department of Allergology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
- Department of Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Gerhard Behre
- Department for Internal Medicine I, Dessau Medical Center and Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Perinatal Immunology Research Group, Medical Faculty, Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Sabine Westphal
- Institute of Clinical Chemistry, Dessau City Hospital, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - Stefan Fest
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Clinic of Pediatrics and Adolescent Medicine, Dessau City Hospital, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- *Correspondence: Gunda Herberth,
| |
Collapse
|
13
|
Piening A, Ebert E, Khojandi N, Alspach E, Teague RM. Immune responses to SARS-CoV-2 in vaccinated patients receiving checkpoint blockade immunotherapy for cancer. Front Immunol 2022; 13:1022732. [PMID: 36582225 PMCID: PMC9792507 DOI: 10.3389/fimmu.2022.1022732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Vaccination against SARS-CoV-2 has been successful in protecting patients with cancer from severe infections, but how immune responses against COVID-19 vaccination interact with those elicited during cancer immunotherapy has not been fully described. Immune checkpoint blockade (ICB) disrupts inhibitory pathways in immune cells to improve function and induce tumor immunity but can often cause serious immune related adverse events (IRAEs). Because COVID-19 vaccination and ICB both boost immune responses, it is imperative to understand if combining these regimens causes synergistic enhancement of the immune system. Specifically, whether ICB impacts anti-vaccine immunity in previously vaccinated patients is important since a large percentage of newly diagnosed cancer patients eligible for immunotherapy will have already been vaccinated against COVID-19. To address this, we investigated the influence of ICB on SARS-CoV-2-spike protein (SP) antibody titers and T cell responses in cancer patients previously vaccinated against COVID-19. Human blood samples were collected from 29 vaccinated patients and 12 unvaccinated control patients at baseline (prior to ICB) and following two rounds of ICB infusion. Anti-SARS-CoV-2-SP IgG titers and T cell responses were quantified. Compared to responses at baseline, there was no significant difference in these immune responses after immunotherapy in vaccinated individuals (P=0.4583, P=0.4571, respectively). We interpret these results as evidence that ICB immunotherapy does not significantly enhance SARS-CoV-2-specific antibody titers or T cell responses. Although our study lacks corresponding IRAE rates, the results provide humoral and cellular immunological data that support recent reports documenting the clinical safety and efficacy of COVID-19 vaccination in patients receiving ICB. Additional longitudinal prospective studies, such as the VOICE study (ClinicalTrials.gov identifier NCT04715438) and CAPTURE study (ClinicalTrials.gov identifier NCT03226886), are warranted and will provide broader safety and immunological data defining the effect of systemic cancer therapies on COVID-19 immunity.
Collapse
|