1
|
Li J, Fan S, Li H, Hu Z, Hu Q. Evaluation of efficacy, safety and underlying mechanism on Traditional Chinese medicine as synergistic agents for cancer immunotherapy: A preclinical systematic review and meta-analysis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119035. [PMID: 39510427 DOI: 10.1016/j.jep.2024.119035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Based on the documentation in Shennong's Herbal Classics, numerous Traditional Chinese medicine (TCM) are noted to possess anti-tumor properties, and TCM has been used in China for thousands of years. Particularly, current research have demonstrated that TCM combined with immunotherapy exhibited enhanced anti-tumor effects. AIM OF THE STUDY This meta-analysis aimed to evaluate the effectiveness, security, and potential mechanisms of TCM coupled with programmed cell death protein-1/programmed death ligand-1 (PD-1/PD-L1) inhibitors in cancer animal models. MATERIALS AND METHODS The pertinent research was performed in English database including PubMed, Web of Science, Embase, and Cochrane Library, as well as Chinese database including China National Knowledge Infrastructure (CNKI) and Wanfang Data Database published until January 2024. The quality of the included studies was evaluated with Systematic Review Center for Laboratory animal Experimentation (SYRCLE) risk assessment tool, and statistical analysis was conducted with Revman 5.4 software. Egger's test and funnel plots were used to assess potential publication bias. RESULTS An aggregate of 30 articles comprising 39 studies fulfilled the conditions for examination. The meta-analysis revealed that TCM + PD-1/PD-L1 inhibitors exhibited significant effects in inhibiting tumor growth (standard mean difference (SMD) = -2.61, 95% confidence interval (CI) = [-3.15, -2.07]), reducing tumor weight [SMD = -2.79 (-3.75, -1.83)], prolonging the survival time, and enhancing immune function in both cellular (CD4+ T cell percentage: 3.00 [1.45, 4.55]; CD8+ T cell percentage: 3.06 [2.16, 3.95]) and humoral immunity (interferon-γ (IFN-γ): 3.43, [2.54, 4.32]; tumor necrosis factor-α (TNF-α): 2.78 [1.46, 4.09]; interleukin (IL)-2: 1.79, [0.62, 2.95]; IL-6: 2.34, [0.07, 4.60]), and the differences between the two groups of the above indicators were statistically significant. No significant difference was found for aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. The mechanisms of TCM impacting PD-1/PD-L1 inhibitors therapy were closely associated with regulating tumor microenvironment, modulating gut microbiota, suppressing expression of PD-1 or PD-L1, and regulating cytokine signaling. CONCLUSION TCM displayed a potential enhanced anti-tumor efficacy of PD-1/PD-L1 inhibitors on six types of tumor including colon, breast, colorectal, melanoma, and bladder cancer in animals. However, due to significant heterogeneity in the included studies, caution should be exercised regarding the results. More high-quality randomized controlled animal experiments are need.
Collapse
Affiliation(s)
- Jing Li
- Pharmaceutical Department, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shipeng Fan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongxia Li
- Pharmaceutical Department, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiping Hu
- Department of Integrated Traditional Chinese and Western Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qixin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Wang M, Yang F, Kong J, Zong Y, Li Q, Shao B, Wang J. Traditional Chinese medicine enhances the effectiveness of immune checkpoint inhibitors in tumor treatment: A mechanism discussion. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:118955. [PMID: 39427737 DOI: 10.1016/j.jep.2024.118955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Immune checkpoint inhibitors (ICIs) have altered the landscape of tumor immunotherapy, offering novel therapeutic approaches alongside surgery, chemotherapy, and radiotherapy and significantly improving survival benefits. However, their clinical efficacy is limited in some patients, and their use may cause immune-related adverse events (irAEs). Integrating traditional Chinese medicine (TCM) with ICIs has demonstrated the potential to boost sensitization and reduce toxicity. Clinical trials and experimental explorations have confirmed that TCM and its active components synergistically enhance the effectiveness of ICIs. AIMS This narrative review summarizes the TCM practices that enhance the clinical efficacy and reduce irAEs of ICIs. This paper also summarizes the mechanism of experimental studies on the synergies of Chinese herbal decoctions, Chinese herbal preparation, and Chinese herbal active ingredients. Most of the studies on TCM combined with ICIs are basic experiments. We discussed the mechanism of TCM enhanced ICIs to provide reference for the research and development of TCM adjuvant immunotherapy. METHODS We conducted a literature search using PubMed and Chinese National Knowledge Infrastructure databases, with a focus on herbal decoction, Chinese medicine preparations, and active ingredients that boost the effectiveness of ICIs and reduce irAEs. The search keywords were "ICIs and traditional Chinese medicine", "PD-1 and traditional Chinese medicine", "PD-L1 and traditional Chinese medicine", "CTLA-4 and traditional Chinese medicine", "IDO1 and traditional Chinese medicine", "Tim-3 and traditional Chinese medicine", "TIGIT and traditional Chinese medicine", "irAEs and traditional Chinese medicine". The search period was from May 2014 to May 2024. Articles involving the use of TCM or its components in combination with ICIs and investigating the underlying mechanisms were screened. Finally, 30 Chinese medicines used in combination with ICIs were obtained to explore the mechanism. In the part of immune checkpoint molecules other than PD-1, there were few studies on the combined application of TCM, so studies involving the regulation of immune checkpoint molecules by TCM were included. RESULTS TCM has been shown to boost the effectiveness of ICIs and reduce irAEs. Researchers indicate that TCM and its active components can work synergistically with ICIs by regulating immune checkpoints PD-1, PD-L1, CTLA-4, and IDO1, regulating intestinal flora, improving tumor microenvironment and more. CONCLUSIONS Combining TCM with ICIs can play a better anti-tumor role, but larger samples and high-quality clinical trials are necessary to confirm this. Many Chinese medicines and their ingredients have been shown to sensitize ICIs in experimental studies, which provides a rich choice for the subsequent development of ICI enhancers.
Collapse
Affiliation(s)
- Manting Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fan Yang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, 250014, China; First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Shandong, 250014, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingwei Kong
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100007, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuhan Zong
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Bin Shao
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Ji Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
3
|
Zhou X, Yang F, Huang L, Ling Y, Xing R, Lu J, Nie H. ITGB4/BNIP3 Activates Autophagy and Reduces MHC-I Expression to Mediate Tumour Immune Escape in Pancreatic Cancer Cell Lines. Immunology 2025; 174:264-277. [PMID: 39711509 DOI: 10.1111/imm.13890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024] Open
Abstract
This study attempted to identify the relevant pathways involved in autophagy activation of pancreatic cancer and explore the mechanisms underlying immune evasion. Western blot (WB) was used to detect the expression of ITGB4, BNIP3, autophagy-related proteins and MHC-I. Co-immunoprecipitation (Co-IP) was used to verify the binding mode of ITGB4 and BNIP3. Flow cytometry was used to detect the expression of MHC-I on the cell membrane. Transmission electron microscope (TEM) was used to observe cell autophagy. Confocal microscopy was used to observe the co-localisation relationship between MHC-I and autophagosomes in cells. ELISA was used to detect the level of lactate dehydrogenase and granzyme B in a tumour cell-CD8+ T-cell co-culture system. Mouse syngeneic transplant tumour model and orthotopic tumour model were constructed and treated with PD-1 monoclonal antibody to observe tumour growth. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the mRNA expression of ITGB4 and BNIP3 in tumour tissues. WB was used to determine the expression of autophagy-related proteins. Flow cytometry was used to detect the expression of MHC-I on cell membranes and the proportion of CD3+ and CD8+ cells. The results of Co-IP experiments showed that ITGB4 could bind to BNIP3. It was observed under confocal microscopy that activating ITGB4/BNIP3 could promote the phagocytosis of MHC-I by autophagosomes. Finally, the subcutaneous tumour transplantation and orthotopic tumour experiments in mice demonstrated the downregulation of ITGB4 significantly improved the therapeutic effect of PD-1 antibodies on pancreatic cancer. In pancreatic cancer cells, autophagy is positively correlated with the ITGB4-BNIP3 complex protein expression level. Autophagy diminishes the protein expression of MHC-I, thereby promoting immune escape in pancreatic cancer cells.
Collapse
Affiliation(s)
- Xianfei Zhou
- Department of Hepatobiliary Surgery, Municipal Hospital Affiliated to Taizhou University, Taizhou, Zhejiang, China
| | - Fan Yang
- Department of Hepatobiliary Surgery, Municipal Hospital Affiliated to Taizhou University, Taizhou, Zhejiang, China
| | - Luoshun Huang
- Department of Hepatobiliary Surgery, Municipal Hospital Affiliated to Taizhou University, Taizhou, Zhejiang, China
| | - Yisheng Ling
- Department of Hepatobiliary Surgery, Municipal Hospital Affiliated to Taizhou University, Taizhou, Zhejiang, China
| | - Renwei Xing
- Department of Hepatobiliary Surgery, Municipal Hospital Affiliated to Taizhou University, Taizhou, Zhejiang, China
| | - Jie Lu
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Hanqiu Nie
- Department of Hepatobiliary Surgery, Municipal Hospital Affiliated to Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
4
|
Zhao K, Sun Y, Zhong S, Luo JL. The multifaceted roles of cathepsins in immune and inflammatory responses: implications for cancer therapy, autoimmune diseases, and infectious diseases. Biomark Res 2024; 12:165. [PMID: 39736788 DOI: 10.1186/s40364-024-00711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025] Open
Abstract
The cathepsin family comprises lysosomal proteases that play essential roles in various physiological processes, including protein degradation, antigen presentation, apoptosis, and tissue remodeling. Dysregulation of cathepsin activity has been linked to a variety of pathological conditions, such as cancer, autoimmune diseases, and neurodegenerative disorders. Understanding the functions of cathepsins is crucial for gaining insights into their roles in both health and disease, as well as for developing targeted therapeutic approaches. Emerging research underscores the significant involvement of cathepsins in immune cells, particularly T cells, macrophages, dendritic cells, and neutrophils, as well as their contribution to immune-related diseases. In this review, we systematically examine the impact of cathepsins on the immune system and their mechanistic roles in cancer, infectious diseases, autoimmune and neurodegenerative disorders, with the goal of identifying novel therapeutic strategies for these conditions.
Collapse
Affiliation(s)
- Kexin Zhao
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China
| | - Yangqing Sun
- Department of Oncology, Hunan Provincial People's Hospital, Changsha, Hunan, 410005, China
| | - Shangwei Zhong
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China
| | - Jun-Li Luo
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China.
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China.
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, USC, Hengyang, Hunan, 410008, China.
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hengyang, Hunan, 421001, China.
| |
Collapse
|
5
|
Kong S, Zhang J, Wang L, Li W, Guo H, He Q, Lou H, Ding L, Yang B. Mechanisms of Low MHC I Expression and Strategies for Targeting MHC I with Small Molecules in Cancer Immunotherapy. Cancer Lett 2024:217432. [PMID: 39730087 DOI: 10.1016/j.canlet.2024.217432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 12/29/2024]
Abstract
Major histocompatibility complex (MHC) class I load antigens and present them on the cell surface, which transduces the tumor-associated antigens to CD8+ T cells, activating the acquired immune system. However, many tumors downregulate MHC I expression to evade immune surveillance. The low expression of MHC I not only reduce recognition by- and cytotoxicity of CD8+ T cells, but also seriously weakens the anti-tumor effect of immunotherapy by restoring CD8+ T cells, such as immune checkpoint inhibitors (ICIs). Accumulated evidence suggested that restoring MHC I expression is an effective strategy for enhancing tumor immunotherapy. This review focuses on mechanisms underlying MHC I downregulation include gene deletion and mutation, transcriptional inhibition, reduced mRNA stability, increased protein degradation, and disruption of endocytic trafficking. We also provide a comprehensive review of small molecules that restore or upregulate MHC I expression, as well as clinical trials involving the combination of ICIs and these small molecule drugs.
Collapse
Affiliation(s)
- Shijia Kong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Longsheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Honggang Lou
- Center of Clinical Pharmacology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China.
| |
Collapse
|
6
|
Zhou X, Cai M, Yang F, Huang L, Ling Y, Zhang Y, Nie H, Xing R. Hypoxia-induced autophagy in pancreatic cancer counteracts the cytotoxicity of CD8 + T cells by inhibiting the expression of MHC-I. Genes Immun 2024:10.1038/s41435-024-00315-1. [PMID: 39715814 DOI: 10.1038/s41435-024-00315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
The hypoxic microenvironment is an essential feature of solid tumors. Autophagy has been controversial in its role in immune regulation. This project aims to elucidate the impact of autophagy in pancreatic cancer (PC) under specific conditions (hypoxia) on CD8+ T cells and the regulatory mechanisms behind it.The levels of HIF1α and autophagy were analyzed by western blot (WB) and immunofluorescence (IF). The effects of HIF1α on cell autophagy were assessed in normoxic or hypoxic treatments using KC7F2 (HIF-1 channel inhibitor) or chloroquine (autophagy inhibitor). CD8+ T cells were co-cultured with PC cells to assess the cytotoxicity using lactate dehydrogenase (LDH) and Hoechst/PI staining. The content of cytokines and the activation level of CD8+ T cells were measured by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. MHC-I expression in PC cells (membranes) was analyzed using quantitative reverse transcription polymerase chain reaction (qRT-PCR), WB, IF, and flow cytometry. Humanized immune-reconstituted mice were applied to investigate the impact of HIF1α-induced autophagy on in vivo immunity.When cells were in hypoxia, the levels of HIF1α and autophagy were higher compared to normoxic conditions. Treatment with KC7F2 resulted in similar levels of HIF1α and autophagy as those in normoxic state. Chloroquine treatment reversed the autophagy level to the normoxic state. The autophagy level of PC cells transfected with oe-HIF1α was increased, with reduced MHC-I expression on cells (membranes), which impaired the cytotoxicity of CD8+ T cells, and thus decreasing the probability of recognition and attack by CD8+ T cells when co-cultured with them. In mice, overexpression of HIF1α hindered the immune suppressive function of CD8+ T cells and facilitated the immune escape of PC by reducing antigen presentation of MHC-I.Under hypoxia, HIF1α-induced autophagy reduces the cytotoxicity of CD8+ T cells by repressing MHC-I expression.
Collapse
Affiliation(s)
- Xianfei Zhou
- Department of Hepatobiliary Surgery, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Miaoguo Cai
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Fan Yang
- Department of Hepatobiliary Surgery, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Luoshun Huang
- Department of Hepatobiliary Surgery, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Yisheng Ling
- Department of Hepatobiliary Surgery, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Yang Zhang
- Department of Hepatobiliary Surgery, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Hanqiu Nie
- Department of Hepatobiliary Surgery, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Renwei Xing
- Department of Hepatobiliary Surgery, Municipal Hospital Affiliated to Taizhou University, Taizhou, China.
| |
Collapse
|
7
|
Wei X, Leng X, Liang J, Liu J, Chi L, Deng H, Sun D. Pharmacological potential of natural medicine Astragali Radix in treating intestinal diseases. Biomed Pharmacother 2024; 180:117580. [PMID: 39413615 DOI: 10.1016/j.biopha.2024.117580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024] Open
Abstract
Due to changes in diet and lifestyle, the prevalence of intestinal diseases has been increasing annually. Current treatment methods exhibit several limitations, including adverse reactions and drug resistance, necessitating the development of new, safe, and effective therapies. Astragali Radix, a natural medicine utilized for over two millennia, offers unique advantages in treating intestinal ailments due to its multi-component and multi-target properties. This study aims to review the effective components of Astragali Radix that provide intestinal protection and to explore its pharmacological effects and molecular mechanisms across various intestinal diseases. This will provide a comprehensive foundation for using Astragali Radix in treating intestinal diseases and serve as a reference for future research directions. The active components of Astragali Radix with protective effects on the intestines include astragaloside (AS)-IV, AS-III, AS-II, astragalus polysaccharide (APS), cycloastagenol, calycosin, formononetin, and ononin. Astragali Radix and its active components primarily address intestinal diseases such as colorectal cancer (CRC), inflammatory bowel disease (IBD), and enterocolitis through mechanisms including anti-inflammatory actions, antioxidative stress responses, anti-proliferation and invasion activities, regulation of programmed cell death, immunoregulation, restoration of the intestinal epithelial barrier, and modulation of the intestinal microbiota and its metabolites. Consequently, Astragali Radix demonstrates significant intestinal protective activity and represents a promising natural treatment for intestinal diseases. However, the pharmacological actions and mechanisms of some active components in Astragali Radix remain unexplored. Moreover, further comprehensive toxicological and clinical studies are required to ascertain its safety and clinical effectiveness.
Collapse
Affiliation(s)
- Xiunan Wei
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xiaohui Leng
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Junwei Liang
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Jiahui Liu
- Department of Gastroenterology, Shandong Provincial Third Hospital, Jinan 250014, China.
| | - Lili Chi
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Hualiang Deng
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Dajuan Sun
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
8
|
Wang S, Zhang Y, Yu R, Chai Y, Liu R, Yu J, Qu Z, Zhang W, Zhuang C. Labeled and Label-Free Target Identifications of Natural Products. J Med Chem 2024; 67:17980-17996. [PMID: 39360958 DOI: 10.1021/acs.jmedchem.4c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Target identification, employing chemical proteomics, constitutes a continuous challenging endeavor in the drug development of natural products (NPs). Understanding their targets is crucial for deciphering their mechanisms and developing potential probes or drugs. Identifications fall into two main categories: labeled and label-free techniques. Labeled methods use the molecules tagged with markers such as biotin or fluorescent labels to easily detect interactions with target proteins. Thorough structure-activity relationships are essential before labeling to avoid changes in the biological activity or binding specificity. In contrast, label-free technologies identify target proteins without modifying natural products, relying on changes in the stability, thermal properties, or precipitation in the presence or absence of these products. Each approach has its advantages and disadvantages, offering a comprehensive understanding of the mechanisms and therapeutic potential of the NPs. Here, we summarize target identification techniques for natural molecules, highlight case studies of notable NPs, and explore future applications and directions.
Collapse
Affiliation(s)
- Shuyu Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yu Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ruizhi Yu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yue Chai
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ruyun Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
9
|
Ye D, Zhou S, Dai X, Xu H, Tang Q, Huang H, Bi F. Targeting the MHC-I endosomal-lysosomal trafficking pathway in cancer: From mechanism to immunotherapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189161. [PMID: 39096977 DOI: 10.1016/j.bbcan.2024.189161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Immune checkpoint blockade (ICB) therapy has achieved broad applicability and durable clinical responses across cancer types. However, the overall response rate remains suboptimal because some patients do not respond or develop drug resistance. The low infiltration of CD8+ cytotoxic T cells (CTLs) in the tumor microenvironment due to insufficient antigen presentation is closely related to the innate resistance to ICB. The duration and spatial distribution of major histocompatibility complex class I (MHC-I) expression on the cell surface is critical for the efficient presentation of endogenous tumor antigens and subsequent recognition and clearance by CTLs. Tumor cells reduce the surface expression of MHC-I via multiple mechanisms to impair antigen presentation pathways and evade immunity and/or develop resistance to ICB therapy. As an increasing number of studies have focused on membrane MHC-I trafficking and degradation in tumor cells, which may impact the effectiveness of tumor immunotherapy. It is necessary to summarize the mechanism regulating membrane MHC-I translocation into the cytoplasm and degradation via the lysosome. We reviewed recent advances in the understanding of endosomal-lysosomal MHC-I transport and highlighted the means exploited by tumor cells to evade detection and clearance by CTLs. We also summarized new therapeutic strategies targeting these pathways to enhance classical ICB treatment and provide new avenues for optimizing cancer immunotherapy.
Collapse
Affiliation(s)
- Di Ye
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Shuang Zhou
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Xinyu Dai
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Huanji Xu
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Qiulin Tang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Huixi Huang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Feng Bi
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China.
| |
Collapse
|
10
|
Zhang Y, Chen Z, Chen L, Dong Q, Yang DH, Zhang Q, Zeng J, Wang Y, Liu X, Cui Y, Li M, Luo X, Zhou C, Ye M, Li L, He Y. Astragali radix (Huangqi): a time-honored nourishing herbal medicine. Chin Med 2024; 19:119. [PMID: 39215362 PMCID: PMC11363671 DOI: 10.1186/s13020-024-00977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Astragali radix (AR, namded Huangqi in Chinese) is the dried root of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or Astragalus membranaceus (Fisch.) Bge. As a widely used ethnomedicine, the biological activities of AR include immunomodulatory, anti-hyperglycemic, anti-oxidant, anti-aging, anti-inflammatory, anti-viral, anti-tumor, cardioprotective, and anti-diabetic effects, with minimum side effects. Currently, it is known that polysaccharides, saponins, and flavonoids are the indispensable components of AR. In this review, we will elaborate the research advancements of AR on ethnobotany, ethnopharmacological practices, phytochemicals, pharmacological activities, clinical uses, quality control, production developments, and toxicology. The information is expected to assist clinicians and scientists in developing useful therapeutic medicines with minimal systemic side effects.
Collapse
Affiliation(s)
- Yuyu Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Zhejie Chen
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liping Chen
- School of Comprehensive Health Management, Xihua University, Chengdu, 610039, China
| | - Qin Dong
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, 11501, USA
| | - Qi Zhang
- Pengzhou Hospital of Traditional Chinese Medicine, Pengzhou, 611930, China
| | - Jing Zeng
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Yang Wang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Xiao Liu
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Yuan Cui
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Minglong Li
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Xiao Luo
- Chengdu Institute for Drug Control, NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine, Chengdu, 610045, China
| | - Chongjian Zhou
- HuBei Guizhenyuan Chinese Herbal Medicine Co.Ltd., Hong'an, 438400, China
| | - Mingzhu Ye
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China.
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
11
|
Dong H, Wen C, He L, Zhang J, Xiang N, Liang L, Hu L, Li W, Liu J, Shi M, Hu Y, Chen S, Liu H, Yang X. Nilotinib boosts the efficacy of anti-PDL1 therapy in colorectal cancer by restoring the expression of MHC-I. J Transl Med 2024; 22:769. [PMID: 39143573 PMCID: PMC11325812 DOI: 10.1186/s12967-024-05572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Although immune checkpoint inhibitors (ICIs) have revolutionized the landscape of cancer treatment, only a minority of colorectal cancer (CRC) patients respond to them. Enhancing tumor immunogenicity by increasing major histocompatibility complex I (MHC-I) surface expression is a promising strategy to boost the antitumor efficacy of ICIs. METHODS Dual luciferase reporter assays were performed to find drug candidates that can increase MHC-I expression. The effect of nilotinib on MHC-I expression was verified by dual luciferase reporter assays, qRT-PCR, flow cytometry and western blotting. The biological functions of nilotinib were evaluated through a series of in vitro and in vivo experiments. Using RNA-seq analysis, immunofluorescence assays, western blotting, flow cytometry, rescue experiments and microarray chip assays, the underlying molecular mechanisms were investigated. RESULTS Nilotinib induces MHC-I expression in CRC cells, enhances CD8+ T-cell cytotoxicity and subsequently enhances the antitumor effects of anti-PDL1 in both microsatellite instability and microsatellite stable models. Mechanistically, nilotinib promotes MHC-I mRNA expression via the cGAS-STING-NF-κB pathway and reduces MHC-I degradation by suppressing PCSK9 expression in CRC cells. PCSK9 may serve as a potential therapeutic target for CRC, with nilotinib potentially targeting PCSK9 to exert anti-CRC effects. CONCLUSION This study reveals a previously unknown role of nilotinib in antitumor immunity by inducing MHC-I expression in CRC cells. Our findings suggest that combining nilotinib with anti-PDL1 therapy may be an effective strategy for the treatment of CRC.
Collapse
Affiliation(s)
- Haiyan Dong
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Chuangyu Wen
- Department of Obstetrics and Gynecology, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, 523059, Guangdong, China.
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, 60637, USA.
| | - Lu He
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Jingdan Zhang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Nanlin Xiang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Liumei Liang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Limei Hu
- Department of Clinical Laboratory Medicine, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Weiqian Li
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Jiaqi Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Mengchen Shi
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Yijia Hu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Siyu Chen
- Guangdong Laboratory, GuangdongKey Laboratory Animal Lab, Animals Monitoring Institute, Guangzhou, 510633, Guangdong, China
| | - Huanliang Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.
| | - Xiangling Yang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.
| |
Collapse
|
12
|
Zhu LH, Liang YP, Yang L, Zhu F, Jia LJ, Li HG. Cycloastragenol induces apoptosis and protective autophagy through AMPK/ULK1/mTOR axis in human non-small cell lung cancer cell lines. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:503-514. [PMID: 38849220 DOI: 10.1016/j.joim.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/16/2024] [Indexed: 06/09/2024]
Abstract
OBJECTIVE Studies have demonstrated that cycloastragenol induces antitumor effects in prostate, colorectal and gastric cancers; however, its efficacy for inhibiting the proliferation of lung cancer cells is largely unexplored. This study explores the efficacy of cycloastragenol for inhibiting non-small cell lung cancer (NSCLC) and elucidates the underlying molecular mechanisms. METHODS The effects of cycloastragenol on lung cancer cell proliferation were assessed using an adenosine triphosphate monitoring system based on firefly luciferase and clonogenic formation assays. Cycloastragenol-induced apoptosis in lung cancer cells was evaluated using dual staining flow cytometry with an annexin V-fluorescein isothiocyanate/propidium iodide kit. To elucidate the role of cycloastragenol in the induction of apoptosis, apoptosis-related proteins were examined using Western blots. Immunofluorescence and Western blotting were used to determine whether cycloastragenol could induce autophagy in lung cancer cells. Genetic techniques, including small interfering RNA technology, were used to investigate the underlying mechanisms. The effects against lung cancer and biosafety of cycloastragenol were evaluated using a mouse subcutaneous tumor model. RESULTS Cycloastragenol triggered both autophagy and apoptosis. Specifically, cycloastragenol promoted apoptosis by facilitating the accumulation of phorbol-12-myristate-13-acetate-induced protein 1 (NOXA), a critical apoptosis-related protein. Moreover, cycloastragenol induced a protective autophagy response through modulation of the adenosine 5'-monophosphate-activated protein kinase (AMPK)/unc-51-like autophagy-activating kinase (ULK1)/mammalian target of rapamycin (mTOR) pathway. CONCLUSION Our study sheds new light on the antitumor efficacy and mechanism of action of cycloastragenol in NSCLC. This insight provides a scientific basis for exploring combination therapies that use cycloastragenol and inhibiting the AMPK/ULK1/mTOR pathway as a promising approach to combating lung cancer. Please cite this article as follows: Zhu LH, Liang YP, Yang L, Zhu F, Jia LJ, Li HG. Cycloastragenolinduces apoptosis and protective autophagy through AMPK/ULK1/mTOR axis in human non-small celllung cancer cell lines. J Integr Med. 2024; 22(4): 504-515.
Collapse
Affiliation(s)
- Li-Hua Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yu-Pei Liang
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lian Yang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Feng Zhu
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai 200237, China
| | - Li-Jun Jia
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - He-Gen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
13
|
Xiong Y, Bao L, Ma Y, Zhang L, Qin C, Huang L. Wen-Yi and Chinese medicine: Why we need to pay attention? Sci Bull (Beijing) 2024; 69:1617-1622. [PMID: 38704357 DOI: 10.1016/j.scib.2024.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 05/06/2024]
Affiliation(s)
- Yibai Xiong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Linlin Bao
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Yan Ma
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; Changping National Laboratory (CPNL), Beijing 102206, China; National Center for Technology and Innovation of Animal Model, Beijing 100021, China.
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing 100700, China; National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
14
|
Li J, Fu Y, Wang Y, Zheng Y, Zhang K, Li Y. Qi Lang formula relieves constipation via targeting SCF/c-kit signaling pathway: An integrated study of network pharmacology and experimental validation. Heliyon 2024; 10:e31860. [PMID: 38841509 PMCID: PMC11152960 DOI: 10.1016/j.heliyon.2024.e31860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Background Constipation is one of the chronic gastrointestinal functional diseases that affects the quality of life. While Qi Lang Formula (QLF) has demonstrated effectiveness in alleviating constipation symptoms, its precise mechanism remains elusive. Methods QLF was analyzed using UPLC-MS/MS. Targets for QLF were collected from SwissADME, Herb, ITCM databases, and constipation-related targets from scRNA-seq and Genecards databases. Overlapping targets suggested potential QLF therapy targets for constipation. Enrichment analysis used the KOBAS database. A "drug-ingredient-target" network was constructed with Cytoscape, and AutoDock verified active ingredient binding. H&E staining assessed colonic mucosa changes, TEM examined ICC structural changes. ELISA measured neurotransmitter levels, and Western blot verified QLF's effect on target proteins. ICC proliferation was observed through immunofluorescence. Results We identified 89 targets of QLF associated with ICC-related constipation, with c-Kit emerging as the pivotal target. Molecular docking studies revealed that Atractylenolide Ⅲ, Apigenin, Formononetin, Isorhamnetin, Naringenin, and Ononin exhibited strong binding affinities for the c-Kit structural domain. QLF significantly enhanced first stool passage time, fecal frequency, fecal moisture content, and intestinal propulsion rate. Further analysis unveiled that QLF not only restored neurotransmitter levels but also mitigated colon muscular fiber ruptures. ICC ultrastructure exhibited partial recovery, while Western blot confirmed upregulated c-Kit expression and downstream targets. Immunofluorescence results indicated ICC proliferation post QLF treatment in rat colon. Conclusion Our findings suggest that QLF may promote ICC proliferation by targeting SCF/c-Kit and its downstream signaling pathway, thereby regulating intestinal motility.
Collapse
Affiliation(s)
- Jiacheng Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yugang Fu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yanping Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yiyuan Zheng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Kehui Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yong Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| |
Collapse
|
15
|
Shang Z, Fan Y, Xi S, Zhang S, Shen W, Tao L, Xu C, Tan J, Fan M, Ma H, Lai Y, Sun D, Cheng H. Arenobufagin enhances T-cell anti-tumor immunity in colorectal cancer by modulating HSP90β accessibility. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155497. [PMID: 38640855 DOI: 10.1016/j.phymed.2024.155497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is a significant public health issue, ranking as one of the predominant cancer types globally in terms of incidence. Intriguingly, Arenobufagin (Are), a compound extracted from toad venom, has demonstrated the potential to inhibit tumor growth effectively. PURPOSE This study aimed to explore Are's molecular targets and unravel its antitumor mechanism in CRC. Specifically, we were interested in its impact on immune checkpoint modulation and correlations with HSP90β-STAT3-PD-L1 axis activity. METHODS We investigated the in vivo antitumor effects of Are by constructing a colorectalcancer subcutaneous xenograft mouse model. Subsequently, we employed single-cell multi-omics technology to study the potential mechanism by which Are inhibits CRC. Utilizing target-responsive accessibility profiling (TRAP) technology, we identified heatshock protein 90β (HSP90β) as the direct target of Are, and confirmed this through a microscale thermophoresis experiment (MST). Further downstream mechanisms were explored through techniques such as co-immunoprecipitation, Western blotting, qPCR, and immunofluorescence. Concurrently, we arrived at the same research conclusion at the organoid level by co-cultivating with immune cells. RESULTS We observed that Are inhibits PD-Ll expression in CRC tumor xenografts at low concentrations. Moreover, TRAP revealed that HSP90β's accessibility significantly decreased upon Are binding. We demonstrated a decrease in the activity of the HSP90β-STAT3-PD-Ll axis following low-concentration Are treatment in vivo. The PDO analysis showed improved enrichment of lymphocytes, particularly T cells, on the PDOs following Are treatment. CONCLUSION Contrary to previous research focusing on the direct cytotoxicity of Are towards tumor cells, our findings indicate that it can also inhibit tumor growth at lower concentrations through the modulation of immune checkpoints. This study unveils a novel anti-tumor mechanism of Are and stimulates contemplation on the dose-response relationship of natural products, which is beneficial for the clinical translational application of Are.
Collapse
Affiliation(s)
- Zhihao Shang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Yiping Fan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314000, China
| | - Songyang Xi
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, 212000, China
| | - Shang Zhang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Weixing Shen
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Lihuiping Tao
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Changliang Xu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Jiani Tan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Minmin Fan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Hongyue Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Yueyang Lai
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| | - Dongdong Sun
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| | - Haibo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| |
Collapse
|
16
|
Sheikhlary S, Lopez DH, Moghimi S, Sun B. Recent Findings on Therapeutic Cancer Vaccines: An Updated Review. Biomolecules 2024; 14:503. [PMID: 38672519 PMCID: PMC11048403 DOI: 10.3390/biom14040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer remains one of the global leading causes of death and various vaccines have been developed over the years against it, including cell-based, nucleic acid-based, and viral-based cancer vaccines. Although many vaccines have been effective in in vivo and clinical studies and some have been FDA-approved, there are major limitations to overcome: (1) developing one universal vaccine for a specific cancer is difficult, as tumors with different antigens are different for different individuals, (2) the tumor antigens may be similar to the body's own antigens, and (3) there is the possibility of cancer recurrence. Therefore, developing personalized cancer vaccines with the ability to distinguish between the tumor and the body's antigens is indispensable. This paper provides a comprehensive review of different types of cancer vaccines and highlights important factors necessary for developing efficient cancer vaccines. Moreover, the application of other technologies in cancer therapy is discussed. Finally, several insights and conclusions are presented, such as the possibility of using cold plasma and cancer stem cells in developing future cancer vaccines, to tackle the major limitations in the cancer vaccine developmental process.
Collapse
Affiliation(s)
- Sara Sheikhlary
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - David Humberto Lopez
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Sophia Moghimi
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Bo Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| |
Collapse
|
17
|
Liu F, Zhou T, Zhang S, Li Y, Chen Y, Miao Z, Wang X, Yang G, Li Q, Zhang L, Liu Y. Cathepsin B: The dawn of tumor therapy. Eur J Med Chem 2024; 269:116329. [PMID: 38508117 DOI: 10.1016/j.ejmech.2024.116329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Cathepsin B (CTSB) is a key lysosomal protease that plays a crucial role in the development of cancer. This article elucidates the relationship between CTSB and cancer from the perspectives of its structure, function, and role in tumor growth, migration, invasion, metastasis, angiogenesis and autophagy. Further, we summarized the research progress of cancer treatment related drugs targeting CTSB, as well as the potential and advantages of Traditional Chinese medicine in treating tumors by regulating the expression of CTSB.
Collapse
Affiliation(s)
- Fuxian Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ting Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Experimental & Training Teaching Centers, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shangzu Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yangyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Chen
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhiming Miao
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xin Wang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gengqiang Yang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qiyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Liying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China.
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China.
| |
Collapse
|
18
|
Xia J, Zhang Y, Wang Q, Zhang T. Cycloastragenol restrains keratinocyte hyperproliferation by promoting autophagy via the miR-145/STC1/Notch1 axis in psoriasis. Immunopharmacol Immunotoxicol 2024; 46:229-239. [PMID: 38194243 DOI: 10.1080/08923973.2023.2300310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/24/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Psoriasis is characterized by inflammation and hyperproliferation of epidermal keratinocytes. Cycloastragenol (CAG) is an active molecule of Astragalus membranaceus that potentially plays a repressive role in psoriasis. Activated cell autophagy is an effective pathway for alleviating psoriasis progression. Thus, we investigated the role of CAG in the proliferation and autophagy of interleukin (IL)-22-stimulated keratinocytes. METHODS A psoriasis model was established by stimulating HaCaT cells with IL-22. Gene or protein expression levels were measured by qRT-PCR or western blot. Autophagy flux was observed with mRFP-GFP-LC3 adenovirus transfection assay under confocal microscopy. Stanniocalcin-1 (STC1) secretion levels were determined using ELISA kits. The apoptosis rate was assessed using flow cytometry. Interactions between miR-145 and STC1 or STC1 and Notch1 were validated by luciferase reporter gene assays, RIP, and Co-IP assays. RESULTS CAG repressed cell proliferation and promoted apoptosis and autophagy in IL-22-stimulated HaCaT cells. Additionally, CAG promoted autophagy by enhancing miR-145. STC1 silencing ameliorated autophagy repression in IL-22-treated HaCaT cells. Moreover, miR-145 negatively regulated STC1, and STC1 was found to activate Notch1. Lastly, STC1 overexpression reversed CAG-promoted autophagy. CONCLUSION CAG alleviated keratinocyte hyperproliferation through autophagy enhancement via regulating the miR-145/STC1/Notch1 axis in psoriasis.
Collapse
Affiliation(s)
- Jie Xia
- Department of Dermatology, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan Province, P.R. China
- Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, P.R. China
| | - Yuan Zhang
- Department of Dermatology, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan Province, P.R. China
| | - Qing Wang
- Department of Dermatology, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan Province, P.R. China
| | - Teng Zhang
- Department of Dermatology, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan Province, P.R. China
| |
Collapse
|
19
|
Chen J, Zhang Q, Guo J, Gu D, Liu J, Luo P, Bai Y, Chen J, Zhang X, Nie S, Chen C, Feng Y, Wang J. Single-cell transcriptomics reveals the ameliorative effect of rosmarinic acid on diabetic nephropathy-induced kidney injury by modulating oxidative stress and inflammation. Acta Pharm Sin B 2024; 14:1661-1676. [PMID: 38572101 PMCID: PMC10985035 DOI: 10.1016/j.apsb.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/11/2023] [Accepted: 01/04/2024] [Indexed: 04/05/2024] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes, characterized by changes in kidney structure and function. The natural product rosmarinic acid (RA) has demonstrated therapeutic effects, including anti-inflammation and anti-oxidative-stress, in renal damage or dysfunction. In this study, we characterized the heterogeneity of the cellular response in kidneys to DN-induced injury and RA treatment at single cell levels. Our results demonstrated that RA significantly alleviated renal tubular epithelial injury, particularly in the proximal tubular S1 segment and on glomerular epithelial cells known as podocytes, while attenuating the inflammatory response of macrophages, oxidative stress, and cytotoxicity of natural killer cells. These findings provide a comprehensive understanding of the mechanisms by which RA alleviates kidney damage, oxidative stress, and inflammation, offering valuable guidance for the clinical application of RA in the treatment of DN.
Collapse
Affiliation(s)
- Junhui Chen
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Qian Zhang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen 518020, China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinan Guo
- Department of Urology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Di Gu
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
| | - Jing Liu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Piao Luo
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen 518020, China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yunmeng Bai
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Jiayun Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen 518020, China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xinzhou Zhang
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Sheng Nie
- Department of Nephrology, Nanfang Hospital, the First Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
| | - Chunbo Chen
- Department of Critical Care Medicine, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Yulin Feng
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Jigang Wang
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen 518020, China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory for Quality Esurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
20
|
Wang HL, Narisawa M, Wu P, Meng X, Cheng XW. The many roles of cathepsins in restenosis. Heliyon 2024; 10:e24720. [PMID: 38333869 PMCID: PMC10850908 DOI: 10.1016/j.heliyon.2024.e24720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Drug-eluting stents (DES) and dual antiplatelet regimens have significantly improved the clinical management of ischemic heart disease; however, the drugs loaded with DES in clinical practice are mostly paclitaxel or rapamycin derivatives, which target symptoms of post implantation proliferation and inflammation, leading to delayed re-endothelialization and neo-atherosclerosis. Along with the treatments already in place, there is a need for novel strategies to lessen the negative clinical outcomes of DES delays as well as a need for greater understanding of their pathobiological mechanisms. This review concentrates on the function of cathepsins (Cats) in the inflammatory response and granulation tissue formation that follow Cat-induced damage to the vasculature scaffold, as well as the functions of Cats in intimal hyperplasia, which is characterized by the migration and proliferation of smooth muscle cells, and endothelial denudation, re-endothelialization, and/or neo-endothelialization. Additionally, Cats can alter essential neointima formation and immune response inside scaffolds, and if Cats are properly controlled in vivo, they may improve scaffold biocompatibility. This unique profile of functions could lead to an original concept for a cathepsin-based coronary intervention treatment as an adjunct to stent placement.
Collapse
Affiliation(s)
- Hai Long Wang
- Department of Adult Intensive Care Unit, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, 4668550, Japan
| | - Pan Wu
- Department of Adult Intensive Care Unit, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiangkun Meng
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, PR China
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, PR China
| |
Collapse
|
21
|
Kong X, Li Q, Wang D, Wang M, Yang F, Meng J. Mechanism of Qizhen decoction-mediated maturation of DC cells to activate the IL-12/JAK2/STAT4 pathway to sensitise PD-1 inhibitors in the treatment of colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117399. [PMID: 37956913 DOI: 10.1016/j.jep.2023.117399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine has been utilized to treat colorectal cancer (CRC). Qizhen decoction (QZD), a potential compound prescription of traditional Chinese medicine, possesses multiple biological activities. It has been used to treat CRC in clinical practice and has been proven to be effective. AIM OF THE STUDY To investigate the impact of QZD supported by intestinal flora in combination with PD-1 inhibitor on colorectal cancer, and to elucidate the mechanism by which QZD enhances the sensitivity of PD-1 inhibitor against colorectal cancer. MATERIALS AND METHODS Observation of Intestinal Flora Mediating the Effect of QZD Combined with PD-1 Inhibitor in the Treatment of Colorectal Cancer. We used Flow cytometry and qPCR to detect the effect of QZD combined with PD-1 inhibitor on the activation of effector T cells in a wild mouse model of colorectal cancer. In wild and germ-free mouse models, the differences in inflammatory factors, pathological change, body mass, colorectal length, and tumour load were observed. In the study of the mechanism of QZD combined with PD-1 inhibitor in the treatment of colorectal cancer, the study evaluated the abundance of Akkermansia, the phenotypes of effector T cells and DC cells, as well as inflammatory factors in each group of mice to determine whether Akkermansia played a role in activating DC cells. Based on the JAK2/TYK2/STAT4 pathway, the mechanism of PD-1 inhibitor sensitisation by QZD in colorectal cancer was further investigated. RESULTS We found that QZD combined with PD-1 inhibitor could improve the therapeutic effect on colorectal cancer by inducing more critical immune functions. QZD promotes increased Akkermansia abundance in the gut. Akkermansia promotes maturation of DC cells, and mature DC cells activate the IL-12/JAK2/STAT4 pathway, which significantly activates effector T cells. Akkermansia is key to QZD combined with PD-1 inhibitor-mediated immunity exerting a therapeutic effect on colorectal cancer. CONCLUSION The mechanism of action of the QZD sensitizing PD-1 inhibitor is to promote the maturation of DC cells to release IL-12 and activate the JAK2/STAT4 pathway to induce effector T cell activation by increasing the abundance of Akkermansia.
Collapse
Affiliation(s)
- Xianbin Kong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Qingbo Li
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Dong Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Miao Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Fan Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jingyan Meng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
22
|
Tan J, Xue Q, Hu X, Yang J. Inhibitor of PD-1/PD-L1: a new approach may be beneficial for the treatment of idiopathic pulmonary fibrosis. J Transl Med 2024; 22:95. [PMID: 38263193 PMCID: PMC10804569 DOI: 10.1186/s12967-024-04884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a globally prevalent, progressive disease with limited treatment options and poor prognosis. Because of its irreversible disease progression, IPF affects the quality and length of life of patients and imposes a significant burden on their families and social healthcare services. The use of the antifibrotic drugs pirfenidone and nintedanib can slow the progression of the disease to some extent, but it does not have a reverse effect on the prognosis. The option of lung transplantion is also limited owing to contraindications to transplantation, possible complications after transplantation, and the risk of death. Therefore, the discovery of new, effective treatment methods is an urgent need. Over recent years, various studies have been undertaken to investigate the relationship between interstitial pneumonia and lung cancer, suggesting that some immune checkpoints in IPF are similar to those in tumors. Immune checkpoints are a class of immunosuppressive molecules that are essential for maintaining autoimmune tolerance and regulating the duration and magnitude of immune responses in peripheral tissues. They can prevent normal tissues from being damaged and destroyed by the immune response. While current studies have focused on PD-1/PD-L1 and CTLA-4, PD-1/PD-L1 may be the only effective immune checkpoint IPF treatment. This review discusses the application of PD-1/PD-L1 checkpoint in IPF, with the aim of finding a new direction for IPF treatment.
Collapse
Affiliation(s)
- Jie Tan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Qianfei Xue
- Hospital of Jilin University, Changchun, China
| | - Xiao Hu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
23
|
Le-Xin C, Ming-Jun L, Chun-Qi X, Jia-Xin Z, Jing-Ya Y, Li-Xin N, Mei-Qi W, En-Xin Z, Xiao-Jun Z. Yi Qi Chu Tan Formula (YQCTF) inhibited the progress of lung cancer via regulating tumor-associated neutrophil: An integrated study of network pharmacology, proteomics and pharmacodynamics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116943. [PMID: 37532072 DOI: 10.1016/j.jep.2023.116943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/25/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yi Qi Chu Tan Formula (YQCTF), a prescription consisting of eight traditional Chinese medicine for treating lung cancer, has been clinically proven to be effective in improving the life quality and prolonging the survival time of non-small cell lung cancer (NSCLC) patients. AIM OF THE STUDY This study aimed to evaluate the therapeutic efficacy of YQCTF on NSCLC mice model and further explore its therapeutic targets by using network pharmacology, proteomics and pharmacodynamic methodologies. MATERIALS AND METHODS The network pharmacology analysis was firstly conducted to screen out the potential active ingredients and therapeutic targets of YQCTF against NSCLC. Three kinds of extracts, i.e. the water extract (WE), water extraction-alcohol precipitation (WEAP) and alcohol extract (AE) of YQCTF were prepared, which chemical compositions were subsequently analyzed by using ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UPLC-MS/MS), and which anti-neoplastic efficacy was examined on NSCLC mice model. Mice tumor tissues were collected for proteomics analysis, and the immunomodulatory effects of YQCTF extracts on the tumor microenvironment (TME) were further validated by using flow cytometry, immunofluorescence, ELISA and Western blot. RESULTS Network pharmacology identified 60 conjunct genes and ample cancer-related signaling pathways as potential therapeutic targets of YQCTF. Protein-protein interaction (PPI), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that YQCTF might negatively regulate cancer-related inflammation. UPLC-MS/MS analysis showed that the main components of YQCTF include at least ginsenosides, solasodine, solamargine, solasonine, peimisine, peiminine, peimine and sipeimine-3β-D-glucosihde. All kinds of YQCTF extracts significantly inhibited the growth of lung cancer allograft and regulated the ratio of immune cells in tumor tissues, i.e. upregulated the fractions of T cells, promoted the maturation of dendritic cells (DCs), increased the M1/M2 ratio of tumor-related macrophages, but reduced the number of Tregs and immunosuppressive neutrophils. Proteomics identified neutrophils to be the most prominently enriched target linked to NETs formation in mice tumor tissue, which is verified by the downregulation of neutrophil recruiting factors involving IL-6, HIF-1α and IL-8, as well as the decreases of NETs-related biomarkers including H3cit, MPO, CD18, MMP9 and ICAM-1 in immunofluorescence, ELISA and Western blot analysis. CONCLUSION YQCTF inhibited the progress of mice NSCLC allograft, suppressed the pro-tumorigenic tumor-associated neutrophils and improved the tumor immune microenvironment (TIME).
Collapse
Affiliation(s)
- Chen Le-Xin
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Li Ming-Jun
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Xu Chun-Qi
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Zeng Jia-Xin
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Yang Jing-Ya
- The Sixth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 6001, Beihuan Avenue, Futian District, Shenzhen, 518034, PR China
| | - Nie Li-Xin
- The Sixth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 6001, Beihuan Avenue, Futian District, Shenzhen, 518034, PR China
| | - Wang Mei-Qi
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Zhang En-Xin
- The Sixth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 6001, Beihuan Avenue, Futian District, Shenzhen, 518034, PR China; Shenzhen Bao'an Authentic TCM Therapy Hospital, No. 99, Lai'an Road, Xixiang Street, Bao'an District, Shenzhen, 518101, PR China.
| | - Zhang Xiao-Jun
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Higher Education Mega Center, Guangzhou, 510006, PR China.
| |
Collapse
|
24
|
Wang Z, Liu Z, Qu J, Sun Y, Zhou W. Role of natural products in tumor therapy from basic research and clinical perspectives. ACTA MATERIA MEDICA 2024; 3. [DOI: 10.15212/amm-2023-0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cancer is the leading cause of morbidity and mortality worldwide and is an important barrier to lengthening life expectancy in every country. Natural products are receiving increased attention from researchers globally and increasing numbers of natural products are approved for clinical studies involving cancer in recent years. To gain more insight into natural products that have undergone clinical trials for cancer treatment, a comprehensive search was conducted. The https://clinicaltrials.gov website was searched for relevant clinical trials and natural product information up to December 2022. The search terms included different types of cancers, such as colorectal, lung, breast, gynecologic, kidney, bladder, melanoma, pancreatic, hepatocellular, gastric and haematologic. Then, PubMed and Web of Science were searched for relevant articles up to February 2024. Hence, we listed existing clinical trials about natural products used in the treatment of cancers and discussed the preclinical and clinical studies of some promising natural products and their targets, indications, and underlying mechanisms of action. Our intent was to provide basic information to readers who are interested or majoring in natural products and obtain a deeper understanding of the progress and actions of natural product mechanisms of action.
Collapse
|
25
|
Yan S, Lin S, Qiu H, Wang X, He Y, Wang C, Huang Y. Regulation of telomerase towards tumor therapy. Cell Biosci 2023; 13:228. [PMID: 38111043 PMCID: PMC10726632 DOI: 10.1186/s13578-023-01181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/02/2023] [Indexed: 12/20/2023] Open
Abstract
Cancer is an aging-related disease, while aging plays an important role in the development process of tumor, thus the two are inextricably associated. Telomere attrition is one of the recognized hallmark events of senescence. Hence, targeting telomerase which could extends telomere sequences to treat tumors is widely favored. Cancer cells rely on high activity of telomerase to maintain a strong proliferative potential. By inhibiting the expression or protein function of telomerase, the growth of cancer cells can be significantly suppressed. In addition, the human immune system itself has a defense system against malignant tumors. However, excessive cell division results in dramatic shortening on telomeres and decline in the function of immune organs that facilitates cancer cell evasion. It has been shown that increasing telomerase activity or telomere length of these immune cells can attenuate senescence, improve cellular viability, and enhance the immunosuppressive microenvironment of tumor. In this paper, we review the telomerase-targeting progress using different anti-tumor strategies from the perspectives of cancer cells and immune cells, respectively, as well as tracking the preclinical and clinical studies of some representative drugs for the prevention or treatment of tumors.
Collapse
Affiliation(s)
- Siyu Yan
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Lumiere Therapeutics Co., Ltd., Suzhou, 215000, China
| | - Song Lin
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hongxin Qiu
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xining Wang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yijun He
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chuanle Wang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yan Huang
- MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
26
|
Wang L, Wang J, Yang Z, Wang Y, Zhao T, Luo W, Liang T, Yang Z. Traditional herbs: mechanisms to combat cellular senescence. Aging (Albany NY) 2023; 15:14473-14505. [PMID: 38054830 PMCID: PMC10756111 DOI: 10.18632/aging.205269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/15/2023] [Indexed: 12/07/2023]
Abstract
Cellular senescence plays a very important role in the ageing of organisms and age-related diseases that increase with age, a process that involves physiological, structural, biochemical and molecular changes in cells. In recent years, it has been found that the active ingredients of herbs and their natural products can prevent and control cellular senescence by affecting telomerase activity, oxidative stress response, autophagy, mitochondrial disorders, DNA damage, inflammatory response, metabolism, intestinal flora, and other factors. In this paper, we review the research information on the prevention and control of cellular senescence in Chinese herbal medicine through computer searches of PubMed, Web of Science, Science Direct and CNKI databases.
Collapse
Affiliation(s)
- Lei Wang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Zhihui Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Yue Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Tiejian Zhao
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Weisheng Luo
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China
| | - Tianjian Liang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Zheng Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| |
Collapse
|
27
|
Fernandez ME, Martinez-Romero J, Aon MA, Bernier M, Price NL, de Cabo R. How is Big Data reshaping preclinical aging research? Lab Anim (NY) 2023; 52:289-314. [PMID: 38017182 DOI: 10.1038/s41684-023-01286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
The exponential scientific and technological progress during the past 30 years has favored the comprehensive characterization of aging processes with their multivariate nature, leading to the advent of Big Data in preclinical aging research. Spanning from molecular omics to organism-level deep phenotyping, Big Data demands large computational resources for storage and analysis, as well as new analytical tools and conceptual frameworks to gain novel insights leading to discovery. Systems biology has emerged as a paradigm that utilizes Big Data to gain insightful information enabling a better understanding of living organisms, visualized as multilayered networks of interacting molecules, cells, tissues and organs at different spatiotemporal scales. In this framework, where aging, health and disease represent emergent states from an evolving dynamic complex system, context given by, for example, strain, sex and feeding times, becomes paramount for defining the biological trajectory of an organism. Using bioinformatics and artificial intelligence, the systems biology approach is leading to remarkable advances in our understanding of the underlying mechanism of aging biology and assisting in creative experimental study designs in animal models. Future in-depth knowledge acquisition will depend on the ability to fully integrate information from different spatiotemporal scales in organisms, which will probably require the adoption of theories and methods from the field of complex systems. Here we review state-of-the-art approaches in preclinical research, with a focus on rodent models, that are leading to conceptual and/or technical advances in leveraging Big Data to understand basic aging biology and its full translational potential.
Collapse
Affiliation(s)
- Maria Emilia Fernandez
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jorge Martinez-Romero
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Miguel A Aon
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nathan L Price
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
28
|
Zhi Y, Zhu Y, Wang J, Zhao J, Zhao Y. Cortical Organoid-on-a-Chip with Physiological Hypoxia for Investigating Tanshinone IIA-Induced Neural Differentiation. RESEARCH (WASHINGTON, D.C.) 2023; 6:0273. [PMID: 38434243 PMCID: PMC10907018 DOI: 10.34133/research.0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/04/2023] [Indexed: 03/05/2024]
Abstract
Cortical organoids represent cutting-edge models for mimic human brain development during the early and even middle stage of pregnancy, while they often fail to recreate the complex microenvironmental factors, such as physiological hypoxia. Herein, to recapitulate fetal brain development, we propose a novel cortical organoid-on-a-chip with physiological hypoxia and further explore the effects of tanshinone IIA (Tan IIA) in neural differentiation. The microfluidic chip was designed with a micropillar array for the controlled and efficient generation of cortical organoids. With low oxygen, the generated cortical organoids could recapitulate key aspects of early-gestational human brain development. Compared to organoids in normoxic culturing condition, the promoted neurogenesis, synaptogenesis and neuronal maturation were observed in the present microsystem, suggesting the significance of physiological hypoxia in cortical development. Based on this model, we have found that Chinese herbal drug Tan IIA could promote neural differentiation and maturation, indicating its potential therapeutic effects on neurodevelopmental disorders as well as congenital neuropsychiatric diseases. These results indicate that the proposed biomimetic cortical organoid-on-a-chip model with physiological hypoxia can offer a promising platform to simulate prenatal environment, explore brain development, and screen natural neuroactive components.
Collapse
Affiliation(s)
- Yue Zhi
- Department of Rheumatology and Immunology,
Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing, 210096, China
| | - Jinglin Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing, 210096, China
| | - Junqi Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology,
Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing, 210096, China
- Shenzhen Research Institute,
Southeast University, Shenzhen, 518038, China
| |
Collapse
|
29
|
Zu M, Hao X, Ning J, Zhou X, Gong Y, Lang Y, Xu W, Zhang J, Ding S. Patient-derived organoid culture of gastric cancer for disease modeling and drug sensitivity testing. Biomed Pharmacother 2023; 163:114751. [PMID: 37105073 DOI: 10.1016/j.biopha.2023.114751] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Gastric cancer treatment is complicated by the molecular heterogeneity of human tumor cells, which limits the efficacy of standard therapy and necessitates the need for personalized treatment development. Patient-derived organoids (PDOs) are promising preclinical cancer models, exhibiting high clinical efficacy in predicting drug sensitivity, thus providing a new means for personalized precision medicine. METHODS PDOs were established from surgically resected gastric cancer tumor tissues. Molecular characterization of the tumor tissues and PDOs was performed using whole-exome sequencing analysis. Drug sensitivity tests were performed by treating the PDO cultures with 21 standard-of-care drugs corresponding to patient treatment. We evaluated whether the PDO drug phenotype reflects the corresponding patient's treatment response by comparing the drug sensitivity test results with clinical data. RESULTS Twelve PDOs that satisfied the drug sensitivity test criteria were successfully constructed. PDOs closely recapitulated the pathophysiology and genetic changes in the corresponding tumors, and exhibited different sensitivities to the tested drugs. In one clinical case study, the PDO accurately predicted the patient's sensitivity to capecitabine and oxaliplatin, and in a second case study the PDO successfully predicted the patient's insensitivity to S-1 chemotherapy. In summary, six of the eight cases exhibited consistency between PDO drug susceptibility test results and the clinical response of the matched patient. CONCLUSIONS PDO drug sensitivity tests can predict the clinical response of patients with gastric cancer to drugs, and PDOs can therefore be used as a preclinical platform to guide the development of personalized cancer treatment.
Collapse
Affiliation(s)
- Ming Zu
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Xinyu Hao
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Jing Ning
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Xin Zhou
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Yueqing Gong
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Yanfei Lang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Weichao Xu
- Department of Gastroenterology, Hebei Hospital of Traditional Chinese Medicine, Shijiazhuang 050011, China
| | - Jing Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China.
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China.
| |
Collapse
|
30
|
Küçüksolak M, Yılmaz S, Ballar-Kırmızıbayrak P, Bedir E. Potent telomerase activators from a novel sapogenin via biotransformation utilizing Camarosporium laburnicola, an endophytic fungus. Microb Cell Fact 2023; 22:66. [PMID: 37024895 PMCID: PMC10080871 DOI: 10.1186/s12934-023-02069-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Cycloartane-type triterpenoids possess important biological activities, including immunostimulant, wound healing, and telomerase activation. Biotransformation is one of the derivatization strategies of natural products to improve their bioactivities. Endophytic fungi have attracted attention in biotransformation studies because of their ability to perform modifications in complex structures with a high degree of stereospecificity. RESULTS This study focuses on biotransformation studies on cyclocephagenol (1), a novel cycloartane-type sapogenin from Astragalus species, and its 12-hydroxy derivatives (2 and 3) to obtain new telomerase activators. Since the hTERT protein levels of cyclocephagenol (1) and its 12-hydroxy derivatives (2 and 3) on HEKn cells were found to be notable, biotransformation studies were carried out on cyclocephagenol and its 12-hydroxy derivatives using Camarosporium laburnicola, an endophytic fungus isolated from Astragalus angustifolius. Later, immunoblotting and PCR-based ELISA assay were used to screen starting compounds and biotransformation products for their effects on hTERT protein levels and telomerase activation. All compounds showed improved telomerase activation compared to the control group. CONCLUSIONS As a result of biotransformation studies, seven new metabolites were obtained and characterized, verifying the potential of C. laburnicola as a biocatalyst. Additionally, the bioactivity results showed that this endophytic biocatalyst is unique in transforming the metabolites of its host to afford potent telomerase activators.
Collapse
Affiliation(s)
- Melis Küçüksolak
- Department of Bioengineering, Izmir Institute of Technology, Urla, 35430, İzmir, Türkiye, Turkey
| | - Sinem Yılmaz
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Bornova, İzmir, Türkiye, Turkey
- Department of Bioengineering, Faculty of Engineering, University of Alanya Aladdin Keykubat, Antalya, Türkiye, Turkey
| | | | - Erdal Bedir
- Department of Bioengineering, Izmir Institute of Technology, Urla, 35430, İzmir, Türkiye, Turkey.
| |
Collapse
|
31
|
Song Y, Lin W, Zhu W. Traditional Chinese medicine for treatment of sepsis and related multi-organ injury. Front Pharmacol 2023; 14:1003658. [PMID: 36744251 PMCID: PMC9892725 DOI: 10.3389/fphar.2023.1003658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Sepsis is a common but critical illness in patients admitted to the intensive care unit and is associated with high mortality. Although there are many treatments for sepsis, specific and effective therapies are still lacking. For over 2,000 years, traditional Chinese medicine (TCM) has played a vital role in the treatment of infectious diseases in Eastern countries. Both anecdotal and scientific evidence show that diverse TCM preparations alleviate organ dysfunction caused by sepsis by inhibiting the inflammatory response, reducing oxidative stress, boosting immunity, and maintaining cellular homeostasis. This review reports on the efficacy and mechanism of action of various TCM compounds, herbal monomer extracts, and acupuncture, on the treatment of sepsis and related multi-organ injury. We hope that this information would be helpful to better understand the theoretical basis and empirical support for TCM in the treatment of sepsis.
Collapse
Affiliation(s)
- Yaqin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Huang F, Zhang Q, Xiao J, Zhang X, Han X, Shi X, Hu J, Li L, Qian X. Cancer Cell Membrane-Coated Gambogic Acid Nanoparticles for Effective Anticancer Vaccination by Activating Dendritic Cells. Int J Nanomedicine 2023; 18:2261-2273. [PMID: 37159807 PMCID: PMC10163893 DOI: 10.2147/ijn.s408521] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023] Open
Abstract
Purpose Recent studies have shown that traditional Chinese medicine (TCM), such as gambogic acid (GA), is involved in the regulation of tumor immune microenvironment and can be combined with other anti-tumor treatment strategies. Here, we used GA as an adjuvant to construct a nano-vaccine to improve the anti-tumor immune response of colorectal cancer (CRC). Materials and Methods We used a previously reported two-step emulsification method to obtain poly (lactic-co-glycolic acid) /GA nanoparticles (PLGA/GA NPs), and then CT26 colon cancer cell membrane (CCM) was used to obtain CCM-PLGA/GA NPs. This novel nano-vaccine, CCM-PLGA/GA NPs, was co-synthesized with GA as an adjuvant and neoantigen provided by CT26 CCM. We further confirmed the stability, tumor targeting, and cytotoxicity of CCM-PLGA/GA NPs. The regulatory effect on the tumor immune microenvironment, the anti-tumor efficacy, and the combined anti-tumor efficacy with anti-PD-1 monoclonal Antibodies (mAbs) of this novel nano-vaccine was also detected in vivo. Results We successfully constructed the CCM-PLGA/GA NPs. In vitro and in vivo tests showed low biological toxicity, as well as the high tumor-targeting ability of the CCM-PLGA/GA NPs. Besides, we revealed a remarkable effect of CCM-PLGA/GA NPs to activate the maturation of dendritic cells (DCs) and the formation of a positive anti-tumor immune microenvironment. Conclusion This novel nano-vaccine constructed with GA as the adjuvant and CCM providing the tumor antigen can not only directly kill tumors by enhancing the ability of GA to target tumors, but also indirectly kill tumors by regulating tumor immune microenvironment, providing a new strategy for immunotherapy of CRC.
Collapse
Affiliation(s)
- Fengli Huang
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Qun Zhang
- Department of Oncology, Nanjing Drum Tower Hospital, Nanjing, People’s Republic of China
| | - Jie Xiao
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
| | - Xin Zhang
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Xingzhi Han
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
| | - Xiao Shi
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
| | - Jing Hu
- Department of Oncology, Nanjing Drum Tower Hospital, Nanjing, People’s Republic of China
| | - Li Li
- Department of Oncology, Nanjing Drum Tower Hospital, Nanjing, People’s Republic of China
| | - Xiaoping Qian
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Department of Oncology, Nanjing Drum Tower Hospital, Nanjing, People’s Republic of China
- Correspondence: Xiaoping Qian, Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, People’s Republic of China, Tel +86-13951743162, Fax +86-25-68182342, Email
| |
Collapse
|