1
|
Verdu Schlie A, Leitch A, Arismendi MI, Stok C, Castro Leal A, Parry DA, Marcondes Lerario A, Harley ME, Lucheze B, Carroll PL, Musialik KI, Auer JMT, Martin CA, Gerasimavicius L, Quigley AJ, de Menezes Correia-Deur JE, Marsh JA, Reijns MAM, Lampe AK, Jackson AP, Jorge AAL, Tamayo-Orrego L. CDK4 loss-of-function mutations cause microcephaly and short stature. Genes Dev 2025; 39:634-651. [PMID: 40210435 PMCID: PMC7617628 DOI: 10.1101/gad.352311.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/06/2025] [Indexed: 04/12/2025]
Abstract
Cell number is a major determinant of organism size in mammals. In humans, gene mutations in cell cycle components result in restricted growth through reduced cell numbers. Here we identified biallelic mutations in CDK4 as a cause of microcephaly and short stature. CDK4 encodes a key cell cycle kinase that associates with D-type cyclins during G1 of the cell cycle to promote S-phase entry and cell proliferation through retinoblastoma (RB) phosphorylation. CDK4 and CDK6 are believed to be functionally redundant and are targeted jointly by chemotherapeutic CDK4/6 inhibitors. Using molecular and cell biology approaches, we show that functional CDK4 protein is not detectable in cells with CDK4 mutations. Cells display impaired RB phosphorylation in G1, leading to G1/S-phase transition defects and reduced cell proliferation, consistent with complete loss of cellular CDK4 enzymatic activity. Together, these findings demonstrate that CDK4 is itself required for cell proliferation, human growth, and brain size determination during development.
Collapse
Affiliation(s)
- Aitana Verdu Schlie
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Andrea Leitch
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Maria Izabel Arismendi
- Genetic Endocrinology Unit (LIM25), Endocrinology Division, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo 01246-903, Brazil
| | - Colin Stok
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Andrea Castro Leal
- Department of Integrated Health, State University of Para, Santarem 68010-200, Brazil
| | - David A Parry
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Antonio Marcondes Lerario
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Margaret E Harley
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Bruna Lucheze
- Genetic Endocrinology Unit (LIM25), Endocrinology Division, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo 01246-903, Brazil
| | - Paula L Carroll
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Kamila I Musialik
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Julia M T Auer
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Carol-Anne Martin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Lukas Gerasimavicius
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Alan J Quigley
- Paediatric Imaging Department, Royal Hospital for Children and Young People, Edinburgh EH16 4TJ, United Kingdom
| | - Joya Emilie de Menezes Correia-Deur
- Genetic Endocrinology Unit (LIM25), Endocrinology Division, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo 01246-903, Brazil
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Martin A M Reijns
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Anne K Lampe
- South East of Scotland Clinical Genetics Service, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Andrew P Jackson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom;
| | - Alexander A L Jorge
- Genetic Endocrinology Unit (LIM25), Endocrinology Division, Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo 01246-903, Brazil;
| | - Lukas Tamayo-Orrego
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
2
|
Constantinou SM, Bennett DC. Cell Senescence and the Genetics of Melanoma Development. Genes Chromosomes Cancer 2024; 63:e23273. [PMID: 39422311 DOI: 10.1002/gcc.23273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
Cutaneous malignant melanoma is an aggressive skin cancer with an approximate lifetime risk of 1 in 38 in the UK. While exposure to ultraviolet radiation is a key environmental risk factor for melanoma, up to ~10% of patients report a family history of melanoma, and ~1% have a strong family history. The understanding of causal mutations in melanoma has been critical to the development of novel targeted therapies that have contributed to improved outcomes for late-stage patients. Here, we review current knowledge of the genes affected by familial melanoma mutations and their partial overlap with driver genes commonly mutated in sporadic melanoma development. One theme linking a set of susceptibility loci/genes is the regulation of skin pigmentation and suntanning. The largest functional set of susceptibility variants, typically with high penetrance, includes CDKN2A, RB1, and telomerase reverse transcriptase (TERT) mutations, associated with attenuation of cell senescence. We discuss the mechanisms of action of these gene sets in the biology and progression of nevi and melanoma.
Collapse
Affiliation(s)
- Sophie M Constantinou
- Molecular & Cellular Sciences Research Section, City St George's, University of London, London, UK
| | - Dorothy C Bennett
- Molecular & Cellular Sciences Research Section, City St George's, University of London, London, UK
| |
Collapse
|
3
|
Zheng C, Sarin KY. Unveiling the genetic landscape of hereditary melanoma: From susceptibility to surveillance. Cancer Treat Res Commun 2024; 40:100837. [PMID: 39137473 DOI: 10.1016/j.ctarc.2024.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
The multifactorial etiology underlying melanoma development involves an array of genetic, phenotypic, and environmental factors. Genetic predisposition for melanoma is further influenced by the complex interplay between high-, medium-, and low-penetrance genes, each contributing to varying degrees of susceptibility. Within this network, high-penetrance genes, including CDKN2A, CDK4, BAP1, and POT1, are linked to a pronounced risk for disease, whereas medium- and low-penetrance genes, such as MC1R, MITF, and others, contribute only moderately to melanoma risk. Notably, these genetic factors not only heighten the risk of melanoma but may also increase susceptibility towards internal malignancies, such as pancreatic cancer, renal cell cancer, or neural tumors. Genetic testing and counseling hold paramount importance in the clinical context of suspected hereditary melanoma, facilitating risk assessment, personalized surveillance strategies, and informed decision-making. As our understanding of the genomic landscape deepens, this review paper aims to comprehensively summarize the genetic underpinnings of hereditary melanoma, as well as current screening and management strategies for the disease.
Collapse
Affiliation(s)
- Chenming Zheng
- Stanford University Department of Dermatology, Redwood City, CA, USA
| | - Kavita Y Sarin
- Stanford University Department of Dermatology, Redwood City, CA, USA.
| |
Collapse
|
4
|
Jacobs MF, Stoffel EM. Genetic and other risk factors for pancreatic ductal adenocarcinoma (PDAC). Fam Cancer 2024; 23:221-232. [PMID: 38573398 DOI: 10.1007/s10689-024-00372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at an advanced stage, resulting in poor prognosis and low 5-year survival rates. While early evidence suggests increased long-term survival in those with screen-detected resectable cancers, surveillance imaging is currently only recommended for individuals with a lifetime risk of PDAC ≥ 5%. Identification of risk factors for PDAC provides opportunities for early detection, risk reducing interventions, and targeted therapies, thus potentially improving patient outcomes. Here, we summarize modifiable and non-modifiable risk factors for PDAC. We review hereditary cancer syndromes associated with risk for PDAC and their implications for patients and their relatives. In addition, other biologically relevant pathways and environmental and lifestyle risk factors are discussed. Future work may focus on elucidating additional genetic, environmental, and lifestyle risk factors that may modify PDAC risk to continue to identify individuals at increased risk for PDAC who may benefit from surveillance and risk reducing interventions.
Collapse
Affiliation(s)
- Michelle F Jacobs
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Elena M Stoffel
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
5
|
Marrapodi R, Bellei B. The Keratinocyte in the Picture Cutaneous Melanoma Microenvironment. Cancers (Basel) 2024; 16:913. [PMID: 38473275 PMCID: PMC10930874 DOI: 10.3390/cancers16050913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Melanoma progression is a multistep evolution from a common melanocytic nevus through a radial superficial growth phase, the invasive vertical growth phase finally leading to metastatic dissemination into distant organs. Melanoma aggressiveness largely depends on the propensity to metastasize, which means the capacity to escape from the physiological microenvironment since tissue damage due to primary melanoma lesions is generally modest. Physiologically, epidermal melanocytes are attached to the basement membrane, and their adhesion/migration is under the control of surrounding keratinocytes. Thus, the epidermal compartment represents the first microenvironment responsible for melanoma spread. This complex process involves cell-cell contact and a broad range of secreted bioactive molecules. Invasion, or at the beginning of the microinvasion, implies the breakdown of the dermo-epidermal basement membrane followed by the migration of neoplastic melanocytic cells in the superficial papillary dermis. Correspondingly, several experimental evidences documented the structural and functional rearrangement of the entire tissue surrounding neoplasm that in some way reflects the atypia of tumor cells. Lastly, the microenvironment must support the proliferation and survival of melanocytes outside the normal epidermal-melanin units. This task presumably is mostly delegated to fibroblasts and ultimately to the self-autonomous capacity of melanoma cells. This review will discuss remodeling that occurs in the epidermis during melanoma formation as well as skin changes that occur independently of melanocytic hyperproliferation having possible pro-tumoral features.
Collapse
Affiliation(s)
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Via Elio Chianesi 53, 00144 Rome, Italy;
| |
Collapse
|
6
|
Fares E, Thawabtah R, Sallam H, Khatib AAH, Qutob N, Salah Z. Genomic analysis of a Palestinian family with inherited cancer syndrome: a next-generation sequencing study. Front Genet 2023; 14:1230241. [PMID: 38028607 PMCID: PMC10643688 DOI: 10.3389/fgene.2023.1230241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023] Open
Abstract
Familial predisposition is a strong risk factor for different types of cancer and accounts for around 10% of the cases. In this study, we investigated cancer predisposition in a Palestinian family using whole-exome sequencing (WES) technologies. In this study, we focused more on cutaneous melanoma (CM). Our analysis identified three heterozygous rare missense variants, WRN (p.L383F and p.A995T) and TYRP1 (p.T262M) and a pathogenic homozygous missense mutation in ERCC2 (p.R683Q). Although WRN and TYRP1 genes and their variations were correlated with different types of cancer, including melanoma, the currently identified WRN and TYRP1 variants were not reported previously in melanoma cases. The pathogenic mutation was segregated with the clinical phenotypes and found in the two affected brothers, one with CM and the other with brain tumor, and was confirmed by Sanger sequencing analysis. Segregation analysis of this mutation revealed that family members are either heterozygous or wild type. Our findings confirm that the homozygous ERCC2 (p.R683Q) mutation was responsible for causing melanoma and other cancer types in the family. Our work highlights the value to decipher the mutational background of familial cancers, especially CM, in the Palestinian population to guide diagnosis, prevention, and treatment of affected patients and their families.
Collapse
Affiliation(s)
- Eman Fares
- Health Sciences Department, Faculty of Graduate Studies, Arab American University, Ramallah, Palestine
| | - Rua Thawabtah
- Health Sciences Department, Faculty of Graduate Studies, Arab American University, Ramallah, Palestine
| | - Husam Sallam
- Health Sciences Department, Faculty of Graduate Studies, Arab American University, Ramallah, Palestine
| | - Areej A. H. Khatib
- Women Health Research Unit, McGill University Health Center, Montreal, QC, Canada
| | - Nouar Qutob
- *Correspondence: Nouar Qutob, ; Zaidoun Salah,
| | | |
Collapse
|
7
|
Jensen MR, Jelsig AM, Gerdes AM, Hölmich LR, Kainu KH, Lorentzen HF, Hansen MH, Bak M, Johansson PA, Hayward NK, Van Overeem Hansen T, Wadt KA. TINF2 is a major susceptibility gene in Danish patients with multiple primary melanoma. HGG ADVANCES 2023; 4:100225. [PMID: 37646013 PMCID: PMC10461021 DOI: 10.1016/j.xhgg.2023.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/19/2023] [Indexed: 09/01/2023] Open
Abstract
TINF2 encodes the TINF2 protein, which is a subunit in the shelterin complex critical for telomere regulation. Three recent studies have associated six truncating germline variants in TINF2 that have previously been associated with a cancer predisposition syndrome (CPS) caused by elongation of the telomeres. This has added TINF2 to the long telomere syndrome genes, together with other telomere maintenance genes such as ACD, POT1, TERF2IP, and TERT. We report a clinical study of 102 Danish patients with multiple primary melanoma (MPM) in which a germline truncating variant in TINF2 (p.(Arg265Ter)) was identified in four unrelated participants. The telomere lengths of three variant carriers were >90% percentile. In a routine diagnostic setting, the variant was identified in two more families, including an additional MPM patient and monozygotic twins with thyroid cancer and other cancer types. A total of 10 individuals from six independent families were confirmed carriers, all with cancer history, predominantly melanoma. Our findings suggest a major role of TINF2 in Danish patients with MPM. In addition to melanoma, other cancers in the six families include thyroid, renal, breast, and sarcoma, supporting a CPS in which melanoma, thyroid cancer, and sarcoma predominate. Further studies are needed to establish the full spectrum of associated cancer types and characterize lifetime cancer risk in carriers.
Collapse
Affiliation(s)
- Marlene Richter Jensen
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Anne Marie Jelsig
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Lisbet Rosenkrantz Hölmich
- Department of Plastic and Reconstructive Surgery, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kati Hannele Kainu
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology and Allergology, Herlev and Gentofte Hospital, 2900 Gentofte, Denmark
| | | | | | - Mads Bak
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | | | | | - Thomas Van Overeem Hansen
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karin A.W. Wadt
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Rahimi A, Esmaeili Y, Dana N, Dabiri A, Rahimmanesh I, Jandaghain S, Vaseghi G, Shariati L, Zarrabi A, Javanmard SH, Cordani M. A comprehensive review on novel targeted therapy methods and nanotechnology-based gene delivery systems in melanoma. Eur J Pharm Sci 2023:106476. [PMID: 37236377 DOI: 10.1016/j.ejps.2023.106476] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Melanoma, a malignant form of skin cancer, has been swiftly increasing in recent years. Although there have been significant advancements in clinical treatment underlying a well-understanding of melanoma-susceptible genes and the molecular basis of melanoma pathogenesis, the permanency of response to therapy is frequently constrained by the emergence of acquired resistance and systemic toxicity. Conventional therapies, including surgical resection, chemotherapy, radiotherapy, and immunotherapy, have already been used to treat melanoma and are dependent on the cancer stage. Nevertheless, ineffective side effects and the heterogeneity of tumors pose major obstacles to the therapeutic treatment of malignant melanoma through such strategies. In light of this, advanced therapies including nucleic acid therapies (ncRNA, aptamers), suicide gene therapies, and gene therapy using tumor suppressor genes, have lately gained immense attention in the field of cancer treatment. Furthermore, nanomedicine and targeted therapy based on gene editing tools have been applied to the treatment of melanoma as potential cancer treatment approaches nowadays. Indeed, nanovectors enable delivery of the therapeutic agents into the tumor sites by passive or active targeting, improving therapeutic efficiency and minimizing adverse effects. Accordingly, in this review, we summarized the recent findings related to novel targeted therapy methods as well as nanotechnology-based gene systems in melanoma. We also discussed current issues along with potential directions for future research, paving the way for the next-generation of melanoma treatments.
Collapse
Affiliation(s)
- Azadeh Rahimi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Dabiri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Setareh Jandaghain
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golnaz Vaseghi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain.
| |
Collapse
|
9
|
A Japanese case of familial malignant melanoma with germline CDK4 variant incidentally diagnosed by cancer genome profiling. J Hum Genet 2023; 68:359-361. [PMID: 36631500 DOI: 10.1038/s10038-022-01110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/05/2022] [Accepted: 12/18/2022] [Indexed: 01/13/2023]
Abstract
Familial malignant melanoma (FMM) is a hereditary tumor that is quite rare in Japan; to date, the germline CDK4 variant has scarcely been reported around the world. Thus, we report on a woman with FMM who developed salivary gland cancer, for which a germline pathogenic variant of CDK4 was incidentally identified through comprehensive genomic profiling. She had a history of multiple atypical nevi and a facial melanoma since her 30 s and multiple family histories of melanoma; however, none of her relatives were aware of its heredity. Genetic counseling and skin surveillance were performed. Precision medicine for cancer can discover this rare genetic syndrome and provides us with the opportunity to manage the health of patients and their relatives.
Collapse
|
10
|
Oh KS, Mahalingam M. Melanoma and Glioblastoma-Not a Serendipitous Association. Adv Anat Pathol 2023; 30:00125480-990000000-00051. [PMID: 36624550 DOI: 10.1097/pap.0000000000000393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recently, we came across a patient with malignant melanoma and primary glioblastoma. Given this, we parsed the literature to ascertain the relationship, if any, between these 2 malignancies. We begin with a brief overview of melanoma and glioma in isolation followed by a chronologic overview of case reports and epidemiologic studies documenting both neoplasms. This is followed by studies detailing genetic abnormalities common to both malignancies with a view to identifying unifying genetic targets for therapeutic strategies as well as to explore the possibility of a putative association and an inherited cancer susceptibility trait. From a scientific perspective, we believe we have provided evidence favoring an association between melanoma and glioma. Future studies that include documentation of additional cases, as well as a detailed molecular analyses, will lend credence to our hypothesis that the co-occurrence of these 2 conditions is likely not serendipitous.
Collapse
Affiliation(s)
- Kei Shing Oh
- Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL
| | - Meera Mahalingam
- Dermatopathology Section, Department of Pathology and Laboratory Medicine, VA-Integrated-Service-Network-1 (VISN1), West Roxbury, MA
| |
Collapse
|
11
|
Shi H, Cheng Z. MC1R and melanin-based molecular probes for theranostic of melanoma and beyond. Acta Pharmacol Sin 2022; 43:3034-3044. [PMID: 36008707 PMCID: PMC9712491 DOI: 10.1038/s41401-022-00970-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022]
Abstract
Malignant melanoma is accounting for most of skin cancer-associated mortality. The incidence of melanoma increased every year worldwide especially in western countries. Treatment efficiency is highly related to the stage of melanoma. Therefore, accurate staging and restaging play a pivotal role in the management of melanoma patients. Though 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomography (PET) has been widely used in imaging of tumor metastases, novel radioactive probes for specific targeted imaging of both primary and metastasized melanoma are still desired. Melanocortin receptor 1 (MC1R) and melanin are two promising biomarkers specifically for melanoma, and numerous research groups including us have been actively developing a plethora of radioactive probes based on targeting of MC1R or melanin for over two decades. In this review, some of the MC1R-targeted tracers and melanin-associated molecular imaging probes developed in our research and others have been briefly summarized, and it provides a quick glance of melanoma-targeted probe design and may contribute to further developing novel molecular probes for cancer theranostics.
Collapse
Affiliation(s)
- Hui Shi
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
12
|
Clarysse K, Lacy K. Why, Who and How We Should Screen for Melanoma. CURRENT GENETIC MEDICINE REPORTS 2022. [DOI: 10.1007/s40142-022-00204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Genodermatoses – Opportunities for Early Detection and Cancer Prevention. CURRENT GENETIC MEDICINE REPORTS 2022; 10:1-13. [PMID: 36213090 PMCID: PMC9531856 DOI: 10.1007/s40142-022-00203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 10/28/2022]
|
14
|
Šerman N, Vranić S, Glibo M, Šerman L, Mokos ZB. Genetic risk factors in melanoma etiopathogenesis and the role of genetic counseling: A concise review. Bosn J Basic Med Sci 2022; 22:673-682. [PMID: 35465855 PMCID: PMC9519167 DOI: 10.17305/bjbms.2021.7378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is a highly aggressive cancer originating from melanocytes. Its etiopathogenesis is strongly related to genetic, epigenetic, and environmental factors. Melanomas encountered in clinical practice are predominantly sporadic, whereas hereditary melanomas account for approximately 10% of the cases. Hereditary melanomas mainly develop due to mutations in the CDKN2A gene, which encodes two tumor suppressor proteins involved in the cell cycle regulation. CDKN2A, along with CDK4, TERT, and POT1 genes, is a high-risk gene for melanoma. Among the genes that carry a moderate risk are MC1R and MITF, whose protein products are involved in melanin synthesis. The environment also contributes to the development of melanoma. Patients at risk of melanoma should be offered genetic counseling to discuss genetic testing options and the importance of skin UV protection, avoidance of sun exposure, and regular preventive dermatological examinations. Although cancer screening cannot prevent the development of the disease, it allows for early diagnosis when the survival rate is the highest.
Collapse
Affiliation(s)
| | - Semir Vranić
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Mislav Glibo
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ljiljana Šerman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Zrinka Bukvić Mokos
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, Zagreb, Croatia
| |
Collapse
|
15
|
Rashid S, Gupta S, McCormick SR, Tsao H. New Insights into Melanoma Tumor Syndromes. JID INNOVATIONS 2022; 2:100152. [DOI: 10.1016/j.xjidi.2022.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 10/14/2022] Open
|
16
|
Bruno W, Dalmasso B, Barile M, Andreotti V, Elefanti L, Colombino M, Vanni I, Allavena E, Barbero F, Passoni E, Merelli B, Pellegrini S, Morgese F, Danesi R, Calò V, Bazan V, D'Elia AV, Molica C, Gensini F, Sala E, Uliana V, Soma PF, Genuardi M, Ballestrero A, Spagnolo F, Tanda E, Queirolo P, Mandalà M, Stanganelli I, Palmieri G, Menin C, Pastorino L, Ghiorzo P. Predictors of germline status for hereditary melanoma: 5 years of multi-gene panel testing within the Italian Melanoma Intergroup. ESMO Open 2022; 7:100525. [PMID: 35777164 PMCID: PMC9434136 DOI: 10.1016/j.esmoop.2022.100525] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The incidence of cutaneous melanoma is increasing in Italy, in parallel with the implementation of gene panels. Therefore, a revision of national genetic assessment criteria for hereditary melanoma may be needed. The aim of this study was to identify predictors of susceptibility variants in the largest prospective cohort of Italian high-risk melanoma cases studied to date. MATERIALS AND METHODS From 25 Italian centers, we recruited 1044 family members and germline sequenced 940 cutaneous melanoma index cases through a shared gene panel, which included the following genes: CDKN2A, CDK4, BAP1, POT1, ACD, TERF2IP, MITF and ATM. We assessed detection rate according to familial status, region of origin, number of melanomas and presence and type of non-melanoma tumors. RESULTS The overall detection rate was 9.47% (5.53% analyzing CDKN2A alone), ranging from 5.14% in sporadic multiple melanoma cases (spoMPM) with two cutaneous melanomas to 13.9% in familial cases with at least three affected members. Three or more cutaneous melanomas in spoMPM cases, pancreatic cancer and region of origin predicted germline status [odds ratio (OR) = 3.23, 3.15, 2.43, P < 0.05]. Conversely, age > 60 years was a negative independent predictor (OR = 0.13, P = 0.008), and was the age category with the lowest detection rate, especially for CDKN2A. Detection rate was 19% when cutaneous melanoma and pancreatic cancer clustered together. CONCLUSIONS Gene panel doubled the detection rate given by CDKN2A alone. National genetic testing criteria may need a revision, especially regarding age cut-off (60) in the absence of strong family history, pancreatic cancer and/or a high number of cutaneous melanomas.
Collapse
Affiliation(s)
- W Bruno
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy; University of Genoa, Department of Internal Medicine and Medical Specialties (DiMI), Genoa, Italy.
| | - B Dalmasso
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
| | - M Barile
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
| | - V Andreotti
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
| | - L Elefanti
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - M Colombino
- Unit of Cancer Genetics, Institute of Genetics and Biomedical Research of the National Research Council (IRGB-CNR), Sassari, Italy
| | - I Vanni
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy; University of Genoa, Department of Internal Medicine and Medical Specialties (DiMI), Genoa, Italy
| | - E Allavena
- University of Genoa, Department of Internal Medicine and Medical Specialties (DiMI), Genoa, Italy
| | - F Barbero
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
| | - E Passoni
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - B Merelli
- Oncology Unit, ASST Papa Giovanni XXIIII, Bergamo, Italy
| | - S Pellegrini
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy
| | - F Morgese
- Oncology Unit, AOU Ospedali Riuniti di Ancona, Ancona, Italy
| | - R Danesi
- Romagna Cancer Registry, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy
| | - V Calò
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - V Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - A V D'Elia
- Institute of Medical Genetics, ASUFC University Hospital of Udine, Udine, Italy
| | - C Molica
- Medical Oncology Unit, S. Maria della Misericordia Hospital, Perugia, Italy
| | - F Gensini
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - E Sala
- Cytogenetics and Medical Genetics Unit, H San Gerardo ASST Monza, Monza, Italy
| | - V Uliana
- Medical Genetics Unit, AOU di Parma, Parma, Italy
| | - P F Soma
- Casa di Cura Gibiino, Catania, Italy
| | - M Genuardi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Medical Genetics Unit, Rome, Italy; Università Cattolica del Sacro Cuore, Department of Life Sciences and Public Health, Rome, Italy
| | - A Ballestrero
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy; University of Genoa, Department of Internal Medicine and Medical Specialties (DiMI), Genoa, Italy
| | - F Spagnolo
- IRCCS Ospedale Policlinico San Martino, Medical Oncology 2, Genoa, Italy
| | - E Tanda
- IRCCS Ospedale Policlinico San Martino, Medical Oncology 2, Genoa, Italy
| | - P Queirolo
- Division of Medical Oncology for Melanoma, Sarcoma, and Rare Tumors, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - M Mandalà
- Medical Oncology Unit, S. Maria della Misericordia Hospital, Perugia, Italy; Department of Surgery and Medicine, University of Perugia, Perugia, Italy
| | - I Stanganelli
- Skin Cancer Unit, IRCCS IRST Istituto Scientifico Romagnolo per lo Studio dei Tumori 'Dino Amadori' (IRST) IRCCS, Meldola, Italy; Dermatologic Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - G Palmieri
- Unit of Cancer Genetics, Institute of Genetics and Biomedical Research of the National Research Council (IRGB-CNR), Sassari, Italy
| | - C Menin
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - L Pastorino
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy; University of Genoa, Department of Internal Medicine and Medical Specialties (DiMI), Genoa, Italy
| | - P Ghiorzo
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy; University of Genoa, Department of Internal Medicine and Medical Specialties (DiMI), Genoa, Italy
| |
Collapse
|
17
|
Ferdosi S, Saffari M, Alishahi R, Ghanadan A, Shirkoohi R. Study on Early Onset Melanoma and Germ-Line Mutation in CDKN2A among Patients in Imam Khomeini Hospital Complex. Asian Pac J Cancer Prev 2021; 22:3347-3353. [PMID: 34711012 PMCID: PMC8858231 DOI: 10.31557/apjcp.2021.22.10.3347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/16/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Malignant melanoma is a highly lethal melanocytic neoplasia with different predisposing factors. The genetic background in familial cases is an important issue in finding at risk family members. CDKN2A is one of these predisposing genes which have been estimated to be involved in germ line mutation in approximately 5-10% of familial melanoma cases. MATERIALS AND METHODS An inclusion criteria for familial melanoma was prepared according to the literature, and the age of onset was considered as a single criteria for selection. A total number of 322 melanoma cases were investigated regarding the criteria, among which 20 patients were chosen (<40 years). DNA was extracted from Formalin Fixed Paraffin Embed of normal tissues and DNA sequencing was performed for all coding sequences of CDKN2A (p16). RESULTS One of the cases showed a pathogenic mutation in codon 108, exon 2(322G >C; Asp108His). Further analysis of his offspring indicated no mutation in the next generation. CONCLUSION As far as the authors of the present study are concerned, this was the first report on this germ-line mutation with mentioned amino acid alteration in the melanoma. Screening the CDKN2A gene for possible mutation could prevent the incidence of familial cases in at risk members. .
Collapse
Affiliation(s)
- Samira Ferdosi
- Cancer Research Center, Cancer Research Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mojtaba Saffari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical sciences Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.
| | - Razieh Alishahi
- Cancer Research Center, Cancer Research Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Alireza Ghanadan
- Department of Medical Genetics, School of Medicine, Tehran University of Medical sciences Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Dermatopathology, Razi Hospital, Tehran, Iran.
| | - Reza Shirkoohi
- Cancer Research Center, Cancer Research Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
- Department of Dermatopathology, Razi Hospital, Tehran, Iran.
| |
Collapse
|
18
|
Familial Melanoma and Susceptibility Genes: A Review of the Most Common Clinical and Dermoscopic Phenotypic Aspect, Associated Malignancies and Practical Tips for Management. J Clin Med 2021; 10:jcm10163760. [PMID: 34442055 PMCID: PMC8397216 DOI: 10.3390/jcm10163760] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
A family history of melanoma greatly increases the risk of developing cutaneous melanoma, a highly aggressive skin cancer whose incidence has been steadily increasing worldwide. Familial melanomas account for about 10% of all malignant melanomas and display an inheritance pattern consistent with the presence of pathogenic germline mutations, among which those involving CDKN2A are the best characterized. In recent years, a growing number of genes, such as MC1R, MITF, CDK4, POT1, TERT, ACD, TERF2IP, and BAP1, have been implicated in familial melanoma. The fact that individuals harboring these germline mutations along with their close blood relatives have a higher risk of developing multiple primary melanomas as well as other internal organ malignancies, especially pancreatic cancer, makes cascade genetic testing and surveillance of these families of the utmost importance. Unfortunately, due to a polygenic inheritance mechanism involving multiple low-risk alleles, genetic modifiers, and environmental factors, it is still very difficult to predict the presence of these mutations. It is, however, known that germline mutation carriers can sometimes develop specific clinical traits, such as high atypical nevus counts and specific dermoscopic features, which could theoretically help clinicians predict the presence of these mutations in prone families. In this review, we provide a comprehensive overview of the high- and intermediate-penetrance genes primarily linked to familial melanoma, highlighting their most frequently associated non-cutaneous malignancies and clinical/dermoscopic phenotypes.
Collapse
|
19
|
Eddy K, Chen S. Glutamatergic Signaling a Therapeutic Vulnerability in Melanoma. Cancers (Basel) 2021; 13:3874. [PMID: 34359771 PMCID: PMC8345431 DOI: 10.3390/cancers13153874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023] Open
Abstract
Like other cancers, melanomas are associated with the hyperactivation of two major cell signaling cascades, the MAPK and PI3K/AKT pathways. Both pathways are activated by numerous genes implicated in the development and progression of melanomas such as mutated BRAF, RAS, and NF1. Our lab was the first to identify yet another driver of melanoma, Metabotropic Glutamate Receptor 1 (protein: mGluR1, mouse gene: Grm1, human gene: GRM1), upstream of the MAPK and PI3K/AKT pathways. Binding of glutamate, the natural ligand of mGluR1, activates MAPK and PI3K/AKT pathways and sets in motion the deregulated cellular responses in cell growth, cell survival, and cell metastasis. In this review, we will assess the proposed modes of action that mediate the oncogenic properties of mGluR1 in melanoma and possible application of anti-glutamatergic signaling modulator(s) as therapeutic strategy for the treatment of melanomas.
Collapse
Affiliation(s)
- Kevinn Eddy
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Environmental & Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
20
|
Molecular landscape of Hereditary Melanoma. Crit Rev Oncol Hematol 2021; 164:103425. [PMID: 34245855 DOI: 10.1016/j.critrevonc.2021.103425] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 05/20/2021] [Accepted: 07/04/2021] [Indexed: 12/27/2022] Open
Abstract
Melanoma is considered the most lethal skin cancer and its incidence has increased during the past decades. About 10 % of cases are classified as hereditary melanoma. Genetic predisposition usually manifests itself clinically as early onset and multiple cutaneous melanomas. Several genes have been identified as involved to melanoma susceptibility, some of them still with unknown clinical relevance. Beyond melanoma, the affected families are also more prone to develop other malignancies, such as pancreatic cancer. The identification of risk families and involved genes is of great importance, since different forms of oncological surveillance are recommended. However, well established guidelines to standardize both the selection of individuals and the genetic panel to be requested are still lacking. Given the importance of the genetic counseling and testing in the context of clinical suspicion of hereditary melanoma, this paper aims to review the literature regarding genetic panel indications worldwide.
Collapse
|
21
|
Kalfakakou D, Fostira F, Papathanasiou A, Apostolou P, Dellatola V, Gavra IE, Vlachos IS, Scouras ZG, Drosopoulou E, Yannoukakos D, Konstantopoulou I. CanVaS: Documenting the genetic variation spectrum of Greek cancer patients. Hum Mutat 2021; 42:1081-1093. [PMID: 34174131 DOI: 10.1002/humu.24249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/13/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022]
Abstract
National genetic variation registries vastly increase the level of detail for the relevant population, while directly affecting patient management. Herein, we report CanVaS, a Cancer Variation reSource aiming to document the genetic variation of cancer patients in Greece. CanVaS comprises germline genetic data from 7,363 Greek individuals with a personal and/or family history of malignancy. The data set incorporates approximately 24,000 functionally annotated rare variants in 97 established or suspected cancer susceptibility genes. For each variant, allele frequency for the Greek population, interpretation for clinical significance, anonymized family and segregation information, as well as phenotypic traits of the carriers, are included. Moreover, information on the geographic distribution of the variants across the country is provided, enabling the study of Greek population isolates. Direct comparisons between Greek (sub)populations with relevant genetic resources are supported, allowing fine-grain localized adjustment of guidelines and clinical decision-making. Most importantly, anonymized data are available for download, while the Leiden Open Variation Database schema is adopted, enabling integration/interconnection with central resources. CanVaS could become a stepping-stone for a countrywide effort to characterize the cancer genetic variation landscape, concurrently supporting national and international cancer research. The database can be accessed at: http://ithaka.rrp.demokritos.gr/CanVaS.
Collapse
Affiliation(s)
- Despoina Kalfakakou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Athanasios Papathanasiou
- Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Paraskevi Apostolou
- Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Vasiliki Dellatola
- Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Ioanna E Gavra
- Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Ioannis S Vlachos
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Zacharias G Scouras
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Drosopoulou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
22
|
Luo H, Liao X, Qin Y, Hou Q, Xue Z, Liu Y, Shen F, Wang Y, Jiang Y, Song L, Chen H, Zhang L, Wei T, Dai L, Yang L, Zhang W, Li Z, Xu H, Zhu J, Shu Y. Longitudinal Genomic Evolution of Conventional Papillary Thyroid Cancer With Brain Metastasis. Front Oncol 2021; 11:620924. [PMID: 34249677 PMCID: PMC8260944 DOI: 10.3389/fonc.2021.620924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 06/04/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Brain metastasis is extremely rare but predicts dismal prognosis in papillary thyroid cancer (PTC). Dynamic evaluation of stepwise metastatic lesions was barely conducted to identify the longitudinal genomic evolution of brain metastasis in PTC. METHOD Chronologically resected specimen was analyzed by whole exome sequencing, including four metastatic lymph nodes (lyn 1-4) and brain metastasis lesion (BM). Phylogenetic tree was reconstructed to infer the metastatic pattern and the potential functional mutations. RESULTS Contrasting with lyn1, ipsilateral metastatic lesions (lyn2-4 and BM) with shared biallelic mutations of TSC2 indicated different genetic originations from multifocal tumors. Lyn 3/4, particularly lyn4 exhibited high genetic similarity with BM. Besides the similar mutational compositions and signatures, shared functional mutations (CDK4 R24C , TP53R342*) were observed in lyn3/4 and BM. Frequencies of these mutations gradually increase along with the metastasis progression. Consistently, TP53 knockout and CDK4 R24C introduction in PTC cells significantly decreased radioiodine uptake and increased metastatic ability. CONCLUSION Genomic mutations in CDK4 and TP53 during the tumor evolution may contribute to the lymph node and brain metastasis of PTC.
Collapse
Affiliation(s)
- Han Luo
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Qin
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Hou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhinan Xue
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Feiyang Shen
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yuelan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Linlin Song
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Haining Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyun Zhang
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Tao Wei
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhihui Li
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiang Zhu
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Tovar-Parra D, Gil-Quiñones SR, Nova J, Gutiérrez-Castañeda LD. 3'UTR-CDKN2A and CDK4 Germline Variants Are Associated With Susceptibility to Cutaneous Melanoma. In Vivo 2021; 35:1529-1536. [PMID: 33910831 DOI: 10.21873/invivo.12406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/23/2021] [Accepted: 03/25/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Genetic variations of the CDKN2A and CDK4 gene have been associated to melanoma development. In the present study we investigated the potential associations of CDKN2A and CDK4 gene variants in a colombian population diagnosed with melanoma. MATERIALS AND METHODS DNA was extracted from whole blood samples from 85 patients diagnosed with cutaneous melanoma and 166 healthy controls. CDKN2A and CDK4 genes were genotyped using a high-resolution melting assay. RESULTS A similar distribution of CDKN2A variants 500C>G and 540C>T was found among cases (12% and 31% respectively) and controls (15% and 31% respectively). The CDKN2A variants were present in 36% of acral lentiginous melanoma and 39.47% of lentigo maligna. The haplotype analysis showed an association with susceptibility in the development of melanoma. CONCLUSION The presence of haplotype 500G/540C in males is associated with an increased risk of melanoma in a colombian population, especially in subjects with a family history of cancer.
Collapse
Affiliation(s)
- David Tovar-Parra
- General Dermatology Group, Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E, Bogotá, Colombia
| | - Sebastián Ramiro Gil-Quiñones
- General Dermatology Group, Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E, Bogotá, Colombia
| | - John Nova
- General Dermatology Group, Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E, Bogotá, Colombia
| | - Luz D Gutiérrez-Castañeda
- General Dermatology Group, Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E, Bogotá, Colombia
| |
Collapse
|
24
|
Targeted germline sequencing of patients with three or more primary melanomas reveals high rate of pathogenic variants. Melanoma Res 2021; 30:247-251. [PMID: 31567591 DOI: 10.1097/cmr.0000000000000645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Individuals with multiple primary melanomas have rates of germline CDKN2A pathogenic variants of 3%-18%, and are also frequent carriers of variants in the melanocortin-1 receptor. Few patients with numerous (≥3) primary melanomas have been studied with respect to these or other potential germline pathogenic variants. We investigated 46 patients with ≥3 primary melanomas (3, n = 17; 4, n = 14; 5-14, n = 15) to determine if higher rates of germline pathogenic variants of CDKN2A, MC1R, or other cancer genes could explain their extreme melanoma phenotype. Most (43/46, 93%) patients had variants in MC1R and 11/46 (24%) had CDKN2A pathogenic variants, but only male sex and having two variants in MC1R correlated with increasing number of melanomas. Panel screening of 56 other cancer predisposition genes did not reveal other germline pathogenic variants associated with melanoma (CDK4, BAP1, POT1), although pathogenic variants in TP53, CHEK2, and BRCA2 were present in three separate patients and some patients had variants of uncertain significance. In summary, targeted germline sequencing of patients with ≥3 primary melanomas revealed a high rate of pathogenic variants in CDKN2A and other known cancer genes. Although further investigation of these pathogenic variants and variants of uncertain significance is needed, these results support cancer gene panel testing in individuals diagnosed with ≥3 melanomas.
Collapse
|
25
|
Scatena C, Murtas D, Tomei S. Cutaneous Melanoma Classification: The Importance of High-Throughput Genomic Technologies. Front Oncol 2021; 11:635488. [PMID: 34123788 PMCID: PMC8193952 DOI: 10.3389/fonc.2021.635488] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma is an aggressive tumor responsible for 90% of mortality related to skin cancer. In the recent years, the discovery of driving mutations in melanoma has led to better treatment approaches. The last decade has seen a genomic revolution in the field of cancer. Such genomic revolution has led to the production of an unprecedented mole of data. High-throughput genomic technologies have facilitated the genomic, transcriptomic and epigenomic profiling of several cancers, including melanoma. Nevertheless, there are a number of newer genomic technologies that have not yet been employed in large studies. In this article we describe the current classification of cutaneous melanoma, we review the current knowledge of the main genetic alterations of cutaneous melanoma and their related impact on targeted therapies, and we describe the most recent high-throughput genomic technologies, highlighting their advantages and disadvantages. We hope that the current review will also help scientists to identify the most suitable technology to address melanoma-related relevant questions. The translation of this knowledge and all actual advancements into the clinical practice will be helpful in better defining the different molecular subsets of melanoma patients and provide new tools to address relevant questions on disease management. Genomic technologies might indeed allow to better predict the biological - and, subsequently, clinical - behavior for each subset of melanoma patients as well as to even identify all molecular changes in tumor cell populations during disease evolution toward a real achievement of a personalized medicine.
Collapse
Affiliation(s)
- Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cagliari, Italy
| | - Sara Tomei
- Omics Core, Integrated Genomics Services, Research Department, Sidra Medicine, Doha, Qatar
| |
Collapse
|
26
|
Eddy K, Shah R, Chen S. Decoding Melanoma Development and Progression: Identification of Therapeutic Vulnerabilities. Front Oncol 2021; 10:626129. [PMID: 33614507 PMCID: PMC7891057 DOI: 10.3389/fonc.2020.626129] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Melanoma, a cancer of the skin, arises from transformed melanocytes. Melanoma has the highest mutational burden of any cancer partially attributed to UV induced DNA damage. Localized melanoma is “curable” by surgical resection and is followed by radiation therapy to eliminate any remaining cancer cells. Targeted therapies against components of the MAPK signaling cascade and immunotherapies which block immune checkpoints have shown remarkable clinical responses, however with the onset of resistance in most patients, and, disease relapse, these patients eventually become refractory to treatments. Although great advances have been made in our understanding of the metastatic process in cancers including melanoma, therapy failure suggests that much remains to be learned and understood about the multi-step process of tumor metastasis. In this review we provide an overview of melanocytic transformation into malignant melanoma and key molecular events that occur during this evolution. A better understanding of the complex processes entailing cancer cell dissemination will improve the mechanistic driven design of therapies that target specific steps involved in cancer metastasis to improve clinical response rates and overall survival in all cancer patients.
Collapse
Affiliation(s)
- Kevinn Eddy
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ, United States.,Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ, United States
| | - Raj Shah
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ, United States.,Joint Graduate Program in Toxicology, Rutgers University, Piscataway, NJ, United States
| | - Suzie Chen
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ, United States.,Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ, United States.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Environmental & Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
27
|
A Single Center Retrospective Review of Patients from Central Italy Tested for Melanoma Predisposition Genes. Int J Mol Sci 2020; 21:ijms21249432. [PMID: 33322357 PMCID: PMC7763813 DOI: 10.3390/ijms21249432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 11/23/2022] Open
Abstract
Cutaneous malignant melanoma (CMM) is one of the most common skin cancers worldwide. CMM pathogenesis involves genetic and environmental factors. Recent studies have led to the identification of new genes involved in CMM susceptibility: beyond CDKN2A and CDK4, BAP1, POT1, and MITF were recently identified as potential high-risk melanoma susceptibility genes. This study is aimed to evaluate the genetic predisposition to CMM in patients from central Italy. From 1998 to 2017, genetic testing was performed in 888 cases with multiple primary melanoma and/or familial melanoma. Genetic analyses included the sequencing CDKN2A, CDK4, BAP1, POT1, and MITF in 202 cases, and of only CDKN2A and CDK4 codon 24 in 686 patients. By the evaluation of the personal and familial history, patients were divided in two clinical categories: “low significance” and “high significance” cases. 128 patients (72% belonging to the “high significance” category, 28% belonging to the “low significance” category) were found to carry a DNA change defined as pathogenic, likely pathogenic, variant of unknown significance (VUS)-favoring pathogenic or VUS. It is important to verify the genetic predisposition in CMM patients for an early diagnosis of further melanomas and/or other tumors associated with the characterized genotype.
Collapse
|
28
|
Eddy K, Chen S. Overcoming Immune Evasion in Melanoma. Int J Mol Sci 2020; 21:E8984. [PMID: 33256089 PMCID: PMC7730443 DOI: 10.3390/ijms21238984] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most aggressive and dangerous form of skin cancer that develops from transformed melanocytes. It is crucial to identify melanoma at its early stages, in situ, as it is "curable" at this stage. However, after metastasis, it is difficult to treat and the five-year survival is only 25%. In recent years, a better understanding of the etiology of melanoma and its progression has made it possible for the development of targeted therapeutics, such as vemurafenib and immunotherapies, to treat advanced melanomas. In this review, we focus on the molecular mechanisms that mediate melanoma development and progression, with a special focus on the immune evasion strategies utilized by melanomas, to evade host immune surveillances. The proposed mechanism of action and the roles of immunotherapeutic agents, ipilimumab, nivolumab, pembrolizumab, and atezolizumab, adoptive T- cell therapy plus T-VEC in the treatment of advanced melanoma are discussed. In this review, we implore that a better understanding of the steps that mediate melanoma onset and progression, immune evasion strategies exploited by these tumor cells, and the identification of biomarkers to predict treatment response are critical in the design of improved strategies to improve clinical outcomes for patients with this deadly disease.
Collapse
Affiliation(s)
- Kevinn Eddy
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Environmental & Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
29
|
Abstract
The incidence of cutaneous melanoma continues to increase in pale skinned peoples in Europe and elsewhere. Epidemiological studies identified genetically determined phenotypes such as pale skin, freckles and red hair, and sunburn as risk factors for this cancer. The development of many melanocytic naevi is also genetically determined and a strong melanoma risk phenotype. Not surprisingly then, genome wide association studies have identified pigmentation genes as common risk genes, and to a lesser extent, genes associated with melanocytic naevi. More unexpectedly, genes associated with telomere length have also been identified as risk genes. Higher risk susceptibility genes have been identified, particularly CDKN2A as the most common cause, and very rarely genes such as CDK4, POT1, TERT and other genes in coding for proteins in the shelterin complex are found to be mutated. Familial melanoma genes are associated with an increased number of melanocytic naevi but not invariably and the atypical naevus phenotype is therefore an imperfect marker of gene carrier status. At a somatic level, the most common driver mutation is BRAF, second most common NRAS, third NF1 and increasing numbers of additional rarer mutations are being identified such as in TP53. It is of note that the BRAF and NRAS mutations are not C>T accepted as characteristic of ultraviolet light induced mutations.
Collapse
|
30
|
The Melanoma and Breast Cancer Association: An Overview of their 'Second Primary Cancers' and the Epidemiological, Genetic and Biological correlations. Crit Rev Oncol Hematol 2020; 152:102989. [PMID: 32485529 DOI: 10.1016/j.critrevonc.2020.102989] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/22/2020] [Accepted: 05/14/2020] [Indexed: 12/18/2022] Open
Abstract
This study reviews the relevant epidemiological studies associating cutaneous melanoma and breast carcinomas and provides an overview of the possible genetic, biological and bias factors that underpin this relationship. Standardised incidence ratio (SIR) for primary cutaneous melanoma after breast carcinoma ranged from 1.16 to 5.13 and ranged from 1.03 to 4.10 for primary breast carcinoma after cutaneous melanoma. Epidemiological studies highlight age, gender and use of radiotherapy and chemotherapy as potential risk factors for second primary cancers (SPCs). Mutations in BRCA2, CDKN2A, CDK4 and BAP1 may partly underlie any SPC association. The impact of socio-cultural factors and surveillance bias may be attributed to the findings of SPC partially or entirely. In conclusion, this study has highlighted the association between breast carcinoma and melanoma and identified various factors for further research and the optimised management of patients with both cancers.
Collapse
|
31
|
Toussi A, Mans N, Welborn J, Kiuru M. Germline mutations predisposing to melanoma. J Cutan Pathol 2020; 47:606-616. [PMID: 32249949 DOI: 10.1111/cup.13689] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
Nearly 15% of melanomas occur in patients with a family history and a subset of these patients have a germline mutation in a melanoma predisposing gene. CDKN2A mutations are responsible for the majority of hereditary melanoma, but many other susceptibility genes have been discovered in recent years, including CDK4, TERT, ACD, TERF2IP, POT1, MITF, MC1R, and BAP1. Additionally, melanoma risk is increased in mixed cancer syndromes caused by mutations in PTEN, BRCA2, BRCA1, RB1, and TP53. While early onset, multiple tumors, and family cancer history remain the most valuable clinical clues for hereditary melanoma, characteristic epithelioid cytology of melanocytic tumors may suggest an underlying BAP1 mutation. Herein, we review the clinical and histopathologic characteristics of melanocytic tumors associated with these germline mutations and discuss the role of genetic counseling.
Collapse
Affiliation(s)
- Atrin Toussi
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Nicole Mans
- Hereditary Cancer Program, Comprehensive Cancer Center, University of California, Davis, Sacramento, California, USA
| | - Jeanna Welborn
- Hereditary Cancer Program, Comprehensive Cancer Center, University of California, Davis, Sacramento, California, USA
| | - Maija Kiuru
- Department of Dermatology, University of California, Davis, Sacramento, California, USA.,Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
32
|
Dalmasso B, Ghiorzo P. Evolution of approaches to identify melanoma missing heritability. Expert Rev Mol Diagn 2020; 20:523-531. [PMID: 32124637 DOI: 10.1080/14737159.2020.1738221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/02/2020] [Indexed: 02/08/2023]
Abstract
Introduction: Around 10% of melanoma patients have a positive family history of melanoma and/or related cancers. Although a germline pathogenic variant in a high-risk gene can be identified in up to 40% of these patients, the remaining part of melanoma heritability remains largely unexplained.Areas covered: The aim of this review is to provide an overview of the impact that new technologies and new research approaches had and are having on finding more efficient ways to unravel the missing heritability in melanoma.Expert opinion: High-throughput sequencing technologies have been crucial in increasing the number of genes/loci that might be implicated in melanoma predisposition. However, results from these approaches may have been inferior to the expectations, due to an increase in quantitative information which hasn't been followed at the same speed by an improvement of the methods to correctly interpret these data. Optimal approaches for improving our knowledge on melanoma heritability are currently based on segregation analysis coupled with functional assessment of candidate genes. An improvement of computational methods to infer genotype-phenotype correlations could help address the issue of missing heritability.
Collapse
Affiliation(s)
- Bruna Dalmasso
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
| |
Collapse
|
33
|
Pastorino L, Andreotti V, Dalmasso B, Vanni I, Ciccarese G, Mandalà M, Spadola G, Pizzichetta MA, Ponti G, Tibiletti MG, Sala E, Genuardi M, Chiurazzi P, Maccanti G, Manoukian S, Sestini S, Danesi R, Zampiga V, La Starza R, Stanganelli I, Ballestrero A, Mastracci L, Grillo F, Sciallero S, Cecchi F, Tanda ET, Spagnolo F, Queirolo P, Italian Melanoma Intergroup (IMI), Goldstein AM, Bruno W, Ghiorzo P. Insights into Genetic Susceptibility to Melanoma by Gene Panel Testing: Potential Pathogenic Variants in ACD, ATM, BAP1, and POT1. Cancers (Basel) 2020; 12:1007. [PMID: 32325837 PMCID: PMC7226507 DOI: 10.3390/cancers12041007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
The contribution of recently established or candidate susceptibility genes to melanoma missing heritability has yet to be determined. Multigene panel testing could increase diagnostic yield and better define the role of candidate genes. We characterized 273 CDKN2A/ARF and CDK4-negative probands through a custom-designed targeted gene panel that included CDKN2A/ARF, CDK4, ACD, BAP1, MITF, POT1, TERF2IP, ATM, and PALB2. Co-segregation, loss of heterozygosity (LOH)/protein expression analysis, and splicing characterization were performed to improve variant classification. We identified 16 (5.9%) pathogenic and likely pathogenic variants in established high/medium penetrance cutaneous melanoma susceptibility genes (BAP1, POT1, ACD, MITF, and TERF2IP), including two novel variants in BAP1 and 4 in POT1. We also found four deleterious and five likely deleterious variants in ATM (3.3%). Thus, including potentially deleterious variants in ATM increased the diagnostic yield to about 9%. Inclusion of rare variants of uncertain significance would increase the overall detection yield to 14%. At least 10% of melanoma missing heritability may be explained through panel testing in our population. To our knowledge, this is the highest frequency of putative ATM deleterious variants reported in melanoma families, suggesting a possible role in melanoma susceptibility, which needs further investigation.
Collapse
Affiliation(s)
- Lorenza Pastorino
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genova, Italy; (L.P.); (V.A.); (B.D.); (I.V.); (G.C.); (W.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
| | - Virginia Andreotti
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genova, Italy; (L.P.); (V.A.); (B.D.); (I.V.); (G.C.); (W.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
| | - Bruna Dalmasso
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genova, Italy; (L.P.); (V.A.); (B.D.); (I.V.); (G.C.); (W.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
| | - Irene Vanni
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genova, Italy; (L.P.); (V.A.); (B.D.); (I.V.); (G.C.); (W.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
| | - Giulia Ciccarese
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genova, Italy; (L.P.); (V.A.); (B.D.); (I.V.); (G.C.); (W.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
| | - Mario Mandalà
- Unit of Medical Oncology, Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy;
| | - Giuseppe Spadola
- Divisione di Chirurgia del Melanoma, IRCCS Fondazione Istituto Nazionale per lo studio e la cura dei tumori, 20133 Milano, Italy;
| | - Maria Antonietta Pizzichetta
- Dermatologic Clinic, University of Trieste, 34127 Trieste, Italy;
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Giovanni Ponti
- Department of Diagnostic and clinical medicine and public health, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | | | - Elena Sala
- Medical Genetics Laboratory, Clinical Pathology Department, S. Gerardo Hospital, 20900 Monza, Italy;
| | - Maurizio Genuardi
- UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (M.G.); (P.C.)
- Sezione Genetica Medica, Dipartimento di Scienze della Vita e di Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Pietro Chiurazzi
- UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (M.G.); (P.C.)
- Sezione Genetica Medica, Dipartimento di Scienze della Vita e di Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | | | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milano, Italy;
| | - Serena Sestini
- Plastic & Reconstructive Surgery Unit, Regional Melanoma Referral Center and Melanoma & Skin Cancer Unit Tuscan Tumour Institute (ITT), Santa Maria Annunziata Hospital, 50012 Firenze, Italy;
| | - Rita Danesi
- Romagna Cancer Registry, IRCCS-IRST Scientific Institute of Romagna for the Study and Treatment of Cancer, 47014 Meldola, Italy;
| | - Valentina Zampiga
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Roberta La Starza
- Hematology and Bone Marrow Transplantation Unit, CREO, University of Perugia, 06156 Perugia, Italy;
| | - Ignazio Stanganelli
- Skin Cancer Unit, IRCCS-IRST Scientific Institute of Romagna for the Study and Treatment of Cancer, 47014 Meldola, Italy;
| | - Alberto Ballestrero
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
- Department of Internal Medicine, Università degli Studi di Genova, 16132 Genova, Italy
| | - Luca Mastracci
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
- Department of Integrated Surgical and Diagnostic Sciences, Università degli Studi di Genova, 16132 Genova, Italy
| | - Federica Grillo
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
- Department of Integrated Surgical and Diagnostic Sciences, Università degli Studi di Genova, 16132 Genova, Italy
| | - Stefania Sciallero
- IRCCS Ospedale Policlinico San Martino, Unit of Medical Oncology 1, 16132 Genova, Italy;
| | - Federica Cecchi
- IRCCS Ospedale Policlinico San Martino, Medical Oncology 2, 16132 Genova, Italy; (F.C.); (E.T.T.); (F.S.); (P.Q.)
| | - Enrica Teresa Tanda
- IRCCS Ospedale Policlinico San Martino, Medical Oncology 2, 16132 Genova, Italy; (F.C.); (E.T.T.); (F.S.); (P.Q.)
| | - Francesco Spagnolo
- IRCCS Ospedale Policlinico San Martino, Medical Oncology 2, 16132 Genova, Italy; (F.C.); (E.T.T.); (F.S.); (P.Q.)
| | - Paola Queirolo
- IRCCS Ospedale Policlinico San Martino, Medical Oncology 2, 16132 Genova, Italy; (F.C.); (E.T.T.); (F.S.); (P.Q.)
| | | | - Alisa M. Goldstein
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA;
| | - William Bruno
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genova, Italy; (L.P.); (V.A.); (B.D.); (I.V.); (G.C.); (W.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
| | - Paola Ghiorzo
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genova, Italy; (L.P.); (V.A.); (B.D.); (I.V.); (G.C.); (W.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
| |
Collapse
|
34
|
Campos C, Fragoso S, Luís R, Pinto F, Brito C, Esteves S, Pataco M, Santos S, Machado P, Vicente JB, Costa Rosa J, Cavaco BM, Moura C, Pojo M. High-Throughput Sequencing Identifies 3 Novel Susceptibility Genes for Hereditary Melanoma. Genes (Basel) 2020; 11:genes11040403. [PMID: 32276436 PMCID: PMC7230562 DOI: 10.3390/genes11040403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
Cutaneous melanoma is one of the most aggressive human cancers due to its high invasiveness. Germline mutations in high-risk melanoma susceptibility genes have been associated with development hereditary melanoma; however, most genetic culprits remain elusive. To unravel novel susceptibility genes for hereditary melanoma, we performed whole exome sequencing (WES) on eight patients with multiple primary melanomas, high number of nevi, and negative for high and intermediate-risk germline mutations. Thirteen new potentially pathogenic variants were identified after bioinformatics analysis and validation. CDH23, ARHGEF40, and BRD9 were identified as the most promising susceptibility genes in hereditary melanoma. In silico analysis of CDH23 and ARHGEF40 variants provided clues for altered protein structure and function associated with the identified mutations. Then, we also evaluated the clinical value of CDH23, ARHGEF40, and BRD9 expression in sporadic melanoma by using the TCGA dataset (n = 461). No differences were observed in BRD9 expression between melanoma and normal skin samples, nor with melanoma stage, whereas ARHGEF40 was found overexpressed, and CDH23 was downregulated and its loss was associated with worse survival. Altogether, these results reveal three novel genes with clinical relevance in hereditary and sporadic melanoma.
Collapse
Affiliation(s)
- Catarina Campos
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Sofia Fragoso
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Rafael Luís
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Filipe Pinto
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Cheila Brito
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Susana Esteves
- Unidade de Investigação Clínica (UIC) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Margarida Pataco
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Sidónia Santos
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Patrícia Machado
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - João B. Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal
| | - Joaninha Costa Rosa
- Serviço de Anatomia Patológica do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
- NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Branca M. Cavaco
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Cecília Moura
- Clínica de Risco Familiar do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
- Serviço de Dermatologia do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, Portugal
- Correspondence: ; Tel.: +351-21-722-9800 (ext. 1794)
| |
Collapse
|
35
|
Dika E, Patrizi A, Rossi C, Turchetti D, Miccoli S, Ferracin M, Veronesi G, Scarfì F, Lambertini M. Clinical histopathological features and CDKN2A/CDK4/MITF mutational status of patients with multiple primary melanomas from Bologna: Italy is a fascinating but complex mosaic. Ital J Dermatol Venerol 2020; 156:599-605. [PMID: 32221274 DOI: 10.23736/s2784-8671.20.06496-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The incidence of cutaneous melanoma (cM) has increased in the last decades. Germline mutations in the high-penetrance melanoma susceptibility gene CDKN2A (Cyclin-dependent kinase inhibitor 2A) are associated with a younger age at diagnosis and an increased risk to develop pancreatic cancer. METHODS We retrospectively analyzed the data of patients with prior diagnosis of cM referring to our service from January 2005 to May 2017. The aim was to investigate the rate of multiple cMs (MPM), assessing their clinical/pathological features. Moreover, the genetic tests of patients who had undergone CDKN2A/CDKN2B, CDK4 and MITF screening were evaluated. RESULTS One hundred fifteen patients (9.26%) were diagnosed with MPMs: 70 males (60.87%) and 45 women (39.13%). 75 patients (43 males and 32 females) underwent genetic screening for germline mutations. The screening revealed that 4/75 patients (5.33%) were carriers of the non-synonymous missense variation c.442G>A (p.Ala148Thr) in CDKN2A exon 2 in heterozygosis, 3 of whom had at least one in-situ melanoma. In 1 patient (1.33%) we detected the variation c.249C>A, p.His83Gln in CDKN2A exon 2 in heterozygosis and in 1 patient (1.33%) the mutation c.952G>A (p.Glu318Lys) in MITF gene was found. CONCLUSIONS This study confirms the need for a full body skin examination and a prolonged surveillance in patients affected by cM, as MPMs were detected in up to 10% of total cases in our series and synchronous lesions in 1/5. Moreover, it reflects the great variability of cM high-susceptibility genes mutational status within the Italian territory. Patients carrying c.952G>A (p.Glu318Lys) MITF mutation have a higher risk to develop a nodular cM.
Collapse
Affiliation(s)
- Emi Dika
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Dermatology, IRCCS Policlinico di Sant'Orsola, Bologna, Italy
| | - Annalisa Patrizi
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Dermatology, IRCCS Policlinico di Sant'Orsola, Bologna, Italy
| | - Cesare Rossi
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Daniela Turchetti
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Sara Miccoli
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Giulia Veronesi
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Dermatology, IRCCS Policlinico di Sant'Orsola, Bologna, Italy
| | - Federica Scarfì
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Dermatology, IRCCS Policlinico di Sant'Orsola, Bologna, Italy
| | - Martina Lambertini
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy - .,Dermatology, IRCCS Policlinico di Sant'Orsola, Bologna, Italy
| |
Collapse
|
36
|
Brożyna AA, Hoffman RM, Slominski AT. Relevance of Vitamin D in Melanoma Development, Progression and Therapy. Anticancer Res 2020; 40:473-489. [PMID: 31892603 PMCID: PMC6948187 DOI: 10.21873/anticanres.13976] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
Abstract
Melanoma is one of the most lethal types of skin cancer, with a poor prognosis once the disease enters metastasis. The efficacy of currently available treatment schemes for advanced melanomas is low, expensive, and burdened by significant side-effects. Therefore, there is a need to develop new treatment options. Skin cells are able to activate vitamin D via classical and non-classical pathways. Vitamin D derivatives have anticancer properties which promote differentiation and inhibit proliferation. The role of systemic vitamin D in patients with melanoma is unclear as epidemiological studies are not definitive. In contrast, experimental data have clearly shown that vitamin D and its derivatives have anti-melanoma properties. Furthermore, molecular and clinicopathological studies have demonstrated a correlation between defects in vitamin D signaling and progression of melanoma and disease outcome. Therefore, adequate vitamin D signaling can play a role in the treatment of melanoma.
Collapse
Affiliation(s)
- Anna A Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | | | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, U.S.A. .,Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, U.S.A.,VA Medical Center, Birmingham, AL, U.S.A
| |
Collapse
|
37
|
Diefenbach RJ, Lee JH, Strbenac D, Yang JYH, Menzies AM, Carlino MS, Long GV, Spillane AJ, Stretch JR, Saw RPM, Thompson JF, Ch’ng S, Scolyer RA, Kefford RF, Rizos H. Analysis of the Whole-Exome Sequencing of Tumor and Circulating Tumor DNA in Metastatic Melanoma. Cancers (Basel) 2019; 11:cancers11121905. [PMID: 31795494 PMCID: PMC6966626 DOI: 10.3390/cancers11121905] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/31/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
The use of circulating tumor DNA (ctDNA) to monitor cancer progression and response to therapy has significant potential but there is only limited data on whether this technique can detect the presence of low frequency subclones that may ultimately confer therapy resistance. In this study, we sought to evaluate whether whole-exome sequencing (WES) of ctDNA could accurately profile the mutation landscape of metastatic melanoma. We used WES to identify variants in matched, tumor-derived genomic DNA (gDNA) and plasma-derived ctDNA isolated from a cohort of 10 metastatic cutaneous melanoma patients. WES parameters such as sequencing coverage and total sequencing reads were comparable between gDNA and ctDNA. The mutant allele frequency of common single nucleotide variants was lower in ctDNA, reflecting the lower read depth and minor fraction of ctDNA within the total circulating free DNA pool. There was also variable concordance between gDNA and ctDNA based on the total number and identity of detected variants and this was independent of the tumor biopsy site. Nevertheless, established melanoma driver mutations and several other melanoma-associated mutations were concordant between matched gDNA and ctDNA. This study highlights that WES of ctDNA could capture clinically relevant mutations present in melanoma metastases and that enhanced sequencing sensitivity will be required to identify low frequency mutations.
Collapse
Affiliation(s)
- Russell J. Diefenbach
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.J.D.); (J.H.L.)
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
| | - Jenny H. Lee
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.J.D.); (J.H.L.)
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
| | - Dario Strbenac
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia; (D.S.); (J.Y.H.Y.)
| | - Jean Y. H. Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia; (D.S.); (J.Y.H.Y.)
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alexander M. Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Matteo S. Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Crown Princess Mary Cancer Centre, Westmead and Blacktown Hospitals, Sydney, NSW 2145, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Andrew J. Spillane
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Jonathan R. Stretch
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
| | - Robyn P. M. Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - John F. Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Sydney Ch’ng
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Richard F. Kefford
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Helen Rizos
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.J.D.); (J.H.L.)
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Correspondence: ; Tel.: +61-298-502-762
| |
Collapse
|
38
|
Horak V, Palanova A, Cizkova J, Miltrova V, Vodicka P, Kupcova Skalnikova H. Melanoma-Bearing Libechov Minipig (MeLiM): The Unique Swine Model of Hereditary Metastatic Melanoma. Genes (Basel) 2019; 10:E915. [PMID: 31717496 PMCID: PMC6895830 DOI: 10.3390/genes10110915] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
National cancer databases document that melanoma is the most aggressive and deadly cutaneous malignancy with worldwide increasing incidence in the Caucasian population. Around 10% of melanomas occur in families. Several germline mutations were identified that might help to indicate individuals at risk for preventive interventions and early disease detection. More than 50% of sporadic melanomas carry mutations in Ras/Raf/mitogen-activated protein kinase (MAPK/MEK) pathway, which may represent aims of novel targeted therapies. Despite advances in targeted therapies and immunotherapies, the outcomes in metastatic tumor are still unsatisfactory. Here, we review animal models that help our understanding of melanoma development and treatment, including non-vertebrate, mouse, swine, and other mammal models, with an emphasis on those with spontaneously developing melanoma. Special attention is paid to the melanoma-bearing Libechov minipig (MeLiM). This original swine model of hereditary metastatic melanoma enables studying biological processes underlying melanoma progression, as well as spontaneous regression. Current histological, immunohistochemical, biochemical, genetic, hematological, immunological, and skin microbiome findings in the MeLiM model are summarized, together with development of new therapeutic approaches based on tumor devitalization. The ongoing study of molecular and immunological base of spontaneous regression in MeLiM model has potential to bring new knowledge of clinical importance.
Collapse
Affiliation(s)
| | | | | | | | | | - Helena Kupcova Skalnikova
- Czech Academy of Sciences, Institute of Animal Physiology and Genetics, Laboratory of Applied Proteome Analyses and Research Center PIGMOD, 277 21 Libechov, Czech Republic; (V.H.); (A.P.); (J.C.); (V.M.); (P.V.)
| |
Collapse
|
39
|
Abstract
Melanoma is a deadly skin cancer linked to ultraviolet radiation exposure. Heritable traits and sporadic mutations modify an individual's risk for melanoma that may be associated with phenotype. Familial/heritable melanomas are broadly used to describe families with an increased incidence of melanomas, although the underlying mutation may be unknown. Mutations associated with melanoma occur in cell cycle regulation, tumor suppression, chromosomal stability, DNA repair, pigmentation, and melanocyte differentiation genes. Genetic testing of individuals with a family history of melanoma may provide additional etiologic information and ensure patients with known markers for cancer development are closely monitored by physicians.
Collapse
|
40
|
Halk AB, Potjer TP, Kukutsch NA, Vasen HFA, Hes FJ, van Doorn R. Surveillance for familial melanoma: recommendations from a national centre of expertise. Br J Dermatol 2019; 181:594-596. [PMID: 30742720 DOI: 10.1111/bjd.17767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- A B Halk
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - T P Potjer
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - N A Kukutsch
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - H F A Vasen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - F J Hes
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - R van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
41
|
Metabolic flexibility in melanoma: A potential therapeutic target. Semin Cancer Biol 2019; 59:187-207. [PMID: 31362075 DOI: 10.1016/j.semcancer.2019.07.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/11/2019] [Accepted: 07/23/2019] [Indexed: 01/01/2023]
Abstract
Cutaneous melanoma (CM) represents one of the most metastasizing and drug resistant solid tumors. CM is characterized by a remarkable metabolic plasticity and an important connection between oncogenic activation and energetic metabolism. In fact, melanoma cells can use both cytosolic and mitochondrial compartments to produce adenosine triphosphate (ATP) during cancer progression. However, the CM energetic demand mainly depends on glycolysis, whose upregulation is strictly linked to constitutive activation of BRAF/MAPK pathway affected by BRAFV600E kinase mutant. Furthermore, the impressive metabolic plasticity of melanoma allows the development of resistance mechanisms to BRAF/MEK inhibitors (BRAFi/MEKi) and the adaptation to microenvironmental changes. The metabolic interaction between melanoma cells and tumor microenvironment affects the immune response and CM growth. In this review article, we describe the regulation of melanoma metabolic alterations and the metabolic interactions between cancer cells and microenvironment that influence melanoma progression and immune response. Finally, we summarize the hallmarks of melanoma therapies and we report BRAF/MEK pathway targeted therapy and mechanisms of metabolic resistance.
Collapse
|
42
|
Sargen MR, Pfeiffer RM, Yang XR, Tucker MA, Goldstein AM. Variation in Cutaneous Patterns of Melanomagenesis According to Germline CDKN2A/CDK4 Status in Melanoma-Prone Families. J Invest Dermatol 2019; 140:174-181.e3. [PMID: 31326397 DOI: 10.1016/j.jid.2019.06.138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/19/2019] [Accepted: 06/30/2019] [Indexed: 11/26/2022]
Abstract
CDKN2A and CDK4 are well-established melanoma susceptibility genes, but their effect on tumor location and distribution is unknown. We used a case-case study design to assess for differences in tumor location between mutation carriers (CDKN2A = 141 patients, 348 melanomas; CDK4 = 15 patients, 54 melanomas) and noncarriers (104 patients, 157 melanomas) in US melanoma-prone families. Associations between groups were assessed with chi-square tests. Odds ratios (ORs) for tumor location were adjusted for diagnosis age, gender, and superficial spreading subtype. Models included random effects to account for within individual and family correlations. Compared with having a truncal melanoma, CDK4 (vs. noncarriers: lower extremities OR = 14.5, 95% confidence interval [CI] = 5.02-42.0, P < 0.001; upper extremities OR = 6.88, 95% CI = 2.37-19.9, P < 0.001; head and neck OR = 18.6, 95% CI = 4.04-85.2, P < 0.001) and CDKN2A (vs. noncarriers: lower extremities OR = 3.01, 95% CI = 1.56-5.82, P < 0.05; upper extremities OR = 1.91, 95% CI = 1.03-3.52, P < 0.05; head and neck OR = 5.40, 95% CI = 2.10-13.9, P < 0.001) carriers had higher odds of developing melanoma at all other sites. Similar findings were observed for analyses stratified by gender, age, and first versus subsequent melanoma diagnoses. Further studies are needed to understand the biology underlying these genotype-associated patterns of tumor development, which could provide new insights into melanoma treatment and prevention.
Collapse
Affiliation(s)
- Michael R Sargen
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland.
| | - Ruth M Pfeiffer
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Xiaohong R Yang
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Margaret A Tucker
- Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Alisa M Goldstein
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| |
Collapse
|
43
|
Visser M, van der Stoep N, Gruis N. Progress report on the major clinical advances in patient-oriented research into familial melanoma (2013-2018). Fam Cancer 2019; 18:267-271. [PMID: 30659395 DOI: 10.1007/s10689-018-00115-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mijke Visser
- Department of Dermatology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Nienke van der Stoep
- Department of Clinical Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Nelleke Gruis
- Department of Dermatology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
44
|
Rossi M, Pellegrini C, Cardelli L, Ciciarelli V, Di Nardo L, Fargnoli MC. Familial Melanoma: Diagnostic and Management Implications. Dermatol Pract Concept 2019; 9:10-16. [PMID: 30775140 PMCID: PMC6368081 DOI: 10.5826/dpc.0901a03] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background An estimated 5%-10% of all cutaneous melanoma cases occur in families. This review describes susceptibility genes currently known to be involved in melanoma predisposition, genetic testing of familial melanoma patients, and management implications. Results CDKN2A is the major high-penetrance susceptibility gene with germline mutations identified in 20%-40% of melanoma families. A positive CDKN2A mutation status has been associated with a high number of affected family members, multiple primary melanomas, pancreatic cancer, and early age at melanoma onset. Mutations in the other melanoma predisposition genes-CDK4, BAP1, TERT, POT1, ACD, TERF2IP, and MITF-are rare, overall contributing to explain a further 10% of familial clustering of melanoma. The underlying genetic susceptibility remains indeed unexplained for half of melanoma families. Genetic testing for melanoma is currently recommended only for CDKN2A and CDK4, and, at this time, the role of multigene panel testing remains under debate. Individuals from melanoma families must receive genetic counseling to be informed about the inclusion criteria for genetic testing, the probability of an inconclusive result, the genetic risk for melanoma and other cancers, and the debatable role of medical management. They should be counseled focusing primarily on recommendations on appropriate lifestyle, encouraging skin self-examination, and regular dermatological screening. Conclusions Genetic testing for high-penetrance melanoma susceptibility genes is recommended in melanoma families after selection of the appropriate candidates and adequate counseling of the patient. All patients and relatives from melanoma kindreds, irrespective of their mutation status, should be encouraged to adhere to a correct ultraviolet exposure, skin self-examination, and surveillance by physicians.
Collapse
Affiliation(s)
- Mariarita Rossi
- Department of Dermatology, DISCAB, University of L'Aquila, L'Aquila, Italy
| | | | - Ludovica Cardelli
- Department of Dermatology, DISCAB, University of L'Aquila, L'Aquila, Italy
| | - Valeria Ciciarelli
- Department of Dermatology, DISCAB, University of L'Aquila, L'Aquila, Italy
| | - Lucia Di Nardo
- Department of Dermatology, DISCAB, University of L'Aquila, L'Aquila, Italy.,Institute of Dermatology, Catholic University, Rome, Italy
| | | |
Collapse
|
45
|
Potjer TP, Bollen S, Grimbergen AJEM, van Doorn R, Gruis NA, van Asperen CJ, Hes FJ, van der Stoep N. Multigene panel sequencing of established and candidate melanoma susceptibility genes in a large cohort of Dutch non-CDKN2A/CDK4 melanoma families. Int J Cancer 2019; 144:2453-2464. [PMID: 30414346 PMCID: PMC6590189 DOI: 10.1002/ijc.31984] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/12/2018] [Accepted: 10/25/2018] [Indexed: 02/01/2023]
Abstract
Germline mutations in the major melanoma susceptibility gene CDKN2A explain genetic predisposition in only 10–40% of melanoma‐prone families. In our study we comprehensively characterized 488 melanoma cases from 451 non‐CDKN2A/CDK4 families for mutations in 30 established and candidate melanoma susceptibility genes using a custom‐designed targeted gene panel approach. We identified (likely) pathogenic variants in established melanoma susceptibility genes in 18 families (n = 3 BAP1, n = 15 MITF p.E318K; diagnostic yield 4.0%). Among the three identified BAP1‐families, there were no reported diagnoses of uveal melanoma or malignant mesothelioma. We additionally identified two potentially deleterious missense variants in the telomere maintenance genes ACD and TERF2IP, but none in the POT1 gene. MC1R risk variants were strongly enriched in our familial melanoma cohort compared to healthy controls (R variants: OR 3.67, 95% CI 2.88–4.68, p <0.001). Several variants of interest were also identified in candidate melanoma susceptibility genes, in particular rare (pathogenic) variants in the albinism gene OCA2 were repeatedly found. We conclude that multigene panel testing for familial melanoma is appropriate considering the additional 4% diagnostic yield in non‐CDKN2A/CDK4 families. Our study shows that BAP1 and MITF are important genes to be included in such a diagnostic test. What's new? Germline mutations in CDKN2A are major contributors to familial melanoma. These mutations, however, are responsible for only 10 to 40 percent of genetic susceptibility in melanoma‐prone families. In this study, 30 established and candidate melanoma susceptibility genes were investigated for associations with the disease in patients from 451 non‐CDKN2A/CDK4 melanoma families. From the candidate gene panel, (likely) pathogenic variants in BAP1 and MITF were identified in several families, and potentially deleterious variants were identified in the shelterin complex genes ACD and TERF2IP. These genes appear to play a significant role in familial melanoma predisposition and are therefore promising candidates for incorporation into comprehensive genetic tests.
Collapse
Affiliation(s)
- Thomas P Potjer
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Sander Bollen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Nelleke A Gruis
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Frederik J Hes
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Nienke van der Stoep
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | | |
Collapse
|
46
|
Ozola A, Ruklisa D, Pjanova D. Association of the 16q24.3 region gene variants rs1805007 and rs4785763 with heightened risk of melanoma in Latvian population. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
47
|
Karagianni F, Njauw CN, Kypreou KP, Stergiopoulou A, Plaka M, Polydorou D, Chasapi V, Pappas L, Stratigos IA, Champsas G, Panagiotou P, Gogas H, Evangelou E, Tsao H, Stratigos AJ, Stefanaki I. CDKN2A/CDK4 Status in Greek Patients with Familial Melanoma and Association with Clinico-epidemiological Parameters. Acta Derm Venereol 2018; 98:862-866. [PMID: 29774366 PMCID: PMC6572781 DOI: 10.2340/00015555-2969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Approximately 5–10% of melanoma cases occur in a familial context. CDKN2A/CDK4 were the first high- penetrance melanoma genes identified. The aims of this study were to evaluate CDKN2A/CDK4 variants in Greek familial melanoma patients and to correlate the mutational status with specific clinico-epidemiological characteristics. A cross-sectional study was conducted by genotyping CDKN2A/CDK4 variants and selected MC1R polymorphisms in 52 melanoma-prone families. Descriptive statistics were calculated and comparisons were made using the X2 test, Fisher’s exact test and Student’s t-test for statistical analysis, as appropriate. CDKN2A variants were detected in 46.2% of melanoma-prone families, while a CDK4 variant was found in only one family. This study confirmed that, in the Greek population, the age at melanoma diagnosis was lower in patients carrying a variant in CDKN2A compared with wild-type patients. No statistically significant associations were found between CDKN2A mutational status and MC1R polymorphisms.
Collapse
Affiliation(s)
- Fani Karagianni
- 1st Department of Dermatology, Andreas Sygros Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Characterization of melanoma susceptibility genes in high-risk patients from Central Italy. Melanoma Res 2018; 27:258-267. [PMID: 28146043 DOI: 10.1097/cmr.0000000000000323] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Genetic susceptibility to cutaneous melanoma has been investigated in Italian high-risk melanoma patients from different geographical regions. CDKN2A, CDK4, and MC1R genes have been screened in most studies, MITF and POT1 were screened in only one study, and none analyzed the TERT promoter. We carried out a mutational analysis of CDKN2A, CDK4 exon 2, POT1 p.S270N, MITF exon 10, MC1R, and the TERT promoter in 106 high-risk patients with familial melanoma (FM) and sporadic multiple primary melanoma (spMPM) from Central Italy and evaluated mutations according to the clinicopathological characteristics of patients and lesions. In FM, CDKN2A mutations were detected in 8.3% of the families, including one undescribed exon 1β mutation (p.T31M), and their prevalence increased with the number of affected relatives within the family. MC1R variants were identified in 65% of the patients and the TERT rs2853669 promoter polymorphism was identified in 58% of the patients. A novel synonymous mutation detected in MITF exon 10 (c.861A>G, p.E287E), although predicted as a splice site mutation by computational tools, could not functionally be confirmed to alter splicing. For spMPM, 3% carried CDKN2A mutations, 79% carried MC1R variants, and 47% carried the TERT rs2853669 promoter polymorphism. MC1R variants were associated with fair skin type and light hair color both in FM and in spMPM, and with a reduction of age at diagnosis in FM patients. Mutations in CDK4 exon 2 and the POT1 p.S270N mutation were not detected. A low frequency of CDKN2A mutations and a high prevalence of MC1R variants characterize high-risk melanoma patients from Central Italy.
Collapse
|
49
|
Yang H, Zhao X, Zhao L, Liu L, Li J, Jia W, Liu J, Huang G. PRMT5 competitively binds to CDK4 to promote G1-S transition upon glucose induction in hepatocellular carcinoma. Oncotarget 2018; 7:72131-72147. [PMID: 27708221 PMCID: PMC5342150 DOI: 10.18632/oncotarget.12351] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 09/20/2016] [Indexed: 01/07/2023] Open
Abstract
Although cancer cells are known to be "addicted" to glucose, the effect of glucose in proliferation of these cells remains elusive. Here, we report that upon glucose induction, protein arginine methyltransferase 5 (PRMT5) exerts a profound effect on the G1-S cell cycle progression via directly interacting with cyclin dependent kinase 4 (CDK4) in hepatocellular carcinoma (HCC). Upregulation of both PRMT5 and CDK4 predicts more malignant characteristics in human HCC tissues. Mechanistically, glucose promotes the interaction between PRMT5 and CDK4, which leads to activation of CDK4-RB-E2F-mediated transcription via releasing CDKN2A from CDK4. Moreover, the PRMT5 competitive inhibition of the interaction between CDK4 and CDKN2A is important for glucose-induced growth of HCC cells. Furthermore, the CDK4 mutant R24A weakly binds to PRMT5, inhibiting HCC cell cycle progression and tumor growth. Thus, our findings uncover a critical function for PRMT5 and CDK4 and provide an improved therapeutic strategy against HCC.
Collapse
Affiliation(s)
- Hao Yang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200031, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Li Zhao
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Liu Liu
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jiajin Li
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Wenzhi Jia
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Gang Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200031, China.,Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
50
|
Pellegrini C, Di Nardo L, Cipolloni G, Martorelli C, De Padova M, Antonini A, Maturo MG, Del Regno L, Strafella S, Micantonio T, Leocata P, Peris K, Fargnoli MC. Heterogeneity of BRAF, NRAS, and TERT Promoter Mutational Status in Multiple Melanomas and Association with MC1R Genotype. J Mol Diagn 2018; 20:110-122. [DOI: 10.1016/j.jmoldx.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022] Open
|