1
|
Buianova AA, Bazanova MV, Belova VA, Ilyina GA, Samitova AF, Shmitko AO, Balakina AV, Pavlova AS, Suchalko ON, Korostin DO, Machalov AS, Daikhes NA, Rebrikov DV. Heterogeneous Group of Genetically Determined Auditory Neuropathy Spectrum Disorders. Int J Mol Sci 2024; 25:12554. [PMID: 39684270 DOI: 10.3390/ijms252312554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Auditory neuropathy spectrum disorder (ANSD) is often missed by standard hearing tests, accounting for up to 10% of hearing impairments (HI) and commonly linked to variants in 23 genes. We assessed 122 children with HI, including 102 with sensorineural hearing loss (SNHL) and 20 with ANSD. SNHL patients were genotyped for common GJB2 variants using qPCR, while ANSD patients underwent whole exome sequencing, with variants analyzed across 249 genes. Homozygous GJB2 variants were found in 54.9% of SNHL patients. In 60% of ANSD patients, variants were detected in OTOF (25%), CDH23, TMC1, COL11A1, PRPS1, TWNK, and HOMER2 genes, including eight novel variants. Transient evoked otoacoustic emissions testing revealed differences at 4000 Hz (p = 0.0084) between the ANSD and SNHL groups. The auditory steady-state response (ASSR) test showed significant differences at 500 Hz (p = 2.69 × 10-4) and 1000 Hz (p = 0.0255) compared to pure-tone audiometry (PTA) in ANSD patients. Our questionnaire shows that the parents of children with SNHL often report an improved quality of life with hearing aids or cochlear implants, while parents of children with ANSD frequently experience uncertainty about outcomes (p = 0.0026), leading to lower satisfaction.
Collapse
Affiliation(s)
- Anastasiia A Buianova
- The Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Marina V Bazanova
- FSBI 'The National Medical Research Center for Otorhinolaryngology of the Federal Medico-Biological Agency of Russia', 123182 Moscow, Russia
| | - Vera A Belova
- The Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Galit A Ilyina
- The Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Alina F Samitova
- The Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Anna O Shmitko
- The Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Anna V Balakina
- FSBI 'The National Medical Research Center for Otorhinolaryngology of the Federal Medico-Biological Agency of Russia', 123182 Moscow, Russia
| | - Anna S Pavlova
- The Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Oleg N Suchalko
- The Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Dmitriy O Korostin
- The Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Anton S Machalov
- FSBI 'The National Medical Research Center for Otorhinolaryngology of the Federal Medico-Biological Agency of Russia', 123182 Moscow, Russia
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Nikolai A Daikhes
- FSBI 'The National Medical Research Center for Otorhinolaryngology of the Federal Medico-Biological Agency of Russia', 123182 Moscow, Russia
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Denis V Rebrikov
- The Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
- FSBI 'National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named After Academician V.I. Kulakov', 117198 Moscow, Russia
| |
Collapse
|
2
|
Li J, Zhou S, Pei J, Li W, Cui R, Ren X, Wei J, Li Q, Zhu B, Sa Y, Li Y. Spectrum of DNA variants for patients with hearing loss in 4 language families of 15 ethnicities from Southwestern China. Heliyon 2024; 10:e38802. [PMID: 39640791 PMCID: PMC11620035 DOI: 10.1016/j.heliyon.2024.e38802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/20/2024] [Accepted: 09/30/2024] [Indexed: 12/07/2024] Open
Abstract
Hearing loss is a common disease. More than 100 genes have been reported to be associated with hereditary hearing loss. However, the distribution of these genes and their variants across diverse populations remains unclear. In this study, we gathered 347 hearing-impaired patients from four language families (Sinitic, Tibeto-Burman, Kra-Dai, and Hmong-Mien) in Southwestern China, excluding cases caused by common mutations in the GJB2 gene. By using next generation sequencing, 122 genes associated with hereditary hearing loss were analyzed on these patients. Rare candidate variants were identified in 71.93 % (264/347) of patients with hearing loss. The diagnostic rate varied around 10 % across different language families. The most frequently identified causative genes in successfully diagnosed cases were SLC26A4, MYO7A and TMPRSS3. Moreover, a substantial number of variants of unknown significance (VUS) were identified in our patient cohort. This underscores the critical need for establishing ethnicity-specific genomic databases for hearing loss. It will significantly improve the clinical diagnostic rate for hearing loss in this region.
Collapse
Affiliation(s)
- Jingyu Li
- Department of Medical Genetics, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, 650032, Yunnan, China
| | - Shiyu Zhou
- Department of Medical Genetics, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, 650032, Yunnan, China
| | - Jiahong Pei
- the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, 650032, Yunnan, China
| | - Wanzhen Li
- Department of Medical Genetics, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, 650032, Yunnan, China
| | - Rongjie Cui
- Department of Medical Genetics, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, 650032, Yunnan, China
| | - Xiaofei Ren
- Department of Medical Genetics, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, 650032, Yunnan, China
| | - Jingru Wei
- Department of Medical Genetics, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, 650032, Yunnan, China
| | - Qian Li
- the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, 650032, Yunnan, China
| | - Baosheng Zhu
- Department of Medical Genetics, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, 650032, Yunnan, China
- National Health Commission Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, Kunming, Yunnan, China
| | - Yaliang Sa
- the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, 650032, Yunnan, China
| | - Yunlong Li
- Department of Medical Genetics, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, 650032, Yunnan, China
- National Health Commission Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, Kunming, Yunnan, China
| |
Collapse
|
3
|
Shearer AE. Genetic testing for pediatric sensorineural hearing loss in the era of gene therapy. Curr Opin Otolaryngol Head Neck Surg 2024; 32:352-356. [PMID: 39146193 DOI: 10.1097/moo.0000000000001005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
PURPOSE OF REVIEW To summarize indications, methods, and diagnostic yields for genetic testing for pediatric hearing loss. RECENT FINDINGS Genetic testing has become a cornerstone of clinical care for children with sensorineural hearing loss. Recent studies have shown the efficacy of gene panels and exome sequencing for any child with sensorineural hearing loss. Recent findings have underscored the importance of a diagnosis in clinical care. Clinical trials for gene therapy for hearing loss have begun. SUMMARY Genetic testing has become critical for personalized care for children with hearing loss. Recent studies have shown a 43% overall diagnostic yield for genetic testing for pediatric hearing loss, though the diagnostic yield may range from 10 to 60% depending on clinical features. Syndromic diagnoses comprise 25% of positive genetic tests for pediatric sensorineural hearing loss. While diagnostic yield is lower for children with unilateral or asymmetric sensorineural hearing loss, the likelihood of syndromic hearing loss finding is higher. An early and accurate genetic diagnosis is required for participating in clinical trials for gene therapy for hearing loss.
Collapse
Affiliation(s)
- A Eliot Shearer
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School
- Boston Children's Hospital, Department of Otolaryngology & Communication Enhancement, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Acharya P, Thapa G, Liao X, Matoo S, Graves MJ, Atallah SY, Tipirneni AK, Nguyen T, Chhabra NM, Maschack J, Herod MR, Ohaezu FA, Robison A, Mudaliyar A, Bharaj J, Roeser N, Holmes K, Nayak V, Alsayed R, Perrin BJ, Crawley SW. Select autosomal dominant DFNA11 deafness mutations activate Myo7A in epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613491. [PMID: 39345484 PMCID: PMC11429914 DOI: 10.1101/2024.09.17.613491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Myosin-7A (Myo7A) is a motor protein crucial for the organization and function of stereocilia, specialized actin-rich protrusions on the surface of inner ear hair cells that mediate hearing. Mutations in Myo7A cause several forms of genetic hearing loss, including autosomal dominant DFNA11 deafness. Despite its importance, the structural elements of Myo7A that control its motor activity within cells are not well understood. In this study, we used cultured kidney epithelial cells to screen for mutations that activate the motor-dependent targeting of Myo7A to the tips of apical microvilli on these cells. Our findings reveal that Myo7A is regulated by specific IQ motifs within its lever arm, and that this regulation can function at least partially independent of its tail sequence. Importantly, we demonstrate that many of the DFNA11 deafness mutations reported in patients activate Myo7A targeting, providing a potential explanation for the autosomal dominant genetics of this form of deafness.
Collapse
|
5
|
Mkaouar R, Riahi Z, Marrakchi J, Mezzi N, Romdhane L, Boujemaa M, Dallali H, Sayeb M, Lahbib S, Jaouadi H, Boudabbous H, Zekri L, Chargui M, Messaoud O, Elyounsi M, Kraoua I, Zaouak A, Turki I, Mokni M, Boucher S, Petit C, Giraudet F, Mbarek C, Besbes G, Halayem S, Zainine R, Turki H, Tounsi A, Bonnet C, Mrad R, Abdelhak S, Trabelsi M, Charfeddine C. Current phenotypic and genetic spectrum of syndromic deafness in Tunisia: paving the way for precision auditory health. Front Genet 2024; 15:1384094. [PMID: 38711914 PMCID: PMC11072975 DOI: 10.3389/fgene.2024.1384094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 05/08/2024] Open
Abstract
Hearing impairment (HI) is a prevalent neurosensory condition globally, impacting 5% of the population, with over 50% of congenital cases attributed to genetic etiologies. In Tunisia, HI underdiagnosis prevails, primarily due to limited access to comprehensive clinical tools, particularly for syndromic deafness (SD), characterized by clinical and genetic heterogeneity. This study aimed to uncover the SD spectrum through a 14-year investigation of a Tunisian cohort encompassing over 700 patients from four referral centers (2007-2021). Employing Sanger sequencing, Targeted Panel Gene Sequencing, and Whole Exome Sequencing, genetic analysis in 30 SD patients identified diagnoses such as Usher syndrome, Waardenburg syndrome, cranio-facial-hand-deafness syndrome, and H syndrome. This latter is a rare genodermatosis characterized by HI, hyperpigmentation, hypertrichosis, and systemic manifestations. A meta-analysis integrating our findings with existing data revealed that nearly 50% of Tunisian SD cases corresponded to rare inherited metabolic disorders. Distinguishing between non-syndromic and syndromic HI poses a challenge, where the age of onset and progression of features significantly impact accurate diagnoses. Despite advancements in local genetic characterization capabilities, certain ultra-rare forms of SD remain underdiagnosed. This research contributes critical insights to inform molecular diagnosis approaches for SD in Tunisia and the broader North-African region, thereby facilitating informed decision-making in clinical practice.
Collapse
Affiliation(s)
- Rahma Mkaouar
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Zied Riahi
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Jihene Marrakchi
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Otorhinolaryngology, District Hospital of Menzel Bourguiba, Bizerte, Tunisia
| | - Nessrine Mezzi
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Biology, Faculty of Sciences of Bizerte, Université Tunis Carthage, Tunis, Tunisia
| | - Lilia Romdhane
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Biology, Faculty of Sciences of Bizerte, Université Tunis Carthage, Tunis, Tunisia
| | - Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hamza Dallali
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Genetic Typing Service, Institut Pasteur of Tunis, Tunis, Tunisia
| | - Marwa Sayeb
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Saida Lahbib
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hager Jaouadi
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Marseille Medical Genetics (MMG) U1251, Aix Marseille Université, INSERM, Marseille, France
| | - Hela Boudabbous
- Department of Pediatrics, La Rabta Hospital, Tunis, Tunisia
- Laboratory of Hereditary Diseases of the Metabolism Investigation and Patients Management, Faculty of Medicine in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Epidemiology and Public Health, Directorate General of Military Health, Faculty of Medicine in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Lotfi Zekri
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- ICHARA Association (International Research Institute on Sign Language), Tunis, Tunisia
| | - Mariem Chargui
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Olfa Messaoud
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Meriem Elyounsi
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital in Tunis, Tunis, Tunisia
- LR99ES10 Laboratory of Human Genetics, Faculty of Medicine in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ichraf Kraoua
- Child and Adolescent Neurology Department of Neurology, National Institute of Neurology, Tunis, Tunisia
- LR18SP04 Department of Child Neurology, National Institute Mongi Ben Hmida of Neurology in Tunis. University of Tunis El Manar, Tunis, Tunisia
| | - Anissa Zaouak
- Department of Dermatology, Habib Thameur Hospital, Research Unit Genodermatoses and Cancers LR12SP03, Tunis, Tunisia
| | - Ilhem Turki
- Child and Adolescent Neurology Department of Neurology, National Institute of Neurology, Tunis, Tunisia
- LR18SP04 Department of Child Neurology, National Institute Mongi Ben Hmida of Neurology in Tunis. University of Tunis El Manar, Tunis, Tunisia
| | - Mourad Mokni
- Service de dermatologie, Hôpital La Rabta, Unité de recherche UR 12SP07, Hôpital La Rabta, Tunis, Tunisia
| | - Sophie Boucher
- Service d’ORL et chirurgie cervico-faciale, CHU d’Angers, Angers, France
- Equipe Mitolab, Institut Mitovasc, CNRS UMR6015, UMR Inserm 1083, Université d’Angers, Angers, France
| | - Christine Petit
- Institut Pasteur, Université Paris Cité, Inserm UA06, Institut de l’Audition, Paris, France
- Collège de France, Paris, France
| | - Fabrice Giraudet
- Unité Mixte de Recherche (UMR) 1107, INSERM, Clermont-Ferrand, France
- Centre Auditif SoluSons, Clermont-Ferrand, France
| | - Chiraz Mbarek
- ENT Department, Habib Thameur Hospital, Tunis, Tunisia
| | - Ghazi Besbes
- Department of Otorhinolaryngology and Maxillofacial Surgery - La Rabta Hospital in Tunis, Tunis, Tunisia
| | - Soumeyya Halayem
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Service de pédopsychiatrie, Hôpital Razi, Faculté de Médecine de Tunis, Université Tunis el Manar, Tunis, Tunisia
| | - Rim Zainine
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Otorhinolaryngology and Maxillofacial Surgery - La Rabta Hospital in Tunis, Tunis, Tunisia
| | - Hamida Turki
- Dermatology Department Hedi Chaker University Hospital, Sfax University Sfax Tunisia, Tunis, Tunisia
| | | | - Crystel Bonnet
- Institut Pasteur, Université Paris Cité, Inserm UA06, Institut de l’Audition, Paris, France
| | - Ridha Mrad
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital in Tunis, Tunis, Tunisia
- LR99ES10 Laboratory of Human Genetics, Faculty of Medicine in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mediha Trabelsi
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital in Tunis, Tunis, Tunisia
- LR99ES10 Laboratory of Human Genetics, Faculty of Medicine in Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Cherine Charfeddine
- Laboratory of Biomedical Genomics and Oncogenetics LR16IPT05, Pasteur Institute in Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
6
|
Yamamoto N, Balciuniene J, Hartman T, Diaz-Miranda MA, Bedoukian E, Devkota B, Lawrence A, Golenberg N, Patel M, Tare A, Chen R, Schindler E, Choi J, Kaur M, Charles S, Chen J, Fanning EA, Dechene E, Cao K, Jill MR, Rajagopalan R, Bayram Y, Dulik MC, Germiller J, Conlin LK, Krantz ID, Luo M. Comprehensive Gene Panel Testing for Hearing Loss in Children: Understanding Factors Influencing Diagnostic Yield. J Pediatr 2023; 262:113620. [PMID: 37473993 DOI: 10.1016/j.jpeds.2023.113620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/17/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE To evaluate factors influencing the diagnostic yield of comprehensive gene panel testing (CGPT) for hearing loss (HL) in children and to understand the characteristics of undiagnosed probands. STUDY DESIGN This was a retrospective cohort study of 474 probands with childhood-onset HL who underwent CGPT between 2016 and 2020 at a single center. Main outcomes and measures included the association between clinical variables and diagnostic yield and the genetic and clinical characteristics of undiagnosed probands. RESULTS The overall diagnostic yield was 44% (209/474) with causative variants involving 41 genes. While the diagnostic yield was high in the probands with congenital, bilateral, and severe HL, it was low in those with unilateral, noncongenital, or mild HL; cochlear nerve deficiency; preterm birth; neonatal intensive care unit admittance; certain ancestry; and developmental delay. Follow-up studies on 49 probands with initially inconclusive CGPT results changed the diagnostic status to likely positive or negative outcomes in 39 of them (80%). Reflex to exome sequencing on 128 undiagnosed probands by CGPT revealed diagnostic findings in 8 individuals, 5 of whom had developmental delays. The remaining 255 probands were undiagnosed, with 173 (173/255) having only a single variant in the gene(s) associated with autosomal recessive HL and 28% (48/173) having a matched phenotype. CONCLUSION CGPT efficiently identifies the genetic etiologies of HL in children. CGPT-undiagnosed probands may benefit from follow-up studies or expanded testing.
Collapse
Affiliation(s)
- Nobuko Yamamoto
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, PA; Division of Otolaryngology, Department of Surgical Specialties, National Center for Children's Health and Development, Tokyo, Japan; Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Jorune Balciuniene
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA; PerkinElmer Genomics, Pittsburgh, PA
| | - Tiffiney Hartman
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, PA
| | - Maria Alejandra Diaz-Miranda
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Emma Bedoukian
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, PA
| | - Batsal Devkota
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, PA
| | - Audrey Lawrence
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, PA
| | - Netta Golenberg
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Maha Patel
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Archana Tare
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Robert Chen
- Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Emma Schindler
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jiwon Choi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, PA
| | - Maninder Kaur
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sarah Charles
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jiani Chen
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Elizabeth A Fanning
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Elizabeth Dechene
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Kajia Cao
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Murrell R Jill
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Ramakrishnan Rajagopalan
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Yavuz Bayram
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Matthew C Dulik
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - John Germiller
- Division of Pediatric Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Otorhinolaryngology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Laura K Conlin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Ian D Krantz
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Roberts Individualized Medical Genetics Center (RIMGC), Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Minjie Luo
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
7
|
Perry J, Redfield S, Oza A, Rouse S, Stewart C, Khela H, Srinivasan T, Albano V, Shearer E, Kenna M. Exome Sequencing Expands the Genetic Diagnostic Spectrum for Pediatric Hearing Loss. Laryngoscope 2023; 133:2417-2424. [PMID: 36515421 DOI: 10.1002/lary.30507] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/29/2022] [Accepted: 11/07/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Genetic testing is the standard-of-care for diagnostic evaluation of bilateral, symmetric, sensorineural hearing loss (HL). We sought to determine the efficacy of a comprehensive genetic testing method, exome sequencing (ES), in a heterogeneous pediatric patient population with bilateral symmetric, bilateral asymmetric, and unilateral HL. METHODS Trio-based ES was performed for pediatric patients with confirmed HL including those with symmetric, asymmetric, and unilateral HL. RESULTS ES was completed for 218 probands. A genetic cause was identified for 31.2% of probands (n = 68). The diagnostic rate was 40.7% for bilateral HL, 23.1% for asymmetric HL, and 18.3% for unilateral HL, with syndromic diagnoses made in 20.8%, 33.3%, and 54.5% of cases in each group, respectively. Secondary or incidental findings were identified in 10 families (5.52%). CONCLUSION ES is an effective method for genetic diagnosis for HL including phenotypically diverse patients and allows the identification of secondary findings, discovery of deafness-causing genes, and the potential for efficient data re-analysis. LEVEL OF EVIDENCE 4 Laryngoscope, 133:2417-2424, 2023.
Collapse
Affiliation(s)
- Julia Perry
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Shelby Redfield
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Andrea Oza
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
- Clinical Genomics, Invitae, San Francisco, California, USA
| | - Stephanie Rouse
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Candace Stewart
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Harmon Khela
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tarika Srinivasan
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Victoria Albano
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Eliot Shearer
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Margaret Kenna
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Peters CW, Hanlon KS, Ivanchenko MV, Zinn E, Linarte EF, Li Y, Levy JM, Liu DR, Kleinstiver BP, Indzhykulian AA, Corey DP. Rescue of hearing by adenine base editing in a humanized mouse model of Usher syndrome type 1F. Mol Ther 2023; 31:2439-2453. [PMID: 37312453 PMCID: PMC10421997 DOI: 10.1016/j.ymthe.2023.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/03/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
Usher syndrome type 1F (USH1F), characterized by congenital lack of hearing and balance and progressive loss of vision, is caused by mutations in the PCDH15 gene. In the Ashkenazi population, a recessive truncation mutation accounts for a large proportion of USH1F cases. The truncation is caused by a single C→T mutation, which converts an arginine codon to a stop (R245X). To test the potential for base editors to revert this mutation, we developed a humanized Pcdh15R245X mouse model for USH1F. Mice homozygous for the R245X mutation were deaf and exhibited profound balance deficits, while heterozygous mice were unaffected. Here we show that an adenine base editor (ABE) is capable of reversing the R245X mutation to restore the PCDH15 sequence and function. We packaged a split-intein ABE into dual adeno-associated virus (AAV) vectors and delivered them into cochleas of neonatal USH1F mice. Hearing was not restored in a Pcdh15 constitutive null mouse despite base editing, perhaps because of early disorganization of cochlear hair cells. However, injection of vectors encoding the split ABE into a late-deletion conditional Pcdh15 knockout rescued hearing. This study demonstrates the ability of an ABE to correct the PCDH15 R245X mutation in the cochlea and restore hearing.
Collapse
Affiliation(s)
- Cole W Peters
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Killian S Hanlon
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Eric Zinn
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | | | - Yaqiao Li
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan M Levy
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Artur A Indzhykulian
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Tollefson MR, Gogal RA, Weaver AM, Schaefer AM, Marini RJ, Azaiez H, Kolbe DL, Wang D, Weaver AE, Casavant TL, Braun TA, Smith RJH, Schnieders MJ. Assessing variants of uncertain significance implicated in hearing loss using a comprehensive deafness proteome. Hum Genet 2023; 142:819-834. [PMID: 37086329 PMCID: PMC10182131 DOI: 10.1007/s00439-023-02559-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Hearing loss is the leading sensory deficit, affecting ~ 5% of the population. It exhibits remarkable heterogeneity across 223 genes with 6328 pathogenic missense variants, making deafness-specific expertise a prerequisite for ascribing phenotypic consequences to genetic variants. Deafness-implicated variants are curated in the Deafness Variation Database (DVD) after classification by a genetic hearing loss expert panel and thorough informatics pipeline. However, seventy percent of the 128,167 missense variants in the DVD are "variants of uncertain significance" (VUS) due to insufficient evidence for classification. Here, we use the deep learning protein prediction algorithm, AlphaFold2, to curate structures for all DVD genes. We refine these structures with global optimization and the AMOEBA force field and use DDGun3D to predict folding free energy differences (∆∆GFold) for all DVD missense variants. We find that 5772 VUSs have a large, destabilizing ∆∆GFold that is consistent with pathogenic variants. When also filtered for CADD scores (> 25.7), we determine 3456 VUSs are likely pathogenic at a probability of 99.0%. Of the 224 genes in the DVD, 166 genes (74%) exhibit one or more missense variants predicted to cause a pathogenic change in protein folding stability. The VUSs prioritized here affect 119 patients (~ 3% of cases) sequenced by the OtoSCOPE targeted panel. Approximately half of these patients previously received an inconclusive report, and reclassification of these VUSs as pathogenic provides a new genetic diagnosis for six patients.
Collapse
Affiliation(s)
- Mallory R Tollefson
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Rose A Gogal
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - A Monique Weaver
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Amanda M Schaefer
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Robert J Marini
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Diana L Kolbe
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Donghong Wang
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Amy E Weaver
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Thomas L Casavant
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Terry A Braun
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA.
| | - Michael J Schnieders
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
10
|
Tollefson MR, Gogal RA, Weaver AM, Schaefer AM, Marini RJ, Azaiez H, Kolbe DL, Wang D, Weaver AE, Casavant TL, Braun TA, Smith RJH, Schnieders M. Assessing Variants of Uncertain Significance Implicated in Hearing Loss Using a Comprehensive Deafness Proteome. RESEARCH SQUARE 2023:rs.3.rs-2508462. [PMID: 36778238 PMCID: PMC9915777 DOI: 10.21203/rs.3.rs-2508462/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hearing loss is the leading sensory deficit, affecting ~ 5% of the population. It exhibits remarkable heterogeneity across 223 genes with 6,328 pathogenic missense variants, making deafness-specific expertise a prerequisite for ascribing phenotypic consequences to genetic variants. Deafness-implicated variants are curated in the Deafness Variation Database (DVD) after classification by a genetic hearing loss expert panel and thorough informatics pipeline. However, seventy percent of the 128,167 missense variants in the DVD are "variants of uncertain significance" (VUS) due to insufficient evidence for classification. Here, we use the deep learning protein prediction algorithm, AlphaFold2, to curate structures for all DVD genes. We refine these structures with global optimization and the AMOEBA force field and use DDGun3D to predict folding free energy differences (∆∆G Fold ) for all DVD missense variants. We find that 5,772 VUSs have a large, destabilizing ∆∆G Fold that is consistent with pathogenic variants. When also filtered for CADD scores (> 25.7), we determine 3,456 VUSs are likely pathogenic at a probability of 99.0%. These VUSs affect 119 patients (~ 3% of cases) sequenced by the OtoSCOPE targeted panel. Approximately half of these patients previously received an inconclusive report, and reclassification of these VUSs as pathogenic provides a new genetic diagnosis for six patients.
Collapse
|
11
|
Petrova N, Tebieva I, Kadyshev V, Getoeva Z, Balinova N, Marakhonov A, Vasilyeva T, Ginter E, Kutsev S, Zinchenko R. Hereditary etiology of non-syndromic sensorineural hearing loss in the Republic of North Ossetia-Alania. PeerJ 2023; 11:e14514. [PMID: 36743950 PMCID: PMC9893906 DOI: 10.7717/peerj.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/14/2022] [Indexed: 01/31/2023] Open
Abstract
More than 50% of congenital hearing loss is hereditary, in which the majority form is non-syndromic. In this study we estimate the most prevalent pathogenic genetic changes in an Ossetian cohort of patients. This is useful for local public health officials to promote genetic counseling of affected families with regard to high allele frequencies of prevalent pathogenic variants and assortative mating in the community of people with hearing loss. In this study, genetic heterogeneity of hereditary non-syndromic sensorineural hearing loss (NSNHL) in a cohort of 109 patients and an assessment of the frequency of two GJB2 gene pathogenic variants in a cohort of 349 healthy individuals from the populations of the Republic of North Ossetia-Alania (RNO-Alania) were assessed. The molecular genetic cause of NSNHL in the GJB2 gene in RNO-Alania was confirmed in ~30% of the cases, including ~27% in Ossetians. In Russian patients, the most frequent variant is GJB2:c.35delG (~83%). The GJB2:c.358_360delGAG variant was found to be the most frequent among Ossetians (~54%). Two genetic variants in GJB2, c.35delG and c.358_360delGAG, accounted for 91% of GJB2 pathogenic alleles in the Ossetian patients. A search for large genome rearrangements revealed etiological cause in two Ossetian patients, a deletion at the POU3F4 gene locus associated with X-linked hearing loss (type DFNX2). In another Ossetian patient, a biallelic pathogenic variant in the MYO15A gene caused hearing loss type DFNB3 was identified, and in one Russian family a heterozygous MYH14 gene variant associated with dominant NSNHL was found. Thus, the informative value of the diagnosis was ~37% among all patients with NSNHL from RNO-Alania and ~32% among the Ossetians. These estimates correspond to the literature data on the fraction of recessive genetic forms of hearing loss within the affected population. The importance of this study consists not only in the estimation of the most prevalent pathogenic genetic changes in the Ossetian cohort of patients which could be useful for the public health but also in the genetic counselling of the affected families with regard to the high allele frequencies of revealed pathogenic variants as well as to the assortative mating in community of people with hearing loss.
Collapse
Affiliation(s)
- Nika Petrova
- Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Inna Tebieva
- North Ossetian State Medical Academy of the Ministry of Health of the Russian Federation, Beslan, Russian Federation,Medical and Genetic Consultation of the Republican Children’s Clinical Hospital of the Republic of North Ossetia–Alania, Vladikavkaz, Russian Federation
| | - Vitaly Kadyshev
- Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Zalina Getoeva
- Pravoberezhnaya Central Clinical Hospital of the Ministry of Health of the Republic of North Ossetia–Alania, Vladikavkaz, Russian Federation
| | - Natalia Balinova
- Research Centre for Medical Genetics, Moscow, Russian Federation
| | | | | | - Evgeny Ginter
- Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Sergey Kutsev
- Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Rena Zinchenko
- Research Centre for Medical Genetics, Moscow, Russian Federation,N. A. Semashko National Research Institute of Public Health, Moscow, Russian Federation
| |
Collapse
|
12
|
Zhao J, Zhang S, Jiang Y, Liu Y, Wang J, Zhu Q. Mutation analysis of the WFS1 gene in a Chinese family with autosomal-dominant non-syndrome deafness. Sci Rep 2022; 12:22180. [PMID: 36564540 PMCID: PMC9789122 DOI: 10.1038/s41598-022-26850-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
To analyse the pathogenic genes and mutations of a family with hereditary deafness. We recruited a three-generation family with NSHL. A detailed medical history inquiry and related examinations were performed. Next-generation sequencing (NGS) was used to confirm the gene mutation in the proband, and Sanger sequencing was used for verification. The effect of the WFS1 mutation on the function and structure of the wolframin protein was predicted by multiple computational software. From the Gene Expression Omnibus (GEO) database, we obtained GSE40585 dataset and performed enrichment analyses. The family clinically manifested as autosomal dominant NSHL. A novel WFS1 c.2421C>G (p.Ser807Arg) mutation was identified in four affected individuals in the pedigree . The p.Ser807Arg mutation is a highly conserved residue and causes an increase in protein stability. It had an important influence on not only amino acid size, charge and hydrophobicity but also protein intermolecular hydrogen bonding and spatial structure. There were differentially expressed genes (DEGs) in GSE40585 dataset. Enrichment analysis revealed that DEGs mainly functioned in amino acid metabolism, signal transduction and dephosphorylation. We reported a novel mutation c.2421C>G (p.Ser807Arg in WFS1. This study expands the mutation spectrum of WFS1.
Collapse
Affiliation(s)
- Jing Zhao
- grid.452209.80000 0004 1799 0194Department of Otolaryngology, The Third Hospital of Hebei Medical University, Hebei, China
| | - Siqi Zhang
- grid.452702.60000 0004 1804 3009Department of Otolaryngology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Yuan Jiang
- grid.452702.60000 0004 1804 3009Department of Otolaryngology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Yan Liu
- grid.452702.60000 0004 1804 3009Department of Otolaryngology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Jiantao Wang
- grid.452702.60000 0004 1804 3009Department of Otolaryngology, The Second Hospital of Hebei Medical University, Hebei, China
| | - QingWen Zhu
- grid.452702.60000 0004 1804 3009Department of Otolaryngology, The Second Hospital of Hebei Medical University, Hebei, China
| |
Collapse
|
13
|
Corriols-Noval P, López Simón EC, Cadiñanos J, Diñeiro M, Capín R, González Aguado R, Costales Marcos M, Morales Angulo C, Cabanillas Farpón R. Clinical Impact of Genetic Diagnosis of Sensorineural Hearing Loss in Adults. Otol Neurotol 2022; 43:1125-1136. [PMID: 36190904 DOI: 10.1097/mao.0000000000003706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Adult genetic sensorineural hearing loss (SNHL) may be underestimated. BACKGROUND The diagnosis of genetic hearing loss is challenging, given its extreme genetic and phenotypic heterogeneity, particularly in adulthood. This study evaluated the utility of next-generation sequencing (NGS) in the etiological diagnosis of adult-onset SNHL. MATERIALS AND METHODS Adults (>16 yr old) with SNHL were recruited at the Otolaryngology Department at Marqués de Valdecilla University Hospital (Spain). Environmental factors, acoustic trauma, endolymphatic hydrops, and age-related hearing loss were excluding criteria. An NGS gene panel was used, including 196 genes (OTOgenics v3) or 229 genes (OTOgenics v4) related to syndromic and nonsyndromic hearing loss. RESULTS Sixty-five patients were included in the study (average age at the onset of SNHL, 41 yr). Fifteen pathogenic/likely pathogenic variants considered to be causative were found in 15 patients (23% diagnostic yield) in TECTA (4), KCNQ4 (3), GJB2 (2), ACTG1 (1), COL2A1 (1), COCH (1), COCH/COL2A1 (1), STRC (1), and ABHD12 (1). Three patients had syndromic associations (20% of patients with genetic diagnosis) that had not been previously diagnosed (two Stickler type I and one polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, cataract syndrome). Seven variants of unknown significance were found in COL11A1 (1), GSMDE (2), DNTM1 (1), SOX10 (1), EYA4 (1), and TECTA (1). CONCLUSION NGS gene panels can provide diagnostic yields greater than 20% for adult SNHL, with a significant proportion of variant of unknown significance that could potentially contribute to increasing diagnostic output. Identifying a genetic cause enables genetic counseling, provides prognostic information and can reveal unrecognized syndromes contributing to an accurate management of their associated manifestations.
Collapse
Affiliation(s)
- Patricia Corriols-Noval
- Department of Otolaryngology-Head and Neck Surgery, Marques de Valdecilla University Hospital, Santander, Spain
| | - Eugenia Carmela López Simón
- Department of Otolaryngology-Head and Neck Surgery, Marques de Valdecilla University Hospital, Santander, Spain
| | - Juan Cadiñanos
- Institute of Oncological and Molecular Medicine of Asturias
| | - Marta Diñeiro
- Institute of Oncological and Molecular Medicine of Asturias
| | - Raquel Capín
- Institute of Oncological and Molecular Medicine of Asturias
| | - Rocío González Aguado
- Department of Otolaryngology-Head and Neck Surgery, Marques de Valdecilla University Hospital, Santander, Spain
| | - María Costales Marcos
- Department of Otolaryngology-Head and Neck Surgery, Central University Hospital of Asturias, Asturias, Spain
| | - Carmelo Morales Angulo
- Department of Otolaryngology-Head and Neck Surgery, Marques de Valdecilla University Hospital, Santander, Spain
| | | |
Collapse
|
14
|
Silva VAR, Pauna HF, Lavinsky J, Hyppolito MA, Vianna MF, Leal M, Massuda ET, Hamerschmidt R, Bahmad F, Cal RV, Sampaio ALL, Felix F, Chone CT, Castilho AM. Task force Guideline of Brazilian Society of Otology ‒ hearing loss in children - Part I ‒ Evaluation. Braz J Otorhinolaryngol 2022; 89:159-189. [PMID: 36529647 PMCID: PMC9874360 DOI: 10.1016/j.bjorl.2022.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES To provide an overview of the main evidence-based recommendations for the diagnosis of hearing loss in children and adolescents aged 0 to 18 years. METHODS Task force members were educated on knowledge synthesis methods, including electronic database search, review and selection of relevant citations, and critical appraisal of selected studies. Articles written in English or Portuguese on childhood hearing loss were eligible for inclusion. The American College of Physicians' guideline grading system and the American Thyroid Association's guideline criteria were used for critical appraisal of evidence and recommendations for therapeutic interventions. RESULTS The evaluation and diagnosis of hearing loss: universal newborn hearing screening, laboratory testing, congenital infections (especially cytomegalovirus), genetic testing and main syndromes, radiologic imaging studies, vestibular assessment of children with hearing loss, auditory neuropathy spectrum disorder, autism spectrum disorder, and noise-induced hearing loss. CONCLUSIONS Every child with suspected hearing loss has the right to diagnosis and appropriate treatment if necessary. This task force considers 5 essential rights: (1) Otolaryngologist consultation; (2) Speech assessment and therapy; (3) Diagnostic tests; (4) Treatment; (5) Ophthalmologist consultation.
Collapse
Affiliation(s)
- Vagner Antonio Rodrigues Silva
- Universidade Estadual de Campinas (Unicamp), Faculdade de Ciências Médicas, Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Campinas, SP, Brazil.
| | - Henrique Furlan Pauna
- Hospital Universitário Cajuru, Departamento de Otorrinolaringologia, Curitiba, PR, Brazil
| | - Joel Lavinsky
- Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Cirurgia, Porto Alegre, RS, Brazil
| | - Miguel Angelo Hyppolito
- Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto, Departamento de Oftalmologia, Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Ribeirão Preto, SP, Brazil
| | - Melissa Ferreira Vianna
- Irmandade Santa Casa de Misericórdia de São Paulo, Departamento de Otorrinolaringologia, São Paulo, SP, Brazil
| | - Mariana Leal
- Universidade Federal de Pernambuco (UFPE), Departamento de Cirurgia, Recife, PE, Brazil
| | - Eduardo Tanaka Massuda
- Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto, Departamento de Oftalmologia, Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Ribeirão Preto, SP, Brazil
| | - Rogério Hamerschmidt
- Universidade Federal do Paraná (UFPR), Hospital de Clínicas, Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Curitiba, PR, Brazil
| | - Fayez Bahmad
- Universidade de Brasília (UnB), Programa de Pós-Graduação em Ciências da Saúde, Brasília, DF, Brazil; Instituto Brasiliense de Otorrinolaringologia (IBO), Brasília, DF, Brazil
| | - Renato Valério Cal
- Centro Universitário do Estado do Pará (CESUPA), Departamento de Otorrinolaringologia, Belém, PA, Brazil
| | - André Luiz Lopes Sampaio
- Universidade de Brasília (UnB), Faculdade de Medicina, Laboratório de Ensino e Pesquisa em Otorrinolaringologia, Brasília, DF, Brazil
| | - Felippe Felix
- Universidade Federal do Rio de Janeiro (UFRJ), Hospital Universitário Clementino Fraga Filho (HUCFF), Departamento de Otorrinolaringologia, Rio de Janeiro, RJ, Brazil
| | - Carlos Takahiro Chone
- Universidade Estadual de Campinas (Unicamp), Faculdade de Ciências Médicas, Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Campinas, SP, Brazil
| | - Arthur Menino Castilho
- Universidade Estadual de Campinas (Unicamp), Faculdade de Ciências Médicas, Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Campinas, SP, Brazil
| |
Collapse
|
15
|
Chiereghin C, Robusto M, Massa V, Castorina P, Ambrosetti U, Asselta R, Soldà G. Role of Cytoskeletal Diaphanous-Related Formins in Hearing Loss. Cells 2022; 11:cells11111726. [PMID: 35681420 PMCID: PMC9179844 DOI: 10.3390/cells11111726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Hearing relies on the proper functioning of auditory hair cells and on actin-based cytoskeletal structures. Diaphanous-related formins (DRFs) are evolutionarily conserved cytoskeletal proteins that regulate the nucleation of linear unbranched actin filaments. They play key roles during metazoan development, and they seem particularly pivotal for the correct physiology of the reproductive and auditory systems. Indeed, in Drosophila melanogaster, a single diaphanous (dia) gene is present, and mutants show sterility and impaired response to sound. Vertebrates, instead, have three orthologs of the diaphanous gene: DIAPH1, DIAPH2, and DIAPH3. In humans, defects in DIAPH1 and DIAPH3 have been associated with different types of hearing loss. In particular, heterozygous mutations in DIAPH1 are responsible for autosomal dominant deafness with or without thrombocytopenia (DFNA1, MIM #124900), whereas regulatory mutations inducing the overexpression of DIAPH3 cause autosomal dominant auditory neuropathy 1 (AUNA1, MIM #609129). Here, we provide an overview of the expression and function of DRFs in normal hearing and deafness.
Collapse
Affiliation(s)
- Chiara Chiereghin
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (C.C.); (R.A.)
| | - Michela Robusto
- Experimental Therapeutics Program, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy;
| | - Valentina Massa
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Via Di Rudinì 8, 20146 Milan, Italy;
| | | | - Umberto Ambrosetti
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano and Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, UO Audiologia, Via F. Sforza 35, 20122 Milan, Italy;
| | - Rosanna Asselta
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (C.C.); (R.A.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Italy
| | - Giulia Soldà
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (C.C.); (R.A.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Italy
- Correspondence:
| |
Collapse
|
16
|
Seligman KL, Shearer AE, Frees K, Nishimura C, Kolbe D, Dunn C, Hansen MR, Gantz BJ, Smith RJH. Genetic Causes of Hearing Loss in a Large Cohort of Cochlear Implant Recipients. Otolaryngol Head Neck Surg 2022; 166:734-737. [PMID: 34154485 PMCID: PMC9128025 DOI: 10.1177/01945998211021308] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022]
Abstract
Understanding genetic causes of hearing loss can determine the pattern and course of a patient's hearing loss and may also predict outcomes after cochlear implantation. Our goal in this study was to evaluate genetic causes of hearing loss in a large cohort of adults and children with cochlear implants. We performed comprehensive genetic testing on all patients undergoing cochlear implantation. Of the 459 patients included in the study, 128 (28%) had positive genetic testing. In total, 44 genes were identified as causative. The top 5 genes implicated were GJB2 (20, 16%), TMPRSS3 (13, 10%), SLC26A4 (10, 8%), MYO7A (9, 7%), and MT-RNR1 (7, 5%). Pediatric patients had a higher diagnostic rate. This study lays the groundwork for future studies evaluating the relationship between genetic variation and cochlear implant performance.
Collapse
Affiliation(s)
- Kristen L. Seligman
- Department of Otolaryngology–Head & Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - A. Eliot Shearer
- Department of Otolaryngology–Head & Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Boston Children’s Hospital, Department of Otolaryngology & Communication Enhancement, Harvard Medical School, Boston, Massachusetts, USA
| | - Kathy Frees
- Department of Otolaryngology–Head & Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Carla Nishimura
- Department of Otolaryngology–Head & Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Diana Kolbe
- Department of Otolaryngology–Head & Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Camille Dunn
- Department of Otolaryngology–Head & Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Marlan R. Hansen
- Department of Otolaryngology–Head & Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Bruce J. Gantz
- Department of Otolaryngology–Head & Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Richard J. H. Smith
- Department of Otolaryngology–Head & Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Interdepartmental PhD Program in Genetics, University of Iowa, Iowa City, Iowa, USA
- Department of Molecular Physiology & Biophysics, University of Iowa College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
17
|
Hiramatsu K, Nishio SY, Kitajiri SI, Kitano T, Moteki H, Usami SI. Prevalence and Clinical Characteristics of Hearing Loss Caused by MYH14 Variants. Genes (Basel) 2021; 12:genes12101623. [PMID: 34681017 PMCID: PMC8535940 DOI: 10.3390/genes12101623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/01/2022] Open
Abstract
Variants in MYH14 are reported to cause autosomal dominant nonsyndromic hereditary hearing loss (ADNSHL), with 34 variants reported to cause hearing loss in various ethnic groups. However, the available information on prevalence, as well as with regard to clinical features, remains fragmentary. In this study, genetic screening for MYH14 variants was carried out using a large series of Japanese hearing-loss patients to reveal more detailed information. Massively parallel DNA sequencing of 68 target candidate genes was applied in 8074 unrelated Japanese hearing-loss patients (including 1336 with ADNSHL) to identify genomic variations responsible for hearing loss. We identified 11 families with 10 variants. The prevalence was found to be 0.14% (11/8074) among all hearing-loss patients and 0.82% (11/1336) among ADNSHL patients. Nine of the eleven variants identified were novel. The patients typically showed late-onset hearing loss arising later than 20 years of age (64.3%, 9/14) along with progressive (92.3%, 12/13), moderate (62.5%, 10/16), and flat-type hearing loss (68.8%, 11/16). We also confirmed progressive hearing loss in serial audiograms. The clinical information revealed by the present study will contribute to further diagnosis and management of MYH14-associated hearing loss.
Collapse
Affiliation(s)
- Ken Hiramatsu
- Department of Otorhinolaryngology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (K.H.); (S.-y.N.); (S.-i.K.); (T.K.); (H.M.)
| | - Shin-ya Nishio
- Department of Otorhinolaryngology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (K.H.); (S.-y.N.); (S.-i.K.); (T.K.); (H.M.)
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Shin-ichiro Kitajiri
- Department of Otorhinolaryngology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (K.H.); (S.-y.N.); (S.-i.K.); (T.K.); (H.M.)
| | - Tomohiro Kitano
- Department of Otorhinolaryngology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (K.H.); (S.-y.N.); (S.-i.K.); (T.K.); (H.M.)
| | - Hideaki Moteki
- Department of Otorhinolaryngology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (K.H.); (S.-y.N.); (S.-i.K.); (T.K.); (H.M.)
| | - Shin-ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (K.H.); (S.-y.N.); (S.-i.K.); (T.K.); (H.M.)
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
- Correspondence: ; Tel.: +81-263-3802
| | | |
Collapse
|
18
|
Han S, Zhang D, Guo Y, Fu Z, Guan G. Prevalence and Characteristics of STRC Gene Mutations (DFNB16): A Systematic Review and Meta-Analysis. Front Genet 2021; 12:707845. [PMID: 34621290 PMCID: PMC8491653 DOI: 10.3389/fgene.2021.707845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Mutations in the STRC (MIM 606440) gene, inducing DFNB16, are considered a major cause of mild–moderate autosomal recessive non-syndromic hearing loss (ARNSHL). We conducted a systematic review and meta-analysis to determine the global prevalence and characteristics of STRC variations, important information required for genetic counseling. Methods: PubMed, Google Scholar, Medline, Embase, and Web of Science were searched for relevant articles published before January 2021. Results: The pooled prevalence of DFNB16 in GJB2-negative patients with hearing loss was 4.08% (95% CI: 0.0289–0.0573), and the proportion of STRC variants in the mild–moderate hearing loss group was 14.36%. Monoallelic mutations of STRC were 4.84% (95% CI: 0.0343–0.0680) in patients with deafness (non-GJB2) and 1.36% (95% CI: 0.0025–0.0696) in people with normal hearing. The DFNB16 prevalence in genetically confirmed patients (non-GJB2) was 11.10% (95% CI: 0.0716–0.1682). Overall pooled prevalence of deafness–infertility syndrome (DIS) was 36.75% (95% CI: 0.2122–0.5563) in DFNB16. The prevalence of biallelic deletions in STRC gene mutations was 70.85% (95% CI: 0.5824–0.8213). Conclusion: Variants in the STRC gene significantly contribute to mild–moderate hearing impairment. Moreover, biallelic deletions are a main feature of STRC mutations. Copy number variations associated with infertility should be seriously considered when investigating DFNB16.
Collapse
Affiliation(s)
- Shuang Han
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dejun Zhang
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yingyuan Guo
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Zeming Fu
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Guofang Guan
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Abstract
Almost 25 years have passed since a mutation of a formin gene, DIAPH1, was identified as being responsible for a human inherited disorder: a form of sensorineural hearing loss. Since then, our knowledge of the links between formins and disease has deepened considerably. Mutations of DIAPH1 and six other formin genes (DAAM2, DIAPH2, DIAPH3, FMN2, INF2 and FHOD3) have been identified as the genetic cause of a variety of inherited human disorders, including intellectual disability, renal disease, peripheral neuropathy, thrombocytopenia, primary ovarian insufficiency, hearing loss and cardiomyopathy. In addition, alterations in formin genes have been associated with a variety of pathological conditions, including developmental defects affecting the heart, nervous system and kidney, aging-related diseases, and cancer. This review summarizes the most recent discoveries about the involvement of formin alterations in monogenic disorders and other human pathological conditions, especially cancer, with which they have been associated. In vitro results and experiments in modified animal models are discussed. Finally, we outline the directions for future research in this field.
Collapse
Affiliation(s)
| | - Miguel A. Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
20
|
Núñez-Batalla F, Jáudenes-Casaubón C, Sequí-Canet JM, Vivanco-Allende A, Zubicaray-Ugarteche J, Olleta Lascarro I. New-born Hearing Screening Programmes in 2020: CODEPEH Recommendations. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2021; 72:312-323. [PMID: 34535222 DOI: 10.1016/j.otoeng.2020.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 10/20/2022]
Abstract
Programmes for early detection of congenital hearing loss have been successfully implemented mainly in developed countries, after overcoming some conceptual errors argued against their implementation and some criticism of their efficacy. However, some difficulties and weaknesses are still identified in these programmes: the detection of late-onset hearing loss and the percentage of children who did not pass the screening and did not complete the process of diagnosis and treatment, these being cases that are lost in the process. The purpose of this Document is to analyse these problems to determine areas for improvement and to emphasize one of the basic principles for the success of the programmes: continuous training for the interdisciplinary team. The result of the review process carried out by CODEPEH has been drafted as Recommendations for updating the Programmes with the evidence of the last decade, including advances in screening technology, the impact of the present knowledge on congenital infection by cytomegalovirus, genetic hearing loss research and control systems of lost to follow-up cases, treatment and follow up.
Collapse
|
21
|
Núñez-Batalla F, Jáudenes-Casaubón C, Sequí-Canet JM, Vivanco-Allende A, Zubicaray-Ugarteche J, Olleta Lascarro I. Programas de cribado de la hipoacusia congénita en 2020: recomendaciones CODEPEH. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2021. [DOI: 10.1016/j.otorri.2020.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Frohne A, Koenighofer M, Liu DT, Laccone F, Neesen J, Gstoettner W, Schoefer C, Lucas T, Frei K, Parzefall T. High Prevalence of MYO6 Variants in an Austrian Patient Cohort With Autosomal Dominant Hereditary Hearing Loss. Otol Neurotol 2021; 42:e648-e657. [PMID: 33710140 DOI: 10.1097/mao.0000000000003076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Genetic hearing loss (HL) is often monogenic. Whereas more than half of autosomal recessive (AR) cases in Austria are caused by mutations in a single gene, no disproportionately frequent contributing genetic factor has been identified in cases of autosomal dominant (AD) HL. The genetic characterization of HL continues to improve diagnosis, genetic counseling, and lays a foundation for the development of personalized medicine approaches. METHODS Diagnostic HL panel screening was performed in an Austrian multiplex family with AD HL, and segregation was tested with polymerase chain reaction and Sanger sequencing. In an independent approach, 18 unrelated patients with AD HL were screened for causative variants in all known HL genes to date and segregation was tested if additional family members were available. The pathogenicity of novel variants was assessed based on previous literature and bioinformatic tools such as prediction software and protein modeling. RESULTS In six of the 19 families under study, candidate pathogenic variants were identified in MYO6, including three novel variants (p.Gln441Pro, p.Ser612Tyr, and p.Gln650ValfsTer7). Some patients carried more than one likely pathogenic variant in known deafness genes. CONCLUSION These results suggest a potential high prevalence of MYO6 variants in Austrian cases of AD HL. The presence of multiple rare HL variants in some patients highlights the relevance of considering multiple-hit diagnoses for genetic counseling and targeted therapy design.
Collapse
Affiliation(s)
- Alexandra Frohne
- Department of Otorhinolaryngology, Head and Neck Surgery
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology
| | | | | | - Franco Laccone
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Juergen Neesen
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | | | - Christian Schoefer
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology
| | - Trevor Lucas
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology
| | - Klemens Frei
- Department of Otorhinolaryngology, Head and Neck Surgery
| | | |
Collapse
|
23
|
Askew C, Chien WW. Adeno-associated virus gene replacement for recessive inner ear dysfunction: Progress and challenges. Hear Res 2020; 394:107947. [PMID: 32247629 PMCID: PMC7939749 DOI: 10.1016/j.heares.2020.107947] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/08/2023]
Abstract
Approximately 3 in 1000 children in the US under 4 years of age are affected by hearing loss. Currently, cochlear implants represent the only line of treatment for patients with severe to profound hearing loss, and there are no targeted drug or biological based therapies available. Gene replacement is a promising therapeutic approach for hereditary hearing loss, where viral vectors are used to deliver functional cDNA to "replace" defective genes in dysfunctional cells in the inner ear. Proof-of-concept studies have successfully used this approach to improve auditory function in mouse models of hereditary hearing loss, and human clinical trials are on the immediate horizon. The success of this method is ultimately determined by the underlying biology of the defective gene and design of the treatment strategy, relying on intervention before degeneration of the sensory structures occurs. A challenge will be the delivery of a corrective gene to the proper target within the therapeutic window of opportunity, which may be unique for each specific defective gene. Although rescue of pre-lingual forms of recessive deafness have been explored in animal models thus far, future identification of genes with post-lingual onset that are amenable to gene replacement holds even greater promise for treatment, since the therapeutic window is likely open for a much longer period of time. This review summarizes the current state of adeno-associated virus (AAV) gene replacement therapy for recessive hereditary hearing loss and discusses potential challenges and opportunities for translating inner ear gene replacement therapy for patients with hereditary hearing loss.
Collapse
Affiliation(s)
- Charles Askew
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wade W Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
24
|
Jimenez JE, Nourbakhsh A, Colbert B, Mittal R, Yan D, Green CL, Nisenbaum E, Liu G, Bencie N, Rudman J, Blanton SH, Zhong Liu X. Diagnostic and therapeutic applications of genomic medicine in progressive, late-onset, nonsyndromic sensorineural hearing loss. Gene 2020; 747:144677. [PMID: 32304785 PMCID: PMC7244213 DOI: 10.1016/j.gene.2020.144677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
The progressive, late-onset, nonsyndromic, sensorineural hearing loss (PNSHL) is the most common cause of sensory impairment globally, with presbycusis affecting greater than a third of individuals over the age of 65. The etiology underlying PNSHL include presbycusis, noise-induced hearing loss, drug ototoxicity, and delayed-onset autosomal dominant hearing loss (AD PNSHL). The objective of this article is to discuss the potential diagnostic and therapeutic applications of genomic medicine in PNSHL. Genomic factors contribute greatly to PNSHL. The heritability of presbycusis ranges from 25 to 75%. Current therapies for PNSHL range from sound amplification to cochlear implantation (CI). PNSHL is an excellent candidate for genomic medicine approaches as it is common, has well-described pathophysiology, has a wide time window for treatment, and is amenable to local gene therapy by currently utilized procedural approaches. AD PNSHL is especially suited to genomic medicine approaches that can disrupt the expression of an aberrant protein product. Gene therapy is emerging as a potential therapeutic strategy for the treatment of PNSHL. Viral gene delivery approaches have demonstrated promising results in human clinical trials for two inherited causes of blindness and are being used for PNSHL in animal models and a human trial. Non-viral gene therapy approaches are useful in situations where a transient biologic effect is needed or for delivery of genome editing reagents (such as CRISPR/Cas9) into the inner ear. Many gene therapy modalities that have proven efficacious in animal trials have potential to delay or prevent PNSHL in humans. The development of new treatment modalities for PNSHL will lead to improved quality of life of many affected individuals and their families.
Collapse
Affiliation(s)
- Joaquin E Jimenez
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aida Nourbakhsh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Brett Colbert
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Human Genetics and John P. Hussman Institute of Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carlos L Green
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eric Nisenbaum
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - George Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nicole Bencie
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jason Rudman
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Susan H Blanton
- Department of Human Genetics and John P. Hussman Institute of Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Human Genetics and John P. Hussman Institute of Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
25
|
Abstract
OBJECTIVE To describe the genetic and phenotypic spectrum of Usher syndrome after 6 years of studies by next-generation sequencing, and propose an up-to-date classification of Usher genes in patients with both visual and hearing impairments suggesting Usher syndrome, and in patients with seemingly isolated deafness. STUDY DESIGN The systematic review and meta-analysis protocol was based on Cochrane and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We performed 1) a meta-analysis of data from 11 next-generation sequencing studies in 684 patients with Usher syndrome; 2) a meta-analysis of data from 21 next-generation studies in 2,476 patients with seemingly isolated deafness, to assess the involvement of Usher genes in seemingly nonsyndromic hearing loss, and thus the proportion of patients at high risk of subsequent retinitis pigmentosa (RP); 3) a statistical analysis of differences between parts 1) and 2). RESULTS In patients with both visual and hearing impairments, the biallelic disease-causing mutation rate was assessed for each Usher gene to propose a classification by frequency: USH2A: 50% (341/684) of patients, MYO7A: 21% (144/684), CDH23: 6% (39/684), ADGRV1: 5% (35/684), PCDH15: 3% (21/684), USH1C: 2% (17/684), CLRN1: 2% (14/684), USH1G: 1% (9/684), WHRN: 0.4% (3/684), PDZD7 0.1% (1/684), CIB2 (0/684). In patients with seemingly isolated sensorineural deafness, 7.5% had disease-causing mutations in Usher genes, and are therefore at high risk of developing RP. These new findings provide evidence that usherome dysfunction is the second cause of genetic sensorineural hearing loss after connexin dysfunction. CONCLUSION These results promote generalization of early molecular screening for Usher syndrome in deaf children.
Collapse
|
26
|
|
27
|
Comprehensive genetic testing of Chinese SNHL patients and variants interpretation using ACMG guidelines and ethnically matched normal controls. Eur J Hum Genet 2019; 28:231-243. [PMID: 31541171 PMCID: PMC6974605 DOI: 10.1038/s41431-019-0510-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 05/10/2019] [Accepted: 08/29/2019] [Indexed: 11/10/2022] Open
Abstract
Hereditary hearing loss is a monogenic disease with high genetic heterogeneity. Variants in more than 100 deafness genes underlie the basis of its pathogenesis. The aim of this study was to assess the ratio of SNVs in known deafness genes contributing to the etiology of both sporadic and familial sensorineural hearing loss patients from China. DNA samples from 1127 individuals, including normal hearing controls (n = 616), sporadic SNHL patients (n = 433), and deaf individuals (n = 78) from 30 hearing loss pedigrees were collected. The NGS tests included analysis of sequence alterations in 129 genes. The variants were interpreted according to the ACMG/AMP guidelines for genetic hearing loss combined with NGS data from 616 ethnically matched normal hearing adult controls. We identified a positive molecular diagnosis in 226 patients with sporadic SNHL (52.19%) and in patients from 17 deafness pedigrees (56.67%). Ethnically matched MAF filtering reduced the variants of unknown significance by 8.7%, from 6216 to 5675. Some complexities that may restrict causative variant identification are discussed. This report highlight the clinical utility of NGS panels identifying disease-causing variants for the diagnosis of hearing loss and underlines the importance of a broad data of control and ACMG/AMP standards for accurate clinical delineation of VUS variants.
Collapse
|
28
|
Abstract
Over 450 million people worldwide suffer from hearing loss, leading to an estimated economic burden of ∼$750 billion. The past decade has seen significant advances in the understanding of the molecular mechanisms that contribute to hearing, and the environmental and genetic factors that can go awry and lead to hearing loss. This in turn has sparked enormous interest in developing gene therapy approaches to treat this disorder. This review documents the most recent advances in cochlear gene therapy to restore hearing loss, and will cover viral vectors and construct designs, potential routes of delivery into the inner ear, and, lastly, the most promising genes of interest.
Collapse
Affiliation(s)
- Lawrence Lustig
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York Presbyterian Hospital, New York, New York 10032
| | - Omar Akil
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California 94117
| |
Collapse
|
29
|
Tollefson MR, Litman JM, Qi G, O'Connell CE, Wipfler MJ, Marini RJ, Bernabe HV, Tollefson WTA, Braun TA, Casavant TL, Smith RJH, Schnieders MJ. Structural Insights into Hearing Loss Genetics from Polarizable Protein Repacking. Biophys J 2019; 117:602-612. [PMID: 31327459 DOI: 10.1016/j.bpj.2019.06.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/10/2019] [Accepted: 06/25/2019] [Indexed: 12/21/2022] Open
Abstract
Hearing loss is associated with ∼8100 mutations in 152 genes, and within the coding regions of these genes are over 60,000 missense variants. The majority of these variants are classified as "variants of uncertain significance" to reflect our inability to ascribe a phenotypic effect to the observed amino acid change. A promising source of pathogenicity information is biophysical simulation, although input protein structures often contain defects because of limitations in experimental data and/or only distant homology to a template. Here, we combine the polarizable atomic multipole optimized energetics for biomolecular applications force field, many-body optimization theory, and graphical processing unit acceleration to repack all deafness-associated proteins and thereby improve average structure MolProbity score from 2.2 to 1.0. We then used these optimized wild-type models to create over 60,000 structures for missense variants in the Deafness Variation Database, which are being incorporated into the Deafness Variation Database to inform deafness pathogenicity prediction. Finally, this work demonstrates that advanced polarizable atomic multipole force fields are efficient enough to repack the entire human proteome.
Collapse
Affiliation(s)
- Mallory R Tollefson
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa; Molecular Otolaryngology & Renal Research Laboratories, Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Jacob M Litman
- Department of Biochemistry, University of Iowa, Iowa City, Iowa
| | - Guowei Qi
- Department of Biochemistry, University of Iowa, Iowa City, Iowa
| | - Claire E O'Connell
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - Matthew J Wipfler
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - Robert J Marini
- Molecular Otolaryngology & Renal Research Laboratories, Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Hernan V Bernabe
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa; Molecular Otolaryngology & Renal Research Laboratories, Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | | | - Terry A Braun
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - Thomas L Casavant
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - Richard J H Smith
- Molecular Otolaryngology & Renal Research Laboratories, Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa.
| | - Michael J Schnieders
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa; Department of Biochemistry, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
30
|
Hereditary hearing loss; about the known and the unknown. Hear Res 2019; 376:58-68. [PMID: 30665849 DOI: 10.1016/j.heares.2019.01.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/11/2018] [Accepted: 01/07/2019] [Indexed: 01/01/2023]
Abstract
Hereditary hearing loss is both clinically and genetically very heterogeneous. Despite the large number of genes that have been associated with the condition, many cases remain unexplained. Novel gene associations with hearing loss are to be expected but also are defects of regulatory regions of the genome which are currently not routinely addressed in molecular genetic testing and research. Inheritance patterns other than monogenic might be more common than assumed in isolated cases and diagnoses might have been missed because of misinterpretation of identified DNA variants. This review summarizes current insights in the genetics of hearing loss, the next steps that are being taken in research, and their challenges. Furthermore, genotype-phenotype correlations and modifying factors are discussed as these are instrumental in counselling hearing impaired individuals and/or their family members.
Collapse
|
31
|
Richard EM, Santos-Cortez RLP, Faridi R, Rehman AU, Lee K, Shahzad M, Acharya A, Khan AA, Imtiaz A, Chakchouk I, Takla C, Abbe I, Rafeeq M, Liaqat K, Chaudhry T, Bamshad MJ, Schrauwen I, Khan SN, Morell RJ, Zafar S, Ansar M, Ahmed ZM, Ahmad W, Riazuddin S, Friedman TB, Leal SM, Riazuddin S. Global genetic insight contributed by consanguineous Pakistani families segregating hearing loss. Hum Mutat 2019; 40:53-72. [PMID: 30303587 PMCID: PMC6296877 DOI: 10.1002/humu.23666] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 12/14/2022]
Abstract
Consanguineous Pakistani pedigrees segregating deafness have contributed decisively to the discovery of 31 of the 68 genes associated with nonsyndromic autosomal recessive hearing loss (HL) worldwide. In this study, we utilized genome-wide genotyping, Sanger and exome sequencing to identify 163 DNA variants in 41 previously reported HL genes segregating in 321 Pakistani families. Of these, 70 (42.9%) variants identified in 29 genes are novel. As expected from genetic studies of disorders segregating in consanguineous families, the majority of affected individuals (94.4%) are homozygous for HL-associated variants, with the other variants being compound heterozygotes. The five most common HL genes in the Pakistani population are SLC26A4, MYO7A, GJB2, CIB2 and HGF, respectively. Our study provides a profile of the genetic etiology of HL in Pakistani families, which will allow for the development of more efficient genetic diagnostic tools, aid in accurate genetic counseling, and guide application of future gene-based therapies. These findings are also valuable in interpreting pathogenicity of variants that are potentially associated with HL in individuals of all ancestries. The Pakistani population, and its infrastructure for studying human genetics, will continue to be valuable to gene discovery for HL and other inherited disorders.
Collapse
Affiliation(s)
- Elodie M. Richard
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Regie LP. Santos-Cortez
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Atteeq U. Rehman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kwanghyuk Lee
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mohsin Shahzad
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
- Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, 44000, Pakistan
| | - Anushree Acharya
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Asma A. Khan
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Ayesha Imtiaz
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Imen Chakchouk
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christina Takla
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Izoduwa Abbe
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Maria Rafeeq
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Khurram Liaqat
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Taimur Chaudhry
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael J. Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Isabelle Schrauwen
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shaheen N. Khan
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Robert J. Morell
- The Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892
| | - Saba Zafar
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, 59300, Pakistan
| | - Muhammad Ansar
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zubair M. Ahmed
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Wasim Ahmad
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sheik Riazuddin
- Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, 44000, Pakistan
- Allama Iqbal Medical College, University of Health Sciences, Lahore, 54500, Pakistan
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Suzanne M. Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Saima Riazuddin
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
- Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, 44000, Pakistan
| |
Collapse
|
32
|
Soares de Lima Y, Chiabai M, Shen J, Córdoba MS, Versiani BR, Benício ROA, Pogue R, Mingroni-Netto RC, Lezirovitz K, Pic-Taylor A, Mazzeu JF, Oliveira SF. Syndromic hearing loss molecular diagnosis: Application of massive parallel sequencing. Hear Res 2018; 370:181-188. [PMID: 30390570 DOI: 10.1016/j.heares.2018.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/19/2018] [Accepted: 10/14/2018] [Indexed: 12/17/2022]
Abstract
Syndromic hearing loss accounts for approximately 30% of all cases of hearing loss due to genetic causes. Mutation screening in known genes is important because it potentially sheds light on the genetic etiology of hearing loss and helps in genetic counseling of families. In this study, we describe a customized Ion AmpliSeq Panel, specifically designed for the investigation of syndromic hearing loss. The Ion AmpliSeq Panel was customized to cover the coding sequences of 52 genes. Twenty-four patients were recruited: 17 patients with a clinical diagnosis of a known syndrome, and seven whose clinical signs did not allow identification of a syndrome. Of 24 patients sequenced, potentially causative mutations were found in nine, all of which belonged to the group with a previous clinical diagnostic and none in the group not clinically diagnosed. We were able to provide conclusive molecular diagnosis to six patients, constituting a diagnostic rate of 25% (6/24). In the group of patients with a suspected clinical diagnosis, the diagnostic rate was 35% (6/17). Of the nine different mutations identified, three are novel, and were found in patients with Waardenburg, Treacher Collins and CHARGE syndromes. Since all patients with a conclusive molecular diagnosis through this panel had a previous suspected clinical diagnosis, our results suggest that this panel was more effective in diagnosing this group of patients. Therefore, the panel demonstrated effectiveness in molecular diagnosis when compared to others in the literature, especially for patients with a defined clinical diagnosis.
Collapse
Affiliation(s)
- Yasmin Soares de Lima
- Departamento de Genética e Morfologia, Universidade de Brasília, Brasília, Brazil; Programa de Pós-graduação em Biologia Animal, Universidade de Brasília, Brasília, Brazil.
| | - Marcela Chiabai
- Graduate Program in Genomic Sciences and Biotechnology, Universidade Católica de Brasília, Brasília, Brazil.
| | - Jun Shen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Mara S Córdoba
- Hospital Universitário de Brasília, Universidade de Brasília, Brasília, Brazil.
| | - Beatriz R Versiani
- Hospital Universitário de Brasília, Universidade de Brasília, Brasília, Brazil.
| | | | - Robert Pogue
- Graduate Program in Genomic Sciences and Biotechnology, Universidade Católica de Brasília, Brasília, Brazil.
| | - Regina Célia Mingroni-Netto
- Centro de Estudos do Genoma Humano, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| | - Karina Lezirovitz
- Laboratório de Otorrinolaringologia - LIM32, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil.
| | - Aline Pic-Taylor
- Departamento de Genética e Morfologia, Universidade de Brasília, Brasília, Brazil; Programa de Pós-graduação em Biologia Animal, Universidade de Brasília, Brasília, Brazil.
| | - Juliana F Mazzeu
- Hospital Universitário de Brasília, Universidade de Brasília, Brasília, Brazil; Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.
| | - Silviene F Oliveira
- Departamento de Genética e Morfologia, Universidade de Brasília, Brasília, Brazil; Programa de Pós-graduação em Biologia Animal, Universidade de Brasília, Brasília, Brazil.
| |
Collapse
|
33
|
In Vivo Electrocochleography in Hybrid Cochlear Implant Users Implicates TMPRSS3 in Spiral Ganglion Function. Sci Rep 2018; 8:14165. [PMID: 30242206 PMCID: PMC6154996 DOI: 10.1038/s41598-018-32630-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/10/2018] [Indexed: 11/16/2022] Open
Abstract
Cochlear implantation, a surgical method to bypass cochlear hair cells and directly stimulate the spiral ganglion, is the standard treatment for severe-to-profound hearing loss. Changes in cochlear implant electrode array design and surgical approach now allow for preservation of acoustic hearing in the implanted ear. Electrocochleography (ECochG) was performed in eight hearing preservation subjects to assess hair cell and neural function and elucidate underlying genetic hearing loss. Three subjects had pathogenic variants in TMPRSS3 and five had pathogenic variants in genes known to affect the cochlear sensory partition. The mechanism by which variants in TMPRSS3 cause genetic hearing loss is unknown. We used a 500-Hz tone burst to record ECochG responses from an intracochlear electrode. Responses consist of a cochlear microphonic (hair cell) and an auditory nerve neurophonic. Cochlear microphonics did not differ between groups. Auditory nerve neurophonics were smaller, on average, in subjects with TMPRSS3 deafness. Results of this proof-of-concept study provide evidence that pathogenic variants in TMPRSS3 may impact function of the spiral ganglion. While ECochG as a clinical and research tool has been around for decades, this study illustrates a new application of ECochG in the study of genetic hearing and deafness in vivo.
Collapse
|
34
|
Cabanillas R, Diñeiro M, Cifuentes GA, Castillo D, Pruneda PC, Álvarez R, Sánchez-Durán N, Capín R, Plasencia A, Viejo-Díaz M, García-González N, Hernando I, Llorente JL, Repáraz-Andrade A, Torreira-Banzas C, Rosell J, Govea N, Gómez-Martínez JR, Núñez-Batalla F, Garrote JA, Mazón-Gutiérrez Á, Costales M, Isidoro-García M, García-Berrocal B, Ordóñez GR, Cadiñanos J. Comprehensive genomic diagnosis of non-syndromic and syndromic hereditary hearing loss in Spanish patients. BMC Med Genomics 2018; 11:58. [PMID: 29986705 PMCID: PMC6038346 DOI: 10.1186/s12920-018-0375-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/14/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Sensorineural hearing loss (SNHL) is the most common sensory impairment. Comprehensive next-generation sequencing (NGS) has become the standard for the etiological diagnosis of early-onset SNHL. However, accurate selection of target genomic regions (gene panel/exome/genome), analytical performance and variant interpretation remain relevant difficulties for its clinical implementation. METHODS We developed a novel NGS panel with 199 genes associated with non-syndromic and/or syndromic SNHL. We evaluated the analytical sensitivity and specificity of the panel on 1624 known single nucleotide variants (SNVs) and indels on a mixture of genomic DNA from 10 previously characterized lymphoblastoid cell lines, and analyzed 50 Spanish patients with presumed hereditary SNHL not caused by GJB2/GJB6, OTOF nor MT-RNR1 mutations. RESULTS The analytical sensitivity of the test to detect SNVs and indels on the DNA mixture from the cell lines was > 99.5%, with a specificity > 99.9%. The diagnostic yield on the SNHL patients was 42% (21/50): 47.6% (10/21) with autosomal recessive inheritance pattern (BSND, CDH23, MYO15A, STRC [n = 2], USH2A [n = 3], RDX, SLC26A4); 38.1% (8/21) autosomal dominant (ACTG1 [n = 3; 2 de novo], CHD7, GATA3 [de novo], MITF, P2RX2, SOX10), and 14.3% (3/21) X-linked (COL4A5 [de novo], POU3F4, PRPS1). 46.9% of causative variants (15/32) were not in the databases. 28.6% of genetically diagnosed cases (6/21) had previously undetected syndromes (Barakat, Usher type 2A [n = 3] and Waardenburg [n = 2]). 19% of genetic diagnoses (4/21) were attributable to large deletions/duplications (STRC deletion [n = 2]; partial CDH23 duplication; RDX exon 2 deletion). CONCLUSIONS In the era of precision medicine, obtaining an etiologic diagnosis of SNHL is imperative. Here, we contribute to show that, with the right methodology, NGS can be transferred to the clinical practice, boosting the yield of SNHL genetic diagnosis to 50-60% (including GJB2/GJB6 alterations), improving diagnostic/prognostic accuracy, refining genetic and reproductive counseling and revealing clinically relevant undiagnosed syndromes.
Collapse
Affiliation(s)
- Rubén Cabanillas
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA) S. A, Avda. Richard Grandío s/n, 33193, Oviedo, Spain.
| | - Marta Diñeiro
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA) S. A, Avda. Richard Grandío s/n, 33193, Oviedo, Spain
| | - Guadalupe A Cifuentes
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA) S. A, Avda. Richard Grandío s/n, 33193, Oviedo, Spain
| | - David Castillo
- Disease Research And Medicine (DREAMgenics) S. L., Oviedo, Spain
| | | | - Rebeca Álvarez
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA) S. A, Avda. Richard Grandío s/n, 33193, Oviedo, Spain
| | - Noelia Sánchez-Durán
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA) S. A, Avda. Richard Grandío s/n, 33193, Oviedo, Spain
| | - Raquel Capín
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA) S. A, Avda. Richard Grandío s/n, 33193, Oviedo, Spain
| | - Ana Plasencia
- Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | | | - Inés Hernando
- Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | | | | | - Jordi Rosell
- Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Nancy Govea
- Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | | | | | | | | | - María Costales
- Hospital Universitario Central de Asturias, Oviedo, Spain.,Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | | | | | | | - Juan Cadiñanos
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA) S. A, Avda. Richard Grandío s/n, 33193, Oviedo, Spain.
| |
Collapse
|
35
|
Wesdorp M, Murillo-Cuesta S, Peters T, Celaya AM, Oonk A, Schraders M, Oostrik J, Gomez-Rosas E, Beynon AJ, Hartel BP, Okkersen K, Koenen HJPM, Weeda J, Lelieveld S, Voermans NC, Joosten I, Hoyng CB, Lichtner P, Kunst HPM, Feenstra I, de Bruijn SE, Admiraal RJC, Yntema HG, van Wijk E, Del Castillo I, Serra P, Varela-Nieto I, Pennings RJE, Kremer H. MPZL2, Encoding the Epithelial Junctional Protein Myelin Protein Zero-like 2, Is Essential for Hearing in Man and Mouse. Am J Hum Genet 2018; 103:74-88. [PMID: 29961571 DOI: 10.1016/j.ajhg.2018.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 05/25/2018] [Indexed: 02/01/2023] Open
Abstract
In a Dutch consanguineous family with recessively inherited nonsyndromic hearing impairment (HI), homozygosity mapping combined with whole-exome sequencing revealed a MPZL2 homozygous truncating variant, c.72del (p.Ile24Metfs∗22). By screening a cohort of phenotype-matched subjects and a cohort of HI subjects in whom WES had been performed previously, we identified two additional families with biallelic truncating variants of MPZL2. Affected individuals demonstrated symmetric, progressive, mild to moderate sensorineural HI. Onset of HI was in the first decade, and high-frequency hearing was more severely affected. There was no vestibular involvement. MPZL2 encodes myelin protein zero-like 2, an adhesion molecule that mediates epithelial cell-cell interactions in several (developing) tissues. Involvement of MPZL2 in hearing was confirmed by audiometric evaluation of Mpzl2-mutant mice. These displayed early-onset progressive sensorineural HI that was more pronounced in the high frequencies. Histological analysis of adult mutant mice demonstrated an altered organization of outer hair cells and supporting cells and degeneration of the organ of Corti. In addition, we observed mild degeneration of spiral ganglion neurons, and this degeneration was most pronounced at the cochlear base. Although MPZL2 is known to function in cell adhesion in several tissues, no phenotypes other than HI were found to be associated with MPZL2 defects. This indicates that MPZL2 has a unique function in the inner ear. The present study suggests that deleterious variants of Mplz2/MPZL2 affect adhesion of the inner-ear epithelium and result in loss of structural integrity of the organ of Corti and progressive degeneration of hair cells, supporting cells, and spiral ganglion neurons.
Collapse
Affiliation(s)
- Mieke Wesdorp
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; The Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Silvia Murillo-Cuesta
- Institute of Biomedical Research "Alberto Sols," Spanish National Research Council-Autonomous University of Madrid, 28029 Madrid, Spain; Center for Biomedical Network Research in Rare Diseases, Institute of Health Carlos III, 28029 Madrid, Spain; Hospital La Paz Institute for Health Research, 28029 Madrid, Spain
| | - Theo Peters
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Adelaida M Celaya
- Institute of Biomedical Research "Alberto Sols," Spanish National Research Council-Autonomous University of Madrid, 28029 Madrid, Spain; Center for Biomedical Network Research in Rare Diseases, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Anne Oonk
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Margit Schraders
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Jaap Oostrik
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Elena Gomez-Rosas
- Center for Biomedical Network Research in Rare Diseases, Institute of Health Carlos III, 28029 Madrid, Spain; Servicio de Genetica, Hospital Universitario Ramon y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Andy J Beynon
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Bas P Hartel
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Kees Okkersen
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Neurology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Jack Weeda
- Department of Ophthalmology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Stefan Lelieveld
- The Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Nicol C Voermans
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Neurology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Carel B Hoyng
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Ophthalmology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Henricus P M Kunst
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Radboud Institute of Health Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Ilse Feenstra
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Suzanne E de Bruijn
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Ronald J C Admiraal
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Helger G Yntema
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Erwin van Wijk
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Ignacio Del Castillo
- Center for Biomedical Network Research in Rare Diseases, Institute of Health Carlos III, 28029 Madrid, Spain; Servicio de Genetica, Hospital Universitario Ramon y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Pau Serra
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Isabel Varela-Nieto
- Institute of Biomedical Research "Alberto Sols," Spanish National Research Council-Autonomous University of Madrid, 28029 Madrid, Spain; Center for Biomedical Network Research in Rare Diseases, Institute of Health Carlos III, 28029 Madrid, Spain; Hospital La Paz Institute for Health Research, 28029 Madrid, Spain
| | - Ronald J E Pennings
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Hannie Kremer
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
36
|
Zhang W, Kim SM, Wang W, Cai C, Feng Y, Kong W, Lin X. Cochlear Gene Therapy for Sensorineural Hearing Loss: Current Status and Major Remaining Hurdles for Translational Success. Front Mol Neurosci 2018; 11:221. [PMID: 29997477 PMCID: PMC6028713 DOI: 10.3389/fnmol.2018.00221] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
Sensorineural hearing loss (SNHL) affects millions of people. Genetic mutations play a large and direct role in both congenital and late-onset cases of SNHL (e.g., age-dependent hearing loss, ADHL). Although hearing aids can help moderate to severe hearing loss the only effective treatment for deaf patients is the cochlear implant (CI). Gene- and cell-based therapies potentially may preserve or restore hearing with more natural sound perception, since their theoretical frequency resolution power is much higher than that of cochlear implants. These biologically-based interventions also carry the potential to re-establish hearing without the need for implanting any prosthetic device; the convenience and lower financial burden afforded by such biologically-based interventions could potentially benefit far more SNHL patients. Recently major progress has been achieved in preclinical studies of cochlear gene therapy. This review critically evaluates recent advances in the preclinical trials of gene therapies for SNHL and the major remaining challenges for the development and eventual clinical translation of this novel therapy. The cochlea bears many similarities to the eye for translational studies of gene therapies. Experience gained in ocular gene therapy trials, many of which have advanced to clinical phase III, may provide valuable guidance in improving the chance of success for cochlear gene therapy in human trials. A discussion on potential implications of translational knowledge gleaned from large numbers of advanced clinical trials of ocular gene therapy is therefore included.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sun Myoung Kim
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
| | - Wenwen Wang
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Yong Feng
- Xiangya School of Medicine, Changsha, China
| | - Weijia Kong
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
37
|
Sheppard S, Biswas S, Li MH, Jayaraman V, Slack I, Romasko EJ, Sasson A, Brunton J, Rajagopalan R, Sarmady M, Abrudan JL, Jairam S, DeChene ET, Ying X, Choi J, Wilkens A, Raible SE, Scarano MI, Santani A, Pennington JW, Luo M, Conlin LK, Devkota B, Dulik MC, Spinner NB, Krantz ID. Utility and limitations of exome sequencing as a genetic diagnostic tool for children with hearing loss. Genet Med 2018; 20:1663-1676. [PMID: 29907799 PMCID: PMC6295269 DOI: 10.1038/s41436-018-0004-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/20/2018] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Hearing loss (HL) is the most common sensory disorder in children. Prompt molecular diagnosis may guide screening and management, especially in syndromic cases when HL is the single presenting feature. Exome sequencing (ES) is an appealing diagnostic tool for HL as the genetic causes are highly heterogeneous. METHODS ES was performed on a prospective cohort of 43 probands with HL. Sequence data were analyzed for primary and secondary findings. Capture and coverage analysis was performed for genes and variants associated with HL. RESULTS The diagnostic rate using ES was 37.2%, compared with 15.8% for the clinical HL panel. Secondary findings were discovered in three patients. For 247 genes associated with HL, 94.7% of the exons were targeted for capture and 81.7% of these exons were covered at 20× or greater. Further analysis of 454 randomly selected HL-associated variants showed that 89% were targeted for capture and 75% were covered at a read depth of at least 20×. CONCLUSION ES has an improved yield compared with clinical testing and may capture diagnoses not initially considered due to subtle clinical phenotypes. Technical challenges were identified, including inadequate capture and coverage of HL genes. Additional considerations of ES include secondary findings, cost, and turnaround time.
Collapse
Affiliation(s)
- Sarah Sheppard
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sawona Biswas
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mindy H Li
- Division of Genetics, Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Vijayakumar Jayaraman
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ian Slack
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward J Romasko
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ariella Sasson
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joshua Brunton
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ramakrishnan Rajagopalan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mahdi Sarmady
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jenica L Abrudan
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sowmya Jairam
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth T DeChene
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiahoan Ying
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jiwon Choi
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alisha Wilkens
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah E Raible
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maria I Scarano
- Division of Genetics, Cooper University Health Care, Camden, NY, USA
| | - Avni Santani
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jeffrey W Pennington
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Minjie Luo
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura K Conlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Batsal Devkota
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew C Dulik
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nancy B Spinner
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ian D Krantz
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
38
|
|
39
|
Rudman JR, Mei C, Bressler SE, Blanton SH, Liu XZ. Precision medicine in hearing loss. J Genet Genomics 2018; 45:99-109. [PMID: 29500086 DOI: 10.1016/j.jgg.2018.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 11/26/2022]
Abstract
Precision medicine (PM) proposes customized medical care based on a patient's unique genome, biomarkers, environment and behaviors. Hearing loss (HL) is the most common sensorineural disorder worldwide and is frequently caused by a single genetic mutation. With recent advances in PM tools such as genetic sequencing and data analysis, the field of HL is ideally positioned to adopt the strategies of PM. Here, we review current and future applications of PM in HL as they relate to the four core qualities of PM (P4): predictive, personalized, patient-centered, and participatory. We then introduce a strategy for effective incorporation of HL PM into the design of future research studies, electronic medical records, and clinical practice to improve diagnostics, prognostics, and, ultimately, individualized patient treatment. Finally, specific anticipated ethical and economic concerns in this growing era of genomics-based HL treatment are discussed. By integrating PM principles into translational HL research and clinical practice, hearing specialists are uniquely positioned to effectively treat the heterogeneous causes and manifestations of HL on an individualized basis.
Collapse
Affiliation(s)
- Jason R Rudman
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christine Mei
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sara E Bressler
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Susan H Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xue-Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
40
|
Rudman JR, Kabahuma RI, Bressler SE, Feng Y, Blanton SH, Yan D, Liu XZ. The genetic basis of deafness in populations of African descent. J Genet Genomics 2017; 44:285-294. [PMID: 28642064 DOI: 10.1016/j.jgg.2017.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/03/2017] [Accepted: 03/24/2017] [Indexed: 11/24/2022]
Abstract
Hearing loss is the most common sensorineural disorder worldwide and is associated with more than 1000 mutations in more than 90 genes. While mutations in genes such as GJB2 (gap-junction protein β 2) and GJB6 (gap-junction protein β 6) are highly prevalent in Caucasian, Asian, and Middle Eastern populations, they are rare in both native African populations and those of African descent. The objective of this paper is to review the current knowledge regarding the epidemiology and genetics of hearing loss in African populations with a focus on native sub-Saharan African populations. Environmental etiologies related to poor access to healthcare and perinatal care account for the majority of cases. Syndromic etiologies including Waardenburg, Pendred and Usher syndromes are uncommon causes of hearing loss in these populations. Of the non-syndromic causes, common mutations in GJB2 and GJB6 are rarely implicated in populations of African descent. Recent use of next-generation sequencing (NGS) has identified several candidate deafness genes in African populations from Nigeria and South Africa that are unique when compared to common causative mutations worldwide. Researchers also recently described a dominant mutation in MYO3a in an African American family with non-syndromic hearing loss. The use of NGS and specialized panels will aid in identifying rare and novel mutations in a more cost- and time-effective manner. The identification of common hearing loss mutations in indigenous African populations will pave the way for translation into genetic deafness research in populations of African descent worldwide.
Collapse
Affiliation(s)
- Jason R Rudman
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rosemary I Kabahuma
- Department of Otorhinolaryngology, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0001, South Africa.
| | - Sara E Bressler
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Susan H Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xue-Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha 410008, China; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
41
|
Niu Z, Feng Y, Mei L, Sun J, Wang X, Wang J, Hu Z, Dong Y, Chen H, He C, Liu Y, Cai X, Liu X, Jiang L. A novel frameshift mutation of SMPX causes a rare form of X-linked nonsyndromic hearing loss in a Chinese family. PLoS One 2017; 12:e0178384. [PMID: 28542515 PMCID: PMC5444825 DOI: 10.1371/journal.pone.0178384] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/11/2017] [Indexed: 01/12/2023] Open
Abstract
X-linked hearing impairment is the rarest form of genetic hearing loss (HL) and represents only a minor fraction of all cases. The aim of this study was to investigate the cause of X-linked inherited sensorineural HL in a four-generation Chinese family. A novel duplication variant (c.217dupA, p.Ile73Asnfs*5) in SMPX was identified by whole-exome sequencing. The frameshift mutation predicted to result in the premature truncation of the SMPX protein was co-segregated with the HL phenotype and was absent in 295 normal controls. Subpopulation screening of the coding exons and flanking introns of SMPX was further performed for 338 Chinese patients with nonsydromic HL by Sanger sequencing, and another two potential causative substitutions (c.238C>A and c.55A>G) in SMPX were identified in additional sporadic cases of congenital deafness. Collectively, this study is the first to report the role of SMPX in Chinese population and identify a novel frameshift mutation in SMPX that causes not only nonsyndromic late-onset progressive HL, but also congenital hearing impairment. Our findings extend the mutation and phenotypic spectrum of the SMPX gene.
Collapse
Affiliation(s)
- Zhijie Niu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, PR China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, PR China
- Department of Otolaryngology (D-48), University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Yong Feng
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, PR China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, PR China
- State Key Laboratory of Medical Genetics, Central South University, Changsha, PR China
| | - Lingyun Mei
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, PR China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, PR China
| | - Jie Sun
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, PR China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, PR China
| | - Xueping Wang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, PR China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, PR China
| | - Juncheng Wang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, PR China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, PR China
| | - Zhengmao Hu
- State Key Laboratory of Medical Genetics, Central South University, Changsha, PR China
| | - Yunpeng Dong
- Department of Otolaryngology (D-48), University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Hongsheng Chen
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, PR China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, PR China
| | - Chufeng He
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, PR China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, PR China
| | - Yalan Liu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, PR China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, PR China
| | - Xinzhang Cai
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, PR China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, PR China
| | - Xuezhong Liu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, PR China
- Department of Otolaryngology (D-48), University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Lu Jiang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, PR China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, PR China
- * E-mail:
| |
Collapse
|
42
|
The Application of Next-Generation Sequencing for Mutation Detection in Autosomal-Dominant Hereditary Hearing Impairment. Otol Neurotol 2017; 38:900-903. [PMID: 28419064 DOI: 10.1097/mao.0000000000001432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Identification of the causative mutation using next-generation sequencing in autosomal-dominant hereditary hearing impairment, as mutation analysis in hereditary hearing impairment by classic genetic methods, is hindered by the high heterogeneity of the disease. PATIENTS Two Swiss families with autosomal-dominant hereditary hearing impairment. INTERVENTION Amplified DNA libraries for next-generation sequencing were constructed from extracted genomic DNA, derived from peripheral blood, and enriched by a custom-made sequence capture library. Validated, pooled libraries were sequenced on an Illumina MiSeq instrument, 300 cycles and paired-end sequencing. Technical data analysis was performed with SeqMonk, variant analysis with GeneTalk or VariantStudio. The detection of mutations in genes related to hearing loss by next-generation sequencing was subsequently confirmed using specific polymerase-chain-reaction and Sanger sequencing. MAIN OUTCOME MEASURE Mutation detection in hearing-loss-related genes. RESULTS The first family harbored the mutation c.5383+5delGTGA in the TECTA-gene. In the second family, a novel mutation c.2614-2625delCATGGCGCCGTG in the WFS1-gene and a second mutation TCOF1-c.1028G>A were identified. CONCLUSION Next-generation sequencing successfully identified the causative mutation in families with autosomal-dominant hereditary hearing impairment. The results helped to clarify the pathogenic role of a known mutation and led to the detection of a novel one. NGS represents a feasible approach with great potential future in the diagnostics of hereditary hearing impairment, even in smaller labs.
Collapse
|
43
|
Shearer AE, Eppsteiner RW, Frees K, Tejani V, Sloan-Heggen CM, Brown C, Abbas P, Dunn C, Hansen MR, Gantz BJ, Smith RJH. Genetic variants in the peripheral auditory system significantly affect adult cochlear implant performance. Hear Res 2017; 348:138-142. [PMID: 28213135 DOI: 10.1016/j.heares.2017.02.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/12/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cochlear implantation is an effective habilitation modality for adults with significant hearing loss. However, post-implant performance is variable. A portion of this variance in outcome can be attributed to clinical factors. Recent physiological studies suggest that the health of the spiral ganglion also impacts post-operative cochlear implant outcomes. The goal of this study was to determine whether genetic factors affecting spiral ganglion neurons may be associated with cochlear implant performance. METHODS Adults with post-lingual deafness who underwent cochlear implantation at the University of Iowa were studied. Pre-implantation evaluation included comprehensive genetic testing for genetic diagnosis. A novel score of genetic variants affecting genes with functional effects in the spiral ganglion was calculated. A Z-scored average of up to three post-operative speech perception tests (CNC, HINT, and AzBio) was used to assess outcome. RESULTS Genetically determined spiral ganglion health affects cochlear implant outcomes, and when considered in conjunction with clinically determined etiology of deafness, accounts for 18.3% of the variance in postoperative speech recognition outcomes. Cochlear implant recipients with deleterious genetic variants that affect the cochlear sensory organ perform significantly better on tests of speech perception than recipients with deleterious genetic variants that affect the spiral ganglion. CONCLUSION Etiological diagnosis of deafness including genetic testing is the single largest predictor of postoperative speech outcomes in adult cochlear implant recipients. A detailed understanding of the genetic underpinning of hearing loss will better inform pre-implant counseling. The method presented here should serve as a guide for further research into the molecular physiology of the peripheral auditory system and cochlear implants.
Collapse
Affiliation(s)
- A Eliot Shearer
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Robert W Eppsteiner
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Kathy Frees
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Viral Tejani
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Christina M Sloan-Heggen
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Carolyn Brown
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Communication Sciences & Disorders, University of Iowa, Iowa City, IA, USA
| | - Paul Abbas
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Communication Sciences & Disorders, University of Iowa, Iowa City, IA, USA
| | - Camille Dunn
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Marlan R Hansen
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Bruce J Gantz
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Richard J H Smith
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Interdepartmental PhD Program in Genetics, University of Iowa, Iowa City, IA, USA; Department of Molecular Physiology & Biophysics, University of Iowa College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
44
|
Lebeko K, Manyisa N, Chimusa ER, Mulder N, Dandara C, Wonkam A. A Genomic and Protein-Protein Interaction Analyses of Nonsyndromic Hearing Impairment in Cameroon Using Targeted Genomic Enrichment and Massively Parallel Sequencing. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:90-99. [PMID: 28075205 DOI: 10.1089/omi.2016.0171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hearing impairment (HI) is one of the leading causes of disability in the world, impacting the social, economic, and psychological well-being of the affected individual. This is particularly true in sub-Saharan Africa, which carries one of the highest burdens of this condition. Despite this, there are limited data on the most prevalent genes or mutations that cause HI among sub-Saharan Africans. Next-generation technologies, such as targeted genomic enrichment and massively parallel sequencing, offer new promise in this context. This study reports, for the first time to the best of our knowledge, on the prevalence of novel mutations identified through a platform of 116 HI genes (OtoSCOPE®), among 82 African probands with HI. Only variants OTOF NM_194248.2:c.766-2A>G and MYO7A NM_000260.3:c.1996C>T, p.Arg666Stop were found in 3 (3.7%) and 5 (6.1%) patients, respectively. In addition and uniquely, the analysis of protein-protein interactions (PPI), through interrogation of gene subnetworks, using a custom script and two databases (Enrichr and PANTHER), and an algorithm in the igraph package of R, identified the enrichment of sensory perception and mechanical stimulus biological processes, and the most significant molecular functions of these variants pertained to binding or structural activity. Furthermore, 10 genes (MYO7A, MYO6, KCTD3, NUMA1, MYH9, KCNQ1, UBC, DIAPH1, PSMC2, and RDX) were identified as significant hubs within the subnetworks. Results reveal that the novel variants identified among familial cases of HI in Cameroon are not common, and PPI analysis has highlighted the role of 10 genes, potentially important in understanding HI genomics among Africans.
Collapse
Affiliation(s)
- Kamogelo Lebeko
- 1 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences - University of Cape Town , Cap Town, South Africa
| | - Noluthando Manyisa
- 1 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences - University of Cape Town , Cap Town, South Africa
| | - Emile R Chimusa
- 1 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences - University of Cape Town , Cap Town, South Africa
| | - Nicola Mulder
- 2 Division of Computational Biology, Faculty of Health Sciences - University of Cape Town , Cap Town, South Africa
| | - Collet Dandara
- 1 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences - University of Cape Town , Cap Town, South Africa
| | - Ambroise Wonkam
- 1 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences - University of Cape Town , Cap Town, South Africa .,3 Department of Medicine, Faculty of Health Sciences - University of Cape Town , Cap Town, South Africa
| |
Collapse
|
45
|
Núñez-Batalla F, Jáudenes-Casaubón C, Sequí-Canet JM, Vivanco-Allende A, Zubicaray-Ugarteche J, Cabanillas-Farpón R. Aetiological Diagnosis of Child Deafness: CODEPEH Recommendations. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2017. [DOI: 10.1016/j.otoeng.2016.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
The diagnostic yield of whole-exome sequencing targeting a gene panel for hearing impairment in The Netherlands. Eur J Hum Genet 2016; 25:308-314. [PMID: 28000701 DOI: 10.1038/ejhg.2016.182] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 10/19/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022] Open
Abstract
Hearing impairment (HI) is genetically heterogeneous which hampers genetic counseling and molecular diagnosis. Testing of several single HI-related genes is laborious and expensive. In this study, we evaluate the diagnostic utility of whole-exome sequencing (WES) targeting a panel of HI-related genes. Two hundred index patients, mostly of Dutch origin, with presumed hereditary HI underwent WES followed by targeted analysis of an HI gene panel of 120 genes. We found causative variants underlying the HI in 67 of 200 patients (33.5%). Eight of these patients have a large homozygous deletion involving STRC, OTOA or USH2A, which could only be identified by copy number variation detection. Variants of uncertain significance were found in 10 patients (5.0%). In the remaining 123 cases, no potentially causative variants were detected (61.5%). In our patient cohort, causative variants in GJB2, USH2A, MYO15A and STRC, and in MYO6 were the leading causes for autosomal recessive and dominant HI, respectively. Segregation analysis and functional analyses of variants of uncertain significance will probably further increase the diagnostic yield of WES.
Collapse
|
47
|
Pandya A. Genetic hearing loss: the journey of discovery to destination - how close are we to therapy? Mol Genet Genomic Med 2016; 4:583-587. [PMID: 27896280 PMCID: PMC5118202 DOI: 10.1002/mgg3.260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Arti Pandya
- Division of Genetics and Metabolism Department of Pediatrics University of North Carolina Chapel Hill North Carolina
| |
Collapse
|
48
|
NLRP3 Is Expressed in the Spiral Ganglion Neurons and Associated with Both Syndromic and Nonsyndromic Sensorineural Deafness. Neural Plast 2016; 2016:3018132. [PMID: 27965898 PMCID: PMC5124661 DOI: 10.1155/2016/3018132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/09/2016] [Accepted: 10/20/2016] [Indexed: 11/25/2022] Open
Abstract
Nonsyndromic deafness is genetically heterogeneous but phenotypically similar among many cases. Though a variety of targeted next-generation sequencing (NGS) panels has been recently developed to facilitate genetic screening of nonsyndromic deafness, some syndromic deafness genes outside the panels may lead to clinical phenotypes similar to nonsyndromic deafness. In this study, we performed comprehensive genetic screening in a dominant family in which the proband was initially diagnosed with nonsyndromic deafness. No pathogenic mutation was identified by targeted NGS in 72 nonsyndromic and another 72 syndromic deafness genes. Whole exome sequencing, however, identified a p.E313K mutation in NLRP3, a gene reported to cause syndromic deafness Muckle-Wells Syndrome (MWS) but not included in any targeted NGS panels for deafness in previous reports. Follow-up clinical evaluation revealed only minor inflammatory symptoms in addition to deafness in six of the nine affected members, while the rest, three affected members, including the proband had no obvious MWS-related inflammatory symptoms. Immunostaining of the mouse cochlea showed a strong expression of NLRP3 in the spiral ganglion neurons. Our results suggested that NLRP3 may have specific function in the spiral ganglion neurons and can be associated with both syndromic and nonsyndromic sensorineural deafness.
Collapse
|
49
|
Aetiological diagnosis of child deafness: CODEPEH recommendations. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2016; 68:43-55. [PMID: 27644946 DOI: 10.1016/j.otorri.2016.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 12/18/2022]
Abstract
Important progress in the fields of molecular genetics (principally) and diagnostic imaging, together with the lack of a consensus protocol for guiding the diagnostic process after confirming deafness by neonatal screening, have led to this new work document drafted by the Spanish Commission for the Early Detection of Child Deafness (Spanish acronym: CODEPEH). This 2015 Recommendations Document, which is based on the most recent scientific evidence, provides guidance to professionals to support them in making decisions regarding aetiological diagnosis. Such diagnosis should be performed without delay and without impeding early intervention. Early identification of the causes of deafness offers many advantages: it prevents unnecessary trouble for the families, reduces health system expenses caused by performing different tests, and provides prognostic information that may guide therapeutic actions.
Collapse
|
50
|
Chen S, Dong C, Wang Q, Zhong Z, Qi Y, Ke X, Liu Y. Targeted Next-Generation Sequencing Successfully Detects Causative Genes in Chinese Patients with Hereditary Hearing Loss. Genet Test Mol Biomarkers 2016; 20:660-665. [PMID: 27610647 DOI: 10.1089/gtmb.2016.0051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIMS We attempted to identify the genetic epidemiology of hereditary hearing loss among the Chinese Han population using next-generation sequencing (NGS). MATERIALS AND METHODS The entire length of the genes GJB2, SLC26A4, and GJB3, as well as exons of 57 additional candidate genes were sequenced from 116 individuals suffering from hearing loss. RESULTS Thirty potentially causative mutations from these 60 genes were identified as the likely etiologies of hearing loss in 67 of the cases. In our study, SLC26A4 and GJB2 were the most frequently affected genes among the Chinese Han population with hearing loss. Collectively, they account for 52.8% of the cases, followed by MTRNR1, PCDH15, and TECTA. These data also illustrate that NGS can be used to identify rare alleles responsible for hereditary hearing loss: 22 of the 30 (73.3%) genes identified with mutations are rarely mutated in hereditary hearing loss and only account for 21.5% (42/195) of the total mutation frequency, explaining no more than 2% for each gene. These rarely mutated genes would be missed by conventional diagnostic sequencing approaches. CONCLUSIONS NGS can be used effectively to identify both the common and rare genes causing hereditary hearing loss.
Collapse
Affiliation(s)
- Siqi Chen
- 1 Department of Otolaryngology Head and Neck Surgery, Peking University First Hospital , Beijing, China
| | - Cheng Dong
- 1 Department of Otolaryngology Head and Neck Surgery, Peking University First Hospital , Beijing, China
| | - Qi Wang
- 1 Department of Otolaryngology Head and Neck Surgery, Peking University First Hospital , Beijing, China
| | - Zhen Zhong
- 1 Department of Otolaryngology Head and Neck Surgery, Peking University First Hospital , Beijing, China
| | - Yu Qi
- 2 Laboratory Center, Peking University First Hospital , Beijing, China
| | - Xiaomei Ke
- 1 Department of Otolaryngology Head and Neck Surgery, Peking University First Hospital , Beijing, China
| | - Yuhe Liu
- 1 Department of Otolaryngology Head and Neck Surgery, Peking University First Hospital , Beijing, China
| |
Collapse
|