1
|
Elias-Mas A, Wang JY, Rodríguez-Revenga L, Kim K, Tassone F, Hessl D, Rivera SM, Hagerman R. Enlarged perivascular spaces and their association with motor, cognition, MRI markers and cerebrovascular risk factors in male fragile X premutation carriers. J Neurol Sci 2024; 461:123056. [PMID: 38772058 DOI: 10.1016/j.jns.2024.123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
FMR1 premutation carriers (55-200 CGG repeats) are at risk of developing fragile X-associated tremor/ataxia syndrome (FXTAS), a neurodegenerative disorder associated with motor and cognitive impairment. Bilateral hyperintensities of the middle cerebellar peduncles (MCP sign) are the major radiological hallmarks of FXTAS. In the general population, enlarged perivascular spaces (PVS) are biomarkers of small vessel disease and glymphatic dysfunction and are associated with cognitive decline. Our aim was to determine if premutation carriers show higher ratings of PVS than controls and whether enlarged PVS are associated with motor and cognitive impairment, MRI features of neurodegeneration, cerebrovascular risk factors and CGG repeat length. We evaluated 655 MRIs (1-10 visits/participant) from 229 carriers (164 with FXTAS and 65 without FXTAS) and 133 controls. PVS in the basal ganglia (BG-EPVS), centrum semiovale, and midbrain were evaluated with a semiquantitative scale. Mixed-effects models were used for statistical analysis adjusting for age. In carriers with FXTAS, we revealed that (1) BG-PVS ratings were higher than those of controls and carriers without FXTAS; (2) BG-PVS severity was associated with brain atrophy, white matter hyperintensities, enlarged ventricles, FXTAS stage and abnormal gait; (3) age-related increase in BG-PVS was associated with cognitive dysfunction; and (4) PVS ratings of all three regions showed robust associations with CGG repeat length and were higher in carriers with the MCP sign than carriers without the sign. This study demonstrates clinical relevance of PVS in FXTAS especially in the basal ganglia region and suggests microangiopathy and dysfunctional cerebrospinal fluid circulation in FXTAS physiopathology.
Collapse
Affiliation(s)
- Andrea Elias-Mas
- Radiology Department, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain; Institute for Research and Innovation Parc Taulí (I3PT), Sabadell, Spain; Genetics Doctorate Program, Universitat de Barcelona (UB), Barcelona, Spain.
| | - Jun Yi Wang
- Center for Mind and Brain, University of California Davis, CA, United States.
| | - Laia Rodríguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Barcelona, Spain; CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain; Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Kyoungmi Kim
- Department of Public Health Sciences, University of California Davis School of Medicine, Sacramento, CA, United States.
| | - Flora Tassone
- MIND Institute, University of California Davis, Sacramento, CA, United States; Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, United States.
| | - David Hessl
- MIND Institute, University of California Davis, Sacramento, CA, United States; Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States.
| | - Susan M Rivera
- Center for Mind and Brain, University of California Davis, CA, United States; MIND Institute, University of California Davis, Sacramento, CA, United States; Department of Psychology, University of Maryland, College Park, MD, United States.
| | - Randi Hagerman
- MIND Institute, University of California Davis, Sacramento, CA, United States; Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA, United States.
| |
Collapse
|
2
|
Jiraanont P, Zafarullah M, Sulaiman N, Espinal GM, Randol JL, Durbin-Johnson B, Schneider A, Hagerman RJ, Hagerman PJ, Tassone F. FMR1 Protein Expression Correlates with Intelligence Quotient in Both Peripheral Blood Mononuclear Cells and Fibroblasts from Individuals with an FMR1 Mutation. J Mol Diagn 2024; 26:498-509. [PMID: 38522837 DOI: 10.1016/j.jmoldx.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Fragile X syndrome (FXS) is the most common heritable form of intellectual disability and is caused by CGG repeat expansions exceeding 200 (full mutation). Such expansions lead to hypermethylation and transcriptional silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene. As a consequence, little or no FMR1 protein (FMRP) is produced; absence of the protein, which normally is responsible for neuronal development and maintenance, causes the syndrome. Previous studies have demonstrated the causal relationship between FMRP levels and cognitive abilities in peripheral blood mononuclear cells (PBMCs) and dermal fibroblast cell lines of patients with FXS. However, it is arguable whether PBMCs or fibroblasts would be the preferred surrogate for measuring molecular markers, particularly FMRP, to represent the cognitive impairment, a core symptom of FXS. To address this concern, CGG repeats, methylation status, FMR1 mRNA, and FMRP levels were measured in both PBMCs and fibroblasts derived from 66 individuals. The findings indicated a strong association between FMR1 mRNA expression levels and CGG repeat numbers in PBMCs of premutation males after correcting for methylation status. Moreover, FMRP expression levels from both PBMCs and fibroblasts of male participants with a hypermethylated full mutation and with mosaicism demonstrated significant association between the intelligence quotient levels and FMRP levels, suggesting that PBMCs may be preferable for FXS clinical studies, because of their greater accessibility.
Collapse
Affiliation(s)
- Poonnada Jiraanont
- Division of Molecular and Cellular Medicine, Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California
| | - Noor Sulaiman
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California
| | - Glenda M Espinal
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California
| | - Jamie L Randol
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California
| | - Blythe Durbin-Johnson
- Division of Biostatistics, University of California, Davis, School of Medicine, Davis, California
| | - Andrea Schneider
- Department of Pediatrics, University of California, Davis, School of Medicine, Davis, California; UC Davis MIND Institute, University of California, Davis, Sacramento, California
| | - Randi J Hagerman
- Department of Pediatrics, University of California, Davis, School of Medicine, Davis, California; UC Davis MIND Institute, University of California, Davis, Sacramento, California
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California; UC Davis MIND Institute, University of California, Davis, Sacramento, California
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California; UC Davis MIND Institute, University of California, Davis, Sacramento, California.
| |
Collapse
|
3
|
Capacci E, Bagnoli S, Giacomucci G, Rapillo CM, Govoni A, Bessi V, Polito C, Giotti I, Brogi A, Pelo E, Sorbi S, Nacmias B, Ferrari C. The Frequency of Intermediate Alleles in Patients with Cerebellar Phenotypes. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1135-1145. [PMID: 37906407 PMCID: PMC11102406 DOI: 10.1007/s12311-023-01620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
Cerebellar syndromes are clinically and etiologically heterogeneous and can be classified as hereditary, neurodegenerative non-hereditary, or acquired. Few data are available on the frequency of each form in the clinical setting. Growing interest is emerging regarding the genetic forms caused by triplet repeat expansions. Alleles with repeat expansion lower than the pathological threshold, termed intermediate alleles (IAs), have been found to be associated with disease manifestation. In order to assess the relevance of IAs as a cause of cerebellar syndromes, we enrolled 66 unrelated Italian ataxic patients and described the distribution of the different etiology of their syndromes and the frequency of IAs. Each patient underwent complete clinical, hematological, and neurophysiological assessments, neuroimaging evaluations, and genetic tests for autosomal dominant cerebellar ataxia (SCA) and fragile X-associated tremor/ataxia syndrome (FXTAS). We identified the following diagnostic categories: 28% sporadic adult-onset ataxia, 18% cerebellar variant of multiple system atrophy, 9% acquired forms, 9% genetic forms with full-range expansion, and 12% cases with intermediate-range expansion. The IAs were six in the FMR1 gene, two in the gene responsible for SCA8, and one in the ATXN2 gene. The clinical phenotype of patients carrying the IAs resembles, in most of the cases, the one associated with full-range expansion. Our study provides an exhaustive description of the causes of cerebellar ataxia, estimating for the first time the frequency of IAs in SCAs- and FXTAS-associated genes. The high percentage of cases with IAs supports further screening among patients with cerebellar syndromes.
Collapse
Affiliation(s)
- Elena Capacci
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Giulia Giacomucci
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Costanza Maria Rapillo
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Alessandra Govoni
- Neuromuscular-Skeletal and Sensory Organs Department, AOU Careggi, Florence, Italy
| | - Valentina Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | | | - Irene Giotti
- SODc Diagnostica Genetica, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Alice Brogi
- SODc Diagnostica Genetica, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Elisabetta Pelo
- SODc Diagnostica Genetica, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.
| |
Collapse
|
4
|
Randol JL, Kim K, Ponzini MD, Tassone F, Falcon AK, Hagerman RJ, Hagerman PJ. Variation of FMRP Expression in Peripheral Blood Mononuclear Cells from Individuals with Fragile X Syndrome. Genes (Basel) 2024; 15:356. [PMID: 38540415 PMCID: PMC10969917 DOI: 10.3390/genes15030356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024] Open
Abstract
Fragile X syndrome (FXS) is the most common heritable cause of intellectual disability and autism spectrum disorder. The syndrome is often caused by greatly reduced or absent protein expression from the fragile X messenger ribonucleoprotein 1 (FMR1) gene due to expansion of a 5'-non-coding trinucleotide (CGG) element beyond 200 repeats (full mutation). To better understand the complex relationships among FMR1 allelotype, methylation status, mRNA expression, and FMR1 protein (FMRP) levels, FMRP was quantified in peripheral blood mononuclear cells for a large cohort of FXS (n = 154) and control (n = 139) individuals using time-resolved fluorescence resonance energy transfer. Considerable size and methylation mosaicism were observed among individuals with FXS, with FMRP detected only in the presence of such mosaicism. No sample with a minimum allele size greater than 273 CGG repeats had significant levels of FMRP. Additionally, an association was observed between FMR1 mRNA and FMRP levels in FXS samples, predominantly driven by those with the lowest FMRP values. This study underscores the complexity of FMR1 allelotypes and FMRP expression and prompts a reevaluation of FXS therapies aimed at reactivating large full mutation alleles that are likely not capable of producing sufficient FMRP to improve cognitive function.
Collapse
Affiliation(s)
- Jamie L. Randol
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Kyoungmi Kim
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA 95817, USA
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Matthew D. Ponzini
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA 95817, USA
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA 95817, USA
| | - Alexandria K. Falcon
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Randi J. Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA 95817, USA
- Department of Pediatrics, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Paul J. Hagerman
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Health, Sacramento, CA 95817, USA
| |
Collapse
|
5
|
Chaisson MJP, Sulovari A, Valdmanis PN, Miller DE, Eichler EE. Advances in the discovery and analyses of human tandem repeats. Emerg Top Life Sci 2023; 7:361-381. [PMID: 37905568 PMCID: PMC10806765 DOI: 10.1042/etls20230074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
Long-read sequencing platforms provide unparalleled access to the structure and composition of all classes of tandemly repeated DNA from STRs to satellite arrays. This review summarizes our current understanding of their organization within the human genome, their importance with respect to disease, as well as the advances and challenges in understanding their genetic diversity and functional effects. Novel computational methods are being developed to visualize and associate these complex patterns of human variation with disease, expression, and epigenetic differences. We predict accurate characterization of this repeat-rich form of human variation will become increasingly relevant to both basic and clinical human genetics.
Collapse
Affiliation(s)
- Mark J P Chaisson
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, U.S.A
- The Genomic and Epigenomic Regulation Program, USC Norris Cancer Center, University of Southern California, Los Angeles, CA 90089, U.S.A
| | - Arvis Sulovari
- Computational Biology, Cajal Neuroscience Inc, Seattle, WA 98102, U.S.A
| | - Paul N Valdmanis
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, U.S.A
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, U.S.A
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, U.S.A
| | - Danny E Miller
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, U.S.A
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, U.S.A
- Department of Pediatrics, University of Washington, Seattle, WA 98195, U.S.A
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, U.S.A
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, U.S.A
| |
Collapse
|
6
|
Tassone F, Protic D, Allen EG, Archibald AD, Baud A, Brown TW, Budimirovic DB, Cohen J, Dufour B, Eiges R, Elvassore N, Gabis LV, Grudzien SJ, Hall DA, Hessl D, Hogan A, Hunter JE, Jin P, Jiraanont P, Klusek J, Kooy RF, Kraan CM, Laterza C, Lee A, Lipworth K, Losh M, Loesch D, Lozano R, Mailick MR, Manolopoulos A, Martinez-Cerdeno V, McLennan Y, Miller RM, Montanaro FAM, Mosconi MW, Potter SN, Raspa M, Rivera SM, Shelly K, Todd PK, Tutak K, Wang JY, Wheeler A, Winarni TI, Zafarullah M, Hagerman RJ. Insight and Recommendations for Fragile X-Premutation-Associated Conditions from the Fifth International Conference on FMR1 Premutation. Cells 2023; 12:2330. [PMID: 37759552 PMCID: PMC10529056 DOI: 10.3390/cells12182330] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia;
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11040 Belgrade, Serbia
| | - Emily Graves Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Alison D. Archibald
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Genomics in Society Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Anna Baud
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Ted W. Brown
- Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia;
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
- NYS Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jonathan Cohen
- Fragile X Alliance Clinic, Melbourne, VIC 3161, Australia;
| | - Brett Dufour
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel;
| | - Nicola Elvassore
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Lidia V. Gabis
- Keshet Autism Center Maccabi Wolfson, Holon 5822012, Israel;
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Samantha J. Grudzien
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA;
| | - David Hessl
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Abigail Hogan
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - Jessica Ezzell Hunter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Claudine M. Kraan
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Diagnosis and Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Cecilia Laterza
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Andrea Lee
- Fragile X New Zealand, Nelson 7040, New Zealand;
| | - Karen Lipworth
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60201, USA;
| | - Danuta Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Reymundo Lozano
- Departments of Genetics and Genomic Sciences and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Apostolos Manolopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Veronica Martinez-Cerdeno
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Yingratana McLennan
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | | | - Federica Alice Maria Montanaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Matthew W. Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS 66045, USA;
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Nelson Potter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Melissa Raspa
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Susan M. Rivera
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
| | - Katharine Shelly
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Peter K. Todd
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48105, USA
| | - Katarzyna Tutak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Jun Yi Wang
- Center for Mind and Brain, University of California Davis, Davis, CA 95618, USA;
| | - Anne Wheeler
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 502754, Central Java, Indonesia;
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Randi J. Hagerman
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
7
|
Gu X, Jiao K, Yue D, Wang X, Qiao K, Gao M, Lin J, Sun C, Zhao C, Zhu W, Xi J. Intrafamilial phenotypic heterogeneity in GIPC1-related oculopharyngodistal myopathy type 2: a case report. Neuromuscul Disord 2023; 33:93-97. [PMID: 37550168 DOI: 10.1016/j.nmd.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 07/05/2023] [Indexed: 08/09/2023]
Abstract
Oculopharyngodistal myopathy (OPDM) is a rare adult-onset neuromuscular disease characterized by ocular, facial, bulbar and distal limb muscle weakness. Here, we presented a pair of siblings with OPDM2 displaying marked intrafamilial phenotypic heterogeneity. In addition to muscle weakness, the proband also demonstrated tremor and visual disturbance that have not been reported previously in OPDM2. Electrophysiological and pathological studies further suggested the presence of neurogenic impairment in the proband. Repeat-primed polymerase chain reaction (RP-PCR) and fluorescence amplicon length analysis polymerase chain reaction (AL-PCR) confirmed the molecular diagnosis of OPDM2 in the siblings. Given the rarity of the case, the association between OPDM2 and tremor, visual disturbance, or neurogenic impairment remained to be explored.
Collapse
Affiliation(s)
- Xinyu Gu
- Department of Neurology, Huashan Hospital, Fudan University, 12, Wulumuqi Road, Shanghai, China
| | - Kexin Jiao
- Department of Neurology, Huashan Hospital, Fudan University, 12, Wulumuqi Road, Shanghai, China
| | - Dongyue Yue
- Department of Neurology, Jing' an District Center Hospital of Shanghai, Shanghai, China
| | - Xilu Wang
- Department of Anthropology and Human Genetics, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, China
| | - Kai Qiao
- Department of Neurology, Huashan Hospital, Fudan University, 12, Wulumuqi Road, Shanghai, China
| | - Mingshi Gao
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Lin
- Department of Neurology, Huashan Hospital, Fudan University, 12, Wulumuqi Road, Shanghai, China
| | - Chong Sun
- Department of Neurology, Huashan Hospital, Fudan University, 12, Wulumuqi Road, Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, 12, Wulumuqi Road, Shanghai, China
| | - Wenhua Zhu
- Department of Neurology, Huashan Hospital, Fudan University, 12, Wulumuqi Road, Shanghai, China
| | - Jianying Xi
- Department of Neurology, Huashan Hospital, Fudan University, 12, Wulumuqi Road, Shanghai, China.
| |
Collapse
|
8
|
Elhawary NA, AlJahdali IA, Abumansour IS, Azher ZA, Falemban AH, Madani WM, Alosaimi W, Alghamdi G, Sindi IA. Phenotypic variability to medication management: an update on fragile X syndrome. Hum Genomics 2023; 17:60. [PMID: 37420260 PMCID: PMC10329374 DOI: 10.1186/s40246-023-00507-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023] Open
Abstract
This review discusses the discovery, epidemiology, pathophysiology, genetic etiology, molecular diagnosis, and medication-based management of fragile X syndrome (FXS). It also highlights the syndrome's variable expressivity and common comorbid and overlapping conditions. FXS is an X-linked dominant disorder associated with a wide spectrum of clinical features, including but not limited to intellectual disability, autism spectrum disorder, language deficits, macroorchidism, seizures, and anxiety. Its prevalence in the general population is approximately 1 in 5000-7000 men and 1 in 4000-6000 women worldwide. FXS is associated with the fragile X messenger ribonucleoprotein 1 (FMR1) gene located at locus Xq27.3 and encodes the fragile X messenger ribonucleoprotein (FMRP). Most individuals with FXS have an FMR1 allele with > 200 CGG repeats (full mutation) and hypermethylation of the CpG island proximal to the repeats, which silences the gene's promoter. Some individuals have mosaicism in the size of the CGG repeats or in hypermethylation of the CpG island, both produce some FMRP and give rise to milder cognitive and behavioral deficits than in non-mosaic individuals with FXS. As in several monogenic disorders, modifier genes influence the penetrance of FMR1 mutations and FXS's variable expressivity by regulating the pathophysiological mechanisms related to the syndrome's behavioral features. Although there is no cure for FXS, prenatal molecular diagnostic testing is recommended to facilitate early diagnosis. Pharmacologic agents can reduce some behavioral features of FXS, and researchers are investigating whether gene editing can be used to demethylate the FMR1 promoter region to improve patient outcomes. Moreover, clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 and developed nuclease defective Cas9 (dCas9) strategies have promised options of genome editing in gain-of-function mutations to rewrite new genetic information into a specified DNA site, are also being studied.
Collapse
Affiliation(s)
- Nasser A. Elhawary
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, 21955 Saudi Arabia
| | - Imad A. AlJahdali
- Department of Community Medicine, College of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Iman S. Abumansour
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, 21955 Saudi Arabia
| | - Zohor A. Azher
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, 21955 Saudi Arabia
| | - Alaa H. Falemban
- Department of Pharmacology and Toxicology, College of Medicine, Umm Al-Qura University, Mecca, 24382 Saudi Arabia
| | - Wefaq M. Madani
- Department of Hematology and Immunology, Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Wafaa Alosaimi
- Department of Hematology, Maternity and Children Hospital, Mecca, Saudi Arabia
| | - Ghydda Alghamdi
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, 21955 Saudi Arabia
| | - Ikhlas A. Sindi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Preparatory Year Program, Batterjee Medical College, Jeddah, 21442 Saudi Arabia
| |
Collapse
|
9
|
Protic D, Polli R, Hwang YH, Mendoza G, Hagerman R, Durbin-Johnson B, Hayward BE, Usdin K, Murgia A, Tassone F. Activation Ratio Correlates with IQ in Female Carriers of the FMR1 Premutation. Cells 2023; 12:1711. [PMID: 37443745 PMCID: PMC10341054 DOI: 10.3390/cells12131711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Carriers of the FMR1 premutation (PM) allele are at risk of one or more clinical conditions referred to as FX premutation-associated conditions (FXPAC). Since the FMR1 gene is on the X chromosome, the activation ratio (AR) may impact the risk, age of onset, progression, and severity of these conditions. The aim of this study was to evaluate the reliability of AR measured using different approaches and to investigate potential correlations with clinical outcomes. Molecular and clinical assessments were obtained for 30 PM female participants, and AR was assessed using both Southern blot analysis (AR-Sb) and methylation PCR (AR-mPCR). Higher ARs were associated with lower FMR1 transcript levels for any given repeat length. The higher AR-Sb was significantly associated with performance, verbal, and full-scale IQ scores, confirming previous reports. However, the AR-mPCR was not significantly associated (p > 0.05) with these measures. Similarly, the odds of depression and the number of medical conditions were correlated with higher AR-Sb but not correlated with a higher AR-mPCR. This study suggests that AR-Sb may be a more reliable measure of the AR in female carriers of PM alleles. However, further studies are warranted in a larger sample size to fully evaluate the methylation status in these participants and how it may affect the clinical phenotype.
Collapse
Affiliation(s)
- Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Roberta Polli
- Laboratory of Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, 35128 Padova, Italy; (R.P.); (A.M.)
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35128 Padova, Italy
| | - Ye Hyun Hwang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (Y.H.H.); (G.M.)
| | - Guadalupe Mendoza
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (Y.H.H.); (G.M.)
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDH, University of California Davis, Sacramento, CA 95817, USA;
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Blythe Durbin-Johnson
- Department of Public Health Sciences, Division of Biostatistics, University of California, Davis, CA 95616, USA;
| | - Bruce E. Hayward
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (B.E.H.); (K.U.)
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (B.E.H.); (K.U.)
| | - Alessandra Murgia
- Laboratory of Molecular Genetics of Neurodevelopment, Department of Woman and Child Health, University of Padova, 35128 Padova, Italy; (R.P.); (A.M.)
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35128 Padova, Italy
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (Y.H.H.); (G.M.)
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDH, University of California Davis, Sacramento, CA 95817, USA;
| |
Collapse
|
10
|
Henden L, Fearnley LG, Grima N, McCann EP, Dobson-Stone C, Fitzpatrick L, Friend K, Hobson L, Chan Moi Fat S, Rowe DB, D'Silva S, Kwok JB, Halliday GM, Kiernan MC, Mazumder S, Timmins HC, Zoing M, Pamphlett R, Adams L, Bahlo M, Blair IP, Williams KL. Short tandem repeat expansions in sporadic amyotrophic lateral sclerosis and frontotemporal dementia. SCIENCE ADVANCES 2023; 9:eade2044. [PMID: 37146135 PMCID: PMC10162670 DOI: 10.1126/sciadv.ade2044] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Pathogenic short tandem repeat (STR) expansions cause over 20 neurodegenerative diseases. To determine the contribution of STRs in sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), we used ExpansionHunter, REviewer, and polymerase chain reaction validation to assess 21 neurodegenerative disease-associated STRs in whole-genome sequencing data from 608 patients with sporadic ALS, 68 patients with sporadic FTD, and 4703 matched controls. We also propose a data-derived outlier detection method for defining allele thresholds in rare STRs. Excluding C9orf72 repeat expansions, 17.6% of clinically diagnosed ALS and FTD cases had at least one expanded STR allele reported to be pathogenic or intermediate for another neurodegenerative disease. We identified and validated 162 disease-relevant STR expansions in C9orf72 (ALS/FTD), ATXN1 [spinal cerebellar ataxia type 1 (SCA1)], ATXN2 (SCA2), ATXN8 (SCA8), TBP (SCA17), HTT (Huntington's disease), DMPK [myotonic dystrophy type 1 (DM1)], CNBP (DM2), and FMR1 (fragile-X disorders). Our findings suggest clinical and pathological pleiotropy of neurodegenerative disease genes and highlight their importance in ALS and FTD.
Collapse
Affiliation(s)
- Lyndal Henden
- Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Liam G Fearnley
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Natalie Grima
- Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Emily P McCann
- Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Carol Dobson-Stone
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Lauren Fitzpatrick
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Kathryn Friend
- SA Pathology, Women's and Children's Hospital, North Adelaide, SA 5006, Australia
| | - Lynne Hobson
- SA Pathology, Women's and Children's Hospital, North Adelaide, SA 5006, Australia
| | - Sandrine Chan Moi Fat
- Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Dominic B Rowe
- Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Susan D'Silva
- Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - John B Kwok
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Srestha Mazumder
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Hannah C Timmins
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Margaret Zoing
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Roger Pamphlett
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Discipline of Pathology, The University of Sydney, Sydney, NSW 2050, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Lorel Adams
- Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ian P Blair
- Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Kelly L Williams
- Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
11
|
Zafarullah M, Li J, Tseng E, Tassone F. Structure and Alternative Splicing of the Antisense FMR1 (ASFMR1) Gene. Mol Neurobiol 2023; 60:2051-2061. [PMID: 36598648 PMCID: PMC10461537 DOI: 10.1007/s12035-022-03176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/10/2022] [Indexed: 01/05/2023]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by an expansion of 55-200 CGG repeats (premutation) in the 5'-UTR of the FMR1 gene. Bidirectional transcription at FMR1 locus has been demonstrated and specific alternative splicing of the Antisense FMR1 (ASFMR1) gene has been proposed to have a contributing role in the pathogenesis of FXTAS. The structure of ASFMR1 gene is still uncharacterized and it is currently unknown how many isoforms of the gene are expressed and at what level in premutation carriers (PM) and if they may contribute to the premutation pathology. In this study, we characterized the ASFMR1 gene structure and the transcriptional landscape by using PacBio SMRT sequencing with target enrichment (IDT customized probe panel). We identified 45 ASFMR1 isoforms ranging in sizes from 523 bp to 6 Kb, spanning approximately 59 kb of genomic DNA. Multiplexing and sequencing of six human brain samples from PM samples and normal control (HC) were carried out on the PacBio Sequel platform. We validated the presence of these isoforms by qRT-PCR and Sanger sequencing and characterized the acceptor and donor splicing site consensus sequences. Consistent with previous studies conducted in other tissue types, we found a high expression of ASFMR1 isoform Iso131bp in brain samples of PM as compared to HC, while no differences in expression levels were observed for the newly identified isoforms IsoAS1 and IsoAS2. We investigated the role of the splicing regulatory protein Sam68 which we did not observe in the alternative splicing of the ASFMR1 gene. Our study provides a useful insight into the structure of ASFMR1 gene and transcriptional landscape along with the expression pattern of various newly identified novel isoforms and on their potential role in premutation pathology.
Collapse
Affiliation(s)
- Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Jie Li
- Bioinformatics Core, Genome Center, University of California Davis, Davis, CA, 95616, USA
| | | | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA.
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA.
| |
Collapse
|
12
|
Cao Y, Tian W, Wu J, Song X, Cao L, Luan X. DNA hypermethylation of NOTCH2NLC in neuronal intranuclear inclusion disease: a case-control study. J Neurol 2022; 269:6049-6057. [PMID: 35857137 DOI: 10.1007/s00415-022-11272-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND GGC repeat expansions in NOTCH2NLC gene have been recently proposed to cause neuronal intranuclear inclusion disease (NIID) via prevailing gain-of-function mechanism (protein and RNA toxicity). Nevertheless, increasing evidences suggest that epigenetics can also play a role in the pathogenesis of repeat-mediated disorders. METHODS In this study, using MethylTarget sequencing, we performed a quantitative analysis of the methylation status of 68 CpG sites located around the NOTCH2NLC promoter in 25 NIID patients and 25 age- and gender-matched healthy controls. We further explored the correlation of DNA methylation (DNAm) status with disease features and performed receiver operating characteristic (ROC) analysis. RESULTS DNAm levels of GGC repeats and adjacent CpG islands were higher in the NIID patients than in controls, independent of gender and family history. DNAm levels at 4 CpG sites (CpG_207, CpG_421, GpG_473 and CpG_523) were negatively correlated with age at onset, and DNAm levels at 7 CpG sites (CpG_25, CpG_298, CpG_336, CpG_374, CpG_411, CpG_421 and CpG_473) were positively correlated with GGC repeats. NIID patients had concomitant system symptoms besides nervous system symptoms, and negative correlations between NOTCH2NLC DNAm levels and the number of multi-systemic involvement were observed in the study. The area under the ROC curve at NOTCH2NLC DNAm level reached to 0.733 for the best cutoff point of 0.012. CONCLUSIONS Our findings suggested the aberrant DNAm status of the NOTCH2NLC promoter in NIID, and we explored the link between DNAm levels and disease features quantitatively for the first time, which may help to further explore pathogenic mechanism.
Collapse
Affiliation(s)
- Yuwen Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wotu Tian
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jingying Wu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xingwang Song
- Institute of Neuroscience and Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Xinghua Luan
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
13
|
Tabolacci E, Nobile V, Pucci C, Chiurazzi P. Mechanisms of the FMR1 Repeat Instability: How Does the CGG Sequence Expand? Int J Mol Sci 2022; 23:ijms23105425. [PMID: 35628235 PMCID: PMC9141726 DOI: 10.3390/ijms23105425] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
A dynamic mutation in exon 1 of the FMR1 gene causes Fragile X-related Disorders (FXDs), due to the expansion of an unstable CGG repeat sequence. Based on the CGG sequence size, two types of FMR1 alleles are possible: “premutation” (PM, with 56-200 CGGs) and “full mutation” (FM, with >200 triplets). Premutated females are at risk of transmitting a FM allele that, when methylated, epigenetically silences FMR1 and causes Fragile X syndrome (FXS), a very common form of inherited intellectual disability (ID). Expansions events of the CGG sequence are predominant over contractions and are responsible for meiotic and mitotic instability. The CGG repeat usually includes one or more AGG interspersed triplets that influence allele stability and the risk of transmitting FM to children through maternal meiosis. A unique mechanism responsible for repeat instability has not been identified, but several processes are under investigations using cellular and animal models. The formation of unusual secondary DNA structures at the expanded repeats are likely to occur and contribute to the CGG expansion. This review will focus on the current knowledge about CGG repeat instability addressing the CGG sequence expands.
Collapse
Affiliation(s)
- Elisabetta Tabolacci
- Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (E.T.); (V.N.); (C.P.)
| | - Veronica Nobile
- Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (E.T.); (V.N.); (C.P.)
| | - Cecilia Pucci
- Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (E.T.); (V.N.); (C.P.)
| | - Pietro Chiurazzi
- Dipartimento Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (E.T.); (V.N.); (C.P.)
- UOC Genetica Medica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-06-3015-4606
| |
Collapse
|
14
|
Stevanovski I, Chintalaphani SR, Gamaarachchi H, Ferguson JM, Pineda SS, Scriba CK, Tchan M, Fung V, Ng K, Cortese A, Houlden H, Dobson-Stone C, Fitzpatrick L, Halliday G, Ravenscroft G, Davis MR, Laing NG, Fellner A, Kennerson M, Kumar KR, Deveson IW. Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. SCIENCE ADVANCES 2022; 8:eabm5386. [PMID: 35245110 PMCID: PMC8896783 DOI: 10.1126/sciadv.abm5386] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/11/2022] [Indexed: 05/25/2023]
Abstract
More than 50 neurological and neuromuscular diseases are caused by short tandem repeat (STR) expansions, with 37 different genes implicated to date. We describe the use of programmable targeted long-read sequencing with Oxford Nanopore's ReadUntil function for parallel genotyping of all known neuropathogenic STRs in a single assay. Our approach enables accurate, haplotype-resolved assembly and DNA methylation profiling of STR sites, from a list of predetermined candidates. This correctly diagnoses all individuals in a small cohort (n = 37) including patients with various neurogenetic diseases (n = 25). Targeted long-read sequencing solves large and complex STR expansions that confound established molecular tests and short-read sequencing and identifies noncanonical STR motif conformations and internal sequence interruptions. We observe a diversity of STR alleles of known and unknown pathogenicity, suggesting that long-read sequencing will redefine the genetic landscape of repeat disorders. Last, we show how the inclusion of pharmacogenomic genes as secondary ReadUntil targets can further inform patient care.
Collapse
Affiliation(s)
- Igor Stevanovski
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Sanjog R. Chintalaphani
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Hasindu Gamaarachchi
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - James M. Ferguson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Sandy S. Pineda
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- The University of Sydney, Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, Camperdown, NSW, Australia
| | - Carolin K. Scriba
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
- Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands, WA, Australia
| | - Michel Tchan
- Westmead Hospital, Westmead, NSW, Australia and Sydney Medical School, The University of Sydney, NSW, Australia
| | - Victor Fung
- Westmead Hospital, Westmead, NSW, Australia and Sydney Medical School, The University of Sydney, NSW, Australia
| | - Karl Ng
- Department of Neurology, Royal North Shore Hospital and The University of Sydney, Sydney, NSW, Australia
| | - Andrea Cortese
- Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- The National Hospital for Neurology and Neurosurgery, London, UK
| | - Henry Houlden
- Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- The National Hospital for Neurology and Neurosurgery, London, UK
| | - Carol Dobson-Stone
- The University of Sydney, Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, Camperdown, NSW, Australia
| | - Lauren Fitzpatrick
- The University of Sydney, Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, Camperdown, NSW, Australia
| | - Glenda Halliday
- The University of Sydney, Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, Camperdown, NSW, Australia
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Mark R. Davis
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Nigel G. Laing
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
- Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands, WA, Australia
| | - Avi Fellner
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- The Neurology Department, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Marina Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, Australia
- Faculty of Health and Medicine, University of Sydney, Camperdown, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord, NSW, Australia
| | - Kishore R. Kumar
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord, NSW, Australia
- Neurology Department, Central Clinical School, Concord Repatriation General Hospital, University of Sydney, Concord, NSW, Australia
| | - Ira W. Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
15
|
Meng L, Kaufmann WE, Frye RE, Ong K, Kaminski JW, Velinov M, Berry-Kravis E. The association between mosaicism type and cognitive and behavioral functioning among males with fragile X syndrome. Am J Med Genet A 2022; 188:858-866. [PMID: 35148024 PMCID: PMC10948005 DOI: 10.1002/ajmg.a.62594] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/09/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022]
Abstract
Mosaicism in fragile X syndrome (FXS) refers to two different FMR1 allele variations: size mosaicism represents different numbers of CGG repeats between the two alleles, such that in addition to a full mutation allele there is an allele in the normal or premutation range of CGG repeats, while methylation mosaicism indicates whether a full-mutation allele is fully or partially methylated. The present study explored the association between mosaicism type and cognitive and behavioral functioning in a large sample of males 3 years and older (n = 487) with FXS, participating in the Fragile X Online Registry with Accessible Research Database. Participants with methylation mosaicism were less severely cognitively affected as indicated by a less severe intellectual disability rating, higher intelligence quotient and adaptive behavior score, and lower social impairment score. In contrast, the presence of size mosaicism was not significantly associated with better cognitive and behavioral outcomes than full mutation. Our findings suggest that methylation mosaicism is associated with better cognitive functioning and adaptive behavior and less social impairment. Further research could assess to what extent these cognitive and behavioral differences depend on molecular diagnostic methods and the impact of mosaicism on prognosis of individuals with FXS.
Collapse
Affiliation(s)
- Lu Meng
- Centers for Disease Control and Prevention, National Center on Birth Defects and Developmental Disabilities, Atlanta, Georgia, USA
| | - Walter E. Kaufmann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Richard E. Frye
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, Arizona, USA
| | - Katherine Ong
- Centers for Disease Control and Prevention, National Center on Birth Defects and Developmental Disabilities, Atlanta, Georgia, USA
| | - Jennifer W. Kaminski
- Centers for Disease Control and Prevention, National Center on Birth Defects and Developmental Disabilities, Atlanta, Georgia, USA
| | - Milen Velinov
- Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics and Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
16
|
Wang JY, Grigsby J, Placido D, Wei H, Tassone F, Kim K, Hessl D, Rivera SM, Hagerman RJ. Clinical and Molecular Correlates of Abnormal Changes in the Cerebellum and Globus Pallidus in Fragile X Premutation. Front Neurol 2022; 13:797649. [PMID: 35211082 PMCID: PMC8863211 DOI: 10.3389/fneur.2022.797649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Fragile X premutation carriers (55-200 CGG triplets) may develop a progressive neurodegenerative disorder, fragile X-associated tremor/ataxia syndrome (FXTAS), after the age of 50. The neuroradiologic markers of FXTAS are hyperintense T2-signals in the middle cerebellar peduncle-the MCP sign. We recently noticed abnormal T2-signals in the globus pallidus in male premutation carriers and controls but the prevalence and clinical significance were unknown. METHODS We estimated the prevalence of the MCP sign and pallidal T2-abnormalities in 230 male premutation carriers and 144 controls (aged 8-86), and examined the associations with FXTAS symptoms, CGG repeat length, and iron content in the cerebellar dentate nucleus and globus pallidus. RESULTS Among participants aged ≥45 years (175 premutation carriers and 82 controls), MCP sign was observed only in premutation carriers (52 vs. 0%) whereas the prevalence of pallidal T2-abnormalities approached significance in premutation carriers compared with controls after age-adjustment (25.1 vs. 13.4%, p = 0.069). MCP sign was associated with impaired motor and executive functioning, and the additional presence of pallidal T2-abnormalities was associated with greater impaired executive functioning. Among premutation carriers, significant iron accumulation was observed in the dentate nucleus, and neither pallidal or MCP T2-abnormalities affected measures of the dentate nucleus. While the MCP sign was associated with CGG repeat length >75 and dentate nucleus volume correlated negatively with CGG repeat length, pallidal T2-abnormalities did not correlate with CGG repeat length. However, pallidal signal changes were associated with age-related accelerated iron depletion and variability and having both MCP and pallidal signs further increased iron variability in the globus pallidus. CONCLUSIONS Only the MCP sign, not pallidal abnormalities, revealed independent associations with motor and cognitive impairment; however, the occurrence of combined MCP and pallidal T2-abnormalities may present a risk for greater cognitive impairment and increased iron variability in the globus pallidus.
Collapse
Affiliation(s)
- Jun Yi Wang
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
| | - Jim Grigsby
- Departments of Psychology and Medicine, University of Colorado Denver, Denver, CO, United States
| | - Diego Placido
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute for Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, United States
- The MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States
| | - Kyoungmi Kim
- Department of Public Health Sciences, University of California Davis School of Medicine, Sacramento, CA, United States
| | - David Hessl
- The MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Susan M. Rivera
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
- Departments of Psychology and Medicine, University of Colorado Denver, Denver, CO, United States
- The MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States
| | - Randi J. Hagerman
- The MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
17
|
Thomas S, Fayet OM, Truffault F, Fadel E, Provost B, Hamza A, Berrih-Aknin S, Bonnefont JP, Le Panse R. Altered expression of fragile X mental retardation-1 (FMR1) in the thymus in autoimmune myasthenia gravis. J Neuroinflammation 2021; 18:270. [PMID: 34789272 PMCID: PMC8597299 DOI: 10.1186/s12974-021-02311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
Predisposition to autoimmunity and inflammatory disorders is observed in patients with fragile X-associated syndromes. These patients have increased numbers of CGG triplets in the 5’ UTR region of FMR1 (Fragile X Mental Retardation 1) gene, that affects its expression. FMR1 is decreased in the thymus of myasthenia gravis (MG) patients, a prototypical autoimmune disease. We thus analyzed the number of CGG triplets in FMR1 in MG, and explored the regulatory mechanisms affecting thymic FMR1 expression. We measured the number of CGGs using thymic DNA from MG and controls, but no abnormalities in CGGs were found in MG that could explain thymic decrease of FMR1. We next analyzed by RT-PCR the expression of FMR1 and its transcription factors in thymic samples, and in thymic epithelial cell cultures in response to inflammatory stimuli. In control thymuses, FMR1 expression was higher in males than females, and correlated with CTCF (CCCTC-binding factor) expression. In MG thymuses, decreased expression of FMR1 was correlated with both CTCF and MAX (Myc-associated factor X) expression. Changes in FMR1 expression were supported by western blot analyses for FMRP. In addition, we demonstrated that FMR1, CTCF and MAX expression in thymic epithelial cells was also sensitive to inflammatory signals. Our results suggest that FMR1 could play a central role in the thymus and autoimmunity. First, in relation with the higher susceptibility of females to autoimmune diseases. Second, due to the modulation of its expression by inflammatory signals that are known to be altered in MG thymuses.
Collapse
Affiliation(s)
- Scott Thomas
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013, Paris, France
| | - Odessa-Maud Fayet
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013, Paris, France
| | - Frédérique Truffault
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013, Paris, France
| | - Elie Fadel
- Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France
| | - Bastien Provost
- Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France
| | - Abderaouf Hamza
- Université de Paris, Institut Imagine UMR1163, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013, Paris, France
| | - Jean-Paul Bonnefont
- Université de Paris, Institut Imagine UMR1163, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
| | - Rozen Le Panse
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013, Paris, France.
| |
Collapse
|
18
|
FMRP Levels in Human Peripheral Blood Leukocytes Correlates with Intellectual Disability. Diagnostics (Basel) 2021; 11:diagnostics11101780. [PMID: 34679478 PMCID: PMC8534530 DOI: 10.3390/diagnostics11101780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. FXS is an X-linked, neurodevelopmental disorder caused by a CGG trinucleotide repeat expansion in the 5′ untranslated region (UTR) of the Fragile X Mental Retardation gene, FMR1. Greater than 200 CGG repeats results in epigenetic silencing of the gene leading to the deficiency or absence of Fragile X mental retardation protein (FMRP). The loss of FMRP is considered the root cause of FXS. The relationship between neurological function and FMRP expression in peripheral blood mononuclear cells (PBMCs) has not been well established. Assays to detect and measure FMR1 and FMRP have been described; however, none are sufficiently sensitive, precise, or quantitative to properly characterize the relationships between cognitive ability and CGG repeat number, FMR1 mRNA expression, or FMRP expression measured in PBMCs. To address these limitations, two novel immunoassays were developed and optimized, an electro-chemiluminescence immunoassay and a multiparameter flow cytometry assay. Both assays were performed on PMBCs isolated from 27 study participants with FMR1 CGG repeats ranging from normal to full mutation. After correcting for methylation, a significant positive correlation between CGG repeat number and FMR1 mRNA expression levels and a significant negative correlation between FMRP levels and CGG repeat expansion was observed. Importantly, a high positive correlation was observed between intellectual quotient (IQ) and FMRP expression measured in PBMCs.
Collapse
|
19
|
Payán-Gómez C, Ramirez-Cheyne J, Saldarriaga W. Variable Expressivity in Fragile X Syndrome: Towards the Identification of Molecular Characteristics That Modify the Phenotype. Appl Clin Genet 2021; 14:305-312. [PMID: 34262328 PMCID: PMC8273740 DOI: 10.2147/tacg.s265835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
Fragile X syndrome (FXS), is an X-linked inherited genetic disease. FXS is the leading cause of inherited intellectual disability and autism in the world. Those affected are characterized by intellectual disability, language deficit, typical facies, and macroorchidism. Alterations in the FMR1 gene have been associated with FXS. The majority of people with this condition have an allele with an expansion of more than 200 repeats in a tract of CGGs within the 5' untranslated region, and this expansion is associated with a hypermethylated state of the gene promoter. FXS has incomplete penetrance and variable expressivity. Intellectual disability is present in 100% of males and 60% of females. Autism spectrum disorder symptoms appear in 50% to 60% of males and 20% of females. Other characteristics such as behavioral and physical alterations have significant variations in presentation frequency. The molecular causes of the variable phenotype in FXS patients are becoming clear: these causes are related to the FMR1 gene itself and to secondary, modifying gene effects. In FXS patients, size and methylation mosaicisms are common. Secondary to mosaicism, there is a variation in the quantity of FMR1 mRNA and the protein coded by the gene Fragile Mental Retardation Protein (FMRP). Potential modifier genes have also been proposed, with conflicting results. Characterizing patients according to CGG expansion, methylation status, concentration of mRNA and FMRP, and genotypification for possible modifier genes in a clinical setting offers an opportunity to identify predictors for treatment response evaluation. When intervention strategies become available to modulate the course of the disease they could be crucial for selecting patients and identifying the best therapeutic intervention. The purpose of this review is to present the information available about the molecular causes of the variability of the expression incomplete penetrance and variable expressivity in FXS and their potential clinical applications.
Collapse
Affiliation(s)
- César Payán-Gómez
- Deparment of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Julian Ramirez-Cheyne
- Health Faculty, Universidad del Valle, Cali, Colombia
- Hospital Universitario del Valle, Cali, Colombia
| | - Wilmar Saldarriaga
- Health Faculty, Universidad del Valle, Cali, Colombia
- Hospital Universitario del Valle, Cali, Colombia
| |
Collapse
|
20
|
Storey E, Bui MQ, Stimpson P, Tassone F, Atkinson A, Loesch DZ. Relationships between motor scores and cognitive functioning in FMR1 female premutation X carriers indicate early involvement of cerebello-cerebral pathways. CEREBELLUM & ATAXIAS 2021; 8:15. [PMID: 34116720 PMCID: PMC8196444 DOI: 10.1186/s40673-021-00138-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/28/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Smaller expansions of CGG trinucleotide repeats in the FMR1 X-linked gene termed 'premutation' lead to a neurodegenerative disorder: Fragile X Associated Tremor/Ataxia Syndrome (FXTAS) in nearly half of aged carrier males, and 8-16% females. Core features include intention tremor, ataxia, and cognitive decline, and white matter lesions especially in cerebellar and periventricular locations. A 'toxic' role of elevated and expanded FMR1 mRNA has been linked to the pathogenesis of this disorder. The emerging issue concerns the trajectory of the neurodegenerative changes: is the pathogenetic effect confined to overt clinical manifestations? Here we explore the relationships between motor and cognitive scale scores in a sample of 57 asymptomatic adult female premutation carriers of broad age range. METHODS Three motor scale scores (ICARS-for tremor/ataxia, UPDRS-for parkinsonism, and Clinical Tremor) were related to 11 cognitive tests using Spearman's rank correlations. Robust regression, applied in relationships between all phenotypic measures, and genetic molecular and demographic data, identified age and educational levels as common correlates of these measures, which were then incorporated as confounders in correlation analysis. RESULTS Cognitive tests demonstrating significant correlations with motor scores were those assessing non-verbal reasoning on Matrix Reasoning (p-values from 0.006 to 0.011), and sequencing and alteration on Trails-B (p-values from 0.008 to 0.001). Those showing significant correlations with two motor scores-ICARS and Clinical Tremor- were psychomotor speed on Symbol Digit Modalities (p-values from 0.014 to 0.02) and working memory on Digit Span Backwards (p-values from 0.024 to 0.011). CONCLUSIONS Subtle motor impairments correlating with cognitive, particularly executive, deficits may occur in female premutation carriers not meeting diagnostic criteria for FXTAS. This pattern of cognitive deficits is consistent with those seen in other cerebellar disorders. Our results provide evidence that more than one category of clinical manifestation reflecting cerebellar changes - motor and cognitive - may be simultaneously affected by premutation carriage across a broad age range in asymptomatic carriers.
Collapse
Affiliation(s)
- Elsdon Storey
- Department of Medicine (Neuroscience), Monash University, 5th Floor, Centre Block, Alfred Hospital Campus, Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Minh Q Bui
- Centre for Molecular, Environmental, Genetic and Analytic, Epidemiology, University of Melbourne, Parkville, Victoria, Australia
| | - Paige Stimpson
- Wellness and Recovery Centre, Monash Medical Centre, Clayton, Victoria, Australia
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Davis, California, USA
| | - Anna Atkinson
- School of Psychology and Public Health, La Trobe University, Melbourne, Bundoora, Victoria, Australia
| | - Danuta Z Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, Bundoora, Victoria, Australia
| |
Collapse
|
21
|
Tassanakijpanich N, Hagerman RJ, Worachotekamjorn J. Fragile X premutation and associated health conditions: A review. Clin Genet 2021; 99:751-760. [PMID: 33443313 DOI: 10.1111/cge.13924] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
Fragile X syndrome (FXS) is the most common single gene disorder, which causes autism and intellectual disability. The fragile X mental retardation 1 (FMR1) gene is silenced when cytosine-guanine-guanine (CGG) triplet repeats exceed 200, which is the full mutation that causes FXS. Carriers of FXS have a CGG repeat between 55 and 200, which is defined as a premutation and transcription of the gene is overactive with high levels of the FMR1 mRNA. Most carriers of the premutation have normal levels of fragile X mental retardation protein (FMRP) and a normal intelligence, but in the upper range of the premutation (120-200) the FMRP level may be lower than normal. The clinical problems associated with the premutation are caused by the RNA toxicity associated with increased FMR1 mRNA levels, although for some mildly lowered FMRP can cause problems associated with FXS. The RNA toxicity causes various health problems in the carriers including but not limited to fragile X-associated tremor/ataxia syndrome, fragile X-associated primary ovarian insufficiency, and fragile X-associated neuropsychiatric disorders. Since some individuals with neuropsychiatric problems do not meet the severity for a diagnosis of a "disorder" then the condition can be labeled as fragile X premutation associated condition (FXPAC). Physicians must be able to recognize these health problems in the carriers and provide appropriate management.
Collapse
Affiliation(s)
| | - Randi J Hagerman
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, USA.,Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, California, USA
| | | |
Collapse
|
22
|
Loesch DZ, Tassone F, Atkinson A, Stimpson P, Trost N, Pountney DL, Storey E. Differential Progression of Motor Dysfunction Between Male and Female Fragile X Premutation Carriers Reveals Novel Aspects of Sex-Specific Neural Involvement. Front Mol Biosci 2021; 7:577246. [PMID: 33511153 PMCID: PMC7835843 DOI: 10.3389/fmolb.2020.577246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Expansions of the CGG repeat in the non-coding segment of the FMR1 X-linked gene are associated with a variety of phenotypic changes. Large expansions (>200 repeats), which cause a severe neurodevelopmental disorder, the fragile x syndrome (FXS), are transmitted from the mothers carrying smaller, unstable expansions ranging from 55 to 200 repeats, termed the fragile X premutation. Female carriers of this premutation may themselves experience a wide range of clinical problems throughout their lifespan, the most severe being the late onset neurodegenerative condition called "Fragile X-Associated Tremor Ataxia Syndrome" (FXTAS), occurring between 8 and 16% of these carriers. Male premutation carriers, although they do not transmit expanded alleles to their daughters, have a much higher risk (40-50%) of developing FXTAS. Although this disorder is more prevalent and severe in male than female carriers, specific sex differences in clinical manifestations and progress of the FXTAS spectrum have been poorly documented. Here we compare the pattern and rate of progression (per year) in three motor scales including tremor/ataxia (ICARS), tremor (Clinical Tremor Rating scale, CRST), and parkinsonism (UPDRS), and in several cognitive and psychiatric tests scores, between 13 female and 9 male carriers initially having at least one of the motor scores ≥10. Moreover, we document the differences in each of the clinical and cognitive measures between the cross-sectional samples of 21 female and 24 male premutation carriers of comparable ages with FXTAS spectrum disorder (FSD), that is, who manifest one or more features of FXTAS. The results of progression assessment showed that it was more than twice the rate in male than in female carriers for the ICARS-both gait ataxia and kinetic tremor domains and twice as high in males on the CRST scale. In contrast, sex difference was negligible for the rate of progress in UPDRS, and all the cognitive measures. The overall psychiatric pathology score (SCL-90), as well as Anxiety and Obsessive/Compulsive domain scores, showed a significant increase only in the female sample. The pattern of sex differences for progression in motor scores was consistent with the results of comparison between larger, cross-sectional samples of male and female carriers affected with the FSD. These results were in concert with sex-specific distribution of MRI T2 white matter hyperintensities: all males, but no females, showed the middle cerebellar peduncle white matter hyperintensities (MCP sign), although the distribution and severity of these hyperintensities in the other brain regions were not dissimilar between the two sexes. In conclusion, the magnitude and specific pattern of sex differences in manifestations and progression of clinically recorded changes in motor performance and MRI lesion distribution support, on clinical grounds, the possibility of certain sex-limited factor(s) which, beyond the predictable effect of the second, normal FMR1 alleles in female premutation carriers, may have neuroprotective effects, specifically concerning the cerebellar circuitry.
Collapse
Affiliation(s)
- Danuta Z. Loesch
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
- MIND Institute, University of California Davis Medical Center, Davis, CA, United States
| | - Anna Atkinson
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia
| | - Paige Stimpson
- Wellness and Recovery Centre, Monash Medical Centre, Clayton, VIC, Australia
| | - Nicholas Trost
- Medical Imaging Department, St Vincent's Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Dean L. Pountney
- Neurodegeneration Research Group, School of Medical Science, Griffith University, Gold Coast Campus, Southport, NC, Australia
| | - Elsdon Storey
- Department of Medicine (Neuroscience), Monash University, Alfred Hospital Campus, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Nakayama Y, Adachi K, Shioda N, Maeta S, Nanba E, Kugoh H. Establishment of FXS-A9 panel with a single human X chromosome from fragile X syndrome-associated individual. Exp Cell Res 2020; 398:112419. [PMID: 33296661 DOI: 10.1016/j.yexcr.2020.112419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022]
Abstract
Fragile X syndrome (FXS) is the most common inheritable form of intellectual disability. FMR1, the gene responsible for FXS, is located on human chromosome Xq27.3 and contains a stretch of CGG trinucleotide repeats in its 5' untranslated region. FXS is caused by CGG repeats that expand beyond 200, resulting in FMR1 silencing via promoter hypermethylation. The molecular mechanism underlying CGG repeat expansion, a fundamental cause of FXS, remains poorly understood, partly due to a lack of experimental systems. Accumulated evidence indicates that the large chromosomal region flanking a CGG repeat is critical for repeat dynamics. In the present study, we isolated and introduced whole human X chromosomes from healthy, FXS premutation carriers, or FXS patients who carried disease condition-associated CGG repeat lengths, into mouse A9 cells via microcell-mediated chromosome transfer. The CGG repeat length-associated methylation status and human FMR1 expression in these monochromosomal hybrid cells mimicked those in humans. Thus, this set of A9 cells containing CGG repeats from three different origins (FXS-A9 panel) may provide a valuable resource for investigating a series of genetic and epigenetic CGG repeat dynamics during FXS pathogenesis.
Collapse
Affiliation(s)
- Yuji Nakayama
- Division of Radioisotope Science, Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Kaori Adachi
- Division of Genomic Science, Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Nofirifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Shoya Maeta
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Eiji Nanba
- Office for Research Strategy, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Hiroyuki Kugoh
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan; Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| |
Collapse
|
24
|
Tassanakijpanich N, Cohen J, Cohen R, Srivatsa UN, Hagerman RJ. Cardiovascular Problems in the Fragile X Premutation. Front Genet 2020; 11:586910. [PMID: 33133171 PMCID: PMC7578382 DOI: 10.3389/fgene.2020.586910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
There is a dearth of information about cardiovascular problems in fragile X premutation carriers who have 55–200 CGG repeats in fragile X mental retardation 1 (FMR1) gene. The FMR1 expansion in the premutation range leads to toxic RNA gain-of-function resulting in cellular dysregulation. The mechanism of RNA toxicity underlies all of the premutation disorders including fragile X-associated tremor/ataxia syndrome, fragile X-associated primary ovarian insufficiency, and fragile X-associated neuropsychiatric disorder. Cardiovascular problems particularly autonomic dysfunction, hypertension, and cardiac arrhythmias are not uncommon in premutation carriers. Some arterial problems and valvular heart diseases have also been reported. This article reviews cardiovascular problems in premutation carriers and discusses possible contributing mechanisms including RNA toxicity and mild fragile X mental retardation protein deficiency. Further research studies are needed in order to prove a direct association of the cardiovascular problems in fragile X premutation carriers because such knowledge will lead to better preventative treatment.
Collapse
Affiliation(s)
- Nattaporn Tassanakijpanich
- UC Davis MIND Institute, UC Davis Health, Sacramento, CA, United States.,Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Jonathan Cohen
- Fragile X Alliance Clinic, Genetic Clinics Australia, Melbourne, VIC, Australia
| | - Rashelle Cohen
- Fragile X Alliance Clinic, Genetic Clinics Australia, Melbourne, VIC, Australia
| | - Uma N Srivatsa
- Division of Cardiovascular Medicine, Department of Internal Medicine, UC Davis Medical Center, Sacramento, CA, United States
| | - Randi J Hagerman
- UC Davis MIND Institute, UC Davis Health, Sacramento, CA, United States.,Department of Pediatrics, University of California, Davis, Davis, School of Medicine, Sacramento, CA, United States
| |
Collapse
|
25
|
Urine-Derived Epithelial Cell Lines: A New Tool to Model Fragile X Syndrome (FXS). Cells 2020; 9:cells9102240. [PMID: 33027907 PMCID: PMC7600987 DOI: 10.3390/cells9102240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/08/2023] Open
Abstract
Fragile X syndrome (FXS) is an X-linked neurodevelopmental condition associated with intellectual disability and behavioral problems due to the lack of the Fragile X mental retardation protein (FMRP), which plays a crucial role in synaptic plasticity and memory. A desirable in vitro cell model to study FXS would be one that can be generated by simple isolation and culture method from a collection of a non-invasive donor specimen. Currently, the various donor-specific cells can be isolated mainly from peripheral blood and skin biopsy. However, they are somewhat invasive methods for establishing cell lines from the primary subject material. In this study, we characterized a cost-effective and straightforward method to derive epithelial cell lines from urine samples collected from participants with FXS and healthy controls (TD). The urine-derived cells expressed epithelial cell surface markers via fluorescence-activated cell sorting (FACS). We observed inter, and the intra-tissue CGG mosaicism in the PBMCs and the urine-derived cells from participants with FXS potentially related to the observed variations in the phenotypic and clinical presentation FXS. We characterized these urine-derived epithelial cells for FMR1 mRNA and FMRP expression and observed some expression in the lines derived from full mutation mosaic participants. Further, FMRP expression was localized in the cytoplasm of the urine-derived epithelial cells of healthy controls. Deficient FMRP expression was also observed in mosaic males, while, as expected, no expression was observed in cells derived from participants with a hypermethylated full mutation.
Collapse
|
26
|
Elevated FMR1-mRNA and lowered FMRP - A double-hit mechanism for psychiatric features in men with FMR1 premutations. Transl Psychiatry 2020; 10:205. [PMID: 32576818 PMCID: PMC7311546 DOI: 10.1038/s41398-020-00863-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 01/07/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by a full mutation of the FMR1 gene (>200 CGG repeats and subsequent methylation), such that there is little or no FMR1 protein (FMRP) produced, leading to intellectual disability (ID). Individuals with the premutation allele (55-200 CGG repeats, generally unmethylated) have elevated FMR1 mRNA levels, a consequence of enhanced transcription, resulting in neuronal toxicity and a spectrum of premutation-associated disorders, including the neurodegenerative disorder fragile X-associated tremor/ataxia syndrome (FXTAS). Here we described 14 patients who had both lowered FMRP and elevated FMR1 mRNA levels, representing dual mechanisms of clinical involvement, which may combine features of both FXS and FXTAS. In addition, the majority of these cases show psychiatric symptoms, including bipolar disorder, and/or psychotic features, which are rarely seen in those with just FXS.
Collapse
|
27
|
Khristich AN, Mirkin SM. On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. J Biol Chem 2020; 295:4134-4170. [PMID: 32060097 PMCID: PMC7105313 DOI: 10.1074/jbc.rev119.007678] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expansions of simple tandem repeats are responsible for almost 50 human diseases, the majority of which are severe, degenerative, and not currently treatable or preventable. In this review, we first describe the molecular mechanisms of repeat-induced toxicity, which is the connecting link between repeat expansions and pathology. We then survey alternative DNA structures that are formed by expandable repeats and review the evidence that formation of these structures is at the core of repeat instability. Next, we describe the consequences of the presence of long structure-forming repeats at the molecular level: somatic and intergenerational instability, fragility, and repeat-induced mutagenesis. We discuss the reasons for gender bias in intergenerational repeat instability and the tissue specificity of somatic repeat instability. We also review the known pathways in which DNA replication, transcription, DNA repair, and chromatin state interact and thereby promote repeat instability. We then discuss possible reasons for the persistence of disease-causing DNA repeats in the genome. We describe evidence suggesting that these repeats are a payoff for the advantages of having abundant simple-sequence repeats for eukaryotic genome function and evolvability. Finally, we discuss two unresolved fundamental questions: (i) why does repeat behavior differ between model systems and human pedigrees, and (ii) can we use current knowledge on repeat instability mechanisms to cure repeat expansion diseases?
Collapse
Affiliation(s)
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
28
|
Kim K, Hessl D, Randol JL, Espinal GM, Schneider A, Protic D, Aydin EY, Hagerman RJ, Hagerman PJ. Association between IQ and FMR1 protein (FMRP) across the spectrum of CGG repeat expansions. PLoS One 2019; 14:e0226811. [PMID: 31891607 PMCID: PMC6938341 DOI: 10.1371/journal.pone.0226811] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
Fragile X syndrome, the leading heritable form of intellectual disability, is caused by hypermethylation and transcriptional silencing of large (CGG) repeat expansions (> 200 repeats) in the 5′ untranslated region of the fragile X mental retardation 1 (FMR1) gene. As a consequence of FMR1 gene silencing, there is little or no production of FMR1 protein (FMRP), an important element in normal synaptic function. Although the absence of FMRP has long been known to be responsible for the cognitive impairment in fragile X syndrome, the relationship between FMRP level and cognitive ability (IQ) is only imprecisely understood. To address this issue, a high-throughput, fluorescence resonance energy transfer (FRET) assay has been used to quantify FMRP levels in dermal fibroblasts, and the relationship between FMRP and IQ measures was assessed by statistical analysis in a cohort of 184 individuals with CGG-repeat lengths spanning normal (< 45 CGGs) to full mutation (> 200 CGGs) repeat ranges in fibroblasts. The principal findings of the current study are twofold: i) For those with normal CGG repeats, IQ is no longer sensitive to further increases in FMRP above an FMRP threshold of ~70% of the mean FMRP level; below this threshold, IQ decreases steeply with further decreases in FMRP; and ii) For the current cohort, a mean IQ of 85 (lower bound for the normal IQ range) is attained for FMRP levels that are only ~35% of the mean FMRP level among normal CGG-repeat controls. The current results should help guide expectations for efforts to induce FMR1 gene activity and for the levels of cognitive function expected for a given range of FMRP levels.
Collapse
Affiliation(s)
- Kyoungmi Kim
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, California, United States of America
| | - David Hessl
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, California, United States of America
| | - Jamie L. Randol
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, United States of America
| | - Glenda M. Espinal
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, United States of America
| | - Andrea Schneider
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
- Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, California, United States of America
| | - Dragana Protic
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
| | - Elber Yuksel Aydin
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
| | - Randi J. Hagerman
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
- Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, California, United States of America
| | - Paul J. Hagerman
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, United States of America
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Methylated premutation of the FMR1 gene in three sisters: correlating CGG expansion and epigenetic inactivation. Eur J Hum Genet 2019; 28:567-575. [PMID: 31804632 DOI: 10.1038/s41431-019-0554-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/07/2019] [Accepted: 11/17/2019] [Indexed: 11/08/2022] Open
Abstract
Fragile X syndrome (FXS) is a very frequent cause of inherited intellectual disability (ID) and autism. Most FXS patients have an expansion over 200 repeats of (CGG)n sequence ("full mutation" (FM)) located in the 5'UTR of the FMR1 gene, resulting in local DNA methylation (methylated "full mutation" (MFM)) and epigenetic silencing. The absence of the FMRP protein is responsible for the clinical phenotype of FXS. FM arises from a smaller maternal allele with 56-200 CGG repeats ("premutation" (PM)) during maternal meiosis. Carriers of PM alleles, which are typically unmethylated, can manifest other clinical features (primary ovarian insufficiency (POI) or FXS-associated tremor-ataxia syndrome (FXTAS)), known as fragile X-related disorders. In FXS families, rare males who have inherited an unmethylated "full mutation" (UFM) have been described. These individuals produce enough FMRP to allow normal intellectual functioning. Here we report the rare case of three sisters with a completely methylated PM of around 140 CGGs and detail their neuropsychological function. X inactivation analysis confirmed that the three sisters have a random inactivation of the X chromosome, suggesting that the PM allele is always methylated also when residing on the active X. We propose that in exceptional cases, just as the FM may be unmethylated, also a PM allele may be fully methylated. To our knowledge, females with a methylated PM allele and a mild impairment have reported only once. The study of these atypical individuals demonstrates that the size of the CGG expansion is not as tightly coupled to methylation as previously thought.
Collapse
|
30
|
Chiara M, Zambelli F, Picardi E, Horner DS, Pesole G. Critical assessment of bioinformatics methods for the characterization of pathological repeat expansions with single-molecule sequencing data. Brief Bioinform 2019; 21:1971-1986. [DOI: 10.1093/bib/bbz099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/22/2019] [Accepted: 07/09/2019] [Indexed: 01/19/2023] Open
Abstract
Abstract
A number of studies have reported the successful application of single-molecule sequencing technologies to the determination of the size and sequence of pathological expanded microsatellite repeats over the last 5 years. However, different custom bioinformatics pipelines were employed in each study, preventing meaningful comparisons and somewhat limiting the reproducibility of the results. In this review, we provide a brief summary of state-of-the-art methods for the characterization of expanded repeats alleles, along with a detailed comparison of bioinformatics tools for the determination of repeat length and sequence, using both real and simulated data. Our reanalysis of publicly available human genome sequencing data suggests a modest, but statistically significant, increase of the error rate of single-molecule sequencing technologies at genomic regions containing short tandem repeats. However, we observe that all the methods herein tested, irrespective of the strategy used for the analysis of the data (either based on the alignment or assembly of the reads), show high levels of sensitivity in both the detection of expanded tandem repeats and the estimation of the expansion size, suggesting that approaches based on single-molecule sequencing technologies are highly effective for the detection and quantification of tandem repeat expansions and contractions.
Collapse
Affiliation(s)
- Matteo Chiara
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
| | - Federico Zambelli
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
| | - Ernesto Picardi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari “A. Moro”, Via Orabona 4, 70126 Bari, Italy
| | - David S Horner
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari “A. Moro”, Via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
31
|
Hayward B, Loutaev I, Ding X, Nolin SL, Thurm A, Usdin K, Smith CB. Fragile X syndrome in a male with methylated premutation alleles and no detectable methylated full mutation alleles. Am J Med Genet A 2019; 179:2132-2137. [DOI: 10.1002/ajmg.a.61286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/14/2019] [Accepted: 06/23/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Bruce Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular BiologyNational Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health Bethesda Maryland
| | - Inna Loutaev
- Section on Neuroadaptation and Protein MetabolismNational Institute of Mental Health, National Institutes of Health Bethesda Maryland
| | - Xiaohua Ding
- Molecular Diagnostic LaboratoryNew York State Institute for Basic Research in Developmental Disabilities Staten Island New York
| | - Sarah L. Nolin
- Molecular Diagnostic LaboratoryNew York State Institute for Basic Research in Developmental Disabilities Staten Island New York
| | - Audrey Thurm
- Office of the Clinical DirectorNational Institute of Mental Health, National Institutes of Health Bethesda Maryland
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular BiologyNational Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health Bethesda Maryland
| | - Carolyn B. Smith
- Section on Neuroadaptation and Protein MetabolismNational Institute of Mental Health, National Institutes of Health Bethesda Maryland
| |
Collapse
|
32
|
Salcedo-Arellano MJ, Hagerman RJ, Martínez-Cerdeño V. [Fragile X associated tremor/ataxia syndrome: its clinical presentation, pathology, and treatment]. Rev Neurol 2019; 68:199-206. [PMID: 30805918 PMCID: PMC7001878 DOI: 10.33588/rn.6805.2018457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fragile X associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disease associated with the repetition of CGG triplets (55-200 CGG repetitions) in the FMR1 gene. The premutation of the FMR1 gene, contrasting with the full mutation (more than 200 CGG repetitions), presents an increased production of messenger and a similar or slightly decreased production of FMRP protein. FXTAS affects 40% of men and 16% of women carriers of the premutation. It presents with a wide constellation of neurological signs such as intention tremor, cerebellar ataxia, parkinsonism, executive function deficits, peripheral neuropathy and cognitive decline leading to dementia among others. In this review, we present what is currently known about the molecular mechanism, the radiological findings and the pathology, as well as the complexity of the diagnosis and management of FXTAS.
Collapse
Affiliation(s)
- María Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis
School of Medicine, Sacramento, CA, USA
- Medical Investigation of Neurodevelopmental Disorders
(MIND) Institute, University of California Davis, Sacramento, CA, USA
| | - Randi J Hagerman
- Department of Pediatrics, University of California Davis
School of Medicine, Sacramento, CA, USA
- Medical Investigation of Neurodevelopmental Disorders
(MIND) Institute, University of California Davis, Sacramento, CA, USA
| | - Verónica Martínez-Cerdeño
- Medical Investigation of Neurodevelopmental Disorders
(MIND) Institute, University of California Davis, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine and Shriners
Hospitals for Children Northern California, Sacramento, CA, USA
- Department of Pathology and Laboratory Medicine, UC Davis
School of Medicine, Sacramento, CA, USA
| |
Collapse
|
33
|
Repeat Instability in the Fragile X-Related Disorders: Lessons from a Mouse Model. Brain Sci 2019; 9:brainsci9030052. [PMID: 30832215 PMCID: PMC6468611 DOI: 10.3390/brainsci9030052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022] Open
Abstract
The fragile X-related disorders (FXDs) are a group of clinical conditions that result primarily from an unusual mutation, the expansion of a CGG-repeat tract in exon 1 of the FMR1 gene. Mouse models are proving useful for understanding many aspects of disease pathology in these disorders. There is also reason to think that such models may be useful for understanding the molecular basis of the unusual mutation responsible for these disorders. This review will discuss what has been learnt to date about mechanisms of repeat instability from a knock-in FXD mouse model and what the implications of these findings may be for humans carrying expansion-prone FMR1 alleles.
Collapse
|
34
|
Yrigollen CM, Davidson BL. CRISPR to the Rescue: Advances in Gene Editing for the FMR1 Gene. Brain Sci 2019; 9:E17. [PMID: 30669625 PMCID: PMC6357057 DOI: 10.3390/brainsci9010017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 12/17/2022] Open
Abstract
Gene-editing using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is promising as a potential therapeutic strategy for many genetic disorders. CRISPR-based therapies are already being assessed in clinical trials, and evaluation of this technology in Fragile X syndrome has been performed by a number of groups. The findings from these studies and the advancement of CRISPR-based technologies are insightful as the field continues towards treatments and cures of Fragile X-Associated Disorders (FXADs). In this review, we summarize reports using CRISPR-editing strategies to target Fragile X syndrome (FXS) molecular dysregulation, and highlight how differences in FXS and Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) might alter treatment strategies for each syndrome. We discuss the various modifications and evolutions of the CRISPR toolkit that expand its therapeutic potential, and other considerations for moving these strategies from bench to bedside. The rapidly growing field of CRISPR therapeutics is providing a myriad of approaches to target a gene, pathway, or transcript for modification. As cures for FXADs have remained elusive, CRISPR opens new avenues to pursue.
Collapse
Affiliation(s)
- Carolyn M Yrigollen
- The Raymond G. Perelman Center of Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Beverly L Davidson
- The Raymond G. Perelman Center of Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Pereverzeva DS, Tyushkevich SA, Gorbachevskaya NL, Mamokhina UA, Danilina KK. Heterogeneity of clinical characteristics of FMR1-related disorders. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:103-111. [DOI: 10.17116/jnevro2019119071103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Hayward BE, Usdin K. Assays for Determining Repeat Number, Methylation Status, and AGG Interruptions in the Fragile X-Related Disorders. Methods Mol Biol 2019; 1942:49-59. [PMID: 30900174 DOI: 10.1007/978-1-4939-9080-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Knowledge of the CGG•CCG-repeat number, AGG interruption status, and the extent of DNA methylation of the FMR1 gene are vital for both diagnosis of the fragile X-related disorders and for basic research into disease mechanisms. We describe here assays that we use in our laboratory to assess these parameters. Our assays are PCR-based and include one for repeat size that can also be used to assess the extent of methylation and a related assay that allows the AGG interruption pattern to be reliably determined even in women. A second more quantitative methylation assay is also described. We also describe our method for cloning of repeats to generate the reference standards necessary for the accurate determination of repeat number and AGG interruption status.
Collapse
Affiliation(s)
- Bruce E Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
37
|
Hagerman RJ, Protic D, Rajaratnam A, Salcedo-Arellano MJ, Aydin EY, Schneider A. Fragile X-Associated Neuropsychiatric Disorders (FXAND). Front Psychiatry 2018; 9:564. [PMID: 30483160 PMCID: PMC6243096 DOI: 10.3389/fpsyt.2018.00564] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by the full mutation (>200 CGG repeats) in the Fragile X Mental Retardation 1 (FMR1) gene. It is the most common inherited cause of intellectual disability (ID) and autism. This review focuses on neuropsychiatric disorders frequently experienced by premutation carriers with 55 to 200 CGG repeats and the pathophysiology involves elevated FMR1 mRNA levels, which is different from the absence or deficiency of fragile X mental retardation protein (FMRP) seen in FXS. Neuropsychiatric disorders are the most common problems associated with the premutation, and they affect approximately 50% of individuals with 55 to 200 CGG repeats in the FMR1 gene. Neuropsychiatric disorders in children with the premutation include anxiety, ADHD, social deficits, or autism spectrum disorders (ASD). In adults with the premutation, anxiety and depression are the most common problems, although obsessive compulsive disorder, ADHD, and substance abuse are also common. These problems are often exacerbated by chronic fatigue, chronic pain, fibromyalgia, autoimmune disorders and sleep problems, which are also associated with the premutation. Here we review the clinical studies, neuropathology and molecular underpinnings of RNA toxicity associated with the premutation. We also propose the name Fragile X-associated Neuropsychiatric Disorders (FXAND) in an effort to promote research and the use of fragile X DNA testing to enhance recognition and treatment for these disorders.
Collapse
Affiliation(s)
- Randi J. Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Dragana Protic
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Akash Rajaratnam
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Maria J. Salcedo-Arellano
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Elber Yuksel Aydin
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
38
|
Fernández E, Gennaro E, Pirozzi F, Baldo C, Forzano F, Turolla L, Faravelli F, Gastaldo D, Coviello D, Grasso M, Bagni C. FXS-Like Phenotype in Two Unrelated Patients Carrying a Methylated Premutation of the FMR1 Gene. Front Genet 2018; 9:442. [PMID: 30450110 PMCID: PMC6224343 DOI: 10.3389/fgene.2018.00442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/14/2018] [Indexed: 12/31/2022] Open
Abstract
Fragile X syndrome (FXS) is mostly caused by two distinct events that occur in the FMR1 gene (Xq27.3): an expansion above 200 repeats of a CGG triplet located in the 5′UTR of the gene, and methylation of the cytosines located in the CpG islands upstream of the CGG repeats. Here, we describe two unrelated families with one FXS child and another sibling presenting mild intellectual disability and behavioral features evocative of FXS. Genetic characterization of the undiagnosed sibling revealed mosaicism in both the CGG expansion size and the methylation levels in the different tissues analyzed. This report shows that in the same family, two siblings carrying different CGG repeats, one in the full-mutation range and the other in the premutation range, present methylation mosaicism and consequent decreased FMRP production leading to FXS and FXS-like features, respectively. Decreased FMRP levels, more than the number of repeats seem to correlate with the severity of FXS clinical phenotypes.
Collapse
Affiliation(s)
- Esperanza Fernández
- Center for Human Genetics, KU Leuven, Leuven, Belgium.,VIB & KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Elena Gennaro
- Laboratorio di Genetica Umana, Ospedali Galliera, Genoa, Italy
| | - Filomena Pirozzi
- Center for Human Genetics, KU Leuven, Leuven, Belgium.,VIB & KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Chiara Baldo
- Laboratorio di Genetica Umana, Ospedali Galliera, Genoa, Italy
| | - Francesca Forzano
- Clinical Genetics Department, Borough Wing Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.,S.S.D. Genetica Medica, Ospedali Galliera, Genoa, Italy
| | - Licia Turolla
- U.O.S. Genetica Medica, Azienda ULSS 2, Treviso, Italy
| | - Francesca Faravelli
- Clinical Genetics Department, Great Ormond Street Hospital, London, United Kingdom
| | - Denise Gastaldo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | - Marina Grasso
- Laboratorio di Genetica Umana, Ospedali Galliera, Genoa, Italy
| | - Claudia Bagni
- Center for Human Genetics, KU Leuven, Leuven, Belgium.,VIB & KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
39
|
Jiraanont P, Kumar M, Tang HT, Espinal G, Hagerman PJ, Hagerman RJ, Chutabhakdikul N, Tassone F. Size and methylation mosaicism in males with Fragile X syndrome. Expert Rev Mol Diagn 2018; 17:1023-1032. [PMID: 28929824 DOI: 10.1080/14737159.2017.1377612] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Size and methylation mosaicism are a common phenomenon in Fragile X syndrome (FXS). Here, the authors report a study on twelve fragile X males with atypical mosaicism, seven of whom presented with autism spectrum disorder. METHODS A combination of Southern Blot and PCR analysis was used for CGG allele sizing and methylation. FMR1 mRNA and FMRP expression were measured by qRT-PCR and by Homogeneous Time Resolved Fluorescence methodology, respectively. RESULTS DNA analysis showed atypical size- or methylation-mosaicism with both, full mutation and smaller (normal to premutation) alleles, as well as a combination of methylated and unmethylated alleles. Four individuals carried a deletion of the CGG repeat and portions of the flanking regions. The extent of methylation among the participants was reflected in the lower FMR1 mRNA and FMRP expression levels detected in these subjects. CONCLUSION Decreased gene expression is likely the main contributor to the cognitive impairment observed in these subjects; although the presence of a normal allele did not appear to compensate for the presence of the full mutation, it correlated with better cognitive function in some but not all of the reported cases emphasizing the complexity of the molecular and clinical profile in FXS.
Collapse
Affiliation(s)
- Poonnada Jiraanont
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA.,b Research Center for Neuroscience, Institute of Molecular Biosciences , Mahidol University , Nakornpathom , Thailand
| | - Madhur Kumar
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA
| | - Hiu-Tung Tang
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA
| | - Glenda Espinal
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA
| | - Paul J Hagerman
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA.,c M.I.N.D. Institute , University of California Davis Medical Center , Sacramento , CA , USA
| | - Randi J Hagerman
- c M.I.N.D. Institute , University of California Davis Medical Center , Sacramento , CA , USA.,d Department of Pediatrics , University of California, Davis Medical Center , Sacramento , CA , USA
| | - Nuanchan Chutabhakdikul
- b Research Center for Neuroscience, Institute of Molecular Biosciences , Mahidol University , Nakornpathom , Thailand
| | - Flora Tassone
- a Department of Biochemistry and Molecular Medicine , University of California, School of Medicine , Davis , CA , USA.,c M.I.N.D. Institute , University of California Davis Medical Center , Sacramento , CA , USA
| |
Collapse
|
40
|
Premutations of FMR1 CGG repeats are not related to idiopathic premature ovarian failure in Iranian patients: A case control study. Gene 2018; 676:189-194. [PMID: 30030199 DOI: 10.1016/j.gene.2018.07.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/02/2018] [Accepted: 07/11/2018] [Indexed: 11/20/2022]
Abstract
Premature ovarian failure (POF) is a reproductive disease which affects 1 in 100 under 40 years women. FMR1 premutation carriers of CGG repeats are supposed to be at increased risk for POF. We have examined the 5'UTR region of the gene to find any association between the repeat size and the disease etiology in Iranian population. 30 women with early idiopathic POF and 30 fertile control women were selected. We used triplet repeat primed PCR (TP PCR) assay and gene-specific primers to amplify the CpG Island of FMR1 gene promoter region. The amplification results were analyzed by capillary electrophoresis and Gene Marker software. Among 30 patients, two had intermediate repeat size, one had premutation and the rest had CGG repeat of the normal range. Two of controls had intermediate repeats and none had a premutation. Two groups had significant differences in the repeat number average (p = 0.007) and in the average length of the smallest allele (p < 0.001), but had no promising difference in average length of the longest allele (p = 0.453). Although the two groups showed a significant difference in the length of alleles, their length was within normal range. Perhaps the polymorphism, in connection with the genome's entire network, has been involved in the development of the disease, or there has been a fundamentally different mechanism for the disease in Iranian population. A larger number of Iranian POF patients should be investigated for any probable relationship between the CGG triplet repeat length and the etiology of the disease.
Collapse
|
41
|
Mailick MR, Movaghar A, Hong J, Greenberg JS, DaWalt LS, Zhou L, Jackson J, Rathouz PJ, Baker MW, Brilliant M, Page D, Berry-Kravis E. Health Profiles of Mosaic Versus Non-mosaic FMR1 Premutation Carrier Mothers of Children With Fragile X Syndrome. Front Genet 2018; 9:173. [PMID: 29868121 PMCID: PMC5964198 DOI: 10.3389/fgene.2018.00173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/27/2018] [Indexed: 11/19/2022] Open
Abstract
The FMR1 premutation is of increasing interest to the FXS community, as questions about a primary premutation phenotype warrant research attention. 100 FMR1 premutation carrier mothers (mean age = 58; 67–138 CGG repeats) of adults with fragile X syndrome were studied with respect to their physical and mental health, motor, and neurocognitive characteristics. We explored the correlates of CGG repeat mosaicism in women with expanded alleles. Mothers provided buccal swabs from which DNA was extracted and the FMR1 CGG genotyping was performed (Amplidex Kit, Asuragen). Mothers were categorized into three groups: Group 1: premutation non-mosaic (n = 45); Group 2: premutation mosaic (n = 41), and Group 3: premutation/full mutation mosaic (n = 14). Group 2 mothers had at least two populations of cells with different allele sizes in the premutation range besides their major expanded allele. Group 3 mothers had a very small population of cells in the full mutation range (>200 CGGs) in addition to one or multiple populations of cells with different allele sizes in the premutation range. Machine learning (random forest) was used to identify symptoms and conditions that correctly classified mothers with respect to mosaicism; follow-up comparisons were made to characterize the three groups. In categorizing mosaicism, the random forest yielded significantly better classification than random classification, with overall area under the receiver operating characteristic curve (AUROC) of 0.737. Among the most important symptoms and conditions that contributed to the classification were anxiety, menopause symptoms, executive functioning limitations, and difficulty walking several blocks, with the women who had full mutation mosaicism (Group 3) unexpectedly having better health. Although only 14 premutation carrier mothers in the present sample also had a small population of full mutation cells, their profile of comparatively better health, mental health, and executive functioning was unexpected. This preliminary finding should prompt additional research on larger numbers of participants with more extensive phenotyping to confirm the clinical correlates of low-level full mutation mosaicism in premutation carriers and to probe possible mechanisms.
Collapse
Affiliation(s)
- Marsha R Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Arezoo Movaghar
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Jinkuk Hong
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Jan S Greenberg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Leann S DaWalt
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Lili Zhou
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, United States.,Department of Pathology, Rush University Medical Center, Chicago, IL, United States
| | - Jonathan Jackson
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, United States
| | - Paul J Rathouz
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Mei W Baker
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States.,Wisconsin State Laboratory of Hygiene, Madison, WI, United States
| | - Murray Brilliant
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States.,Marshfield Clinic Research Institute, Marshfield, WI, United States
| | - David Page
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, United States.,Department of Neurological Sciences and Biochemistry, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
42
|
Abstract
Accumulating evidence suggests that many classes of DNA repeats exhibit attributes that distinguish them from other genetic variants, including the fact that they are more liable to mutation; this enables them to mediate genetic plasticity. The expansion of tandem repeats, particularly of short tandem repeats, can cause a range of disorders (including Huntington disease, various ataxias, motor neuron disease, frontotemporal dementia, fragile X syndrome and other neurological disorders), and emerging data suggest that tandem repeat polymorphisms (TRPs) can also regulate gene expression in healthy individuals. TRPs in human genomes may also contribute to the missing heritability of polygenic disorders. A better understanding of tandem repeats and their associated repeatome, as well as their capacity for genetic plasticity via both germline and somatic mutations, is needed to transform our understanding of the role of TRPs in health and disease.
Collapse
Affiliation(s)
- Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
43
|
Rajaratnam A, Shergill J, Salcedo-Arellano M, Saldarriaga W, Duan X, Hagerman R. Fragile X syndrome and fragile X-associated disorders. F1000Res 2017; 6:2112. [PMID: 29259781 PMCID: PMC5728189 DOI: 10.12688/f1000research.11885.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by a full mutation on the
FMR1 gene and a subsequent lack of FMRP, the protein product of
FMR1. FMRP plays a key role in regulating the translation of many proteins involved in maintaining neuronal synaptic connections; its deficiency may result in a range of intellectual disabilities, social deficits, psychiatric problems, and dysmorphic physical features. A range of clinical involvement is also associated with the
FMR1 premutation, including fragile X-associated tremor ataxia syndrome, fragile X-associated primary ovarian insufficiency, psychiatric problems, hypertension, migraines, and autoimmune problems. Over the past few years, there have been a number of advances in our knowledge of FXS and fragile X-associated disorders, and each of these advances offers significant clinical implications. Among these developments are a better understanding of the clinical impact of the phenomenon known as mosaicism, the revelation that various types of mutations can cause FXS, and improvements in treatment for FXS.
Collapse
Affiliation(s)
| | | | | | - Wilmar Saldarriaga
- MIND Institute, UC Davis Health, Sacramento, CA, USA.,Department of Morphology and Obstetrics & Gynecology, Universidad del Valle, School of Medicine, Cali, Valle del Cauca, Colombia
| | - Xianlai Duan
- MIND Institute, UC Davis Health, Sacramento, CA, USA.,Department of Neurology, The Third Hospital of Changsha, Hunan Sheng, China
| | - Randi Hagerman
- MIND Institute, UC Davis Health, Sacramento, CA, USA.,Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, CA, USA
| |
Collapse
|
44
|
Hayward BE, Kumari D, Usdin K. Recent advances in assays for the fragile X-related disorders. Hum Genet 2017; 136:1313-1327. [PMID: 28866801 DOI: 10.1007/s00439-017-1840-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/24/2017] [Indexed: 12/17/2022]
Abstract
The fragile X-related disorders are a group of three clinical conditions resulting from the instability of a CGG-repeat tract at the 5' end of the FMR1 transcript. Fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI) are disorders seen in carriers of FMR1 alleles with 55-200 repeats. Female carriers of these premutation (PM) alleles are also at risk of having a child who has an FMR1 allele with >200 repeats. Most of these full mutation (FM) alleles are epigenetically silenced resulting in a deficit of the FMR1 gene product, FMRP. This results in fragile X Syndrome (FXS), the most common heritable cause of intellectual disability and autism. The diagnosis and study of these disorders is challenging, in part because the detection of alleles with large repeat numbers has, until recently, been either time-consuming or unreliable. This problem is compounded by the mosaicism for repeat length and/or DNA methylation that is frequently seen in PM and FM carriers. Furthermore, since AGG interruptions in the repeat tract affect the risk that a FM allele will be maternally transmitted, the ability to accurately detect these interruptions in female PM carriers is an additional challenge that must be met. This review will discuss some of the pros and cons of some recently described assays for these disorders, including those that detect FMRP levels directly, as well as emerging technologies that promise to improve the diagnosis of these conditions and to be useful in both basic and translational research settings.
Collapse
Affiliation(s)
- Bruce E Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Building 8, Room 2A19, National Institutes of Health, 8 Center Drive MSC 0830, Bethesda, MD, 20892, USA
| | - Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Building 8, Room 2A19, National Institutes of Health, 8 Center Drive MSC 0830, Bethesda, MD, 20892, USA
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Building 8, Room 2A19, National Institutes of Health, 8 Center Drive MSC 0830, Bethesda, MD, 20892, USA.
| |
Collapse
|
45
|
Alvarez-Mora MI, Guitart M, Rodriguez-Revenga L, Madrigal I, Gabau E, Milà M. Paternal transmission of a FMR1 full mutation allele. Am J Med Genet A 2017; 173:2795-2797. [PMID: 28815939 DOI: 10.1002/ajmg.a.38384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/21/2017] [Accepted: 07/08/2017] [Indexed: 11/07/2022]
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability (ID) and autism. In most of cases, the molecular basis of this syndrome is a CGG repeat expansion in the 5' untranslated region of the FMR1 gene. It is inherited as an X linked dominant trait, with a reduced penetrance (80% for males and 30% for females). Full mutation (FM) expansion from premutated alleles (PM) is only acquired via maternal meiosis, while paternal transmission always remains in the PM range. We present a 16-year-old girl with a mild fragile X syndrome phenotype. FMR1 gene study showed that the patient inherited a mosaic premutation-full mutation with an unmethylated uninterrupted allele (175, >200 CGG) from her father. The father showed an 88 CGG uninterrupted unmethylated allele in blood and sperm cells. To our knowledge, this is the first case of a FMR1 mosaic premutation-full mutation allele inherited from a PM father. In our opinion, the most likely explanation could be a postzygotic somatic expansion. We can conclude that in rare cases of a child with a full mutation whose mother does not carry a premutation, the possibility of paternal transmission should be considered.
Collapse
Affiliation(s)
- Maria Isabel Alvarez-Mora
- Biochemistry and Molecular Genetics Department, Hospital Clinic, Barcelona, Spain.,CIBERER Instituto de Salud Carlos III, Madrid, Spain.,IDIBAPS, Barcelona, Spain
| | - Miriam Guitart
- Genetics Laboratory, UDIAT-Centre Diagnostic, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Laia Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic, Barcelona, Spain.,CIBERER Instituto de Salud Carlos III, Madrid, Spain.,IDIBAPS, Barcelona, Spain
| | - Irene Madrigal
- Biochemistry and Molecular Genetics Department, Hospital Clinic, Barcelona, Spain.,CIBERER Instituto de Salud Carlos III, Madrid, Spain.,IDIBAPS, Barcelona, Spain
| | - Elisabeth Gabau
- Genetics Laboratory, UDIAT-Centre Diagnostic, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Montserrat Milà
- Biochemistry and Molecular Genetics Department, Hospital Clinic, Barcelona, Spain.,CIBERER Instituto de Salud Carlos III, Madrid, Spain.,IDIBAPS, Barcelona, Spain
| |
Collapse
|
46
|
Wheeler A, Raspa M, Hagerman R, Mailick M, Riley C. Implications of the FMR1 Premutation for Children, Adolescents, Adults, and Their Families. Pediatrics 2017; 139:S172-S182. [PMID: 28814538 PMCID: PMC5621635 DOI: 10.1542/peds.2016-1159d] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Given the nature of FMR1 gene expansions, most biological mothers, and often multiple other family members of children with fragile X syndrome (FXS), will have a premutation, which may increase individual and family vulnerabilities. This article summarizes important gaps in knowledge and notes potential implications for pediatric providers with regard to developmental and medical risks for children and adolescents with an FMR1 premutation, including possible implications into adulthood. METHODS A structured electronic literature search was conducted on FMR1 pre- and full mutations, yielding a total of 306 articles examined. Of these, 116 focused primarily on the premutation and are included in this review. RESULTS Based on the literature review, 5 topic areas are discussed: genetics and epidemiology; phenotypic characteristics of individuals with the premutation; implications for carrier parents of children with FXS; implications for the extended family; and implications for pediatricians. CONCLUSIONS Although the premutation phenotype is typically less severe in clinical presentation than in FXS, premutation carriers are much more common and are therefore more likely to be seen in a typical pediatric practice. In addition, there is a wide range of medical, cognitive/developmental, and psychiatric associated features that individuals with a premutation are at increased risk for having, which underscores the importance of awareness on the part of pediatricians in identifying and monitoring premutation carriers and recognizing the impact this identification may have on family members.
Collapse
Affiliation(s)
- Anne Wheeler
- RTI International, Research Triangle Park, North Carolina;
| | - Melissa Raspa
- RTI International, Research Triangle Park, North Carolina
| | - Randi Hagerman
- MIND Institute, University of California at Davis, Sacramento, California
| | - Marsha Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Catharine Riley
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
47
|
Kong HE, Zhao J, Xu S, Jin P, Jin Y. Fragile X-Associated Tremor/Ataxia Syndrome: From Molecular Pathogenesis to Development of Therapeutics. Front Cell Neurosci 2017; 11:128. [PMID: 28529475 PMCID: PMC5418347 DOI: 10.3389/fncel.2017.00128] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a premutation CGG repeat expansion (55-200 repeats) within the 5' UTR of the fragile X gene (FMR1). FXTAS is characterized by intension tremor, cerebellar ataxia, progressive neurodegeneration, parkinsonism and cognitive decline. The development of transgenic mouse and Drosophila melanogaster models carrying an expanded CGG repeat has yielded valuable insight into the pathophysiology of FXTAS. To date, we know of two main molecular mechanisms of this disorder: (1) a toxic gain of function of the expanded CGG-repeat FMR1 mRNA, which results in the binding/sequestration of the CGG-binding proteins; and (2) CGG repeat-associated non-AUG-initiated (RAN) translation, which generates a polyglycine peptide toxic to cells. Besides these CGG-mediated mechanisms, recent studies have shed light on additional mechanisms of pathogenesis, such as the antisense transcript ASFMR1, mitochondrial dysfunction, DNA damage from R-loop formation and 5-hydroxymethylcytosine (5hmC)-mediated epigenetic modulation. Here we summarize the recent progress towards understanding the etiology of FXTAS and provide an overview of potential treatment strategies.
Collapse
Affiliation(s)
- Ha Eun Kong
- Department of Human Genetics, School of Medicine, Emory UniversityAtlanta, GA, USA
| | - Juan Zhao
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South UniversityChangsha, China
| | - Shunliang Xu
- Department of Neurology, 2nd Hospital of Shandong UniversityJinan, China
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory UniversityAtlanta, GA, USA
| | - Yan Jin
- Department of Ophthalmology, Second Hospital, Jilin UniversityChangchun, China
| |
Collapse
|
48
|
Wallach E, Bieth E, Sevely A, Cances C. [Fragile X syndrome and white matter abnormalities: Case study of two brothers]. Arch Pediatr 2017; 24:244-248. [PMID: 28131561 DOI: 10.1016/j.arcped.2016.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/21/2016] [Accepted: 12/04/2016] [Indexed: 10/20/2022]
Abstract
Fragile X syndrome is the most usual cause of hereditary intellectual deficiency. Typical symptoms combine intellectual deficiency, social anxiety, intense emotional vigilance, and a characteristic facial dysmorphy. This is subsequent to a complete mutation of the FMR1 gene, considering a semidominant transmission linked to the unstable X. The expansion of the CGG triplet greater than 200 units combined with a high methylation pattern lead to a transcriptional silence of the FMR1 gene, and the protein product, the FMRP, is not synthesized. This protein is involved in synaptic plasticity. Brain MRI can show an increased volume of the caudate nucleus and hippocampus, combined with hypoplasia of the cerebellar vermis. Fragile X Associated Tremor Ataxia Syndrome (FXTAS) syndrome is a neurodegenerative disorder occurring in carriers of the premutation in FMR1. Brain MRI shows an increased T2 signal in the middle cerebellar peduncles. This syndrome is linked to a premutation in the FMR1 gene. We report here the case of two brothers presenting a typical fragile X symptomatology. Brain MRI showed hyperintensities of the middle cerebellar peduncles. Such MRI findings support the assumption of a genetic mosaicism.
Collapse
Affiliation(s)
- E Wallach
- Unité de neuropédiatrie, hôpital des enfants, CHU Purpan, 330, avenue de Grande-Bretagne, TSA 70034, 31059 Toulouse cedex 9, France.
| | - E Bieth
- Service de génétique médicale, CHU Purpan, 330, avenue de Grande-Bretagne, 31059 Toulouse cedex 9, France
| | - A Sevely
- Service de neuroradiologie, CHU Purpan, 330, avenue de Grande-Bretagne, 31059 Toulouse cedex 9, France
| | - C Cances
- Unité de neuropédiatrie, hôpital des enfants, CHU Purpan, 330, avenue de Grande-Bretagne, TSA 70034, 31059 Toulouse cedex 9, France
| |
Collapse
|
49
|
Vershkov D, Benvenisty N. Human pluripotent stem cells in modeling human disorders: the case of fragile X syndrome. Regen Med 2017; 12:53-68. [DOI: 10.2217/rme-2016-0100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human pluripotent stem cells (PSCs) generated from affected blastocysts or from patient-derived somatic cells are an emerging platform for disease modeling and drug discovery. Fragile X syndrome (FXS), the leading cause of inherited intellectual disability, was one of the first disorders modeled in both embryonic stem cells and induced PCSs and can serve as an exemplary case for the utilization of human PSCs in the study of human diseases. Over the past decade, FXS-PSCs have been used to address the fundamental questions regarding the pathophysiology of FXS. In this review we summarize the methodologies for generation of FXS-PSCs, discuss their advantages and disadvantages compared with existing modeling systems and describe their utilization in the study of FXS pathogenesis and in the development of targeted treatment.
Collapse
Affiliation(s)
- Dan Vershkov
- The Azrieli Center for Stem Cells & Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells & Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
50
|
Wheeler AC, Sideris J, Hagerman R, Berry-Kravis E, Tassone F, Bailey DB. Developmental profiles of infants with an FMR1 premutation. J Neurodev Disord 2016; 8:40. [PMID: 27822316 PMCID: PMC5095966 DOI: 10.1186/s11689-016-9171-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Emerging evidence suggests that a subset of FMR1 premutation carriers is at an increased risk for cognitive, emotional, and medical conditions. However, because the premutation is rarely diagnosed at birth, the early developmental trajectories of children with a premutation are not known. METHODS This exploratory study examined the cognitive, communication, and social-behavioral profiles of 26 infants with a premutation who were identified through participation in a newborn screening for fragile X syndrome pilot study. In this study, families whose newborn screened positive for an FMR1 premutation were invited to participate in a longitudinal study of early development. Twenty-six infants with the premutation and 21 matched, screen-negative comparison babies were assessed using validated standardized measures at 6-month intervals starting as young as 3 months of age. The babies were assessed up to seven times over a 4-year period. RESULTS The premutation group was not statistically different from the comparison group on measures of cognitive development, adaptive behavior, temperament, or overall communication. However, the babies with the premutation had a significantly different developmental trajectory on measures of nonverbal communication and hyperresponsivity to sensory experiences. They also were significantly more hyporesponsive at all ages than the comparison group. Cytosine-guanine-guanine repeat length was linearly associated with overall cognitive development. CONCLUSIONS These results suggest that infants with a premutation may present with subtle developmental differences as young as 12 months of age that may be early markers of later anxiety, social deficits, or other challenges thought to be experienced by a subset of carriers.
Collapse
Affiliation(s)
- Anne C Wheeler
- RTI International, 3040 E. Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709 USA
| | - John Sideris
- University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Randi Hagerman
- Davis MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California at Davis, Davis, CA USA ; Department of Pediatrics, University of California at Davis, Davis, CA USA
| | | | - Flora Tassone
- Davis MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California at Davis, Davis, CA USA
| | - Donald B Bailey
- RTI International, 3040 E. Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709 USA
| |
Collapse
|