1
|
Al-Hedaithy A, Alghamdi F, Almomen M, Amer F, Al Dossari S, Noreen Baig D, Bashir S. Comparative genetic diagnostic evaluation of pediatric neuromuscular diseases in a consanguineous population. Sci Rep 2025; 15:231. [PMID: 39747233 PMCID: PMC11695944 DOI: 10.1038/s41598-024-81744-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
Neuromuscular diseases (NMD) are a group of neurological diseases that manifest with various clinical symptoms affecting different components of the peripheral nervous system, which play a role in voluntary body movements control. The primary objective of this study is to explore the diagnostic efficacy of a combined genetic and biochemical testing approach for patients with neuromuscular diseases with diverse presentations in a population with high rate of consanguinity. Genetic testing was performed using selected Next Generation Sequencing (NGS) gene panels and whole exome sequencing on the peripheral blood sample from the patients. The study results revealed that the majority of patients in our cohort had a history of consanguinity (83%). Genetic testing through gene panels and Whole Exome Sequencing yielded similar result. Out of the patients tested, 66% underwent gene panels testing, 56% had Whole Exome Sequencing, 32% received array Comparative Genomic Hybridization (CGH) assays, and 40% underwent metabolic testing. Overall, 58 patients (61%) received definitive results after following all tests. Among the remaining 36 patients, 19 exhibited variants of unknown significance (VOUS) (21%).
Collapse
Affiliation(s)
- Abdullah Al-Hedaithy
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, 31444, Dammam, Saudi Arabia.
| | - Fouad Alghamdi
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, 31444, Dammam, Saudi Arabia
| | - Momen Almomen
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, 31444, Dammam, Saudi Arabia
| | - Fawzia Amer
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, 31444, Dammam, Saudi Arabia
- Department of Pediatric Neurology and Metabolic, Cairo University Children Hospital, Cairo, Egypt
| | | | - Deeba Noreen Baig
- School of Life Sciences, Forman Christian College (A Chartered University) Lahore, Lahore, 54600, Pakistan
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
- King Salman Center for Disability Research, 11614, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Faheem A, Masud R, Nasir R, Awan ZK, Nasir HA, Khan ZK, Fayyaz H, Raza SI. Exome sequencing revealed variants in SGCA and SIL1 genes underlying limb girdle muscular dystrophy and Marinesco-Sjögren syndrome patients. Mol Biol Rep 2024; 51:853. [PMID: 39060875 DOI: 10.1007/s11033-024-09746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Inherited neuromuscular (NMD) and neurodegenerative diseases (NDD) belong to two distinct categories that disturb different components of the nervous system, leading to a variety of different symptoms and clinical manifestations. Both NMD and NDD are a heterogeneous group of genetic conditions. Genetic variations in the SGCA and SIL1 genes have been implicated in causing Limb Girdle Muscular Dystrophy (LGMD), a type of neuromuscular disorder, and Marinesco-Sjögren Syndrome (MSS) which is a neurodegenerative disorder. METHODS In the present study, we have investigated four patients presenting LGMD and five patients with MSS features. After collecting detailed clinical and family history, necessary laboratory investigations, including estimation of a skeletal muscle marker enzyme serum creatine kinase (CK), nerve conduction study (NCS), electromyography (EMG), echocardiography (Echo), Magnetic resonance imaging (MRI -brain), CT-brain and X-rays were performed. Whole exome followed by Sanger sequencing was employed to search for the disease-causing variants. RESULTS Physical examination in LGMD patients revealed poor muscle tone and facing difficulty in straightening up from the floor. Clinical history revealed frequent falls and strenuousness in climbing stairs. They started toe-walking in early childhood. Laboratory investigations confirmed elevated CK levels and abnormal NCS and EMG. The MSS patients showed abnormalities in gate and jerking movement, abnormal speech, and strabismus with cataract. MRI-brain showed cerebral atrophy in some MSS patients with elevated CK levels. Whole exome sequencing revealed a nonsense variant [c.C574T, p.(Arg192*)] in the SGCA gene and a frameshift [c.936dupG, p.(Leu313AlaFs*39)] in the SIL1 gene in LGMD and MSS patients, respectively. CONCLUSION Our study emphasizes the significance of integrating clinical and genetic analyses for precise diagnosis and tailored management strategies in inherited NMD and NDD disorders. To the best of our knowledge, this is the first study documenting SGCA and SIL1 recurrent variants in subcontinent populations with few rare clinical features. The recurrent mutations expanding the global understanding of the mutation's geographic and ethnic distribution and contributing valuable epidemiological data. The study will facilitate genetic counseling for families experiencing similar clinical features, both within Pakistani populations and in other regions.
Collapse
Affiliation(s)
- Ali Faheem
- Department of Biochemistry, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Rizwan Masud
- Department of Physiology, Rai Medical College, Sargodha, Punjab, Pakistan
| | - Rabea Nasir
- Department of Physiology, M. Islam Medical College, Gujranwala, Pakistan
| | - Zeeshan Khalid Awan
- Department of Pathology, Rawal Institute of Health Sciences, Islamabad, Pakistan
| | - Hammad Ali Nasir
- Department of Paediatrics, Khalida Safdar Memorial Hospital, Rawalpindi, Pakistan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zara Khalid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Department of Biochemistry, Shaheed Zulfiqar Ali Bhutto Medical University,, Rawal Institute of Health Sciences, Islamabad, Pakistan
| | - Hajra Fayyaz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Syed Irfan Raza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Department of Biochemistry, HBS Medical College, Islamabad, Pakistan.
| |
Collapse
|
3
|
Lee CL, Chuang CK, Chiu HC, Chang YH, Tu YR, Lo YT, Lin HY, Lin SP. Application of whole exome sequencing in the diagnosis of muscular disorders: a study of Taiwanese pediatric patients. Front Genet 2024; 15:1365729. [PMID: 38818036 PMCID: PMC11137626 DOI: 10.3389/fgene.2024.1365729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Background Muscular dystrophies and congenital myopathies encompass various inherited muscular disorders that present diagnostic challenges due to clinical complexity and genetic heterogeneity. Methods This study aimed to investigate the use of whole exome sequencing (WES) in diagnosing muscular disorders in pediatric patients in Taiwan. Out of 161 pediatric patients suspected to have genetic/inherited myopathies, 115 received a molecular diagnosis through conventional tests, single gene testing, and gene panels. The remaining 46 patients were divided into three groups: Group 1 (multiplex ligation-dependent probe amplification-negative Duchenne muscular dystrophy) with three patients (6.5%), Group 2 (various forms of muscular dystrophies) with 21 patients (45.7%), and Group 3 (congenital myopathies) with 22 patients (47.8%). Results WES analysis of these groups found pathogenic variants in 100.0% (3/3), 57.1% (12/21), and 68.2% (15/22) of patients in Groups 1 to 3, respectively. WES had a diagnostic yield of 65.2% (30 patients out of 46), detecting 30 pathogenic or potentially pathogenic variants across 28 genes. Conclusion WES enables the diagnosis of rare diseases with symptoms and characteristics similar to congenital myopathies and muscular dystrophies, such as muscle weakness. Consequently, this approach facilitates targeted therapy implementation and appropriate genetic counseling.
Collapse
Affiliation(s)
- Chung-Lin Lee
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, Taipei, Taiwan
- Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Chih-Kuang Chuang
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Huei-Ching Chiu
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ya-Hui Chang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yuan-Rong Tu
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yun-Ting Lo
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsiang-Yu Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, Taipei, Taiwan
- Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Shuan-Pei Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, Taipei, Taiwan
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| |
Collapse
|
4
|
Ebert SE, Meiling JB, Caress JB, Gandhi Mehta RK, Baute Penry V, Puwanant A, Cartwright MS. Clinical Utility and Diagnostic Yield of Genetic Testing for Inherited Neuromuscular Disorders in a Single, Large Neuromuscular Center. Neurol Clin Pract 2024; 14:e200268. [PMID: 38585444 PMCID: PMC10996901 DOI: 10.1212/cpj.0000000000200268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/05/2024] [Indexed: 04/09/2024]
Abstract
Background and Objectives Most published studies on the clinical utility of genetic testing for neuromuscular diseases (NMDs) focus on disease-specific cohorts and/or involve multiple centers. The aim of this study was to examine the clinical utility and diagnostic yield of genetic testing at a single, large neuromuscular center. Unlike previous studies, this study is unique in that it includes a broad array of patients at a single, large neuromuscular center, providing real-world data that may assist both neuromuscular specialists as well as general neurologists in decision-making regarding the need for genetic testing in patients with suspected NMDs. Methods Genetic testing results were reviewed for all patients who underwent testing through a single genetic testing company for NMDs in this single laboratory at a large neuromuscular center from 2015 to 2020. Retrospective chart reviews were performed to determine whether genetic testing results conferred a specific NMD diagnosis, including cases where a variant of uncertain significance (VUS) was identified. Results Genetic testing was pursued for 192 patients. A positive result, defined as a pathogenic mutation, a VUS, or both, was found in 77.1%. A definitive diagnosis was conferred in 35.9%. The most common testing indication was suspected neuropathy (53.3%), and the indication with the highest diagnostic yield was suspected myopathy (48.7%). Discussion This study provides further evidence of the clinical utility of genetic testing for NMDs in a real-world setting with over one-third of patients tested receiving a definitive diagnosis. Over time, genetic testing will continue to become increasingly accessible, cost-effective, and sensitive, which will lead to even more utilization.
Collapse
Affiliation(s)
- Suzahn E Ebert
- Department of Neurology (SEE), University of Virginia, Charlottesville; Department of Physical Medicine and Rehabilitation (JBM), Mayo Clinic, Rochester, MN; and Department of Neurology (JBC, RKGM, VBP, AP, MSC), Wake Forest School of Medicine, Winston-Salem, NC
| | - James B Meiling
- Department of Neurology (SEE), University of Virginia, Charlottesville; Department of Physical Medicine and Rehabilitation (JBM), Mayo Clinic, Rochester, MN; and Department of Neurology (JBC, RKGM, VBP, AP, MSC), Wake Forest School of Medicine, Winston-Salem, NC
| | - James B Caress
- Department of Neurology (SEE), University of Virginia, Charlottesville; Department of Physical Medicine and Rehabilitation (JBM), Mayo Clinic, Rochester, MN; and Department of Neurology (JBC, RKGM, VBP, AP, MSC), Wake Forest School of Medicine, Winston-Salem, NC
| | - Rachana K Gandhi Mehta
- Department of Neurology (SEE), University of Virginia, Charlottesville; Department of Physical Medicine and Rehabilitation (JBM), Mayo Clinic, Rochester, MN; and Department of Neurology (JBC, RKGM, VBP, AP, MSC), Wake Forest School of Medicine, Winston-Salem, NC
| | - Vanessa Baute Penry
- Department of Neurology (SEE), University of Virginia, Charlottesville; Department of Physical Medicine and Rehabilitation (JBM), Mayo Clinic, Rochester, MN; and Department of Neurology (JBC, RKGM, VBP, AP, MSC), Wake Forest School of Medicine, Winston-Salem, NC
| | - Araya Puwanant
- Department of Neurology (SEE), University of Virginia, Charlottesville; Department of Physical Medicine and Rehabilitation (JBM), Mayo Clinic, Rochester, MN; and Department of Neurology (JBC, RKGM, VBP, AP, MSC), Wake Forest School of Medicine, Winston-Salem, NC
| | - Michael S Cartwright
- Department of Neurology (SEE), University of Virginia, Charlottesville; Department of Physical Medicine and Rehabilitation (JBM), Mayo Clinic, Rochester, MN; and Department of Neurology (JBC, RKGM, VBP, AP, MSC), Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
5
|
Piñeros-Fernández MC, Morte B, García-Giménez JL. Utility of exome sequencing for the diagnosis of pediatric-onset neuromuscular diseases beyond diagnostic yield: a narrative review. Neurol Sci 2024; 45:1455-1464. [PMID: 37989827 PMCID: PMC10942921 DOI: 10.1007/s10072-023-07210-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
Diagnosis of neuromuscular diseases (NMD) can be challenging because of the heterogeneity of this group of diseases. This review aimed to describe the diagnostic yield of whole exome sequencing (WES) for pediatric-onset neuromuscular disease diagnosis, as well as other benefits of this approach in patient management since WES can contribute to appropriate treatment selection in NMD patients. WES increases the possibility of reaching a conclusive genetic diagnosis when other technologies have failed and even exploring new genes not previously associated with a specific NMD. Moreover, this strategy can be useful when a dual diagnosis is suspected in complex congenital anomalies and undiagnosed cases.
Collapse
Affiliation(s)
- Martha Cecilia Piñeros-Fernández
- Servicio de Neurología Pediátrica, Hospital Pediátrico, Fundación Cardio Infantil-LaCardio, Bogotá, Colombia
- Unidad Pediátrica, Los Cobos Medical Center, Bogotá, Colombia
- Consulta Externa Especializada, Virrey Solís IPS, Bogotá, Colombia
| | - Beatriz Morte
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - José Luis García-Giménez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain.
- Departamento de Fisiología, Facultad de Medicina y Odontología, Universitat de València, València, Spain.
| |
Collapse
|
6
|
Abstract
The diagnostic and referral workflow for children with neuromuscular disorders is evolving, particularly as newborn screening programs are expanding in tandem with novel therapeutic developments. However, for the children who present with symptoms and signs of potential neuromuscular disorders, anatomic localization, guided initially by careful history and physical examination, continues to be the cardinal initial step in the diagnostic evaluation. It is important to consider whether the localization is more likely to be in the lower motor neuron, peripheral nerve, neuromuscular junction, or muscle. After that, disease etiologies can be divided broadly into inherited versus acquired categories. Considerations of localization and etiologies will help generate a differential diagnosis, which in turn will guide diagnostic testing. Once a diagnosis is made, it is important to be aware of current treatment options, as a number of new therapies for some of these disorders have been approved in recent years. Families are also increasingly interested in clinical research, which may include natural history studies and interventional clinical trials. Such research has proliferated for rare neuromuscular diseases, leading to exciting advances in diagnostic and therapeutic technologies, promising dramatic changes in the landscape of these disorders in the years to come.
Collapse
Affiliation(s)
- Geetanjali Rathore
- Division of Neurology, Department of Pediatrics, University of Nebraska College of Medicine, Omaha, Nebraska
| | - Peter B Kang
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
7
|
Nallamilli BRR, Pan Y, Sniderman King L, Jagannathan L, Ramachander V, Lucas A, Markind J, Colzani R, Hegde M. Combined sequence and copy number analysis improves diagnosis of limb girdle and other myopathies. Ann Clin Transl Neurol 2023; 10:2092-2104. [PMID: 37688281 PMCID: PMC10647006 DOI: 10.1002/acn3.51896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
OBJECTIVE Clinical and genetic heterogeneities make diagnosis of limb-girdle muscular dystrophy (LGMD) and other overlapping disorders of muscle weakness complicated and expensive. We aimed to develop a comprehensive next generation sequence-based multi-gene panel ("The Lantern Focused Neuromuscular Panel") to detect both sequence variants and copy number variants in one assay. METHODS Patients with clinical diagnosis of LGMD or other overlapping muscular dystrophies in the United States were tested by PerkinElmer Genomics in 2018-2021 via "The Lantern Project," a sponsored diagnostic testing program. Sixty-six genes related to LGMD subtypes- and other myopathies were investigated. Main outcomes were diagnostic yield, gene-variant spectrum, and LGMD subtypes' prevalence. RESULTS Molecular diagnosis was established in 19.6% (1266) of 6473 cases. Major genes contributing to LGMD were identified including CAPN3 (5.4%, 68), DYSF (4.0%, 51), GAA (3.7%, 47), ANO5 (3.6%, 45), and FKRP (2.7%, 34). Genes of other overlapping MD subtypes identified included PABPN1 (10.5%, 133), VCP (2.2%, 28), MYOT (1.2% 15), LDB3 (1.0%, 13), COL6A1 (1.5%, 19), FLNC (1.1%, 14), and DNAJB6 (0.8%, 10). Different sizes of copy number variants including single exon, multi-exon, and whole genes were identified in 7.5% (95) cases in genes including DMD, EMD, CAPN3, ANO5, SGCG, COL6A2, DOK7, and LAMA2. INTERPRETATION "The Lantern Focused Neuromuscular Panel" enables identification of LGMD subtypes and other myopathies with overlapping clinical features. Prevalence of some MD subtypes was higher than previously reported. Widespread deployment of this comprehensive NGS panel has the potential to ensure early, accurate diagnosis as well as re-define MD epidemiology.
Collapse
|
8
|
Farshadyeganeh P, Nazim M, Zhang R, Ohkawara B, Nakajima K, Rahman MA, Nasrin F, Ito M, Takeda JI, Ohe K, Miyasaka Y, Ohno T, Masuda A, Ohno K. Splicing regulation of GFPT1 muscle-specific isoform and its roles in glucose metabolisms and neuromuscular junction. iScience 2023; 26:107746. [PMID: 37744035 PMCID: PMC10514471 DOI: 10.1016/j.isci.2023.107746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/29/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Glutamine:fructose-6-phosphate transaminase 1 (GFPT1) is the rate-limiting enzyme of the hexosamine biosynthetic pathway (HBP). A 54-bp exon 9 of GFPT1 is specifically included in skeletal and cardiac muscles to generate a long isoform of GFPT1 (GFPT1-L). We showed that SRSF1 and Rbfox1/2 cooperatively enhance, and hnRNP H/F suppresses, the inclusion of human GFPT1 exon 9 by modulating recruitment of U1 snRNP. Knockout (KO) of GFPT1-L in skeletal muscle markedly increased the amounts of GFPT1 and UDP-HexNAc, which subsequently suppressed the glycolytic pathway. Aged KO mice showed impaired insulin-mediated glucose uptake, as well as muscle weakness and fatigue likely due to abnormal formation and maintenance of the neuromuscular junction. Taken together, GFPT1-L is likely to be acquired in evolution in mammalian striated muscles to attenuate the HBP for efficient glycolytic energy production, insulin-mediated glucose uptake, and the formation and maintenance of the neuromuscular junction.
Collapse
Affiliation(s)
- Paniz Farshadyeganeh
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mohammad Nazim
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ruchen Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kazuki Nakajima
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Mohammad Alinoor Rahman
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Biochemistry and Molecular Biology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Farhana Nasrin
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Biochemistry and Molecular Biology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Jun-ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kenji Ohe
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Yuki Miyasaka
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
9
|
Akbar F, Saleem SM, Khalid E, Ibrahim S, Afroze B, Kirmani S, Khan S. The spectrum of hereditary neuromuscular disorders in the Pakistani population. Am J Med Genet A 2023; 191:2536-2550. [PMID: 37366078 DOI: 10.1002/ajmg.a.63332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/21/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Hereditary neuromuscular disorders (NMDs) are a broad group of clinically heterogeneous disorders with varying inheritance patterns, that are associated with over 500 implicated genes. In the context of a highly consanguineous Pakistani population, we expect that autosomal recessive NMDs may have a higher prevalence compared with patients of European descent. This is the first study to offer a detailed description of the spectrum of genes causing hereditary NMDs in the Pakistani population using NGS testing. To study the clinical and genetic profiles of patients presenting for evaluation of a hereditary neuromuscular disorder. This is a retrospective chart review of patients seen in the Neuromuscular Disorders Clinic and referred to the Genetics Clinic with a suspected hereditary neuromuscular disorder, between 2016 and 2020 at the Aga Khan University Hospital, Karachi and Mukhtiar A. Sheikh Hospital, Multan, Pakistan. The genetic testing for these patients included NGS-based single gene sequencing, NGS-based multi-gene panel and whole exome sequencing. In a total of 112 patients studied, 35 (31.3%) were female. The mean age of onset in all patients was 14.6 years (SD ±12.1 years), with the average age at presentation to the clinic of 22.4 years (SD ±14.10 years). Forty-seven (41.9%) patients had a positive genetic test result, 53 (47.3%) had one or more variants of uncertain significance (VUS), and 12 (10.7%) had a negative result. Upon further genotype-phenotype correlation and family segregation analysis, the diagnostic yield improved, with 59 (52.7%) patients reaching a diagnosis of a hereditary NMD. We also report probable founder variants in COL6A2, FKTN, GNE, and SGCB, previously reported in populations that have possible shared ancestry with the Pakistani population. Our findings reemphasizes that the rate of VUSs can be reduced by clinical correlation and family segregation studies.
Collapse
Affiliation(s)
- Fizza Akbar
- Division of Women and Child Health, The Aga Khan University, Karachi, Pakistan
| | | | | | - Shahnaz Ibrahim
- Department of Paediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Bushra Afroze
- Department of Paediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Salman Kirmani
- Division of Women and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Sara Khan
- Department of Neurology, The Aga Khan University, Karachi, Pakistan
| |
Collapse
|
10
|
Ortiz-Vitali JL, Wu J, Xu N, Shieh AW, Niknejad N, Takeuchi M, Paradas C, Lin C, Jafar-Nejad H, Haltiwanger RS, Wang SH, Darabi R. Disease modeling and gene correction of LGMDR21 iPSCs elucidates the role of POGLUT1 in skeletal muscle maintenance, regeneration, and the satellite cell niche. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:683-697. [PMID: 37650119 PMCID: PMC10462830 DOI: 10.1016/j.omtn.2023.07.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Autosomal recessive limb-girdle muscular dystrophy 21 (LGMDR21) is caused by pathogenic variants in protein O-glucosyltransferase 1 (POGLUT1), which is responsible for O-glucosylation of specific epidermal growth factor (EGF) repeats found in ∼50 mammalian proteins, including Notch receptors. Previous data from patient biopsies indicated that impaired Notch signaling, reduction of muscle stem cells, and accelerated differentiation are probably involved in disease etiopathology. Using patient induced pluripotent stem cells (iPSCs), their corrected isotypes, and control iPSCs, gene expression profiling indicated dysregulation of POGLUT1, NOTCH, muscle development, extracellular matrix (ECM), cell adhesion, and migration as involved pathways. They also exhibited reduced in vitro POGLUT1 enzymatic activity and NOTCH signaling as well as defective myogenesis, proliferation, migration and differentiation. Furthermore, in vivo studies demonstrated significant reductions in engraftment, muscle stem cell formation, PAX7 expression, and maintenance, along with an increased percentage of mislocalized PAX7+ cells in the interstitial space. Gene correction in patient iPSCs using CRISPR-Cas9 nickase led to the rescue of the main in vitro and in vivo phenotypes. These results demonstrate the efficacy of iPSCs and gene correction in disease modeling and rescue of the phenotypes and provide evidence of the involvement of muscle stem cell niche localization, PAX7 expression, and cell migration as possible mechanisms in LGMDR21.
Collapse
Affiliation(s)
- Jose L. Ortiz-Vitali
- Center for Stem Cell and Regenerative Medicine (CSCRM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jianbo Wu
- Center for Stem Cell and Regenerative Medicine (CSCRM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nasa Xu
- Center for Stem Cell and Regenerative Medicine (CSCRM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Annie W. Shieh
- Center for Human Genetics, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nima Niknejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Megumi Takeuchi
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Carmen Paradas
- Neurology Department, Neuromuscular Disorders Unit, Instituto de Biomedicina de Sevilla, Hospital U. Virgen Del Rocío, CSIC, Universidad de Sevilla, Avd. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert S. Haltiwanger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Sidney H. Wang
- Center for Human Genetics, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Radbod Darabi
- Center for Stem Cell and Regenerative Medicine (CSCRM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
11
|
Manzoor H, Zahid H, Emerling CA, Kumar KR, Hussain HMJ, Seo GH, Wajid M, Naz S. A biallelic variant of DCAF13 implicated in a neuromuscular disorder in humans. Eur J Hum Genet 2023; 31:629-637. [PMID: 36797467 PMCID: PMC10250411 DOI: 10.1038/s41431-023-01319-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Neuromuscular disorders encompass a broad range of phenotypes and genetic causes. We investigated a consanguineous family in which multiple patients had a neuromuscular disorder characterized by a waddling gait, limb deformities, muscular weakness and facial palsy. Exome sequencing was completed on the DNA of three of the four patients. We identified a novel missense variant in DCAF13, ENST00000612750.5, NM_015420.7, c.907 G > A;p.(Asp303Asn), ENST00000616836.4, NM_015420.6, c.1363 G > A:p.(Asp455Asn) (rs1209794872) segregating with this phenotype; being homozygous in all four affected patients and heterozygous in the unaffected individuals. The variant was extremely rare in the public databases (gnomAD allele frequency 0.000007081); was absent from the DNA of 300 ethnically matched controls and affected an amino acid which has been conserved across 1-2 billion years of evolution in eukaryotes. DCAF13 contains three WD40 domains and is hypothesized to have roles in both rRNA processing and in ubiquitination of proteins. Analysis of DCAF13 with the p.(Asp455Asn) variant predicted that the amino acid change is deleterious and affects a β-hairpin turn, within a WD40 domain of the protein which may decrease protein stability. Previously, a heterozygous variant of DCAF13 NM_015420.6, c.20 G > C:p.(Trp7Ser) with or without a heterozygous missense variant in CCN3, was suggested to cause inherited cortical myoclonic tremor with epilepsy. In addition, a heterozygous DCAF13 variant has been associated with autism spectrum disorder. Our study indicates a potential role of biallelic DCAF13 variants in neuromuscular disorders. Screening of additional patients with similar phenotype may broaden the allelic and phenotypic spectrum due to DCAF13 variants.
Collapse
Affiliation(s)
- Humera Manzoor
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Hafsa Zahid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | | | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Concord Clinical School Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | | | | | - Muhammad Wajid
- Department of Zoology, University of Okara, Punjab, Pakistan
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
12
|
Chen PS, Chao CC, Tsai LK, Huang HY, Chien YH, Huang PH, Hwu WL, Hsieh ST, Lee NC, Hsueh HW, Yang CC. Diagnostic Challenges of Neuromuscular Disorders after Whole Exome Sequencing. J Neuromuscul Dis 2023:JND230013. [PMID: 37066920 DOI: 10.3233/jnd-230013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Whole-exome sequencing (WES) facilitates the diagnosis of hereditary neuromuscular disorders. To achieve an accurate diagnosis, physicians should interpret the genetic report carefully along with clinical information and examinations. We described our experience with (1) clinical validation in patients with variants found using WES and (2) a diagnostic approach for those with negative findings from WES. METHODS WES was performed on patients with the clinical impression of hereditary neuromuscular disorders. Information on clinical manifestations, neurological examination, electrodiagnostic studies, histopathology of muscle and nerve, and laboratory tests were collected. RESULTS Forty-one patients (Male/Female: 18/23, age of onset: 34.5±15.9) accepted WES and were categorized into four scenarios: (1) patients with a positive WES result, (2) patients with an inconclusive WES result but supporting clinical data, (3) negative findings from WES, but a final diagnosis after further work-up, and (4) undetermined etiology from WES and in further work-ups. The yield rate of the initial WES was 63.4% (26/41). Among these, seventeen patients had positive WES result, while the other nine patients had inconclusive WES result but supporting clinical data. Notably, in the fifteen patients with equivocal or negative findings from WES, four patients (26.7%) achieved a diagnosis after further workup: tumor-induced osteomalacia, metabolic myopathy with pathogenic variants in mitochondrial DNA, microsatellite expansion disease, and vasculitis-related neuropathy. The etiologies remained undetermined in eleven patients (myopathy: 7, neuropathy: 4) after WES and further workup. CONCLUSIONS It is essential to design genotype-guided molecular studies to correlate the identified variants with their clinical features. For patients who had negative findings from WES, acquired diseases, mitochondrial DNA disorders and microsatellite expansion diseases should be considered.
Collapse
Affiliation(s)
- Pin-Shiuan Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Chao Chao
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-Yi Huang
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Hsin Huang
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsueh-Wen Hsueh
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Chao Yang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
13
|
Lee NC. The incorporation of next-generation sequencing into pediatric care. Pediatr Neonatol 2023; 64 Suppl 1:S30-S34. [PMID: 36456424 DOI: 10.1016/j.pedneo.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Genetic condition is one of the major etiologies causing morbidity and mortality in infants and children. More and more etiologies can be solved using next-generation sequencing (NGS) as it develops. Currently, whole-exome sequencing (WES) and whole-genome sequencing (WGS) have been highly integrated into clinical practice. The average diagnostic yield of WES/WGS in pediatric patients with genetic condition was around 40% (range: 21%-80%), with acceptable turnaround time and cost. The higher diagnostic yield categories are deafness, ophthalmic, neurological, skeletal conditions, and inborn error of metabolism. Positive results provide benefit with those for actionable diseases, next pregnancy planning, and family members. For those in critical condition, with the emergence of sequencing technology and bioinformatics analysis tools, provisional diagnosis can be made as short as 13.5 h using ultrarapid WGS. We believe this powerful tool has changed pediatric daily practice.
Collapse
Affiliation(s)
- Ni-Chung Lee
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei 10041, Taiwan.
| |
Collapse
|
14
|
Summa S, Ittiwut C, Kulsirichawaroj P, Paprad T, Likasitwattanakul S, Sanmaneechai O, Boonsimma P, Suphapeetiporn K, Shotelersuk V. Utilisation of exome sequencing for muscular disorders in Thai paediatric patients: diagnostic yield and mutational spectrum. Sci Rep 2023; 13:1376. [PMID: 36697461 PMCID: PMC9876991 DOI: 10.1038/s41598-023-28405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Muscular dystrophies and congenital myopathies are heterogeneous groups of inherited muscular disorders. An accurate diagnosis is challenging due to their complex clinical presentations and genetic heterogeneity. This study aimed to determine the utilisation of exome sequencing (ES) for Thai paediatric patients with muscular disorders. Of 176 paediatric patients suspected of genetic/inherited myopathies, 133 patients received a molecular diagnosis after performing conventional investigations, single gene testing, and gene panels. The remaining 43 patients from 42 families could be classified into three groups: Group 1, MLPA-negative Duchenne muscular dystrophy (DMD) with 9 patients (9/43; 21%), Group 2, other muscular dystrophies (MD) with 18 patients (18/43; 42%) and Group 3, congenital myopathies (CM) with 16 patients (16/43; 37%). All underwent exome sequencing which could identify pathogenic variants in 8/9 (89%), 14/18 (78%), and 8/16 (50%), for each Group, respectively. Overall, the diagnostic yield of ES was 70% (30/43) and 36 pathogenic/likely pathogenic variants in 14 genes were identified. 18 variants have never been previously reported. Molecular diagnoses provided by ES changed management in 22/30 (73%) of the patients. Our study demonstrates the clinical utility and implications of ES in inherited myopathies.
Collapse
Affiliation(s)
- Sarinya Summa
- Department of Paediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Department of Paediatrics, Samutprakan Hospital, Samutprakan, 10270, Thailand
| | - Chupong Ittiwut
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Pimchanok Kulsirichawaroj
- Department of Paediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Department of Paediatrics, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, 10300, Thailand
| | - Tanitnun Paprad
- Division of Neurology, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Surachai Likasitwattanakul
- Department of Paediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Oranee Sanmaneechai
- Department of Paediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Ponghatai Boonsimma
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand. .,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand.
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
15
|
Hong SE, Kneissl J, Cho A, Kim MJ, Park S, Lee J, Woo S, Kim S, Kim JS, Kim SY, Jung S, Kim J, Shin JY, Chae JH, Choi M. Transcriptome-based variant calling and aberrant mRNA discovery enhance diagnostic efficiency for neuromuscular diseases. J Med Genet 2022; 59:1075-1081. [PMID: 35387801 PMCID: PMC9613860 DOI: 10.1136/jmedgenet-2021-108307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/08/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Whole-exome sequencing-based diagnosis of rare diseases typically yields 40%-50% of success rate. Precise diagnosis of the patients with neuromuscular disorders (NMDs) has been hampered by locus heterogeneity or phenotypic heterogeneity. We evaluated the utility of transcriptome sequencing as an independent approach in diagnosing NMDs. METHODS The RNA sequencing (RNA-Seq) of muscle tissues from 117 Korean patients with suspected Mendelian NMD was performed to evaluate the ability to detect pathogenic variants. Aberrant splicing and CNVs were inspected to identify additional causal genetic factors for NMD. Aberrant splicing events in Dystrophin (DMD) were investigated by using antisense oligonucleotides (ASOs). A non-negative matrix factorisation analysis of the transcriptome data followed by cell type deconvolution was performed to cluster samples by expression-based signatures and identify cluster-specific gene ontologies. RESULTS Our pipeline called 38.1% of pathogenic variants exclusively from the muscle transcriptomes, demonstrating a higher diagnostic rate than that achieved via exome analysis (34.9%). The discovery of variants causing aberrant splicing allowed the application of ASOs to the patient-derived cells, providing a therapeutic approach tailored to individual patients. RNA-Seq data further enabled sample clustering by distinct gene expression profiles that corresponded to clinical parameters, conferring additional advantages over exome sequencing. CONCLUSION The RNA-Seq-based diagnosis of NMDs achieves an increased diagnostic rate and provided pathogenic status information, which is not easily accessible through exome analysis.
Collapse
Affiliation(s)
- Sung Eun Hong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jana Kneissl
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Anna Cho
- Department of Pediatrics, Rare Disease Center, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Man Jin Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
| | - Soojin Park
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| | - Jeongeun Lee
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, Korea
| | - Sijae Woo
- Graduate School of Medical Science and Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Sora Kim
- Department of Genome Medicine and Science, Gachon University College of Medicine, Incheon, Korea
| | - Jun-Soon Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurology, Seoul National University Bundang Hospital, Geyonggi-do, Korea
| | - Soo Yeon Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| | - Sungwon Jung
- Department of Genome Medicine and Science, Gachon University College of Medicine, Incheon, Korea
- Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, Korea
| | - Jinkuk Kim
- Graduate School of Medical Science and Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Je-Young Shin
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Jong-Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Pediatric Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Ng KWP, Chin HL, Chin AXY, Goh DLM. Using gene panels in the diagnosis of neuromuscular disorders: A mini-review. Front Neurol 2022; 13:997551. [PMID: 36313509 PMCID: PMC9602396 DOI: 10.3389/fneur.2022.997551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/21/2022] [Indexed: 09/26/2023] Open
Abstract
The diagnosis of inherited neuromuscular disorders is challenging due to their genetic and phenotypic variability. Traditionally, neurophysiology and histopathology were primarily used in the initial diagnostic approach to these conditions. Sanger sequencing for molecular diagnosis was less frequently utilized as its application was a time-consuming and cost-intensive process. The advent and accessibility of next-generation sequencing (NGS) has revolutionized the evaluation process of genetically heterogenous neuromuscular disorders. Current NGS diagnostic testing approaches include gene panels, whole exome sequencing (WES), and whole genome sequencing (WGS). Gene panels are often the most widely used, being more accessible due to availability and affordability. In this mini-review, we describe the benefits and risks of clinical genetic testing. We also discuss the utility, benefits, challenges, and limitations of using gene panels in the evaluation of neuromuscular disorders.
Collapse
Affiliation(s)
- Kay W. P. Ng
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Hui-Lin Chin
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amanda X. Y. Chin
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Denise Li-Meng Goh
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
DNA2 mutation causing multisystemic disorder with impaired mitochondrial DNA maintenance. J Hum Genet 2022; 67:691-699. [PMID: 36064591 DOI: 10.1038/s10038-022-01075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To describe a novel DNA2 variant contributing to defects in mtDNA maintenance and mtDNA depletion syndrome (MDS), and the clinical and histological findings associated with this variation. METHODS Herein, we describe the case of a patient who presented with hearing loss and myopathy, given the family history of similar findings in the father, was evaluated by sequencing of the deafness gene panel, mitochondrial genome, and the exome. Furthermore, tissue staining, mtDNA copy number detection, mtDNA sequencing, and long-range polymerase chain reaction tests were also conducted on the muscle biopsy specimen. In vitro experiments, including analyses of the mtDNA copy number; levels of ATP, ATPase, and reactive oxygen species (ROS); and the membrane potential, were performed. RESULTS The DNA2 heterozygous truncating variant c. 2368C > T (p.Q790X) was identified and verified as the cause of an mtDNA copy number decrement in both functional experiments and muscle tissue analyses. These changes were accompanied by reductions in ATP, ATPase, and ROS levels. CONCLUSION The DNA2 variant was a likely cause of MDS in this patient. These findings expand the mutational spectrum of MDS and improve our understanding of the functions of DNA2 by revealing its novel role in mtDNA maintenance.
Collapse
|
18
|
Eker D, Gurkan H, Karal Y, Yalcintepe S, Demir S, Atli E, Karasalihoglu ST. Investigating the Genetic Etiology of Pediatric Patients with Peripheral Hypotonia Using the Next-Generation Sequencing Method. Glob Med Genet 2022; 9:200-207. [PMID: 35846108 PMCID: PMC9286875 DOI: 10.1055/s-0042-1745873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background
Hypotonia occurs as a result of neurological dysfunction in the brain, brainstem, spinal cord, motor neurons, anterior horn cells, peripheral nerves, and muscles. Although the genotype–phenotype correlation can be established in 15 to 30% of patients, it is difficult to obtain a correlation in most cases.
Aims
This study was aimed to investigate the genetic etiology in cases of peripheral hypotonia that could not be diagnosed using conventional methods.
Methods
A total of 18 pediatric patients with peripheral hypotonia were included. They were referred to our genetic disorders diagnosis center from the Pediatric Neurology Department with a prediagnosis of hypotonia. A custom designed multigene panel, including
ACTA1
,
CCDC78
,
DYNC1H1
,
GARS
,
RYR1
,
COL6A1
,
COL6A2
,
COL6A3
,
FKRP
,
FKTN
,
IGHMBP2
,
LMNA
,
LAMA2
,
LARGE1
,
MTM1
,
NEM
,
POMGnT1
,
POMT1
,
POMT2
, and
SEPN1
, was used for genetic analysis using next-generation sequencing (NGS).
Results
In our study, we found 13 variants including pathogenic (two variants in LAMA2) and likely pathogenic variants (three variants in RYR1 and POMGnT1) and variants of uncertain clinical significance (eight variants in RYR1, COL6A3, COL6A2, POMGnT1 and POMT1) in 11 (61%) out of 18 patients. In one of our patients, a homozygous, likely pathogenic c.1649G > A, p.(Ser550Asn) variant was defined in the
POMGnT1
gene which was associated with a muscle–eye–brain disease phenotype.
Conclusion
The contribution of an in-house designed gene panel in the etiology of peripheral hypotonia with a clinical diagnosis was 5.5%. An important contribution with the clinical diagnosis can be made using the targeted multigene panels in larger samples.
Collapse
Affiliation(s)
- Damla Eker
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Hakan Gurkan
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Yasemin Karal
- Department of Pediatric Neurology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Sinem Yalcintepe
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Selma Demir
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Engin Atli
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Serap T. Karasalihoglu
- Department of Pediatric Neurology, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
19
|
Hsueh HW, Weng WC, Fan PC, Chien YH, Yang FJ, Lee WT, Lin RJ, Hwu WL, Yang CC, Lee NC. The diversity of hereditary neuromuscular diseases: Experiences from molecular diagnosis. J Formos Med Assoc 2022; 121:2574-2583. [PMID: 35821219 DOI: 10.1016/j.jfma.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 03/02/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hereditary neuromuscular diseases (NMDs) are a group of rare disorders, and the diagnosis of these diseases is a substantial burden for referral centers. Although next-generation sequencing (NGS) has identified a large number of genes associated with hereditary NMDs, the diagnostic rates still vary across centers. METHODS Patients with a suspected hereditary NMD were referred to neuromuscular specialists at the National Taiwan University Hospital. Molecular diagnoses were performed by employing a capture panel containing 194 genes associated with NMDs. RESULTS Among the 50 patients referred, 43 had a suspicion of myopathy, and seven had polyneuropathy. The overall diagnostic rate was 58%. Pathogenic variants in 19 genes were observed; the most frequent pathogenic variant found in this cohort (DYSF) was observed in only four patients, and 10 pathogenic variants were observed in one patient each. One case of motor neuron disease was clinically mistaken for myopathy. A positive family history increased the diagnostic rate (positive: 72.7% vs. negative: 56.3%). Fourteen patients with elevated plasma creatine kinase levels remained without a diagnosis. CONCLUSION The application of NGS in this single-center study proves the great diversity of hereditary NMDs. A capture panel is essential, but high-quality clinical and laboratory evaluations of patients are also indispensable.
Collapse
Affiliation(s)
- Hsueh-Wen Hsueh
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Chin Weng
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pi-Chuan Fan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Feng-Jung Yang
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Wang-Tso Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ru-Jen Lin
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Wuh-Liang Hwu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Chao Yang
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Ni-Chung Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
20
|
Barbosa-Gouveia S, Vázquez-Mosquera ME, González-Vioque E, Hermida-Ameijeiras Á, Sánchez-Pintos P, de Castro MJ, León SR, Gil-Fournier B, Domínguez-González C, Camacho Salas A, Negrão L, Fineza I, Laranjeira F, Couce ML. Rapid Molecular Diagnosis of Genetically Inherited Neuromuscular Disorders Using Next-Generation Sequencing Technologies. J Clin Med 2022; 11:jcm11102750. [PMID: 35628876 PMCID: PMC9143479 DOI: 10.3390/jcm11102750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023] Open
Abstract
Neuromuscular diseases are genetically highly heterogeneous, and differential diagnosis can be challenging. Over a 3-year period, we prospectively analyzed 268 pediatric and adult patients with a suspected diagnosis of inherited neuromuscular disorder (INMD) using comprehensive gene-panel analysis and next-generation sequencing. The rate of diagnosis increased exponentially with the addition of genes to successive versions of the INMD panel, from 31% for the first iteration (278 genes) to 40% for the last (324 genes). The global mean diagnostic rate was 36% (97/268 patients), with a diagnostic turnaround time of 4–6 weeks. Most diagnoses corresponded to muscular dystrophies/myopathies (68.37%) and peripheral nerve diseases (22.45%). The most common causative genes, TTN, RYR1, and ANO5, accounted for almost 30% of the diagnosed cases. Finally, we evaluated the utility of the differential diagnosis tool Phenomizer, which established a correlation between the phenotype and molecular findings in 21% of the diagnosed patients. In summary, comprehensive gene-panel analysis of all genes implicated in neuromuscular diseases facilitates a rapid diagnosis and provides a high diagnostic yield.
Collapse
Affiliation(s)
- Sofia Barbosa-Gouveia
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Paediatrics, Santiago de Compostela University Clinical Hospital, 15704 Santiago de Compostela, Spain; (M.E.V.-M.); (Á.H.-A.); (P.S.-P.); (M.J.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela University Clinical Hospital, European Reference Network for Hereditary Metabolic Disorders (MetabERN), 15704 Santiago de Compostela, Spain
- Correspondence: (S.B.-G.); (M.L.C.); Tel.: +34-981-950-151 (M.L.C.)
| | - Maria Eugenia Vázquez-Mosquera
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Paediatrics, Santiago de Compostela University Clinical Hospital, 15704 Santiago de Compostela, Spain; (M.E.V.-M.); (Á.H.-A.); (P.S.-P.); (M.J.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela University Clinical Hospital, European Reference Network for Hereditary Metabolic Disorders (MetabERN), 15704 Santiago de Compostela, Spain
| | - Emiliano González-Vioque
- Department of Clinical Biochemistry, Puerta de Hierro-Majadahonda University Hospital, 28222 Majadahonda, Spain;
| | - Álvaro Hermida-Ameijeiras
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Paediatrics, Santiago de Compostela University Clinical Hospital, 15704 Santiago de Compostela, Spain; (M.E.V.-M.); (Á.H.-A.); (P.S.-P.); (M.J.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela University Clinical Hospital, European Reference Network for Hereditary Metabolic Disorders (MetabERN), 15704 Santiago de Compostela, Spain
| | - Paula Sánchez-Pintos
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Paediatrics, Santiago de Compostela University Clinical Hospital, 15704 Santiago de Compostela, Spain; (M.E.V.-M.); (Á.H.-A.); (P.S.-P.); (M.J.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela University Clinical Hospital, European Reference Network for Hereditary Metabolic Disorders (MetabERN), 15704 Santiago de Compostela, Spain
| | - Maria José de Castro
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Paediatrics, Santiago de Compostela University Clinical Hospital, 15704 Santiago de Compostela, Spain; (M.E.V.-M.); (Á.H.-A.); (P.S.-P.); (M.J.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela University Clinical Hospital, European Reference Network for Hereditary Metabolic Disorders (MetabERN), 15704 Santiago de Compostela, Spain
| | - Soraya Ramiro León
- Genetics Department, Hospital Universitario de Getafe, 28905 Madrid, Spain; (S.R.L.); (B.G.-F.)
| | - Belén Gil-Fournier
- Genetics Department, Hospital Universitario de Getafe, 28905 Madrid, Spain; (S.R.L.); (B.G.-F.)
| | - Cristina Domínguez-González
- Neuromuscular Unit, Imas12 Research Institute, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana Camacho Salas
- Pediatric Neurology Unit, Hospital Universitario 12 de Octubre, Complutense University of Madrid, 28041 Madrid, Spain;
| | - Luis Negrão
- Neuromuscular Diseases Unit, Neurology Service, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal;
| | - Isabel Fineza
- Pediatric Neurology Department, Child Developmental Center, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra Coimbra Portugal, 3000-075 Coimbra, Portugal;
| | - Francisco Laranjeira
- Biochemical Genetics Unit, Centro de Genética Médica Doutor Jacinto Magalhães, 4050-466 Porto, Portugal;
| | - Maria Luz Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Paediatrics, Santiago de Compostela University Clinical Hospital, 15704 Santiago de Compostela, Spain; (M.E.V.-M.); (Á.H.-A.); (P.S.-P.); (M.J.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IDIS-Health Research Institute of Santiago de Compostela, Santiago de Compostela University Clinical Hospital, European Reference Network for Hereditary Metabolic Disorders (MetabERN), 15704 Santiago de Compostela, Spain
- Correspondence: (S.B.-G.); (M.L.C.); Tel.: +34-981-950-151 (M.L.C.)
| |
Collapse
|
21
|
Cotta A, Souza LS, Carvalho E, Feitosa LN, Cunha A, Navarro MM, Valicek J, Menezes MM, Neves SVN, Xavier-Neto R, Vargas AP, Takata RI, Paim JF, Vainzof M. Central Core Disease: Facial Weakness Differentiating Biallelic from Monoallelic Forms. Genes (Basel) 2022; 13:genes13050760. [PMID: 35627144 PMCID: PMC9141459 DOI: 10.3390/genes13050760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022] Open
Abstract
Central Core Disease (CCD) is a genetic neuromuscular disorder characterized by the presence of cores in muscle biopsy. The inheritance has been described as predominantly autosomal dominant (AD), and the disease may present as severe neonatal or mild adult forms. Here we report clinical and molecular data on a large cohort of Brazilian CCD patients, including a retrospective clinical analysis and molecular screening for RYR1 variants using Next-Generation Sequencing (NGS). We analyzed 27 patients from 19 unrelated families: four families (11 patients) with autosomal dominant inheritance (AD), two families (3 patients) with autosomal recessive (AR), and 13 sporadic cases. Biallelic RYR1 variants were found in six families (two AR and four sporadic cases) of the 14 molecularly analyzed families (~43%), suggesting a higher frequency of AR inheritance than expected. None of these cases presented a severe phenotype. Facial weakness was more common in biallelic than in monoallelic patients (p = 0.0043) and might be a marker for AR forms. NGS is highly effective for the identification of RYR1 variants in CCD patients, allowing the discovery of a higher proportion of AR cases with biallelic mutations. These data have important implications for the genetic counseling of the families.
Collapse
Affiliation(s)
- Ana Cotta
- The SARAH Network of Rehabilitation Hospitals, Av. Amazonas, 5953, Belo Horizonte 30510-000, MG, Brazil; (A.C.); (E.C.); (A.C.J.); (M.M.N.); (J.V.); (M.M.M.); (S.V.N.N.); (R.X.-N.); (A.P.V.); (R.I.T.); (J.F.P.)
| | - Lucas Santos Souza
- Human Genome and Stem Cells Research Center, Genetics and Evolutionary Biology, IBUSP, University of São Paulo, R. do Matao, 106, Cidade Universitária, Sao Paulo 05508-900, SP, Brazil; (L.S.S.); (L.N.F.)
| | - Elmano Carvalho
- The SARAH Network of Rehabilitation Hospitals, Av. Amazonas, 5953, Belo Horizonte 30510-000, MG, Brazil; (A.C.); (E.C.); (A.C.J.); (M.M.N.); (J.V.); (M.M.M.); (S.V.N.N.); (R.X.-N.); (A.P.V.); (R.I.T.); (J.F.P.)
| | - Leticia Nogueira Feitosa
- Human Genome and Stem Cells Research Center, Genetics and Evolutionary Biology, IBUSP, University of São Paulo, R. do Matao, 106, Cidade Universitária, Sao Paulo 05508-900, SP, Brazil; (L.S.S.); (L.N.F.)
| | - Antonio Cunha
- The SARAH Network of Rehabilitation Hospitals, Av. Amazonas, 5953, Belo Horizonte 30510-000, MG, Brazil; (A.C.); (E.C.); (A.C.J.); (M.M.N.); (J.V.); (M.M.M.); (S.V.N.N.); (R.X.-N.); (A.P.V.); (R.I.T.); (J.F.P.)
| | - Monica Machado Navarro
- The SARAH Network of Rehabilitation Hospitals, Av. Amazonas, 5953, Belo Horizonte 30510-000, MG, Brazil; (A.C.); (E.C.); (A.C.J.); (M.M.N.); (J.V.); (M.M.M.); (S.V.N.N.); (R.X.-N.); (A.P.V.); (R.I.T.); (J.F.P.)
| | - Jaquelin Valicek
- The SARAH Network of Rehabilitation Hospitals, Av. Amazonas, 5953, Belo Horizonte 30510-000, MG, Brazil; (A.C.); (E.C.); (A.C.J.); (M.M.N.); (J.V.); (M.M.M.); (S.V.N.N.); (R.X.-N.); (A.P.V.); (R.I.T.); (J.F.P.)
| | - Miriam Melo Menezes
- The SARAH Network of Rehabilitation Hospitals, Av. Amazonas, 5953, Belo Horizonte 30510-000, MG, Brazil; (A.C.); (E.C.); (A.C.J.); (M.M.N.); (J.V.); (M.M.M.); (S.V.N.N.); (R.X.-N.); (A.P.V.); (R.I.T.); (J.F.P.)
| | - Simone Vilela Nunes Neves
- The SARAH Network of Rehabilitation Hospitals, Av. Amazonas, 5953, Belo Horizonte 30510-000, MG, Brazil; (A.C.); (E.C.); (A.C.J.); (M.M.N.); (J.V.); (M.M.M.); (S.V.N.N.); (R.X.-N.); (A.P.V.); (R.I.T.); (J.F.P.)
| | - Rafael Xavier-Neto
- The SARAH Network of Rehabilitation Hospitals, Av. Amazonas, 5953, Belo Horizonte 30510-000, MG, Brazil; (A.C.); (E.C.); (A.C.J.); (M.M.N.); (J.V.); (M.M.M.); (S.V.N.N.); (R.X.-N.); (A.P.V.); (R.I.T.); (J.F.P.)
| | - Antonio Pedro Vargas
- The SARAH Network of Rehabilitation Hospitals, Av. Amazonas, 5953, Belo Horizonte 30510-000, MG, Brazil; (A.C.); (E.C.); (A.C.J.); (M.M.N.); (J.V.); (M.M.M.); (S.V.N.N.); (R.X.-N.); (A.P.V.); (R.I.T.); (J.F.P.)
| | - Reinaldo Issao Takata
- The SARAH Network of Rehabilitation Hospitals, Av. Amazonas, 5953, Belo Horizonte 30510-000, MG, Brazil; (A.C.); (E.C.); (A.C.J.); (M.M.N.); (J.V.); (M.M.M.); (S.V.N.N.); (R.X.-N.); (A.P.V.); (R.I.T.); (J.F.P.)
| | - Julia Filardi Paim
- The SARAH Network of Rehabilitation Hospitals, Av. Amazonas, 5953, Belo Horizonte 30510-000, MG, Brazil; (A.C.); (E.C.); (A.C.J.); (M.M.N.); (J.V.); (M.M.M.); (S.V.N.N.); (R.X.-N.); (A.P.V.); (R.I.T.); (J.F.P.)
| | - Mariz Vainzof
- Human Genome and Stem Cells Research Center, Genetics and Evolutionary Biology, IBUSP, University of São Paulo, R. do Matao, 106, Cidade Universitária, Sao Paulo 05508-900, SP, Brazil; (L.S.S.); (L.N.F.)
- Correspondence:
| |
Collapse
|
22
|
Narayanaswami P, Živković S. Molecular and Genetic Therapies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Huang Y, Bi B, Zhao P, Yu T, Luo S, Tan L, Liu Z, Liu J, He X. Infantile-onset CMT2D/dSMA-V in a Chinese family with parental germline mosaicism for a novel mutation in the GARS1 gene. Mol Genet Genomic Med 2021; 10:e1846. [PMID: 34898052 PMCID: PMC8801134 DOI: 10.1002/mgg3.1846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND AND AIMS Both Charcot-Marie-Tooth disease type 2D (CMT2D) and distal spinal muscular atrophy type V (dSMA-V) are GARS1 disease phenotypes involving axonal peripheral neuropathy. Patients often develop clinical symptoms in their teens. Herein, we reported a Chinese family with infantile-onset CMT2D/dSMA-V. METHODS Clinical evaluation and laboratory examination were performed in our proband, the older sister from this family, and trio exome sequencing (ES) was conducted on the proband and her parents, followed by Sanger sequencing. RESULTS A novel GARS1 mutation (c.997G>C, p.E333Q; NM_002047) was identified in this patient and her younger sister but not in her parents; thus, it is presumed that this mutation is inherited from a germline mosaic parent. The younger sister began to exhibit weakness of her hands and feet at the age of 1 year old. CONCLUSION This is the first report of infantile CMT2D/dSMA-V in China. Our study increases the number of infantile-onset cases, as well as reported pathogenic variants in the GARS1 gene, and highlights the important role of exome sequencing in the clinical diagnosis of disease and enabling subsequent prenatal diagnosis. Our study reminds us to consider the possibility of parent germline mosaicism in the subsequent prenatal genetic diagnosis when identifying a de novo variant.
Collapse
Affiliation(s)
- Yufeng Huang
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Bo Bi
- Department of Rehabilitation, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Peiwei Zhao
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ting Yu
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Sukun Luo
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Li Tan
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Zhisheng Liu
- Department of Rehabilitation, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jie Liu
- Department of Gastroenterology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xuelian He
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
24
|
Zhang S, Lei L, Fan Z, Su S, Duo J, Luan Q, Lu Y, Di L, Wang M, Da Y. Delayed Respiratory Insufficiency and Extramuscular Abnormalities in Selenoprotein N-Related Myopathies. Front Neurol 2021; 12:766942. [PMID: 34867752 PMCID: PMC8639696 DOI: 10.3389/fneur.2021.766942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Selenoprotein N-related myopathies (SEPN1-RMs) are a subset of congenital myopathies caused by mutations of Selenoprotein N gene (SELENON or SEPN1). Clinical phenotype is considered as highly consistent and little attention has been given to the extramuscular abnormalities. Methods: We reported clinical, histopathological, and genetic features of four Chinese patients with SEPN1-RM and performed literature review on delayed respiratory insufficiency and extramuscular involvement. Results: A total of four patients exhibited both the typical and atypical clinical features of SEPN1-RM. The classical manifestations included axial and limb girdle weakness, spinal rigidity, scoliosis, respiratory insufficiency, and multiminicore morphological lesions. However, high interindividual variability was noticed on disease severity, especially the onset of respiratory involvement. Two adult patients postponed respiratory insufficiency to the third decade of life, while two juvenile patients manifested early hypoventilation with puberty exacerbation. As atypical features, extramuscular involvement of weight gain, subcutaneous adipose tissue accumulation, intellectual disability, and mild cardiac changes were observed. Molecular findings revealed three novel mutations of SELENON such as c.1286_1288 del CCT, c.1078_1086dupGGCTACATA, and c.785 G>C. Ten cases with delayed respiratory insufficiency were identified from previous publications. A total of 18 studies described extramuscular abnormalities including joint contractures, alterations of body mass index (BMI), mild cardiac changes, and insulin resistance. Intellectual impairment was extremely rare. Conclusion: SEPN1-RM should be considered as a differential diagnosis in adult patients with delayed respiratory involvement. Extramuscular involvement such as body composition alterations deserves more clinical attention. The novel mutations of SELENON widened the genetic spectrum of patients with SEPN1-RM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuwei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Gemelli C, Traverso M, Trevisan L, Fabbri S, Scarsi E, Carlini B, Prada V, Mongini T, Ruggiero L, Patrone S, Gallone S, Iodice R, Pisciotta L, Zara F, Origone P, Rota E, Minetti C, Bruno C, Schenone A, Mandich P, Fiorillo C, Grandis M. An integrated approach to the evaluation of patients with asymptomatic or minimally symptomatic hyperCKemia. Muscle Nerve 2021; 65:96-104. [PMID: 34687219 PMCID: PMC9298868 DOI: 10.1002/mus.27448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 02/01/2023]
Abstract
Introduction/Aims Currently, there are no straightforward guidelines for the clinical and diagnostic management of hyperCKemia, a frequent and nonspecific presentation in muscle diseases. Therefore, we aimed to describe our diagnostic workflow for evaluating patients with this condition. Methods We selected 83 asymptomatic or minimally symptomatic patients with persistent hyperCKemia for participation in this Italian multicenter study. Patients with facial involvement and distal or congenital myopathies were excluded, as were patients with suspected inflammatory myopathies or predominant respiratory or cardiac involvement. All patients underwent a neurological examination and nerve conduction and electromyography studies. The first step of the investigation included a screening for Pompe disease. We then evaluated the patients for myotonic dystrophy type II–related CCTG expansion and excluded patients with copy number variations in the DMD gene. Subsequently, the undiagnosed patients were investigated using a target gene panel that included 20 genes associated with isolated hyperCKemia. Results Using this approach, we established a definitive diagnosis in one third of the patients. The detection rate was higher in patients with severe hyperCKemia and abnormal electromyographic findings. Discussion We have described our diagnostic workflow for isolated hyperCKemia, which is based on electrodiagnostic data, biochemical screening, and first‐line genetic investigations, followed by successive targeted sequencing panels. Both clinical signs and electromyographic abnormalities are associated with increased diagnostic yields.
Collapse
Affiliation(s)
- Chiara Gemelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Genoa, Italy
| | - Monica Traverso
- Paediatric Neurology and Muscular Diseases Unit, IRCCS G. Gaslini Institute, Genoa, Italy
| | - Lucia Trevisan
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Genoa, Italy
| | - Sabrina Fabbri
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Genoa, Italy
| | - Elena Scarsi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Genoa, Italy
| | - Barbara Carlini
- Unit of Medical Genetics, IRCCS G. Gaslini Institute, Genoa, Italy
| | - Valeria Prada
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Genoa, Italy
| | - Tiziana Mongini
- Neuromuscular Unit, Department of Neurosciences Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Lucia Ruggiero
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli "Federico II,", Naples, Italy
| | - Serena Patrone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Genoa, Italy
| | - Salvatore Gallone
- Neurogenetic Service, Department of Neurosciences, AOU Città della salute e della scienza, Torino, Italy
| | - Rosa Iodice
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli "Federico II,", Naples, Italy
| | - Livia Pisciotta
- Department of Internal Medicine, University of Genoa, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Unit of Medical Genetics IRCCS G. Gaslini Institute, Genoa, Italy
| | - Paola Origone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Unit of Medical Genetics, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Eugenia Rota
- Neurology Unit, ASL Alessandria, Novi Ligure, Italy
| | - Carlo Minetti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Pediatric Neurology and Muscular Diseases Unit, IRCCS G. Gaslini Institute, Genoa, Italy
| | - Claudio Bruno
- Centre of Experimental and Translational Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Unit of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Mandich
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Unit of Medical Genetics, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Fiorillo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Pediatric Neurology and Muscular Diseases Unit, IRCCS G. Gaslini Institute, Genoa, Italy
| | - Marina Grandis
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Unit of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
26
|
Juntas Morales R, Perrin A, Solé G, Lacourt D, Pegeot H, Walther-Louvier U, Cintas P, Cances C, Espil C, Theze C, Zenagui R, Yauy K, Cosset E, Renard D, Rigau V, Maues de Paula A, Uro-Coste E, Arne-Bes MC, Martin Négrier ML, Leboucq N, Acket B, Malfatti E, Biancalana V, Metay C, Richard P, Rendu J, Rivier F, Koenig M, Cossée M. An Integrated Clinical-Biological Approach to Identify Interindividual Variability and Atypical Phenotype-Genotype Correlations in Myopathies: Experience on A Cohort of 156 Families. Genes (Basel) 2021; 12:genes12081199. [PMID: 34440373 PMCID: PMC8392536 DOI: 10.3390/genes12081199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/17/2023] Open
Abstract
Diagnosis of myopathies is challenged by the high genetic heterogeneity and clinical overlap of the various etiologies. We previously reported a Next-Generation Sequencing strategy to identify genetic etiology in patients with undiagnosed Limb-Girdle Muscular Dystrophies, Congenital Myopathies, Congenital Muscular Dystrophies, Distal Myopathies, Myofibrillar Myopathies, and hyperCKemia or effort intolerance, using a large gene panel including genes classically associated with other entry diagnostic categories. In this study, we report the comprehensive clinical-biological strategy used to interpret NGS data in a cohort of 156 pediatric and adult patients, that included Copy Number Variants search, variants filtering and interpretation according to ACMG guidelines, segregation studies, deep phenotyping of patients and relatives, transcripts and protein studies, and multidisciplinary meetings. Genetic etiology was identified in 74 patients, a diagnostic yield (47.4%) similar to previous studies. We identified 18 patients (10%) with causative variants in different genes (ACTA1, RYR1, NEB, TTN, TRIP4, CACNA1S, FLNC, TNNT1, and PAPBN1) that resulted in milder and/or atypical phenotypes, with high intrafamilial variability in some cases. Mild phenotypes could mostly be explained by a less deleterious effect of variants on the protein. Detection of inter-individual variability and atypical phenotype-genotype associations is essential for precision medicine, patient care, and to progress in the understanding of the molecular mechanisms of myopathies.
Collapse
Affiliation(s)
- Raul Juntas Morales
- Explorations Neurologiques et Centre SLA, Centre de Référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France;
- Équipe Accueil EA7402, Institut Universitaire de Recherche Clinique (IURC), Université de Montpellier, 34093 Montpellier, France;
| | - Aurélien Perrin
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34093 Montpellier, France
| | - Guilhem Solé
- Service de Neurologie, Centre Hospitalier Universitaire de Bordeaux, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 33000 Bordeaux, France;
| | - Delphine Lacourt
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
| | - Henri Pegeot
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
| | - Ulrike Walther-Louvier
- Service de Neuropédiatrie, Centre Hospitalier Universitaire de Montpellier, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 34295 Montpellier, France; (U.W.-L.); (F.R.)
| | - Pascal Cintas
- Service de Neurologie, Centre Hospitalier Universitaire de Toulouse, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 31059 Toulouse, France; (P.C.); (M.-C.A.-B.); (B.A.)
| | - Claude Cances
- Service de Neuropédiatrie, Centre Hospitalier Universitaire de Toulouse, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 31059 Toulouse, France;
| | - Caroline Espil
- Service de Neuropédiatrie, Centre Hospitalier de Bordeaux, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 33000 Bordeaux, France;
| | - Corinne Theze
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
| | - Reda Zenagui
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
| | - Kevin Yauy
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
| | - Elodie Cosset
- Équipe Accueil EA7402, Institut Universitaire de Recherche Clinique (IURC), Université de Montpellier, 34093 Montpellier, France;
| | - Dimitri Renard
- Service de Neurologie, Centre Hospitalier Universitaire de Nîmes, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 30029 Nîmes, France;
| | - Valerie Rigau
- Service de Pathologie, Centre Hospitalier Universitaire de Montpellier, Centre de Référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 34295 Montpellier, France;
| | - Andre Maues de Paula
- Service de Pathologie, Centre Hospitalier Universitaire de Marseille, Centre de Référence des Maladies Neuromusculaires PACA-Réunion-Rhône Alpes, 13005 Marseille, France;
| | - Emmanuelle Uro-Coste
- Service de Pathologie, Centre Hospitalier Universitaire de Toulouse, Centre de Référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 31300 Toulouse, France;
| | - Marie-Christine Arne-Bes
- Service de Neurologie, Centre Hospitalier Universitaire de Toulouse, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 31059 Toulouse, France; (P.C.); (M.-C.A.-B.); (B.A.)
| | - Marie-Laure Martin Négrier
- CHU de Bordeaux, Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, 33076 Bordeaux, France;
| | - Nicolas Leboucq
- Service de Neuroradiologie, Centre Hospitalier de Montpellier, Centre de Référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 34295 Montpellier, France;
| | - Blandine Acket
- Service de Neurologie, Centre Hospitalier Universitaire de Toulouse, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 31059 Toulouse, France; (P.C.); (M.-C.A.-B.); (B.A.)
| | - Edoardo Malfatti
- Service Neurologie Médicale, Centre de Référence Maladies Neuromusculaires Nord-Est-Ile-de-France, CHU Raymond-Poincaré, 92380 Garches, France;
- U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie Appliquées, UFR des Sciences de la Santé Simone Veil, Université Versailles-Saint-Quentin-en-Yvelines, 78180 Versailles, France
| | - Valérie Biancalana
- Laboratoire de Diagnostic Génétique, Université de Strasbourg, 67084 Strasbourg, France;
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France
| | - Corinne Metay
- Unité Fonctionnelle de Cardiogénétique et Myogénétique, Centre de Génétique, Hôpitaux Universitaire Pitié Salpêtrière–Charles Foix, 75651 Paris, France; (C.M.); (P.R.)
| | - Pascale Richard
- Unité Fonctionnelle de Cardiogénétique et Myogénétique, Centre de Génétique, Hôpitaux Universitaire Pitié Salpêtrière–Charles Foix, 75651 Paris, France; (C.M.); (P.R.)
| | - John Rendu
- CHU Grenoble, Université de Grenoble Alpes, Inserm, U1216, GIN, 38706 Saint-Martin-d’Hères, France;
- Unité Médicale de Génétique Moléculaire, Centre Hospitalier, Universitaire Grenoble Alpes, 38043 Saint-Martin-d’Hères, France
| | - François Rivier
- Service de Neuropédiatrie, Centre Hospitalier Universitaire de Montpellier, Centre de référence des Maladies Neuromusculaires AOC (Atlantique-Occitanie-Caraïbe), 34295 Montpellier, France; (U.W.-L.); (F.R.)
| | - Michel Koenig
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34093 Montpellier, France
| | - Mireille Cossée
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Montpellier, 34093 Montpellier, France; (A.P.); (D.L.); (H.P.); (C.T.); (R.Z.); (K.Y.); (M.K.)
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34093 Montpellier, France
- Correspondence:
| |
Collapse
|
27
|
Vázquez J, Lefeuvre C, Escobar RE, Luna Angulo AB, Miranda Duarte A, Delia Hernandez A, Brisset M, Carlier RY, Leturcq F, Durand-Canard MC, Nicolas G, Laforet P, Malfatti E. Phenotypic Spectrum of Myopathies with Recessive Anoctamin-5 Mutations. J Neuromuscul Dis 2021; 7:443-451. [PMID: 32925086 DOI: 10.3233/jnd-200515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Biallelic variants in Anoctamin 5 (ANO5) gene are causative of limb-girdle muscular dystrophy (LGMD) R12 anoctamin5-related, non-dysferlin Miyoshi-like distal myopathy (MMD3), and asymptomatic hyperCKemia. OBJECTIVE To describe clinic, histologic, genetic and imaging features, of ANO5 mutated patients. METHODS Five patients, four from France (P1, P2, P3 and P4) and one from Mexico (P5), from four families were included. P1 and P2, belonging to group 1, had normal muscle strength; Group 2, P3, P4 and P5, presented with muscular weakness. Muscle strength was measured by manual muscle testing, Medical Research Council (MRC) grades 1/5 to 5/5. Laboratory exams included serum CK levels, nerve conduction studies (NCS)/needle electromyography (EMG), pulmonary function tests, EKG and cardiac ultrasound. ANO5 molecular screening was performed with different approaches. RESULTS Group 1 patients showed myalgias with hyperCKemia or isolated hyperCKemia. Group 2 patients presented with limb-girdle or proximo-distal muscular weakness. Serum CK levels ranged from 897 to 5000 UI/L. Muscle biopsy analysis in P4 and P5 showed subsarcolemmal mitochondrial aggregates. Electron microscopy confirmed mitochondrial proliferation and revealed discontinuity of the sarcolemmal membrane. Muscle MRI showed asymmetrical fibro-fatty substitution predominant in the lower limbs.P1 and P2 were compound heterozygous for c.191dupA (p.Asn64Lysfs*15) and c.1898 + G>A; P3 was homozygous for the c.692G>T. (p.Gly231Val); P4 harbored a novel biallelic homozygous exons 1-7 ANO5 gene deletion, and P5 was homozygous for a c.172 C > T (p.(Arg 58 Trp)) ANO5 pathogenic variant. CONCLUSIONS Our cohort confirms the wide clinical variability and enlarge the genetic spectrum of ANO5-related myopathies.
Collapse
Affiliation(s)
- José Vázquez
- Department of Medical Genetics, National Rehabilitation Institute, "Luis Guillermo Ibarra Ibarra", México.,APHP, Department of Neurology, Raymond Poincaré Hospital, North-East-Ile-de-France Neuromuscular Pathology Reference Center, U 1179 INSERM, University Saint Quentin en Yvelines Versailles; Paris-Saclay, France
| | - Claire Lefeuvre
- APHP, Department of Neurology, Raymond Poincaré Hospital, North-East-Ile-de-France Neuromuscular Pathology Reference Center, U 1179 INSERM, University Saint Quentin en Yvelines Versailles; Paris-Saclay, France
| | - Rosa Elena Escobar
- Department of Electromyography and Muscle Dystrophies, National Rehabilitation Institute, "Luis Guillermo Ibarra Ibarra", México
| | | | - Antonio Miranda Duarte
- Department of Medical Genetics, National Rehabilitation Institute, "Luis Guillermo Ibarra Ibarra", México
| | - Alma Delia Hernandez
- Department of Pathology, National Rehabilitation Institute, "Luis Guillermo Ibarra Ibarra", México
| | - Marion Brisset
- APHP, Department of Neurology, Raymond Poincaré Hospital, North-East-Ile-de-France Neuromuscular Pathology Reference Center, U 1179 INSERM, University Saint Quentin en Yvelines Versailles; Paris-Saclay, France
| | - Robert-Yves Carlier
- APHP, GH U. Paris Saclay, DMU Smart Imaging, Department of Radiology, Raymond Poincaré teaching Hospital, 104 Bld R. Poincaré, 92380 Garches, France; U 1179 INSERM, Université Paris-Saclay
| | - France Leturcq
- APHP, Department of Genetics, Cochin Hospital, Paris, France
| | - Marie-Christine Durand-Canard
- APHP, Service of Physiological Explorations Raymond Poincaré Hospital, 104 Bld Raymond Poincaré, 92380 Garches, France
| | - Guillaume Nicolas
- APHP, Department of Neurology, Raymond Poincaré Hospital, North-East-Ile-de-France Neuromuscular Pathology Reference Center, U 1179 INSERM, University Saint Quentin en Yvelines Versailles; Paris-Saclay, France
| | - Pascal Laforet
- APHP, Department of Neurology, Raymond Poincaré Hospital, North-East-Ile-de-France Neuromuscular Pathology Reference Center, U 1179 INSERM, University Saint Quentin en Yvelines Versailles; Paris-Saclay, France
| | - Edoardo Malfatti
- APHP, Department of Neurology, Raymond Poincaré Hospital, North-East-Ile-de-France Neuromuscular Pathology Reference Center, U 1179 INSERM, University Saint Quentin en Yvelines Versailles; Paris-Saclay, France
| |
Collapse
|
28
|
Nicolau S, Milone M, Liewluck T. Guidelines for genetic testing of muscle and neuromuscular junction disorders. Muscle Nerve 2021; 64:255-269. [PMID: 34133031 DOI: 10.1002/mus.27337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
Despite recent advances in the understanding of inherited muscle and neuromuscular junction diseases, as well as the advent of a wide range of genetic tests, patients continue to face delays in diagnosis of sometimes treatable disorders. These guidelines outline an approach to genetic testing in such disorders. Initially, a patient's phenotype is evaluated to identify myopathies requiring directed testing, including myotonic dystrophies, facioscapulohumeral muscular dystrophy, oculopharyngeal muscular dystrophy, mitochondrial myopathies, dystrophinopathies, and oculopharyngodistal myopathy. Initial investigation in the remaining patients is generally a comprehensive gene panel by next-generation sequencing. Broad panels have a higher diagnostic yield and can be cost-effective. Due to extensive phenotypic overlap and treatment implications, genes responsible for congenital myasthenic syndromes should be included when evaluating myopathy patients. For patients whose initial genetic testing is negative or inconclusive, phenotypic re-evaluation is warranted, along with consideration of genes and variants not included initially, as well as their acquired mimickers.
Collapse
Affiliation(s)
- Stefan Nicolau
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Teerin Liewluck
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
29
|
Saat H, Sahin I. Mutation spectrum of hereditary myopathies in Turkish patients and novel variants. Ann Hum Genet 2021; 85:178-185. [PMID: 33963534 DOI: 10.1111/ahg.12429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022]
Abstract
Hereditary myopathies are a heterogeneous disorder known to be associated with more than 100 genes. Although hereditary myopathy subgroups can be partially described with traditional methods such as muscle biopsy, next-generation sequencing (NGS) is essential to reveal the disease's underlying genetic etiology and molecular mechanisms. In this study, we performed clinical exome sequencing or whole-exome sequencing (CES/WES) in 20 unrelated Turkish patients. Thirteen pathogenic or likely pathogenic variants, including five novel variantswere detected in the 16 known hereditary myopathy genes. We achieved a high rate of diagnosis (65%) compared to previous studies. The most common condition noticed was limb-girdle muscular dystrophy (LGMD), which should not be ignored in patients diagnosed with myopathy. CES or WES provides a certain molecular diagnosis from a broad perspective to demonstrate underlying genetic causes in heterogeneous disorders. Therefore, exome sequencing offers a higher and more complete diagnosis than the gene panel.
Collapse
Affiliation(s)
- Hanife Saat
- Department of Medical Genetics, University of Health Sciences, Dışkapı Yıldırım Beyazıt Research and Training Hospital, Ankara, Turkey
| | - Ibrahim Sahin
- Department of Medical Genetics, University of Health Sciences, Dışkapı Yıldırım Beyazıt Research and Training Hospital, Ankara, Turkey
| |
Collapse
|
30
|
Irumudomon OT, Ghosh PS. Electromyography in infants: experience from a pediatric neuromuscular center. Acta Neurol Belg 2021; 122:1195-1200. [PMID: 33891285 DOI: 10.1007/s13760-021-01681-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/13/2021] [Indexed: 11/28/2022]
Abstract
Electromyography plays a pivotal role in diagnosing neuromuscular disorders. The purpose of this study was to investigate the role of electromyography in infants. We performed a retrospective study of the infants who underwent electromyography from 2003 to 2017 and recorded demographic profile, indication, electrodiagnostic findings, and final diagnosis from the follow-up data. 179 studies were completed; electromyography was abnormal in 109 (60.9%) patients. The most common referral indication was hypotonia followed by birth trauma related injuries and rule out neuromuscular disorders. The most common electrodiagnostic diagnosis was localized to muscles followed by plexus and motor neurons. Among the patients with normal electromyography, the most common diagnosis was due to myopathies. Electromyography plays an important role in the workup of neuromuscular disorders in infants though with increased utilization of genetic testing we observed a declining trend in the number of electromyography performed in the latter half the study.
Collapse
Affiliation(s)
| | - Partha S Ghosh
- Department of Neurology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
31
|
Sun H, Shen XR, Fang ZB, Jiang ZZ, Wei XJ, Wang ZY, Yu XF. Next-Generation Sequencing Technologies and Neurogenetic Diseases. Life (Basel) 2021; 11:life11040361. [PMID: 33921670 PMCID: PMC8072598 DOI: 10.3390/life11040361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/05/2021] [Accepted: 04/16/2021] [Indexed: 12/18/2022] Open
Abstract
Next-generation sequencing (NGS) technology has led to great advances in understanding the causes of Mendelian and complex neurological diseases. Owing to the complexity of genetic diseases, the genetic factors contributing to many rare and common neurological diseases remain poorly understood. Selecting the correct genetic test based on cost-effectiveness, coverage area, and sequencing range can improve diagnosis, treatments, and prevention. Whole-exome sequencing and whole-genome sequencing are suitable methods for finding new mutations, and gene panels are suitable for exploring the roles of specific genes in neurogenetic diseases. Here, we provide an overview of the classifications, applications, advantages, and limitations of NGS in research on neurological diseases. We further provide examples of NGS-based explorations and insights of the genetic causes of neurogenetic diseases, including Charcot-Marie-Tooth disease, spinocerebellar ataxias, epilepsy, and multiple sclerosis. In addition, we focus on issues related to NGS-based analyses, including interpretations of variants of uncertain significance, de novo mutations, congenital genetic diseases with complex phenotypes, and single-molecule real-time approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xue-Fan Yu
- Correspondence: ; Tel.: +86-157-5430-1836
| |
Collapse
|
32
|
Barp A, Mosca L, Sansone VA. Facilitations and Hurdles of Genetic Testing in Neuromuscular Disorders. Diagnostics (Basel) 2021; 11:diagnostics11040701. [PMID: 33919863 PMCID: PMC8070835 DOI: 10.3390/diagnostics11040701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Neuromuscular disorders (NMDs) comprise a heterogeneous group of disorders that affect about one in every thousand individuals worldwide. The vast majority of NMDs has a genetic cause, with about 600 genes already identified. Application of genetic testing in NMDs can be useful for several reasons: correct diagnostic definition of a proband, extensive familial counselling to identify subjects at risk, and prenatal diagnosis to prevent the recurrence of the disease; furthermore, identification of specific genetic mutations still remains mandatory in some cases for clinical trial enrollment where new gene therapies are now approaching. Even though genetic analysis is catching on in the neuromuscular field, pitfalls and hurdles still remain and they should be taken into account by clinicians, as for example the use of next generation sequencing (NGS) where many single nucleotide variants of “unknown significance” can emerge, complicating the correct interpretation of genotype-phenotype relationship. Finally, when all efforts in terms of molecular analysis have been carried on, a portion of patients affected by NMDs still remain “not genetically defined”. In the present review we analyze the evolution of genetic techniques, from Sanger sequencing to NGS, and we discuss “facilitations and hurdles” of genetic testing which must always be balanced by clinicians, in order to ensure a correct diagnostic definition, but taking always into account the benefit that the patient could obtain especially in terms of “therapeutic offer”.
Collapse
Affiliation(s)
- Andrea Barp
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, Piazza Ospedale Maggiore 3, 20162 Milano, Italy;
- Correspondence:
| | - Lorena Mosca
- Medical Genetics Unit, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162 Milano, Italy;
| | - Valeria Ada Sansone
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, Piazza Ospedale Maggiore 3, 20162 Milano, Italy;
| |
Collapse
|
33
|
Abstract
Neuromuscular disorders (NMDs) comprise a heterogeneous group of disorders that affect about one in every thousand individuals worldwide. The vast majority of NMDs has a genetic cause, with about 600 genes already identified. Application of genetic testing in NMDs can be useful for several reasons: correct diagnostic definition of a proband, extensive familial counselling to identify subjects at risk, and prenatal diagnosis to prevent the recurrence of the disease; furthermore, identification of specific genetic mutations still remains mandatory in some cases for clinical trial enrollment where new gene therapies are now approaching. Even though genetic analysis is catching on in the neuromuscular field, pitfalls and hurdles still remain and they should be taken into account by clinicians, as for example the use of next generation sequencing (NGS) where many single nucleotide variants of "unknown significance" can emerge, complicating the correct interpretation of genotype-phenotype relationship. Finally, when all efforts in terms of molecular analysis have been carried on, a portion of patients affected by NMDs still remain "not genetically defined". In the present review we analyze the evolution of genetic techniques, from Sanger sequencing to NGS, and we discuss "facilitations and hurdles" of genetic testing which must always be balanced by clinicians, in order to ensure a correct diagnostic definition, but taking always into account the benefit that the patient could obtain especially in terms of "therapeutic offer".
Collapse
Affiliation(s)
- Andrea Barp
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, Piazza Ospedale Maggiore 3, 20162 Milano, Italy
| | - Lorena Mosca
- Medical Genetics Unit, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162 Milano, Italy
| | - Valeria Ada Sansone
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, Piazza Ospedale Maggiore 3, 20162 Milano, Italy
| |
Collapse
|
34
|
DNA2 in Chromosome Stability and Cell Survival-Is It All about Replication Forks? Int J Mol Sci 2021; 22:ijms22083984. [PMID: 33924313 PMCID: PMC8069077 DOI: 10.3390/ijms22083984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 01/16/2023] Open
Abstract
The conserved nuclease-helicase DNA2 has been linked to mitochondrial myopathy, Seckel syndrome, and cancer. Across species, the protein is indispensable for cell proliferation. On the molecular level, DNA2 has been implicated in DNA double-strand break (DSB) repair, checkpoint activation, Okazaki fragment processing (OFP), and telomere homeostasis. More recently, a critical contribution of DNA2 to the replication stress response and recovery of stalled DNA replication forks (RFs) has emerged. Here, we review the available functional and phenotypic data and propose that the major cellular defects associated with DNA2 dysfunction, and the links that exist with human disease, can be rationalized through the fundamental importance of DNA2-dependent RF recovery to genome duplication. Being a crucial player at stalled RFs, DNA2 is a promising target for anti-cancer therapy aimed at eliminating cancer cells by replication-stress overload.
Collapse
|
35
|
François-Heude MC, Walther-Louvier U, Espil-Taris C, Beze-Beyrie P, Rivier F, Baudou E, Uro-Coste E, Rigau V, Martin Negrier ML, Rendu J, Morales RJ, Pégeot H, Thèze C, Lacourt D, Coville AC, Cossée M, Cances C. Evaluating next-generation sequencing in neuromuscular diseases with neonatal respiratory distress. Eur J Paediatr Neurol 2021; 31:78-87. [PMID: 33667896 DOI: 10.1016/j.ejpn.2021.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Accepted: 01/19/2021] [Indexed: 02/09/2023]
Abstract
With the exception of infantile spinal muscular atrophy (SMA) and congenital myotonic dystrophy 1 (DM1), congenital myopathies and muscular dystrophies with neonatal respiratory distress pose diagnostic challenges. Next-generation sequencing (NGS) provides hope for the diagnosis of these rare diseases. We evaluated the efficiency of next-generation sequencing (NGS) in ventilated newborns with peripheral hypotonia. We compared the results of our previous study in a cohort of 19 patients analysed by Sanger sequencing from 2007 to 2012, with a diagnostic yield of 26% (5/19), and those of a new retrospective study in 28 patients from 2007 to 2018 diagnosed using MyoPanel, a neuromuscular disease panel, with a diagnostic yield of 43% (12/28 patients). Pathogenic variants were found in five genes: ACTA1 (n = 4 patients), RYR1 (n = 2), CACNA1S (n = 1), NEB (n = 3), and MTM1 (n = 2). Myopanel increased the diagnosis of congenital neuromuscular diseases, but more than half the patients remained undiagnosed. Whole exome sequencing did not seem to fully respond to this diagnostic limitation. Therefore, explorations with whole genome sequencing will be the next step.
Collapse
Affiliation(s)
- Marie-Céline François-Heude
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Toulouse University Hospital, Toulouse, France
| | - Ulrike Walther-Louvier
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Montpellier University Hospital, Montpellier, France
| | - Caroline Espil-Taris
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Bordeaux University Hospital, Aquitaine, France
| | | | - François Rivier
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Montpellier University Hospital, Montpellier, France
| | - Eloise Baudou
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Toulouse University Hospital, Toulouse, France
| | - Emmanuelle Uro-Coste
- Department of Pathology, Toulouse University Hospital, Toulouse, France; INSERM U1037, Cancer Research Centre of Toulouse (CRCT), Toulouse, France
| | - Valérie Rigau
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Aquitaine, France; Department of Pathology, Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | | | - John Rendu
- INSERM U1216, Grenoble Alpes University Hospital, University of Grenoble Alpes, Grenoble, France
| | - Raul Juntas Morales
- Laboratory of Rare Genetic Diseases (LGMR), University of Montpellier, Montpellier, France
| | - Henri Pégeot
- Molecular Genetics Laboratory, Montpellier University Hospital Centre, Montpellier, France
| | - Corinne Thèze
- Molecular Genetics Laboratory, Montpellier University Hospital Centre, Montpellier, France
| | - Delphine Lacourt
- Molecular Genetics Laboratory, Montpellier University Hospital Centre, Montpellier, France
| | - Anne Cécile Coville
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Toulouse University Hospital, Toulouse, France
| | - Mireille Cossée
- Laboratory of Rare Genetic Diseases (LGMR), University of Montpellier, Montpellier, France; Molecular Genetics Laboratory, Montpellier University Hospital Centre, Montpellier, France
| | - Claude Cances
- AOC (Atlantique-Occitanie-Caraïbe) Reference Centre for Neuromuscular Disorders, Neuropaediatric Department, Toulouse University Hospital, Toulouse, France.
| |
Collapse
|
36
|
Zhang J, Wang H, Liu W, Wang J, Zhang J, Chang X, Huang S, Pang X, Guo J, Wang Q, Zhang W. A novel Q93H missense mutation in DCTN1 caused distal hereditary motor neuropathy type 7B and Perry syndrome from a Chinese family. Neurol Sci 2021; 42:3695-3705. [DOI: 10.1007/s10072-020-04962-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/03/2020] [Indexed: 01/20/2023]
|
37
|
Michaels-Igbokwe C, McInnes B, MacDonald KV, Currie GR, Omar F, Shewchuk B, Bernier FP, Marshall DA. (Un)standardized testing: the diagnostic odyssey of children with rare genetic disorders in Alberta, Canada. Genet Med 2020; 23:272-279. [PMID: 32989270 DOI: 10.1038/s41436-020-00975-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/09/2022] Open
Abstract
PURPOSE We provide a description of the diagnostic odyssey for a cohort of children seeking diagnosis of a rare genetic disorder in terms of the time from initial consultation to most recent visit or receipt of diagnosis, the number of tests per patient, and the types of tests received. METHODS Retrospective chart review of 299 children seen at the Alberta Children's Hospital (ACH) Genetics Clinic (GC) for whom the result of at least one single-gene test, gene panel, or chromosome microarray analysis (CMA) was recorded. RESULTS Of 299 patients, 90 (30%) received a diagnosis in the period of the review. Patients had an average of 5.4 tests each; 236 (79%) patients received CMA; 172 (58%) patients received single-gene tests and 34 (11%) received gene panels; 167 (56%) underwent imaging/electrical activity studies. The mean observation period was 898 days (95% confidence interval [CI] 791, 1004). Among patients with visits recorded prior to visiting ACH GC, 43% of the total observation time occurred prior to the GC. CONCLUSION As genomic technologies expand, the nature of the diagnostic odyssey will change. This study has outlined the current standard of care in the ACH GC, providing a baseline against which future changes can be assessed.
Collapse
Affiliation(s)
- Christine Michaels-Igbokwe
- Cumming School of Medicine, Department of Paediatrics, University of Calgary, Calgary, AB, Canada. .,Cumming School of Medicine, Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada.
| | - Brenda McInnes
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Karen V MacDonald
- Cumming School of Medicine, Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Gillian R Currie
- Cumming School of Medicine, Department of Paediatrics, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada.,O'Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Fadya Omar
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brittany Shewchuk
- Cumming School of Medicine, Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Francois P Bernier
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah A Marshall
- Cumming School of Medicine, Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada.,O'Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
38
|
Lornage X, Quijano-Roy S, Amthor H, Carlier RY, Monnier N, Deleuze JF, Romero NB, Laporte J, Böhm J. Asymmetric muscle weakness due to ACTA1 mosaic mutations. Neurology 2020; 95:e3406-e3411. [DOI: 10.1212/wnl.0000000000010947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/06/2020] [Indexed: 11/15/2022] Open
Abstract
ObjectiveTo characterize 2 unrelated patients with either asymmetric or unilateral muscle weakness at the clinical, genetic, histologic, and ultrastructural level.MethodsThe patients underwent thorough clinical examination, whole-body MRI, and exome sequencing. Muscle morphology was assessed by histology and electron microscopy.ResultsBoth patients presented with early-onset hypotonia, delayed motor milestones, scoliosis, and reduced pulmonary function. Patient P1 manifested unilateral muscle weakness exclusively affecting the left side of the body; the asymmetry was less pronounced in patient P2. Muscle biopsies from both patients showed nemaline rods as the main histopathologic hallmark, and MRI revealed major fatty infiltrations in selective head, proximal, and distal muscles, correlating with the degree of muscle weakness asymmetry. Exome sequencing on blood DNA from both patients identified de novo ACTA1 missense mutations in a small number of reads, suggesting mutation mosaicism. Subsequent Sanger sequencing confirmed the presence of the mutations on muscle DNA, while they were barely detectable on blood DNA.ConclusionsDe novo mutations can occur anytime during embryonic development and may result in a mosaic pattern of affected cells and tissues and lead to the development of an asymmetric clinical picture. The present study points out that mosaic mutations might not be easily detectable on leukocyte DNA and thereby escape routine genetic analysis, and possibly account for a significant number of molecularly undiagnosed patients.
Collapse
|
39
|
Tan CA, Westbrook MJ, Truty R, Kvitek DJ, Kennemer M, Winder TL, Shieh PB. Incorporating Spinal Muscular Atrophy Analysis by Next-Generation Sequencing into a Comprehensive Multigene Panel for Neuromuscular Disorders. Genet Test Mol Biomarkers 2020; 24:616-624. [PMID: 32721234 DOI: 10.1089/gtmb.2019.0282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Spinal muscular atrophy (SMA) is traditionally molecularly diagnosed by multiplex ligation-dependent probe amplification or quantitative polymerase chain reaction (qPCR). SMA analyses are not routinely incorporated into gene panel analyses for individuals with suspected SMA or broader neuromuscular indications. Aim: We sought to determine whether a next-generation sequencing (NGS) approach that integrates SMA analyses into a multigene neuromuscular disorders panel could detect undiagnosed SMA. Materials and Methods: Sequence and copy number variants of the SMN1/SMN2 genes were simultaneously analyzed in samples from 5304 unselected individuals referred for testing using an NGS-based 122-gene neuromuscular panel. This diagnostic approach was validated using DNA from 68 individuals who had been previously diagnosed with SMA via quantitative PCR for SMN1/SMN2. Results: Homozygous loss of SMN1 was detected in 47 unselected individuals. Heterozygous loss of SMN1 was detected in 118 individuals; 8 had an indeterminate variant in "SMN1 or SMN2" that supported an SMA diagnosis but required additional disambiguation. Of the remaining SMA carriers, 44 had pathogenic variants in other genes. Concordance rates between NGS and qPCR were 100% and 93% for SMN1 and SMN2 copy numbers, respectively. Where there was disagreement, phenotypes were more consistent with the SMN2 results from NGS. Conclusion: Integrating NGS-based SMA testing into a multigene neuromuscular panel allows a single assay to diagnose SMA while comprehensively assessing the spectrum of variants that can occur in individuals with broad differential diagnoses or nonspecific/overlapping neuromuscular features.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Perry B Shieh
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
40
|
Gonzalez-Quereda L, Rodriguez MJ, Diaz-Manera J, Alonso-Perez J, Gallardo E, Nascimento A, Ortez C, Natera-de Benito D, Olive M, Gonzalez-Mera L, Lopez de Munain A, Zulaica M, Poza JJ, Jerico I, Torne L, Riera P, Milisenda J, Sanchez A, Garrabou G, Llano I, Madruga-Garrido M, Gallano P. Targeted Next-Generation Sequencing in a Large Cohort of Genetically Undiagnosed Patients with Neuromuscular Disorders in Spain. Genes (Basel) 2020; 11:E539. [PMID: 32403337 PMCID: PMC7288461 DOI: 10.3390/genes11050539] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
The term neuromuscular disorder (NMD) includes many genetic and acquired diseases and differential diagnosis can be challenging. Next-generation sequencing (NGS) is especially useful in this setting given the large number of possible candidate genes, the clinical, pathological, and genetic heterogeneity, the absence of an established genotype-phenotype correlation, and the exceptionally large size of some causative genes such as TTN, NEB and RYR1. We evaluated the diagnostic value of a custom targeted next-generation sequencing gene panel to study the mutational spectrum of a subset of NMD patients in Spain. In an NMD cohort of 207 patients with congenital myopathies, distal myopathies, congenital and adult-onset muscular dystrophies, and congenital myasthenic syndromes, we detected causative mutations in 102 patients (49.3%), involving 42 NMD-related genes. The most common causative genes, TTN and RYR1, accounted for almost 30% of cases. Thirty-two of the 207 patients (15.4%) carried variants of uncertain significance or had an unidentified second mutation to explain the genetic cause of the disease. In the remaining 73 patients (35.3%), no candidate variant was identified. In combination with patients' clinical and myopathological data, the custom gene panel designed in our lab proved to be a powerful tool to diagnose patients with myopathies, muscular dystrophies and congenital myasthenic syndromes. Targeted NGS approaches enable a rapid and cost-effective analysis of NMD- related genes, offering reliable results in a short time and relegating invasive techniques to a second tier.
Collapse
Affiliation(s)
- Lidia Gonzalez-Quereda
- Genetics Dept. Hospital de Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain; (M.J.R.); (P.R.); (P.G.)
- U705, U762, U703, 722 and GCV4 for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (E.G.); (A.N.); (D.N.-d.B.); (G.G.); (I.L.)
| | - Maria Jose Rodriguez
- Genetics Dept. Hospital de Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain; (M.J.R.); (P.R.); (P.G.)
| | - Jordi Diaz-Manera
- U705, U762, U703, 722 and GCV4 for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (E.G.); (A.N.); (D.N.-d.B.); (G.G.); (I.L.)
- Neuromuscular Unit, Neurology Dept., Hospital de Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain;
| | - Jorge Alonso-Perez
- Neuromuscular Unit, Neurology Dept., Hospital de Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain;
| | - Eduard Gallardo
- U705, U762, U703, 722 and GCV4 for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (E.G.); (A.N.); (D.N.-d.B.); (G.G.); (I.L.)
- Neuromuscular Unit, Neurology Dept., Hospital de Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain;
| | - Andres Nascimento
- U705, U762, U703, 722 and GCV4 for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (E.G.); (A.N.); (D.N.-d.B.); (G.G.); (I.L.)
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Carlos Ortez
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Daniel Natera-de Benito
- U705, U762, U703, 722 and GCV4 for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (E.G.); (A.N.); (D.N.-d.B.); (G.G.); (I.L.)
- Neuromuscular Unit, Neuropaediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Montse Olive
- Neuropathology Unit, Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, 08907 Barcelona, Spain; (M.O.); (L.G.-M.)
| | - Laura Gonzalez-Mera
- Neuropathology Unit, Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, 08907 Barcelona, Spain; (M.O.); (L.G.-M.)
- Department of Neurology, Hospital de Viladecans, 08840 Barcelona, Spain
| | - Adolfo Lopez de Munain
- Biodonostia, Neurosciences Area, Neuromuscular diseases Laboratory, San Sebastian, 20014 Basque Country, Spain; (A.L.d.M.); (M.Z.)
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28029 Madrid, Spain
- Department of Neurology, Hospital Universitario Donostia, San Sebastian, 20014 Basque Country, Spain;
- Department of Neurosciences, Faculty of Medicine and Dentistry, UPV-EHU, San Sebastian, 48940 Basque Country, Spain
| | - Miren Zulaica
- Biodonostia, Neurosciences Area, Neuromuscular diseases Laboratory, San Sebastian, 20014 Basque Country, Spain; (A.L.d.M.); (M.Z.)
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28029 Madrid, Spain
| | - Juan Jose Poza
- Department of Neurology, Hospital Universitario Donostia, San Sebastian, 20014 Basque Country, Spain;
| | - Ivonne Jerico
- Navarre Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (I.J.); (L.T.)
- Department of Neurology, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Laura Torne
- Navarre Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (I.J.); (L.T.)
| | - Pau Riera
- Genetics Dept. Hospital de Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain; (M.J.R.); (P.R.); (P.G.)
| | - Jose Milisenda
- Hospital Clinic de Barcelona and Universidad de Barcelona, 08036 Barcelona, Spain;
| | - Aurora Sanchez
- Department of Biochemistry and Molecular Genetics, Hospital Clinic de Barcelona, 08036 Barcelona, Spain;
| | - Gloria Garrabou
- U705, U762, U703, 722 and GCV4 for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (E.G.); (A.N.); (D.N.-d.B.); (G.G.); (I.L.)
- Cellex, IDIBAPS, University of Barcelona-Hospital Clínic of Barcelona, 08036 Barcelona, Spain
| | - Isabel Llano
- U705, U762, U703, 722 and GCV4 for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (E.G.); (A.N.); (D.N.-d.B.); (G.G.); (I.L.)
- Biocruces Bizkaia Health Research Institute, Barakaldo, 48903 Bizkaia, Spain
- Genetics Service, Cruces University Hospital, Osakidetza Basque Health Service, Barakaldo, 48903 Bizkaia, Spain
| | - Marcos Madruga-Garrido
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, 41013 Sevilla, Spain;
- Neuromuscular Disorder Unit, Pediatric Neurology Department, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
| | - Pia Gallano
- Genetics Dept. Hospital de Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain; (M.J.R.); (P.R.); (P.G.)
- U705, U762, U703, 722 and GCV4 for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (E.G.); (A.N.); (D.N.-d.B.); (G.G.); (I.L.)
| |
Collapse
|
41
|
Lorenzoni PJ, Kay CSK, Arndt RC, Hrysay NMC, Ducci RDP, Fustes OHJ, Töpf A, Lochmüller H, Werneck LC, Scola RH. Congenital myasthenic syndrome due to DOK7 mutation in a cohort of patients with 'unexplained' limb-girdle muscular weakness. J Clin Neurosci 2020; 75:195-198. [PMID: 32238315 DOI: 10.1016/j.jocn.2020.01.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/27/2020] [Indexed: 10/24/2022]
Abstract
Congenital myasthenic syndromes (CMS) associated with pathogenic variants in the DOK7 gene (DOK7-CMS) have phenotypic overlap with other neuromuscular disorders associated with limb-girdle muscular weakness (LGMW). Genetic analysis of the most common mutation (c.1124_1127dupTGCC) in DOK7 was performed in 34 patients with "unexplained" LGMW associated with non-specific changes in muscle biopsy. Of the 34 patients, one patient showed the DOK7 c.1124_1127dupTGCC variant in homozygousity. Our study estimates the minimum prevalence of undiagnosed DOK7-CMS to be 2.9% in southern Brazilian patients from our centre. Our data confirm that clinicians should look for DOK7-CMS patients when the clinical manifestation is an 'unexplained' LGMW, mainly if associated with non-specific changes in muscle biopsy.
Collapse
Affiliation(s)
- Paulo José Lorenzoni
- Service of Neuromuscular Disorders, Division of Neurology, Department of Internal Medicine, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Cláudia Suemi Kamoi Kay
- Service of Neuromuscular Disorders, Division of Neurology, Department of Internal Medicine, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Raquel Cristina Arndt
- Service of Neuromuscular Disorders, Division of Neurology, Department of Internal Medicine, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Nyvia Milicio Coblinski Hrysay
- Service of Neuromuscular Disorders, Division of Neurology, Department of Internal Medicine, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Renata Dal-Pra Ducci
- Service of Neuromuscular Disorders, Division of Neurology, Department of Internal Medicine, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Otto H Jesus Fustes
- Service of Neuromuscular Disorders, Division of Neurology, Department of Internal Medicine, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Lineu Cesar Werneck
- Service of Neuromuscular Disorders, Division of Neurology, Department of Internal Medicine, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Rosana Herminia Scola
- Service of Neuromuscular Disorders, Division of Neurology, Department of Internal Medicine, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.
| |
Collapse
|
42
|
Winder TL, Tan CA, Klemm S, White H, Westbrook JM, Wang JZ, Entezam A, Truty R, Nussbaum RL, McNally EM, Aradhya S. Clinical utility of multigene analysis in over 25,000 patients with neuromuscular disorders. NEUROLOGY-GENETICS 2020; 6:e412. [PMID: 32337338 PMCID: PMC7164976 DOI: 10.1212/nxg.0000000000000412] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/30/2019] [Indexed: 11/29/2022]
Abstract
Objective Molecular genetic testing for hereditary neuromuscular disorders is increasingly used to identify disease subtypes, determine prevalence, and inform management and prognosis, and although many small disease-specific studies have demonstrated the utility of genetic testing, comprehensive data sets are better positioned to assess the complexity of genetic analysis. Methods Using high depth-of-coverage next-generation sequencing (NGS) with simultaneous detection of sequence variants and copy number variants (CNVs), we tested 25,356 unrelated individuals for subsets of 266 genes. Results A definitive molecular diagnosis was obtained in 20% of this cohort, with yields ranging from 4% among individuals with congenital myasthenic syndrome to 33% among those with a muscular dystrophy. CNVs accounted for as much as 39% of all clinically significant variants, with 10% of them occurring as rare, private pathogenic variants. Multigene testing successfully addressed differential diagnoses in at least 6% of individuals with positive results. Even for classic disorders like Duchenne muscular dystrophy, at least 49% of clinically significant results were identified through gene panels intended for differential diagnoses rather than through single-gene analysis. Variants of uncertain significance (VUS) were observed in 53% of individuals. Only 0.7% of these variants were later reclassified as clinically significant, most commonly in RYR1, GDAP1, SPAST, and MFN2, providing insight into the types of evidence that support VUS resolution and informing expectations of reclassification rates. Conclusions These data provide guidance for clinicians using genetic testing to diagnose neuromuscular disorders and represent one of the largest studies demonstrating the utility of NGS-based testing for these disorders.
Collapse
Affiliation(s)
- Thomas L Winder
- Invitae Corporation (T.L.W., C.A.T., S.K., H.W., J.M.W., J.Z.W., A.E., R.T., R.L.N., S.A.), San Francisco, CA; Volunteer Faculty (R.L.N.), University of California, San Francisco; and Center for Genetic Medicine (E.M.M.), Northwestern University, Evanston, IL
| | - Christopher A Tan
- Invitae Corporation (T.L.W., C.A.T., S.K., H.W., J.M.W., J.Z.W., A.E., R.T., R.L.N., S.A.), San Francisco, CA; Volunteer Faculty (R.L.N.), University of California, San Francisco; and Center for Genetic Medicine (E.M.M.), Northwestern University, Evanston, IL
| | - Sarah Klemm
- Invitae Corporation (T.L.W., C.A.T., S.K., H.W., J.M.W., J.Z.W., A.E., R.T., R.L.N., S.A.), San Francisco, CA; Volunteer Faculty (R.L.N.), University of California, San Francisco; and Center for Genetic Medicine (E.M.M.), Northwestern University, Evanston, IL
| | - Hannah White
- Invitae Corporation (T.L.W., C.A.T., S.K., H.W., J.M.W., J.Z.W., A.E., R.T., R.L.N., S.A.), San Francisco, CA; Volunteer Faculty (R.L.N.), University of California, San Francisco; and Center for Genetic Medicine (E.M.M.), Northwestern University, Evanston, IL
| | - Jody M Westbrook
- Invitae Corporation (T.L.W., C.A.T., S.K., H.W., J.M.W., J.Z.W., A.E., R.T., R.L.N., S.A.), San Francisco, CA; Volunteer Faculty (R.L.N.), University of California, San Francisco; and Center for Genetic Medicine (E.M.M.), Northwestern University, Evanston, IL
| | - James Z Wang
- Invitae Corporation (T.L.W., C.A.T., S.K., H.W., J.M.W., J.Z.W., A.E., R.T., R.L.N., S.A.), San Francisco, CA; Volunteer Faculty (R.L.N.), University of California, San Francisco; and Center for Genetic Medicine (E.M.M.), Northwestern University, Evanston, IL
| | - Ali Entezam
- Invitae Corporation (T.L.W., C.A.T., S.K., H.W., J.M.W., J.Z.W., A.E., R.T., R.L.N., S.A.), San Francisco, CA; Volunteer Faculty (R.L.N.), University of California, San Francisco; and Center for Genetic Medicine (E.M.M.), Northwestern University, Evanston, IL
| | - Rebecca Truty
- Invitae Corporation (T.L.W., C.A.T., S.K., H.W., J.M.W., J.Z.W., A.E., R.T., R.L.N., S.A.), San Francisco, CA; Volunteer Faculty (R.L.N.), University of California, San Francisco; and Center for Genetic Medicine (E.M.M.), Northwestern University, Evanston, IL
| | - Robert L Nussbaum
- Invitae Corporation (T.L.W., C.A.T., S.K., H.W., J.M.W., J.Z.W., A.E., R.T., R.L.N., S.A.), San Francisco, CA; Volunteer Faculty (R.L.N.), University of California, San Francisco; and Center for Genetic Medicine (E.M.M.), Northwestern University, Evanston, IL
| | - Elizabeth M McNally
- Invitae Corporation (T.L.W., C.A.T., S.K., H.W., J.M.W., J.Z.W., A.E., R.T., R.L.N., S.A.), San Francisco, CA; Volunteer Faculty (R.L.N.), University of California, San Francisco; and Center for Genetic Medicine (E.M.M.), Northwestern University, Evanston, IL
| | - Swaroop Aradhya
- Invitae Corporation (T.L.W., C.A.T., S.K., H.W., J.M.W., J.Z.W., A.E., R.T., R.L.N., S.A.), San Francisco, CA; Volunteer Faculty (R.L.N.), University of California, San Francisco; and Center for Genetic Medicine (E.M.M.), Northwestern University, Evanston, IL
| |
Collapse
|
43
|
González-Del Angel A, Bisciglia M, Vargas-Cañas S, Fernandez-Valverde F, Kazakova E, Escobar RE, Romero NB, Jardel C, Rucheton B, Stojkovic T, Malfatti E. Novel Phenotypes and Cardiac Involvement Associated With DNA2 Genetic Variants. Front Neurol 2019; 10:1049. [PMID: 31636600 PMCID: PMC6787284 DOI: 10.3389/fneur.2019.01049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
Objectives: To report two novel DNA2 gene mutations causing early onset myopathy with cardiac involvement and late onset mitochondriopathy with rhabdomyolysis. Methods: We performed detailed clinical, muscle histopathology and molecular studies including mitochondrial gene NGS analysis in two patients (Patient 1 and 2), a mother and her son, belonging to a Mexican family, and a third sporadic French patient. Results: Patient 1 and 2 presented with an early onset myopathy associated with ptosis, velopharyngeal weakness, and cardiac involvement. Patient 3 presented rhabdomyolysis unmasking a mitochondrial disease characterized by a sensorineural hearing loss, ptosis, and lipomas. Muscle biopsies performed in all patients showed variable mitochondrial alterations. Patient 3 had multiple mtDNA deletion in his muscle. Genetic studies revealed a novel heterozygous frameshift mutation in DNA2 gene (c.2346delT p.Phe782Leufs*3) in P1 and P2, and a novel heterozygous missense mutation in DNA2 gene (c.578T>C p.Leu193Ser) in the P3. Conclusions: To date only few AD cases presenting either missense or truncating DNA2 variants have been reported. None of them presented with a cardiac involvement or rhabdomyolysis. Here we enlarge the genetic and phenotypic spectrum of DNA2-related mitochondrial disorders.
Collapse
Affiliation(s)
- Ariadna González-Del Angel
- Laboratorio de Biología Molecular, Departamento de Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Michela Bisciglia
- AP-HP, GHU La Pitié-Salpêtrière, Institut de Myologie, Paris, France
| | - Steven Vargas-Cañas
- Instituto Nacional de Neurologia y Neurochirurgia, Mexico City, Mexico.,Laboratorio de Patología Experimental, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Francisca Fernandez-Valverde
- Instituto Nacional de Neurologia y Neurochirurgia, Mexico City, Mexico.,Laboratorio de Patología Experimental, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Ekaterina Kazakova
- Cedimemm: Centro de Diagnóstico en Metabolismo Energético y Medicina Mitocondrial, Mexico City, Mexico
| | - Rosa Elena Escobar
- Unit of Muscle Dystrophies, Instituto Nacional de Rehabilitacion (INR), Mexico City, Mexico
| | - Norma B Romero
- AP-HP, GHU La Pitié-Salpêtrière, Institut de Myologie, Paris, France.,Instituto Nacional de Neurologia y Neurochirurgia, Mexico City, Mexico.,Laboratorio de Patología Experimental, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico.,Cedimemm: Centro de Diagnóstico en Metabolismo Energético y Medicina Mitocondrial, Mexico City, Mexico.,Unit of Muscle Dystrophies, Instituto Nacional de Rehabilitacion (INR), Mexico City, Mexico.,Sorbonne Université, INSERM, Centre de Recherches, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, GHU Pitié-Salpêtrière, Paris, France
| | - Claude Jardel
- AP-HP, GHU La Pitié-Salpêtrière, U.F. Cardiogénétique et Myogénétique, Service de Biochimie Métabolique, Paris, France
| | - Benoit Rucheton
- AP-HP, GHU La Pitié-Salpêtrière, U.F. Cardiogénétique et Myogénétique, Service de Biochimie Métabolique, Paris, France
| | - Tanya Stojkovic
- AP-HP, GHU La Pitié-Salpêtrière, Institut de Myologie, Paris, France
| | - Edoardo Malfatti
- Service Neurologie Médicale, Centre de Référence Maladies Neuromusculaire Paris-Nord, CHU Raymond-Poincaré, Garches, France.,U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie Appliquées, UFR des Sciences de la santé Simone Veil, Université Versailles-Saint-Quentin-en-Yvelines, France
| |
Collapse
|
44
|
Ronchi D, Liu C, Caporali L, Piga D, Li H, Tagliavini F, Valentino ML, Ferrò MT, Bini P, Zheng L, Carelli V, Shen B, Comi GP. Novel mutations in DNA2 associated with myopathy and mtDNA instability. Ann Clin Transl Neurol 2019; 6:1893-1899. [PMID: 31478350 PMCID: PMC6764641 DOI: 10.1002/acn3.50888] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/03/2023] Open
Abstract
The maintenance of mitochondrial DNA (mtDNA) relies on proteins encoded by nuclear genes. Mutations in their coding sequences result in heterogenous clinical presentations featuring mtDNA instability in affected tissues. DNA2 is a multi-catalytic protein involved in the removal of single strand DNA during mtDNA replication or Long Patch Base Excision Repair pathway. We have previously described DNA2 mutations in adult patients affected with familial and sporadic forms of mitochondrial myopathy. Here we describe four novel probands presenting with limb weakness associated with novel DNA2 molecular defects. Biochemical assays were established to investigate the functional effects of these variants.
Collapse
Affiliation(s)
- Dario Ronchi
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Changwei Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute City of Hope, Duarte, California
| | - Leonardo Caporali
- Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Daniela Piga
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Hongzhi Li
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute City of Hope, Duarte, California
| | - Francesca Tagliavini
- Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Maria Lucia Valentino
- Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, Bologna, Italy
| | | | - Paola Bini
- IRCCS "C. Mondino" Foundation, National Neurological Institute, Pavia, Italy
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute City of Hope, Duarte, California
| | - Valerio Carelli
- Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, Bologna, Italy
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute City of Hope, Duarte, California
| | - Giacomo Pietro Comi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neuroscience, Neuromuscular and Rare Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| |
Collapse
|
45
|
Krenn M, Tomschik M, Rath J, Cetin H, Grisold A, Zulehner G, Milenkovic I, Stogmann E, Zimprich A, Strom TM, Meitinger T, Wagner M, Zimprich F. Genotype-guided diagnostic reassessment after exome sequencing in neuromuscular disorders: experiences with a two-step approach. Eur J Neurol 2019; 27:51-61. [PMID: 31407473 PMCID: PMC6916592 DOI: 10.1111/ene.14033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/05/2019] [Indexed: 01/03/2023]
Abstract
Background and purpose Next‐generation sequencing has greatly improved the diagnostic success rates for genetic neuromuscular disorders (NMDs). Nevertheless, most patients still remain undiagnosed, and there is a need to maximize the diagnostic yield. Methods A retrospective study was conducted on 72 patients with NMDs who underwent exome sequencing (ES), partly followed by genotype‐guided diagnostic reassessment and secondary investigations. The diagnostic yields that would have been achieved by appropriately chosen narrow and comprehensive gene panels were also analysed. Results The initial diagnostic yield of ES was 30.6% (n = 22/72 patients). In an additional 15.3% of patients (n = 11/72) ES results were of unknown clinical significance. After genotype‐guided diagnostic reassessment and complementary investigations, the yield was increased to 37.5% (n = 27/72). Compared to ES, targeted gene panels (<25 kilobases) reached a diagnostic yield of 22.2% (n = 16/72), whereas comprehensive gene panels achieved 34.7% (n = 25/72). Conclusion Exome sequencing allows the detection of pathogenic variants missed by (narrowly) targeted gene panel approaches. Diagnostic reassessment after genetic testing further enhances the diagnostic outcomes for NMDs.
Collapse
Affiliation(s)
- M Krenn
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - M Tomschik
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - J Rath
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - H Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - A Grisold
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - G Zulehner
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - I Milenkovic
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - E Stogmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - A Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - T M Strom
- Institute of Human Genetics, Technical University Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - T Meitinger
- Institute of Human Genetics, Technical University Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - M Wagner
- Institute of Human Genetics, Technical University Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - F Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
46
|
Tarnauskaitė Ž, Bicknell LS, Marsh JA, Murray JE, Parry DA, Logan CV, Bober MB, de Silva DC, Duker AL, Sillence D, Wise C, Jackson AP, Murina O, Reijns MAM. Biallelic variants in DNA2 cause microcephalic primordial dwarfism. Hum Mutat 2019; 40:1063-1070. [PMID: 31045292 PMCID: PMC6773220 DOI: 10.1002/humu.23776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/15/2019] [Accepted: 04/28/2019] [Indexed: 11/11/2022]
Abstract
Microcephalic primordial dwarfism (MPD) is a group of rare single-gene disorders characterized by the extreme reduction in brain and body size from early development onwards. Proteins encoded by MPD-associated genes play important roles in fundamental cellular processes, notably genome replication and repair. Here we report the identification of four MPD individuals with biallelic variants in DNA2, which encodes an adenosine triphosphate (ATP)-dependent helicase/nuclease involved in DNA replication and repair. We demonstrate that the two intronic variants (c.1764-38_1764-37ins(53) and c.74+4A>C) found in these individuals substantially impair DNA2 transcript splicing. Additionally, we identify a missense variant (c.1963A>G), affecting a residue of the ATP-dependent helicase domain that is highly conserved between humans and yeast, with the resulting substitution (p.Thr655Ala) predicted to directly impact ATP/ADP (adenosine diphosphate) binding by DNA2. Our findings support the pathogenicity of these variants as biallelic hypomorphic mutations, establishing DNA2 as an MPD disease gene.
Collapse
Affiliation(s)
- Žygimantė Tarnauskaitė
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Louise S. Bicknell
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Joseph A. Marsh
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Jennie E. Murray
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - David A. Parry
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Clare V. Logan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Michael B. Bober
- Division of Genetics, Department of PediatricsNemours/Alfred I. duPont Hospital for ChildrenWilmingtonDelaware
| | - Deepthi C. de Silva
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaColomboSri Lanka
| | - Angela L. Duker
- Division of Genetics, Department of PediatricsNemours/Alfred I. duPont Hospital for ChildrenWilmingtonDelaware
| | - David Sillence
- Discipline of Genomic Medicine, Faculty of Medicine and HealthUniversity of SydneySydneyAustralia
- Western Sydney Genetics ProgramSydney Children's Hospitals NetworkWestmeadAustralia
| | - Carol Wise
- Sarah M. and Charles E. Seay Center for Musculoskeletal ResearchTexas Scottish, Rite Hospital for ChildrenDallasTexas
- McDermott Center for Human Growth and DevelopmentUniversity of Texas, Southwestern Medical CenterDallasTexas
- Department of Orthopaedic SurgeryUniversity of Texas Southwestern Medical CenterDallasTexas
- Department of PediatricsUniversity of Texas Southwestern Medical CenterDallasTexas
| | - Andrew P. Jackson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Olga Murina
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Martin A. M. Reijns
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
47
|
Vill K, Blaschek A, Gläser D, Kuhn M, Haack T, Alhaddad B, Wagner M, Kovacs-Nagy R, Tacke M, Gerstl L, Schroeder AS, Borggraefe I, Mueller C, Schlotter-Weigel B, Schoser B, Walter MC, Müller-Felber W. Early-Onset Myopathies: Clinical Findings, Prevalence of Subgroups and Diagnostic Approach in a Single Neuromuscular Referral Center in Germany. J Neuromuscul Dis 2019; 4:315-325. [PMID: 29172004 DOI: 10.3233/jnd-170231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Early-onset myopathies are a heterogeneous group of neuromuscular diseases with broad clinical, genetic and histopathological overlap. The diagnostic approach has considerably changed since high throughput genetic methods (next generation sequencing, NGS) became available. OBJECTIVE We present diagnostic subgroups in a single neuromuscular referral center and describe an algorithm for the diagnostic work-up. METHODS The diagnostic approach of 98 index patients was retrospectively analysed. In 56 cases targeted sequencing of a known gene was performed, in 44 patients NGS was performed using large muscle specific panels, and in 12 individuals whole exome sequencing (WES) was undertaken. One patient was diagnosed via array CGH. Clinical features of all patients are provided. RESULTS The final diagnosis could be found in 63 out of 98 patients (64%) with molecular genetic analysis. In 55% targeted gene sequencing could establish the genetic diagnosis. However, this rate largely depended on the presence of distinct histological or clinical features. NGS (large myopathy-related panels and WES) revealed genetic diagnosis in 58.5% (52% and 67%, respectively). The genes detected by WES in our cohort of patients were all covered by the panels. Based on our findings we propose an algorithm for a practical diagnostic approach.Prevalences:MTM1- and LAMA2-patients are the two biggest subgroups, followed by SEPN1-, RYR1- and Collagen VI-related diseases. 31% of genetically confirmed cases represents a group with overlap between "congenital myopathies (CM)" and "congenital muscular dystrophies (CMD)". In 36% of the patients a specific genetic diagnosis could not be assigned. CONCLUSIONS A final diagnosis can be confirmed by high throughput genetic analysis in 58.5% of the cases, which is a higher rate than reported in the literature for muscle biopsy and should in many cases be considered as a first diagnostic tool. NGS cannot replace neuromuscular expertise and a close discussion with the geneticists on NGS is mandatory. Targeted candidate gene sequencing still plays a role in selected cases with highly suspicious clinical or histological features. There is a relevant clinical and genetic overlap between the entities CM and CMD.
Collapse
Affiliation(s)
- K Vill
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Center for Neuromuscular Disorders in Childhood. Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - A Blaschek
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Center for Neuromuscular Disorders in Childhood. Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - D Gläser
- genetikum® Center for Human Genetics, Neu-Ulm, Germany
| | - M Kuhn
- genetikum® Center for Human Genetics, Neu-Ulm, Germany
| | - T Haack
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, University of Tübingen, Germany
| | - B Alhaddad
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - M Wagner
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute für Neurogenomik, Helmholtz Zentrum München, Neuherberg, Germany
| | - R Kovacs-Nagy
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - M Tacke
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Center for Neuromuscular Disorders in Childhood. Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - L Gerstl
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Center for Neuromuscular Disorders in Childhood. Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - A S Schroeder
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Center for Neuromuscular Disorders in Childhood. Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - I Borggraefe
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Center for Neuromuscular Disorders in Childhood. Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - C Mueller
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Center for Neuromuscular Disorders in Childhood. Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - B Schlotter-Weigel
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-Universität, München, Munich, Germany
| | - B Schoser
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-Universität, München, Munich, Germany
| | - M C Walter
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-Universität, München, Munich, Germany
| | - W Müller-Felber
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Center for Neuromuscular Disorders in Childhood. Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| |
Collapse
|
48
|
van Dongen JJM, van der Burg M, Kalina T, Perez-Andres M, Mejstrikova E, Vlkova M, Lopez-Granados E, Wentink M, Kienzler AK, Philippé J, Sousa AE, van Zelm MC, Blanco E, Orfao A. EuroFlow-Based Flowcytometric Diagnostic Screening and Classification of Primary Immunodeficiencies of the Lymphoid System. Front Immunol 2019; 10:1271. [PMID: 31263462 PMCID: PMC6585843 DOI: 10.3389/fimmu.2019.01271] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/17/2019] [Indexed: 12/16/2022] Open
Abstract
Guidelines for screening for primary immunodeficiencies (PID) are well-defined and several consensus diagnostic strategies have been proposed. These consensus proposals have only partially been implemented due to lack of standardization in laboratory procedures, particularly in flow cytometry. The main objectives of the EuroFlow Consortium were to innovate and thoroughly standardize the flowcytometric techniques and strategies for reliable and reproducible diagnosis and classification of PID of the lymphoid system. The proposed EuroFlow antibody panels comprise one orientation tube and seven classification tubes and corresponding databases of normal and PID samples. The 8-color 12-antibody PID Orientation tube (PIDOT) aims at identification and enumeration of the main lymphocyte and leukocyte subsets; this includes naïve pre-germinal center (GC) and antigen-experienced post-GC memory B-cells and plasmablasts. The seven additional 8(-12)-color tubes can be used according to the EuroFlow PID algorithm in parallel or subsequently to the PIDOT for more detailed analysis of B-cell and T-cell subsets to further classify PID of the lymphoid system. The Pre-GC, Post-GC, and immunoglobulin heavy chain (IgH)-isotype B-cell tubes aim at identification and enumeration of B-cell subsets for evaluation of B-cell maturation blocks and specific defects in IgH-subclass production. The severe combined immunodeficiency (SCID) tube and T-cell memory/effector subset tube aim at identification and enumeration of T-cell subsets for assessment of T-cell defects, such as SCID. In case of suspicion of antibody deficiency, PIDOT is preferably directly combined with the IgH isotype tube(s) and in case of SCID suspicion (e.g., in newborn screening programs) the PIDOT is preferably directly combined with the SCID T-cell tube. The proposed ≥8-color antibody panels and corresponding reference databases combined with the EuroFlow PID algorithm are designed to provide fast, sensitive and cost-effective flowcytometric diagnosis of PID of the lymphoid system, easily applicable in multicenter diagnostic settings world-wide.
Collapse
Affiliation(s)
- Jacques J M van Dongen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Tomas Kalina
- Department of Pediatric Hematology and Oncology, University Hospital Motol, Charles University, Prague, Czechia
| | - Martin Perez-Andres
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), CB/16/12/00233, Instituto Carlos III, Madrid, Spain
| | - Ester Mejstrikova
- Department of Pediatric Hematology and Oncology, University Hospital Motol, Charles University, Prague, Czechia
| | - Marcela Vlkova
- Institute of Clinical Immunology and Allergology, St. Anne's University Hospital Brno, Masaryk University, Brno, Czechia
| | | | | | - Anne-Kathrin Kienzler
- Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jan Philippé
- Department of Laboratory Medicine, University Hospital Ghent, Ghent, Belgium
| | - Ana E Sousa
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Menno C van Zelm
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Department of Immunology and Pathology, Central Clinical School, Alfred Hospital, Monash University, Melbourne, VIC, Australia
| | - Elena Blanco
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), CB/16/12/00233, Instituto Carlos III, Madrid, Spain
| | - Alberto Orfao
- Department of Medicine, Cancer Research Centre (IBMCC, USAL-CSIC), Cytometry Service (NUCLEUS), University of Salamanca (USAL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), CB/16/12/00233, Instituto Carlos III, Madrid, Spain
| |
Collapse
|
49
|
Yang K, Iannaccone S, Burkhalter LS, Reisch J, Cai C, Schindel D. Role of Nerve and Muscle Biopsies in Pediatric Patients in the Era of Genetic Testing. J Surg Res 2019; 243:27-32. [PMID: 31151034 DOI: 10.1016/j.jss.2019.04.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND An operative biopsy is an important component in the diagnosis and treatment of neuromuscular disorders (NMDs). However, recent advances in molecular genetics suggest less invasive genetic testing should be the initial approach. The purpose of our study was to demonstrate the diagnostic value of muscle or nerve biopsy within the pediatric population at a pediatric academic center and offer recommendations for genetic testing in relation to biopsy to achieve the highest diagnostic yield. METHODS Following institutional review board approval, we retrospectively reviewed the electronic medical record of 221 pediatric patients who underwent muscle and/or nerve biopsy for suspicion of NMD from January 2007 to March 2018. Demographics, family history, clinical presentations, genetic testing results, pathology results, anesthesia complications, clinical diagnoses, and clinic follow-up data were collected. Chi-square analysis was done for statistical significance. RESULTS A total of 220 underwent muscle biopsy, and 15 underwent nerve biopsy. Not all patients received genetic testing. The average age at biopsy was 7.7 y. Biopsy revealed significant histologic abnormalities in 62.9% (139), directly leading to a specific clinical diagnosis in 33.9% (75). When genetic testing was done before biopsy, definite pathogenic variants were found in 7.6% (9). When genetic testing was done after biopsy, definite pathogenic variants were found in 45.0% (27). Genetic testing yield for pathogenic variants was higher when done after biopsy (P value < 0.00001). CONCLUSIONS Muscle and nerve biopsies may provide significant diagnostic value. Biopsy helped to rule in or out NMD and guide genetic testing. Our data suggest NMD genetic testing yield was higher when done after biopsy.
Collapse
Affiliation(s)
- Kaili Yang
- Pediatric Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Susan Iannaccone
- Pediatric Surgery, Children's Medical Center, Dallas, Texas; Neurology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lorrie S Burkhalter
- Pediatric Surgery, University of Texas Southwestern Medical Center, Dallas, Texas; Pediatric Surgery, Children's Medical Center, Dallas, Texas
| | - Joan Reisch
- Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chunyu Cai
- Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - David Schindel
- Pediatric Surgery, University of Texas Southwestern Medical Center, Dallas, Texas; Pediatric Surgery, Children's Medical Center, Dallas, Texas.
| |
Collapse
|
50
|
Kim SY, Kim WJ, Kim H, Choi SA, Lee JS, Cho A, Jang SS, Lim BC, Kim KJ, Kim JI, Hahn SH, Chae JH. Collagen VI-related myopathy: Expanding the clinical and genetic spectrum. Muscle Nerve 2019; 58:381-388. [PMID: 29406609 DOI: 10.1002/mus.26093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION We aimed to analyze the clinical and genetic characteristics of collagen VI-related myopathy. METHODS We analyzed the clinical course and mutation spectrum in patients with collagen VI gene mutations among our congenital muscular dystrophy cohort. RESULTS Among 24 patients with mutations in collagen VI coding genes, 13 (54.2%) were categorized as Ullrich type, and 11 (45.8%) as non-Ullrich type. Congenital orthopedic problems were similarly observed in both types, yet multiple joint contractures were found only in the Ullrich type. Clinical courses and pathology findings varied between patients. Mutations in COL6A1, COL6A2, and COL6A3 were found in 15 (65%), 3 (13%), and 5 (22%) patients, respectively, without genotype-phenotype association. Five novel variants were detected. DISCUSSION We verified clinical heterogeneity of collagen VI-related myopathy, which emphasizes the importance of genetic testing. Genotype-phenotype association or early predictors for progression were not identified. Multiple joint contractures predict rapid deterioration. Muscle Nerve 58: 381-388, 2018.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, Korea, 110-744
| | - Woo Joong Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, Korea, 110-744
| | - Hyuna Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, Korea, 110-744
| | - Sun Ah Choi
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, Korea, 110-744
| | - Jin Sook Lee
- Department of Pediatrics, Department of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, Korea
| | - Anna Cho
- Department of Pediatrics, Ewha Womans University College of Medicine, Seoul, Korea
| | - Se Song Jang
- Department of biomedical Science, Seoul National University Graduate School, Seoul, Korea
| | - Byung Chan Lim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, Korea, 110-744
| | - Ki Joong Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, Korea, 110-744
| | - Jong-Il Kim
- Department of biomedical Science, Seoul National University Graduate School, Seoul, Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Si Houn Hahn
- Department of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, Korea.,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.,Seattle Children's Hospital, Seattle, Washington, USA
| | - Jong-Hee Chae
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, Korea, 110-744
| |
Collapse
|