1
|
Hu Y, Fan Y, Li N, Xu C, Wang J. Expression of LncRNAs in anterior capsule of lens in patients with pathologic myopia complicated with cataract. Int Ophthalmol 2024; 45:10. [PMID: 39680214 DOI: 10.1007/s10792-024-03366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024]
Abstract
PURPOSE To explore the expressions and functions of lncRNAs in the pathogenesis of pathologic myopia complicated with cataract (PMC). METHODS The anterior capsular tissues were collected from patients with age-related cataract (ARC) and PMC. One group of the samples was used to detected by whole-transcriptome sequencing (LC-Bio, Hangzhou, China) and investigated by GO and KEGG enrichment analysis. We selected the Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1), predicted the miRNAs with gene binding sites to it and the downstream mRNAs with gene binding sites to miRNAs through the Starbase and Targetscan websites. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed on the other group to further preliminarily validate the prediction. RESULTS A total of 471 lncRNAs were significantly differential expressed in PMC group compared with ARC group, in which 231 lncRNAs were up-regulated, including MALAT1, and 240 lncRNAs were down-regulated. GO and KEGG enrichment analysis showed that lncRNAs targeted differential mRNAs were involved in various biological functions, cell components, molecular functions and signaling pathways. Taking MALAT1 as an example, we predicted that it had binding sites with 113 miRNAs such as hsa-miR-20a-5p, has-miR-20b-5p, hsa-miR-26a-5p, has-miR-106-5p and hsa-miR-204-5p, which were lower in PMC group than these in ARC group. Inversely, the downstream mRNAs of the above miRNAs, such as MMP9, TNF-α, TGF-β2, NF-KB, IL6 and Smad4 were higher. CONCLUSION The differentially expressed lncRNAs, especially MALAT1, may act as ceRNA via sponging miRNAs and to regulate the targeting downstream mRNAs in development of PMC and participate in numerous biological processes through interconnected signaling pathways.
Collapse
Affiliation(s)
- Yaru Hu
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
- Department of Ophthalmology, Fuyang People's Hospital, Fuyang, 236000, Anhui, China
| | - Yuchen Fan
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Na Li
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Che Xu
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Jianfeng Wang
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China.
| |
Collapse
|
2
|
Guan J, Chen X, Li Z, Deng S, Wumaier A, Ma Y, Xie L, Huang S, Zhu Y, Zhuo Y. Role of N6-methyladenosine-related lncRnas in pseudoexfoliation glaucoma. Epigenetics 2024; 19:2348840. [PMID: 38716769 PMCID: PMC11086004 DOI: 10.1080/15592294.2024.2348840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
To explore the role of lncRNA m6A methylation modification in aqueous humour (AH) of patients with pseudoexfoliation glaucoma (PXG). Patients with open-angle PXG under surgery from June 2021 to December 2021 were selected. Age- and gender-matched patients with age-related cataract (ARC) were chosen as control. Patients underwent detailed ophthalmic examinations. 0.05-0.1 ml AH were extracted during surgery for MeRIP-Seq and RNA-Seq. Joint analysis was used to screen lncRNAs with differential m6A methylation modification and expression. Online software tools were used to draw lncRNA-miRNA-mRNA network (ceRNA). Expression of lncRNAs and mRNAs was confirmed using quantitative real-time PCR. A total of 4151 lncRNAs and 4386 associated m6A methylation modified peaks were identified in the PXG group. Similarly, 2490 lncRNAs and 2595 associated m6A methylation modified peaks were detected in the control. Compared to the ARC group, the PXG group had 234 hypermethylated and 402 hypomethylated m6A peaks, with statistically significant differences (| Fold Change (FC) |≥2, p < 0.05). Bioinformatic analysis revealed that these differentially methylated lncRNA enriched in extracellular matrix formation, tight adhesion, TGF- β signalling pathway, AMPK signalling pathway, and MAPK signalling pathway. Joint analysis identified 10 lncRNAs with differential m6A methylation and expression simultaneously. Among them, the expression of ENST000000485383 and ROCK1 were confirmed downregulated in the PXG group by RT-qPCR. m6A methylation modification may affect the expression of lncRNA and participate in the pathogenesis of PXG through the ceRNA network. ENST000000485383-hsa miR592-ROCK1 May be a potential target pathway for further investigation in PXG m6A methylation.
Collapse
Affiliation(s)
- Jieying Guan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Zhidong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Shuifeng Deng
- The Department of Ophthalmology, Huizhou Hospital Affiliated to Guangzhou Medical University (Huizhou Third People’s Hospital), Huizhou, China
| | - Aizezi Wumaier
- The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi, Xinjiang, China
- The First Department of Ophthalmology, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| | - Yuncheng Ma
- The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi, Xinjiang, China
- The First Department of Ophthalmology, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| | - Lingling Xie
- The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi, Xinjiang, China
- The First Department of Ophthalmology, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| | - Shengsong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yingting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| |
Collapse
|
3
|
Wang X, Zhang Q, Zhao D, Li X, Yi L, Li S, Wang X, Gu M, Gao J, Jia X. Identification of regulatory genes associated with POAG by integrating expression and sequencing data. Ophthalmic Genet 2024:1-9. [PMID: 39568137 DOI: 10.1080/13816810.2024.2431103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Primary open-angle glaucoma (POAG) is a subtype of glaucoma that accounts for 60%~70% of all cases. Its pathogenic mechanism is intricate and its pathogenic process is concealed. Numerous significant biological processes associated with POAG continue to be elucidated. METHODS In this study, by exploring the expression data of POAG tissues and normal tissues, we mined the regulatory lncRNAs and mRNAs closely associated with the pathogenesis and progression of POAG by exploring a regulatory network of competing endogenous RNA (ceRNA), established by integrating gene expression data with the known lncRNA-miRNA and miRNA-mRNA-regulatory interactions. The key regulatory pathways and regulatory elements of POAG were identified by topological analysis. Simultaneously, the exome data of 28 cases with POAG and healthy controls were analyzed to identify high-frequency mutations and genes. RESULTS A total of 2712 differentially expressed genes were identified, including 1828 mRNAs and 884 lncRNAs. Network analysis suggested that lncRNAs such as HAGLR, HOTAIR and MIR29B2CHG, and mRNAs such as PPP6R3, BMPR2 and CFL2, may be involved in the onset and progression of POAG. In addition, 55 mutations with potential pathogenicity were identified. CONCLUSION These genes and mutations provide novel potential genetic heterogeneity and genetic susceptibility of POAG, as well as fresh suggestions for elucidating the molecular mechanism underlying the pathogenesis of POAG.
Collapse
Affiliation(s)
- Xizi Wang
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Qiang Zhang
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Dongdong Zhao
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Xiaofen Li
- Liao Cheng 120 Medical Emergency Command and Dispatch Center, Liaocheng, Shandong, P.R. China
| | - Lili Yi
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Siyuan Li
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Xin Wang
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Mingliang Gu
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Jianlu Gao
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| |
Collapse
|
4
|
Ye HF, Zhang X, Zhao ZN, Zheng C, Fei P, Xu Y, Lyu J, Chen JL, Guo XX, Zhu H, Zhao PQ. Characterization of N 6-methyladenosine long non-coding RNAs in sporadic congenital cataract and age-related cataract. Int J Ophthalmol 2024; 17:1973-1986. [PMID: 39559306 PMCID: PMC11528264 DOI: 10.18240/ijo.2024.11.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/09/2024] [Indexed: 11/20/2024] Open
Abstract
AIM To characterize the N6-methyladenosine (m6A) modification patterns in long non-coding RNAs (lncRNAs) in sporadic congenital cataract (CC) and age-related cataract (ARC). METHODS Anterior capsule of the lens were collected from patients with CC and ARC. Methylated RNA immunoprecipitation with next-generation sequencing and RNA sequencing were performed to identify m6A-tagged lncRNAs and lncRNAs expression. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses and Gene Ontology annotation were used to predict potential functions of the m6A-lncRNAs. RESULTS Large amount of m6A peaks within lncRNA were identified for both CC and ARC, while the level was much higher in ARC (49 870 peaks) than that in CC (18 688 peaks), yet those difference between ARC in younger age group (ARC-1) and ARC in elder age group (ARC-2) was quite slight. A total of 1305 hypermethylated and 1178 hypomethylated lncRNAs, as well as 182 differential expressed lncRNAs were exhibited in ARC compared with CC. On the other hand, 5893 hypermethylated and 5213 hypomethylated lncRNAs, as well as 155 significantly altered lncRNA were identified in ARC-2 compared with ARC-1. Altered lncRNAs in ARC were mainly associated with the organization and biogenesis of intracellular organelles, as well as nucleotide excision repair. CONCLUSION Our results for the first time present an overview of the m6A methylomes of lncRNA in CC and ARC, providing a solid basis and uncovering a new insight to reveal the potential pathogenic mechanism of CC and ARC.
Collapse
Affiliation(s)
- Hong-Fei Ye
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhen-Nan Zhao
- Department of Ophthalmology and Vision Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai 200031, China
| | - Ce Zheng
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ping Fei
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yu Xu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jiao Lyu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ji-Li Chen
- Department of Ophthalmology, Shanghai Shibei Hospital of Jing'an District, Shanghai 200040, China
| | - Xun-Xiang Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Huang Zhu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Pei-Quan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
5
|
Chen C, Guo L, Shen Y, Hu J, Gu J, Ji G. Oxidative damage and cardiotoxicity induced by 2-aminobenzothiazole in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135032. [PMID: 38959826 DOI: 10.1016/j.jhazmat.2024.135032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
There is limited information available on cardiovascular toxicity of 2-Aminobenzothiazole (NTH), a derivative of benzothiazole (BTH) commonly used in tire production, in aquatic organisms. In the present study, the zebrafish embryos were exposed to varying concentrations of NTH (0, 0.05, 0.5, and 5 mg/L) until adulthood and the potential cardiovascular toxicity was assessed. NTH exposure resulted in striking aberrations in cardiac development, including heart looping failure and interference with atrioventricular canal differentiation. RNA-sequencing analysis indicated that NTH causes oxidative damage to the heart via ferroptosis, leading to oxygen supply disruption, cardiac malformation, and ultimately, zebrafish death. Quantitative real-time polymerase chain reaction (qPCR) analysis demonstrated the dysregulation of genes associated with early heart development, contraction, and oxidative stress. Additionally, reactive oxygen species accumulation and glutathione/malondialdehyde levels changes suggested a potential link between cardiac developmental toxicity and oxidative stress. In adult zebrafish, NTH exposure led to ventricular enlargement, decreased heart rate, reduced blood flow, and prolonged RR, QRS, and QTc intervals. To the best of our knowledge, this study is the first to provide evidence of cardiac toxicity and the adverse effects of ontogenetic NTH exposure in zebrafish, revealing the underlying toxic mechanisms connected with oxidative stress damage. These findings may provide crucial insights into the environmental risks associated with NTH and other BTHs.
Collapse
Affiliation(s)
- Chen Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Liguo Guo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuehong Shen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jun Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China
| | - Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
6
|
Wu S, Hao J, Guo D, Ma Z, Wu Q, Zhang M, Bi H. Characterization of lncRNA and mRNA profiles in ciliary body in experimental myopia. Exp Eye Res 2024; 241:109849. [PMID: 38430983 DOI: 10.1016/j.exer.2024.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Currently, researchers have mainly focused on the role of the tissues of the posterior segment of the eyes in the development of myopia. However, the ciliary body, an anterior ocular tissue that contracts to initiate the process of accommodation, may also play an important role in the progression of myopia due to the increased demand for near work. In the present study, we established a lens-induced myopia (LIM) animal model in guinea pigs and investigated the molecular changes in the ciliary body associated with the development of myopia based on RNA sequencing. As a result, 871 differentially expressed (DE) mRNAs and 19 DE lncRNAs were identified in the ciliary body between the LIM group and the normal control group. In addition, the lncRNA-mRNA co-expression analysis was performed to explore the target genes of lncRNAs, which were mainly enriched in the Rap1 signaling pathway, cytokine-cytokine receptor interaction, and complement and coagulation cascades pathways based on the functional enrichment analysis. Among the target genes of lncRNAs, three hub genes, including Ctnnb1, Pik3r1, and Itgb1, were found to be involved in the Rap1 signaling pathway. Interestingly, two crucial genes, Grk1 and Pde6a, which are mainly expressed in retinal photoreceptors, were enriched in visual perception in the ciliary body in functional analysis and were verified to be expressed in the ciliary body. These findings indicate the molecular pathogenetic role of the ciliary body in myopia and provide new insights into the underlying mechanism of myopia development. Further studies are needed to explore the specific contributions of these identified lncRNAs and mRNAs to the development of myopia.
Collapse
Affiliation(s)
- Shanshan Wu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Jiawen Hao
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Dadong Guo
- Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
| | - Zhongyu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Qiuxin Wu
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongsheng Bi
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Clinical Research Center of Ophthalmology and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Academy of Health and Myopia Prevention and Control of Children and Adolescents, Jinan, 250002, China.
| |
Collapse
|
7
|
Madadi Y, Monavarfeshani A, Chen H, Stamer WD, Williams RW, Yousefi S. Artificial Intelligence Models for Cell Type and Subtype Identification Based on Single-Cell RNA Sequencing Data in Vision Science. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2837-2852. [PMID: 37294649 PMCID: PMC10631573 DOI: 10.1109/tcbb.2023.3284795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) provides a high throughput, quantitative and unbiased framework for scientists in many research fields to identify and characterize cell types within heterogeneous cell populations from various tissues. However, scRNA-seq based identification of discrete cell-types is still labor intensive and depends on prior molecular knowledge. Artificial intelligence has provided faster, more accurate, and user-friendly approaches for cell-type identification. In this review, we discuss recent advances in cell-type identification methods using artificial intelligence techniques based on single-cell and single-nucleus RNA sequencing data in vision science. The main purpose of this review paper is to assist vision scientists not only to select suitable datasets for their problems, but also to be aware of the appropriate computational tools to perform their analysis. Developing novel methods for scRNA-seq data analysis remains to be addressed in future studies.
Collapse
|
8
|
Yu D, Wu Y, Zhu L, Wang Y, Sheng D, Zhao X, Liang G, Gan L. The landscape of the long non-coding RNAs in developing mouse retinas. BMC Genomics 2023; 24:252. [PMID: 37165305 PMCID: PMC10173636 DOI: 10.1186/s12864-023-09354-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND The long non-coding RNAs (lncRNAs) are critical regulators of diverse biological processes. Nevertheless, a global view of its expression and function in the mouse retina, a crucial model for neurogenesis study, still needs to be made available. RESULTS Herein, by integrating the established gene models and the result from ab initio prediction using short- and long-read sequencing, we characterized 4,523 lncRNA genes (MRLGs) in developing mouse retinas (from the embryonic day of 12.5 to the neonatal day of P28), which was so far the most comprehensive collection of retinal lncRNAs. Next, derived from transcriptomics analyses of different tissues and developing retinas, we found that the MRLGs were highly spatiotemporal specific in expression and played essential roles in regulating the genesis and function of mouse retinas. In addition, we investigated the expression of MRLGs in some mouse mutants and revealed that 97 intergenic MRLGs might be involved in regulating differentiation and development of retinal neurons through Math5, Isl1, Brn3b, NRL, Onecut1, or Onecut2 mediated pathways. CONCLUSIONS In summary, this work significantly enhanced our knowledge of lncRNA genes in mouse retina development and provided valuable clues for future exploration of their biological roles.
Collapse
Affiliation(s)
- Dongliang Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China.
| | - Yuqing Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Leilei Zhu
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Yuying Wang
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Donglai Sheng
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Xiaofeng Zhao
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Guoqing Liang
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China.
| | - Lin Gan
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
9
|
Rasoulinejad SA, Sarreshtehdari N, Mafi AR. The crosstalk between VEGF signaling pathway and long non-coding RNAs in neovascular retinal diseases: Implications for anti-VEGF therapy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Zhu Z, Ma L. Sevoflurane induces inflammation in primary hippocampal neurons by regulating Hoxa5/Gm5106/miR-27b-3p positive feedback loop. Bioengineered 2021; 12:12215-12226. [PMID: 34783294 PMCID: PMC8810152 DOI: 10.1080/21655979.2021.2005927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 10/27/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a normal condition that develops after surgery with anesthesia, leading to deterioration of cognitive functions. However, the mechanism of POCD still remains unknown. To elucidate the POCD molecular mechanism, sevoflurane was employed in the present study to generate neuroinflammation mice model. Sevoflurane treatment caused inflammatory markers IL6, IL-10 and TNF-α high expression in primary hippocampal neurons and blood samples. Long non-coding RNA Gm5106 was found to be increased after being stimulated with sevoflurane. Silencing Gm5106 inhibited neuron inflammation. In the meanwhile, Gm5106 was identified as a direct target of miR-27b-3p that was inhibited by sevoflurane and related to inflammation suppression. In addition, transcription factor (TF) Hoxa5 was validated to activate Gm5106 through two binding motifs in the promoter region after sevoflurane exposure. Furthermore, miR-27b-3p also directly targeted Hoxa5 3'UTR, which affected nuclear Hoxa5 protein served as TF. Hoxa5 protein instead of 3'UTR reduced miR-27b-3p, in which Gm5106 knocking down abrogated this effect. In conclusion, sevoflurane induces neuroinflammation through increasing long non-coding RNA Gm5106, which is transcriptionally activated by Hoxa5 and directly targeted by miR-27-3p. Apart from that, Hoxa5, Gm5106, and miR-27b-3p form a positive feedback loop in sevoflurane stimulation.
Collapse
Affiliation(s)
- Zifu Zhu
- Huizhou Municipal Central Hospital, Huizhou, Guangdong, PR China
| | - Li Ma
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, PR China
| |
Collapse
|
11
|
German OL, Vallese-Maurizi H, Soto TB, Rotstein NP, Politi LE. Retina stem cells, hopes and obstacles. World J Stem Cells 2021; 13:1446-1479. [PMID: 34786153 PMCID: PMC8567457 DOI: 10.4252/wjsc.v13.i10.1446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Retinal degeneration is a major contributor to visual dysfunction worldwide. Although it comprises several eye diseases, loss of retinal pigment epithelial (RPE) and photoreceptor cells are the major contributors to their pathogenesis. Early therapies included diverse treatments, such as provision of anti-vascular endothelial growth factor and many survival and trophic factors that, in some cases, slow down the progression of the degeneration, but do not effectively prevent it. The finding of stem cells (SC) in the eye has led to the proposal of cell replacement strategies for retina degeneration. Therapies using different types of SC, such as retinal progenitor cells (RPCs), embryonic SC, pluripotent SCs (PSCs), induced PSCs (iPSCs), and mesenchymal stromal cells, capable of self-renewal and of differentiating into multiple cell types, have gained ample support. Numerous preclinical studies have assessed transplantation of SC in animal models, with encouraging results. The aim of this work is to revise the different preclinical and clinical approaches, analyzing the SC type used, their efficacy, safety, cell attachment and integration, absence of tumor formation and immunorejection, in order to establish which were the most relevant and successful. In addition, we examine the questions and concerns still open in the field. The data demonstrate the existence of two main approaches, aimed at replacing either RPE cells or photoreceptors. Emerging evidence suggests that RPCs and iPSC are the best candidates, presenting no ethical concerns and a low risk of immunorejection. Clinical trials have already supported the safety and efficacy of SC treatments. Serious concerns are pending, such as the risk of tumor formation, lack of attachment or integration of transplanted cells into host retinas, immunorejection, cell death, and also ethical. However, the amazing progress in the field in the last few years makes it possible to envisage safe and effective treatments to restore vision loss in a near future.
Collapse
Affiliation(s)
- Olga L German
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Harmonie Vallese-Maurizi
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Tamara B Soto
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Nora P Rotstein
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Luis Enrique Politi
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
12
|
Appelbaum T, Murgiano L, Becker D, Santana E, Aguirre GD. Candidate Genetic Modifiers for RPGR Retinal Degeneration. Invest Ophthalmol Vis Sci 2021; 61:20. [PMID: 33326016 PMCID: PMC7745631 DOI: 10.1167/iovs.61.14.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose To define genetic variants associated with variable severity of X-linked progressive retinal atrophy 1 (XLPRA1) caused by a five-nucleotide deletion in canine RPGR exon ORF15. Methods A genome-wide association study (GWAS) was performed in XLPRA1 phenotype informative pedigree. Whole genome sequencing (WGS) was used for mutational analysis of genes within the candidate genomic region. Retinas of normal and mutant dogs were used for gene expression, gene structure, and RNA duplex analyses. Results GWAS followed by haplotype phasing identified an approximately 4.6 Mb candidate genomic interval on CFA31 containing seven protein-coding genes expressed in retina (ROBO1, ROBO2, RBM11, NRIP1, HSPA13, SAMSN1, and USP25). Furthermore, we identified and characterized two novel lncRNAs, ROBO1-AS and ROBO2-AS, that display overlapping gene organization with axon guidance pathway genes ROBO1 and ROBO2, respectively, producing sense-antisense gene pairs. Notably, ROBO1-AS and ROBO2-AS act in cis to form lncRNA/mRNA duplexes with ROBO1 and ROBO2, respectively, suggesting important roles for these lncRNAs in the ROBO regulatory network. A subsequent WGS identified candidate genes within the genomic region on CFA31 that might be implicated in modifying severity of XLPRA1. This approach led to discovery of genetic variants in ROBO1, ROBO1-AS, ROBO2-AS, and USP25 that are strongly associated with the XLPRA1 moderate phenotype. Conclusions The study provides new insights into the genetic basis of phenotypic variation in severity of RPGRorf15-associated retinal degeneration. Our findings suggest an important role for ROBO pathways in disease progression further expanding on our previously reported changes of ROBO1 expression in XLPRA1 retinas.
Collapse
Affiliation(s)
- Tatyana Appelbaum
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Leonardo Murgiano
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Doreen Becker
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.,Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Evelyn Santana
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Gustavo D Aguirre
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
13
|
Raeisossadati R, Ferrari MFR, Kihara AH, AlDiri I, Gross JM. Epigenetic regulation of retinal development. Epigenetics Chromatin 2021; 14:11. [PMID: 33563331 PMCID: PMC7871400 DOI: 10.1186/s13072-021-00384-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/28/2021] [Indexed: 01/10/2023] Open
Abstract
In the developing vertebrate retina, retinal progenitor cells (RPCs) proliferate and give rise to terminally differentiated neurons with exquisite spatio-temporal precision. Lineage commitment, fate determination and terminal differentiation are controlled by intricate crosstalk between the genome and epigenome. Indeed, epigenetic regulation plays pivotal roles in numerous cell fate specification and differentiation events in the retina. Moreover, aberrant chromatin structure can contribute to developmental disorders and retinal pathologies. In this review, we highlight recent advances in our understanding of epigenetic regulation in the retina. We also provide insight into several aspects of epigenetic-related regulation that should be investigated in future studies of retinal development and disease. Importantly, focusing on these mechanisms could contribute to the development of novel treatment strategies targeting a variety of retinal disorders.
Collapse
Affiliation(s)
- Reza Raeisossadati
- Departamento de Genética E Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua Do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil.,Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Merari F R Ferrari
- Departamento de Genética E Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua Do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil
| | | | - Issam AlDiri
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey M Gross
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Bonilauri B, Dallagiovanna B. Long Non-coding RNAs Are Differentially Expressed After Different Exercise Training Programs. Front Physiol 2020; 11:567614. [PMID: 33071823 PMCID: PMC7533564 DOI: 10.3389/fphys.2020.567614] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/25/2020] [Indexed: 12/29/2022] Open
Abstract
Background Molecular regulation related to the health benefits of different exercise modes remains unclear. Long non-coding RNAs (lncRNAs) have emerged as an RNA class with regulatory functions in health and diseases. Here, we analyzed the expression of lncRNAs after different exercise training programs and their possible modes of action related to physical exercise adaptations. Methods Public high-throughput RNA-seq data (skeletal muscle biopsies) were downloaded, and bioinformatics analysis was performed. We primarily analyzed data reports of 12 weeks of resistance training (RT), high-intensity interval training (HIIT), and combined (CT) exercise training. In addition, we analyzed data from 8 weeks of endurance training (ET). Differential expression analysis of lncRNAs was performed, and an adjusted P-value < 0.1 and log2 (fold change) ≥0.5 or ≤-0.5 were set as the cutoff values to identify differentially expressed lncRNAs (DELs). Results We identified 204 DELs after 12 weeks of HIIT, 43 DELs after RT, and 15 DELs after CT. Moreover, 52 lncRNAs were differentially expressed after 8 weeks of ET. The lncRNA expression pattern after physical exercise was very specific, with distinct expression profiles for the different training programs, where few lncRNAs were common among the exercise types. LncRNAs may regulate molecular responses to exercise, such as collagen fibril organization, extracellular matrix organization, myoblast and plasma membrane fusion, skeletal muscle contraction, synaptic transmission, PI3K and TORC regulation, autophagy, and angiogenesis. Conclusion For the first time, we show that lncRNAs are differentially expressed in skeletal muscle after different physical exercise programs, and these lncRNAs may act in various biological processes related to physical activity adaptations.
Collapse
Affiliation(s)
- Bernardo Bonilauri
- Laboratory of Basic Biology of Stem Cells (LABCET), Carlos Chagas Institute - FIOCRUZ-PR, Curitiba, Brazil
| | - Bruno Dallagiovanna
- Laboratory of Basic Biology of Stem Cells (LABCET), Carlos Chagas Institute - FIOCRUZ-PR, Curitiba, Brazil
| |
Collapse
|
15
|
Xu W, Zhao Y, Ai Y. Overexpression of lncRNA Gm43050 alleviates apoptosis and inflammation response induced by sevoflurane treatment by regulating miR-640/ZFP91. Am J Transl Res 2020; 12:4337-4346. [PMID: 32913509 PMCID: PMC7476152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
AIMS The present study investigated the function and mechanism of lncRNA Gm43050 in sevoflurane-induced abnormal cognition. METHODS Primary hippocampal neurons were used to establish the model of abnormal cognitive disorder. Overexpression and knockdown experiments were performed to analyze cell death rates, proliferation, apoptosis and the inflammatory response. The dual-luciferase reporter assay was used to analyze the potential binding targets of lncRNA Gm43050. Rescue experiments were used to assess the downstream targets of Gm43050. RESULTS We found that lncRNA Gm43050 was in the cytoplasm. Overexpression of lncRNA Gm43050 had no impact on proliferation but significantly reduced the cell death rates and apoptosis. The inflammation markers IL-6, IL-1β, IL-8 and TNF-α were manifestly downregulated in the overexpression group. Opposite effects were detected in the lncRNA Gm43050 knockdown group. Bioinformatics analysis showed that miR-640 may be the potential target of Gm43050. Additionally, we found that ZFP91 was the downstream target of miR-640. CONCLUSION We provided comprehensive data of the function and mechanism of lncRNA Gm43050 in abnormal cognition. Our study showed that lncRNA Gm43050 exerted its important role via the regulation of miR-640 and ZFP91.
Collapse
Affiliation(s)
- Weiwei Xu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan, China
| | - Yanling Zhao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan, China
| | - Yanqiu Ai
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan, China
| |
Collapse
|
16
|
Maroñas O, García-Quintanilla L, Luaces-Rodríguez A, Fernández-Ferreiro A, Latorre-Pellicer A, Abraldes MJ, Lamas MJ, Carracedo A. Anti-VEGF Treatment and Response in Age-related Macular Degeneration: Disease's Susceptibility, Pharmacogenetics and Pharmacokinetics. Curr Med Chem 2020; 27:549-569. [PMID: 31296152 DOI: 10.2174/0929867326666190711105325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/03/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
The current review is focussing different factors that contribute and directly correlate to the onset and progression of Age-related Macular Degeneration (AMD). In particular, the susceptibility to AMD due to genetic and non-genetic factors and the establishment of risk scores, based on the analysis of different genes to measure the risk of developing the disease. A correlation with the actual therapeutic landscape to treat AMD patients from the point of view of pharmacokinetics and pharmacogenetics is also exposed. Treatments commonly used, as well as different regimes of administration, will be especially important in trying to classify individuals as "responders" and "non-responders". Analysis of different genes correlated with drug response and also the emerging field of microRNAs (miRNAs) as possible biomarkers for early AMD detection and response will be also reviewed. This article aims to provide the reader a review of different publications correlated with AMD from the molecular and kinetic point of view as well as its commonly used treatments, major pitfalls and future directions that, to our knowledge, could be interesting to assess and follow in order to develop a personalized medicine model for AMD.
Collapse
Affiliation(s)
- Olalla Maroñas
- Grupo de Medicina Xenomica, Centro Nacional de Genotipado (CEGEN-PRB3), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura García-Quintanilla
- Servicio de Farmacia, Xerencia de Xestión Integrada de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Andrea Luaces-Rodríguez
- Departamento de Farmacia e Tecnoloxia Farmaceutica e Instituto de Farmacia Industrial, Facultade de Farmacia, Universidade de Santiago de Compostela, Spain.,Grupo de Farmacoloxia Clínica, Instituto de Investigacion en Salud de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Departamento de Farmacia e Tecnoloxia Farmaceutica e Instituto de Farmacia Industrial, Facultade de Farmacia, Universidade de Santiago de Compostela, Spain.,Grupo de Farmacoloxia Clínica, Instituto de Investigacion en Salud de Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Departamento de Farmacia, Hospital Clínico Universitario de Santiago de Compostela (SERGAS) (CHUS), Santiago de Compostela, Spain
| | - Ana Latorre-Pellicer
- Unidad de Genetica Clínica y Genomica Funcional, Departamento de Farmacologia-Fisiología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Maximino J Abraldes
- Servicio de Oftalmoloxía, Xerencia de Xestion Integrada de Santiago de Compostela, Santiago de Compostela, Spain.,Departamento de Ciruxía e Especialidades Médico- Quirúrxicas, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María J Lamas
- Grupo de Farmacoloxia Clínica, Instituto de Investigacion en Salud de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Angel Carracedo
- Grupo de Medicina Xenomica, Centro Nacional de Genotipado (CEGEN-PRB3), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, CIBER de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.,Fundación Pública Galega de Medicina Xenómica, SERGAS, Santiago de Compostela, Spain
| |
Collapse
|
17
|
Lukowski SW, Lo CY, Sharov AA, Nguyen Q, Fang L, Hung SSC, Zhu L, Zhang T, Grünert U, Nguyen T, Senabouth A, Jabbari JS, Welby E, Sowden JC, Waugh HS, Mackey A, Pollock G, Lamb TD, Wang P, Hewitt AW, Gillies MC, Powell JE, Wong RCB. A single-cell transcriptome atlas of the adult human retina. EMBO J 2019; 38:e100811. [PMID: 31436334 PMCID: PMC6745503 DOI: 10.15252/embj.2018100811] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 01/12/2023] Open
Abstract
The retina is a specialized neural tissue that senses light and initiates image processing. Although the functional organization of specific retina cells has been well studied, the molecular profile of many cell types remains unclear in humans. To comprehensively profile the human retina, we performed single-cell RNA sequencing on 20,009 cells from three donors and compiled a reference transcriptome atlas. Using unsupervised clustering analysis, we identified 18 transcriptionally distinct cell populations representing all known neural retinal cells: rod photoreceptors, cone photoreceptors, Müller glia, bipolar cells, amacrine cells, retinal ganglion cells, horizontal cells, astrocytes, and microglia. Our data captured molecular profiles for healthy and putative early degenerating rod photoreceptors, and revealed the loss of MALAT1 expression with longer post-mortem time, which potentially suggested a novel role of MALAT1 in rod photoreceptor degeneration. We have demonstrated the use of this retina transcriptome atlas to benchmark pluripotent stem cell-derived cone photoreceptors and an adult Müller glia cell line. This work provides an important reference with unprecedented insights into the transcriptional landscape of human retinal cells, which is fundamental to understanding retinal biology and disease.
Collapse
Affiliation(s)
- Samuel W Lukowski
- Institute for Molecular BioscienceUniversity of QueenslandBrisbaneQldAustralia
| | | | - Alexei A Sharov
- National Institute for AgingNational Institutes of HealthBaltimoreMDUSA
| | - Quan Nguyen
- Institute for Molecular BioscienceUniversity of QueenslandBrisbaneQldAustralia
| | - Lyujie Fang
- Centre for Eye Research AustraliaMelbourneVic.Australia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVic.Australia
- Jinan UniversityGuangzhouChina
| | - Sandy SC Hung
- Centre for Eye Research AustraliaMelbourneVic.Australia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVic.Australia
| | - Ling Zhu
- The University of SydneyFaculty of MedicineSave Sight InstituteSydneyNSWAustralia
| | - Ting Zhang
- The University of SydneyFaculty of MedicineSave Sight InstituteSydneyNSWAustralia
| | - Ulrike Grünert
- The University of SydneyFaculty of MedicineSave Sight InstituteSydneyNSWAustralia
| | - Tu Nguyen
- Centre for Eye Research AustraliaMelbourneVic.Australia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVic.Australia
| | - Anne Senabouth
- Garvan‐Weizmann Centre for Cellular GenomicsGarvan Institute of Medical ResearchSydneyNSWAustralia
| | | | - Emily Welby
- Stem Cells and Regenerative Medicine SectionNIHR Great Ormond Street Hospital Biomedical Research CentreUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Jane C Sowden
- Stem Cells and Regenerative Medicine SectionNIHR Great Ormond Street Hospital Biomedical Research CentreUCL Great Ormond Street Institute of Child HealthLondonUK
| | | | | | | | - Trevor D Lamb
- John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Peng‐Yuan Wang
- Department of Chemistry and BiotechnologySwinburne University of TechnologyMelbourneVic.Australia
- Center for Human Tissues and Organs DegenerationInstitute of Biomedicine and BiotechnologyShenzhen Institute of Advanced TechnologyChinese Academy of ScienceShenzhenChina
| | - Alex W Hewitt
- Centre for Eye Research AustraliaMelbourneVic.Australia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVic.Australia
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTas.Australia
| | - Mark C Gillies
- The University of SydneyFaculty of MedicineSave Sight InstituteSydneyNSWAustralia
| | - Joseph E Powell
- Garvan‐Weizmann Centre for Cellular GenomicsGarvan Institute of Medical ResearchSydneyNSWAustralia
- UNSW Cellular Genomics Futures InstituteUniversity of New South WalesSydneyNSWAustralia
| | - Raymond CB Wong
- Centre for Eye Research AustraliaMelbourneVic.Australia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVic.Australia
- Shenzhen Eye HospitalShenzhen University School of MedicineShenzhenChina
| |
Collapse
|
18
|
Wan Y, Liu X, Zheng D, Wang Y, Chen H, Zhao X, Liang G, Yu D, Gan L. Systematic identification of intergenic long-noncoding RNAs in mouse retinas using full-length isoform sequencing. BMC Genomics 2019; 20:559. [PMID: 31286854 PMCID: PMC6615288 DOI: 10.1186/s12864-019-5903-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Background A great mass of long noncoding RNAs (lncRNAs) have been identified in mouse genome and increasing evidences in the last decades have revealed their crucial roles in diverse biological processes. Nevertheless, the biological roles of lncRNAs in the mouse retina remains largely unknown due to the lack of a comprehensive annotation of lncRNAs expressed in the retina. Results In this study, we applied the long-reads sequencing strategy to unravel the transcriptomes of developing mouse retinas and identified a total of 940 intergenic lncRNAs (lincRNAs) in embryonic and neonatal retinas, including about 13% of them were transcribed from unannotated gene loci. Subsequent analysis revealed that function of lincRNAs expressed in mouse retinas were closely related to the physiological roles of this tissue, including 90 lincRNAs that were differentially expressed after the functional loss of key regulators of retinal ganglion cell (RGC) differentiation. In situ hybridization results demonstrated the enrichment of three class IV POU-homeobox genes adjacent lincRNAs (linc-3a, linc-3b and linc-3c) in ganglion cell layer and indicated they were potentially RGC-specific. Conclusions In summary, this study systematically annotated the lincRNAs expressed in embryonic and neonatal mouse retinas and implied their crucial regulatory roles in retinal development such as RGC differentiation. Electronic supplementary material The online version of this article (10.1186/s12864-019-5903-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Wan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, China
| | - Xiaoyang Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, China
| | | | - Yuying Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, China
| | - Huan Chen
- Key Laboratory of microbiological technology and Bioinformatics in Zhejiang Province, Hangzhou, China
| | - Xiaofeng Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, China
| | - Guoqing Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Dongliang Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China. .,Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, China.
| | - Lin Gan
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
19
|
Gong W, Li J, Zhu G, Wang Y, Zheng G, Kan Q. Chlorogenic acid relieved oxidative stress injury in retinal ganglion cells through IncRNA-TUG1/Nrf2. Cell Cycle 2019; 18:1549-1559. [PMID: 31055996 DOI: 10.1080/15384101.2019.1612697] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective: To discover the possible underlying mechanism of Chlorogenic acid (CGA) in protecting against oxidative stress injury in glaucoma. Methods: LncRNA TUG1 and Nrf2 expressions were detected by qRT-PCR and Western blot. Retinal ganglion cell (RGC) viability and apoptosis were measured by MTT and flow cytometry, respectively. Reactive oxygen species (ROS) level was determined by reactive oxygen species assay kit. The interaction between lncRNA TUG1 and Nrf2 was confirmed by RNA pull-down and RIP assay. Results: IPL thickness and lncRNA TUG1 expression were significantly decreased in glaucoma mice model, and CGA treatment increased IPL thickness and lncRNA TUG1 expression. In vitro H2O2-induced RGCs, RGC viability was significantly decreased, and ROS level and cell apoptosis were significantly increased. CGA up-regulated lncRNA TUG1 and Nrf2 expressions, decreased cell apoptosis and ROS production in RGCs, and increased RGCs viability. We further verified the interaction between lncRNA TUG1 and Nrf2, and proved Nrf2 was positively regulated by lncRNA TUG1. We found CGA promoted Nrf2 expression through lncRNA-TUG1, and further verified CGA protected RGCs from oxidative stress through regulating lncRNA TUG1/Nrf2. In vivo experiments showed TUG1 knockdown abrogated therapeutic effect of CGA on glaucoma. Conclusion: CGA increased RGC viability and decreased ROS level and RGC apoptosis after oxidative stress injury through lncRNA TUG1/Nrf2 pathway, which protected against glaucoma.
Collapse
Affiliation(s)
- Weifeng Gong
- a Department of Ophthalmology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Jie Li
- b Department of Ophthalmology , The People's Hospital of Zhengzhou University , Zhengzhou , China
| | - Guangyue Zhu
- c Department of Ophthalmology , The Second Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Yongcheng Wang
- c Department of Ophthalmology , The Second Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Guangying Zheng
- a Department of Ophthalmology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Quancheng Kan
- d Department of Clinical Pharmacology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| |
Collapse
|
20
|
Nawaz IM, Rezzola S, Cancarini A, Russo A, Costagliola C, Semeraro F, Presta M. Human vitreous in proliferative diabetic retinopathy: Characterization and translational implications. Prog Retin Eye Res 2019; 72:100756. [PMID: 30951889 DOI: 10.1016/j.preteyeres.2019.03.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of visual impairment in the working-age population. DR is a progressive eye disease caused by long-term accumulation of hyperglycaemia-mediated pathological alterations in the retina of diabetic patients. DR begins with asymptomatic retinal abnormalities and may progress to advanced-stage proliferative diabetic retinopathy (PDR), characterized by neovascularization or preretinal/vitreous haemorrhages. The vitreous, a transparent gel that fills the posterior cavity of the eye, plays a vital role in maintaining ocular function. Structural and molecular alterations of the vitreous, observed during DR progression, are consequences of metabolic and functional modifications of the retinal tissue. Thus, vitreal alterations reflect the pathological events occurring at the vitreoretinal interface. These events are caused by hypoxic, oxidative, inflammatory, neurodegenerative, and leukostatic conditions that occur during diabetes. Conversely, PDR vitreous can exert pathological effects on the diabetic retina, resulting in activation of a vicious cycle that contributes to disease progression. In this review, we recapitulate the major pathological features of DR/PDR, and focus on the structural and molecular changes that characterize the vitreal structure and composition during DR and progression to PDR. In PDR, vitreous represents a reservoir of pathological signalling molecules. Therefore, in this review we discuss how studying the biological activity of the vitreous in different in vitro, ex vivo, and in vivo experimental models can provide insights into the pathogenesis of PDR. In addition, the vitreous from PDR patients can represent a novel tool to obtain preclinical experimental evidences for the development and characterization of new therapeutic drug candidates for PDR therapy.
Collapse
Affiliation(s)
- Imtiaz M Nawaz
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Anna Cancarini
- Department of Ophthalmology, University of Brescia, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Brescia, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Italy.
| |
Collapse
|
21
|
Volatile Evolution of Long Non-Coding RNA Repertoire in Retinal Pigment Epithelium: Insights from Comparison of Bovine and Human RNA Expression Profiles. Genes (Basel) 2019; 10:genes10030205. [PMID: 30857256 PMCID: PMC6471466 DOI: 10.3390/genes10030205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 11/17/2022] Open
Abstract
Currently, several long non-coding RNAs (lncRNAs) (TUG1, MALAT1, MEG3 and others) have been discovered to regulate normal visual function and may potentially contribute to dysfunction of the retina. We decided to extend these analyses of lncRNA genes to the retinal pigment epithelium (RPE) to determine whether there is conservation of RPE-expressed lncRNA between human and bovine genomes. We reconstructed bovine RPE lncRNAs based on genome-guided assembly. Next, we predicted homologous human transcripts based on whole genome alignment. We found a small set of conserved lncRNAs that could be involved in signature RPE functions that are conserved across mammals. However, the fraction of conserved lncRNAs in the overall pool of lncRNA found in RPE appeared to be very small (less than 5%), perhaps reflecting a fast and flexible adaptation of the mammalian eye to various environmental conditions.
Collapse
|
22
|
Eiberg H, Mikkelsen AF, Bak M, Tommerup N, Lund AM, Wenzel A, Sabarinathan R, Gorodkin J, Bang-Berthelsen CH, Hansen L. A splice-site variant in the lncRNA gene RP1-140A9.1 cosegregates in the large Volkmann cataract family. Mol Vis 2019; 25:1-11. [PMID: 30820140 PMCID: PMC6377377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 01/17/2019] [Indexed: 11/12/2022] Open
Abstract
Purpose To identify the mutation for Volkmann cataract (CTRCT8) at 1p36.33. Methods The genes in the candidate region 1p36.33 were Sanger and parallel deep sequenced, and informative single nucleotide polymorphisms (SNPs) were identified for linkage analysis. Expression analysis with reverse transcription polymerase chain reaction (RT-PCR) of the candidate gene was performed using RNA from different human tissues. Quantitative transcription polymerase chain reaction (qRT-PCR) analysis of the GNB1 gene was performed in affected and healthy individuals. Bioinformatic analysis of the linkage regions including the candidate gene was performed. Results Linkage analysis of the 1p36.33 CCV locus applying new marker systems obtained with Sanger and deep sequencing reduced the candidate locus from 2.1 Mb to 0.389 Mb flanked by the markers STS-22AC and rs549772338 and resulted in an logarithm of the odds (LOD) score of Z = 21.67. The identified mutation, rs763295804, affects the donor splice site in the long non-coding RNA gene RP1-140A9.1 (ENSG00000231050). The gene including splice-site junctions is conserved in primates but not in other mammalian genomes, and two alternative transcripts were shown with RT-PCR. One of these transcripts represented a lens cell-specific transcript. Meta-analysis of the Cross-Linking-Immuno-Precipitation sequencing (CLIP-Seq) data suggested the RNA binding protein (RBP) eIF4AIII is an active counterpart for RP1-140A9.1, and several miRNA and transcription factors binding sites were predicted in the proximity of the mutation. ENCODE DNase I hypersensitivity and histone methylation and acetylation data suggest the genomic region may have regulatory functions. Conclusions The mutation in RP1-140A9.1 suggests the long non-coding RNA as the candidate cataract gene associated with the autosomal dominant inherited congenital cataract from CCV. The mutation has the potential to destroy exon/intron splicing of both transcripts of RP1-140A9.1. Sanger and massive deep resequencing of the linkage region failed to identify alternative candidates suggesting the mutation in RP1-140A9.1 is causative for the CCV phenotype.
Collapse
Affiliation(s)
- Hans Eiberg
- RCLINK, Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Copenhagen N, Denmark
| | - Annemette F. Mikkelsen
- RCLINK, Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Copenhagen N, Denmark
| | - Mads Bak
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Niels Tommerup
- Wilhelm Johansen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Copenhagen N, Denmark,Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Allan M. Lund
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anne Wenzel
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Radhakrishnan Sabarinathan
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Claus H. Bang-Berthelsen
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Lars Hansen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
23
|
Abstract
BACKGROUND Prostate-cancer-associated ncRNA transcript 1 (PCAT-1), a newly discovered lncRNA, was implicated in the progression of multiple tumors. We conducted a systematic review and meta-analysis to determine its prognostic potential for gastrointestinal cancers. METHODS A literature survey was conducted by searching the PubMed, Web of Science, Cochrane Library, Embase together with Wanfang, and China National Knowledge Infrastructure (CNKI) database for articles published as of October 15, 2017. Hazard ratio (HR) or odds ratio (OR) with 95% confidence intervals (95% CIs) were calculated to demonstrate prognostic value of PCAT-1 using Stata 12.0 software. RESULTS A total of 6 studies with 961 cases were pooled in the analysis to evaluate the prognostic value of PCAT-1 in gastrointestinal cancers. Increased PCAT-1 expression was significantly correlated with poor overall survival (OS) (HR = 1.04, 95% CI: 1.02-1.06). Statistical significance was also observed in subgroup meta-analysis stratified by cancer type, histology type, sample size, and analysis type. Additionally, high expression of PCAT-1 was significantly associated with deeper tumor invasion (OR = 4.46, 95% CI: 3.00-6.63), positive lymph node metastasis (OR = 3.76, 95% CI: 1.39-10.16), and advanced clinical stage (OR = 4.09, 95% CI: 1.55-10.82). CONCLUSION High expression of PCAT-1 was related to poor prognosis and could be a promising biomarker of clinicopathologic features in gastrointestinal cancers. More studies will be necessary to verify and strengthen the clinical value of PCAT-1 in gastrointestinal cancers.
Collapse
Affiliation(s)
- Wanwei Liu
- Department of Hepatobiliary Surgery, Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong Province, China
| | | |
Collapse
|
24
|
Zhang JJ, Wang DD, Du CX, Wang Y. Long Noncoding RNA ANRIL Promotes Cervical Cancer Development by Acting as a Sponge of miR-186. Oncol Res 2018; 26:345-352. [PMID: 28550682 PMCID: PMC7844636 DOI: 10.3727/096504017x14953948675449] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cervical cancer is a common malignancy of the female reproductive system. Long noncoding RNAs (lncRNAs) have been reported to modulate tumor progression in multiple cancers. The lncRNA antisense noncoding RNA in the INK4 locus (ANRIL) has been identified as an oncogenic molecular target in several tumors; however, the function and underlying mechanism involved in cervical cancer oncogenesis are still unclear. In the present study, RT-PCR showed that ANRIL expression was significantly upregulated in cervical cancer tumors and cell lines. Nevertheless, ANRIL knockdown transfected with interference oligonucleotide inhibited the proliferation activity and invasive ability, and promoted apoptosis of cervical cancer cell lines. The bioinformatics prediction program and luciferase assay predicted and validated that miR-186 directly targeted ANRIL. The expression level of miR-186 was downregulated in cervical cancer tumors and cell lines and was negatively correlated to that of ANRIL. Moreover, rescue experiments showed that miR-186 inhibitor could reverse the suppression of ANRIL knockdown. In summary, our study demonstrated that the ANRIL/miR-186 axis might play a vital role in cervical cancer tumorigenesis.
Collapse
Affiliation(s)
- Jun-Jun Zhang
- *Department of Obstetrics and Gynecology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan Province, P.R. China
| | - Dan-Dan Wang
- *Department of Obstetrics and Gynecology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan Province, P.R. China
| | - Chen-Xiang Du
- †Department of Obstetrics, People’s Hospital of Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Yan Wang
- ‡Department of Gynecology, The First Affiliated Hospital of Henan University of Science and Technology in The New Area, Luoyang, Henan Province, P.R. China
| |
Collapse
|
25
|
Ma WX, Huang XG, Yang TK, Yao JY. Involvement of dysregulated coding and long non‑coding RNAs in the pathogenesis of strabismus. Mol Med Rep 2018; 17:7737-7745. [PMID: 29620205 PMCID: PMC5983965 DOI: 10.3892/mmr.2018.8832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/09/2018] [Indexed: 01/05/2023] Open
Abstract
Strabismus is a common ocular disorder in children and may result in exterior abnormalities and impaired visual functions. However, the detailed pathogenesis of strabismus unclear. The present study assessed the comprehensive analyses on the roles of RNAs in the development of strabismus. The public datasets of strabismus and the corresponding control tissues were downloaded from the Gene Expression Omnibus (GEO). Reannotations of the dysregulated coding and long non-coding RNAs (lncRNAs) and functional enrichments of the differently expressed genes (DEGs) were conducted. A total of 790 DEGs were screened (648 upregulated and 142 downregulated) in the present study. Among the DEGs, a total of 32 differently expressed lncRNAs were detected (14 upregulated and 18 downregulated). When the Gene Ontology (GO) enrichment was considered, it was identified that a total of 143 GO terms (82 for biological process, 31 for cellular component and 30 for molecular function) were identified. Among all the 57 detected Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, the phagosome pathway, which was labeled as hsa004145, demonstrated the most bioinformatics importance. However, most lncRNAs, except LINC01279 and LOC643733, indicated <3 target mRNAs and were not suitable for advanced bioinformatics analyses. Bioinformatics analyses demonstrated that there was a GO term for each lncRNA (proteinaceous extracellular for LINC01279 and cell surface for LOC643733). In conclusion, a set of coding RNA as well as lncRNAs differentially expressed in strabismus EOM samples were indicated. Notably, the present findings important information for advanced pathogenesis research and biomarkers detection.
Collapse
Affiliation(s)
- Wen-Xiu Ma
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Xiao-Gang Huang
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Tian-Ke Yang
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Jing-Yan Yao
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
26
|
Long non-coding RNA ANRIL promotes carcinogenesis via sponging miR-199a in triple-negative breast cancer. Biomed Pharmacother 2017; 96:14-21. [DOI: 10.1016/j.biopha.2017.09.107] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022] Open
|
27
|
Zhu W, Meng YF, Xing Q, Tao JJ, Lu J, Wu Y. Identification of lncRNAs involved in biological regulation in early age-related macular degeneration. Int J Nanomedicine 2017; 12:7589-7602. [PMID: 29089757 PMCID: PMC5655033 DOI: 10.2147/ijn.s140275] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Age-related macular degeneration (AMD) is one of the most common causes of adult blindness in developed countries. However, the role of long noncoding RNAs (lncRNAs) in the development and progression of early AMD is unclear. Methods We established the lncRNA profile of early AMD by reannotation of microarrays from the gene expression omnibus database. Quantitative real-time polymerase chain reaction was used to determine the expression of selected lncRNAs. Results The expression profiles of 9 cases of AMD and 7 controls were studied. A total of 266 differentially expressed genes (DEGs) were detected (94 upregulated and 172 downregulated). Among all the DEGs, 64 were lncRNAs. Advanced bioinformatics analyses demonstrated that differentially expressed lncRNAs could play significant roles in visual perception, sensory perception of light stimulus, and cognition. The pathway analyses showed that the two most significantly influenced Kyoto Encyclopedia of Genes and Genomes pathways were those of phototransduction and purine metabolism. By the analyses of the key lncRNAs, it was found that RP11-234O6.2 was downregulated in the aging retinal pigment epithelium (RPE) cellular model. Exogenous RP11-234O6.2 treatment led to increased cell viability and improved apoptosis but it did not affect the cell migration ability of aging RPE cells. Conclusion This study indicated that lncRNAs are differentially expressed in early AMD and may produce important regulative effects. An lncRNA, RP11-234O6.2, might be involved in the biological regulation of early AMD and have therapeutic potential.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, China
| | - Yi-Fang Meng
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, China
| | - Qian Xing
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, China
| | - Jian-Jun Tao
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, China
| | - Jiong Lu
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, China
| | - Yan Wu
- Department of Ophthalmology, First Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|